Answers.

1	D
2	C
3	C
4	D
5	C
6	F
7	T
8	T
9	T
10	T
11	F

Part 1: Multiple choice. One point each.

1. Suppose $T: \mathscr{P}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ is a linear map and that $T\left(x^{2}\right)=(10,5,2), T\left(x^{4}\right)=(0,0,2)$, and $T(1+x)=(-5,1,1)$. Then $T\left(3+3 x+2 x^{2}-x^{4}\right)=$
(a) $(-15,3,3)$
(b) $(20,10,4)$
(c) $(0,0,-2)$
(d) $(5,13,5)$
(e) $(2,5,0,3)$

Answer. (d). $T\left(3+3 x+2 x^{2}-x^{4}\right)=3 T(1+x)+2 T\left(x^{2}\right)-T\left(x^{4}\right)=3(-5,1,1)+2(10,5,2)-$ $(0,0,2)=(5,13,5)$.
2. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be defined by $S(x, y)=(x+y, 5 y, x-y, 2 x+y)$. Which is a basis for the range of S ?
(a) $(2,5,0,3)$
(b) $(1,0,0,0),(0,1,0,0)$
(c) $(1,0,1,2),(1,5,-1,1)$
(d) $(2,5,0,3),(1,5,-1,0),(0,-5,2,1)$
(e) $(1,0,0,0),(0,1,0,0),(0,0,1,0)$

Answer. (c) Since $(1,0)$ and $(0,1)$ span \mathbb{R}^{2}, their images span the range of S. We have $S(1,0)=$ $(1,0,1,2)$ and $S(0,1)=(1,5,-1,1)$, which are independent, hence a basis for range (S).
3. Let $T: \mathscr{P}_{4}(\mathbb{R}) \rightarrow \mathbb{R}$ be defined by $T(p)=p^{\prime \prime}(0)$. Which of the following is a basis for $\operatorname{null}(T)$?
(a) $1, x, x^{2}$
(b) $1+x, 1+x^{2}, 1+x+x^{2}$
(c) $1, x, x^{3}, x^{4}$
(d) x^{4}, x^{3}, x^{2}
(e) x, x^{2}, x^{3}

Answer. (c) Notice that T is not the zero map, so range $(T)=\mathbb{R}$, which is one-dimensional. Therefore null (T) has dimension 4. By inspection, the list in (c) is a list of four independent vectors in $\operatorname{null}(T)$, hence is a basis. Note: no other list has four elements so no other answer could be correct.
4. Suppose that $S \in \mathscr{L}\left(\mathbb{R}^{2}, \mathbb{R}^{4}\right)$ satisfies range $(S)=\{(a, b, c, d): a=c$ and $b=d\}$. Then, which of one of the following statements is false.
(a) S is injective.
(b) There exists a map $T \in \mathscr{L}\left(\mathbb{R}^{4}, \mathbb{R}^{2}\right)$ with $T S=I_{\mathbb{R}^{2}}$.
(c) $\operatorname{dim}(\operatorname{range}(S))=2$.
(d) $\operatorname{dim}(\operatorname{null}(S))=2$.
(e) $\operatorname{dim}(\operatorname{range}(S))+\operatorname{dim}(\operatorname{null}(S))=2$.

Answer. (d) Notice that range $(S)=\operatorname{span}((1,0,1,0),(0,1,0,1))$ is two dimensional so (c) is correct. Since $\operatorname{dim}(\operatorname{range}(S))+\operatorname{dim}(\operatorname{null}(S))=\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$ (and we see (e) is correct) we have $\operatorname{dim}(\operatorname{null}(S))=0$. So (d) is wrong. null $(T)=\{0\}$ implies S is injective and (a) is correct which is equivalent to S being left invertible so (b) is correct.

Note: if only one answer is correct, you can narrow it down to (a) or (d) since these two are contradictory for any map S.
5. Consider the map $T: \mathscr{P}_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ defined by $T(p)=\left(p(0), p(1), p^{\prime}(0), p^{\prime}(1)\right)$ Which is the matrix for T using the basis $1, x, x^{2}, x^{3}$ for the domain and the standard basis for the codomain?
(a) $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3\end{array}\right)$
(d) $\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 2 & 3\end{array}\right)$

Answer. (c) We compute

$$
\begin{gathered}
T(1)=(1,1,0,0)=1(1,0,0,0)+1(0,1,0,0)+0(0,0,1,0)+0(0,0,0,1) \\
T(x)=(0,1,1,1)=0(1,0,0,0)+1(0,1,0,0)+1(0,0,1,0)+1(0,0,0,1) \\
T\left(x^{2}\right)=(0,1,0,2)=0(1,0,0,0)+1(0,1,0,0)+0(0,0,1,0)+2(0,0,0,1) \\
T\left(x^{3}\right)=(0,1,0,3)=0(1,0,0,0)+1(0,1,0,0)+0(0,0,1,0)+3(0,0,0,1)
\end{gathered}
$$

to obtain the columns of $\mathscr{M}(T)$.

Part II: True or False. One point each.

6. Let $T \in \mathscr{L}(V, W)$ be a linear map between finite dimensional vector space. For every subspace Y of W, we have $\operatorname{dim}\left(T^{-1}(Y)\right) \geq \operatorname{dim} Y$.

Answer. False. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y)=(x, y, 0)$. Let $Y=\{(0,0, z): z \in \mathbb{R}\}$. Then $Y=\operatorname{span}((0,0,1))$ is one dimensional and $T^{-1}(Y)=\{(0,0)\}$ is zero dimensional.
7. The map $T: \mathscr{P}_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ defined by $T(p)=\left(p(0), p(1), p^{\prime}(0), p^{\prime}(1)\right)$ is an isomorphism.

Answer. True. First note that the dimension of the domain and the range are both four. So, it suffices to prove that T is injective. Applying T to the basis $1, x, x^{2}, x^{3}$ gives a list $(1,1,0,0),(0,1,1,1),(0,1,0,2),(0,1,0,3)$ that is independent, hence T is injective.

Note: to see that the list is injective, observe that $(0,1,0,2),(0,1,0,3)$ aren't multiples of each other. All vectors in the span of $(0,1,0,2),(0,1,0,3)$ have a zero in the third entry, so the $(0,1,1,1)$ isn't in the span of $(0,1,0,2),(0,1,0,3)$. The span of $(0,1,1,1),(0,1,0,2),(0,1,0,3)$ doesn't contain $(1,1,0,0)$ since it has a nonzero first entry.
8. There exists a nonzero polynomial $p \in \mathscr{P}_{3}(\mathbb{R})$ so that $p(0)=0, \int_{0}^{2} e^{x} p(x)=0$, and $p^{\prime}(1)=0$.

Answer. True. To prove it, consider the function $S: \mathscr{P}_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ defined by $S(p)=\left(p(0), \int_{0}^{2} e^{x} p(x), p^{\prime}(1)\right)$.
Note that S is a linear map from a four dimensional space to a three dimensional space so it must have a nonzero polynomial in its nullspace. That is, there must be a nonzero p with $p(0)=0$, $\int_{0}^{2} e^{x} p(x)=0$, and $p^{\prime}(1)=0$.
9. For any map $T \in \mathscr{L}(V)$, if $T^{2}=0$ then $\operatorname{range}(T) \subseteq \operatorname{null}(T)$.

Answer. True. To prove it, let $v \in \operatorname{range}(T)$. Then $v=T v^{\prime}$ for some $v^{\prime} \in V$. Apply T again to get $T v=T^{2} v^{\prime}=0$ since $T^{2}=0$, so $v \in \operatorname{null}(T)$.
10. There exists a map $T \in \mathscr{L}\left(\mathbb{R}^{2}\right)$ with $\operatorname{null}(T)=\operatorname{range}(T)$.

Answer. True. For example, there is a linear map that sends the y-axis to the x-axis and the x-axis to the origin. Explicitly, let $T(x, y)=(y, 0)$. Then the $\operatorname{null}(T)=\{(x, 0): x \in \mathbb{R}\}$. This is the same set as range (T).
11. There exists a map $T \in \mathscr{L}\left(\mathbb{R}^{3}\right)$ with $\operatorname{null}(T)=\operatorname{range}(T)$.

Answer. False. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear map. We have $3=\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{range}(T))$. So, it's impossible for $\operatorname{dim}(\operatorname{null}(T))=\operatorname{dim}(\operatorname{range}(T))$ since 3 is odd.

