Problem 4 Section 3A Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that Tv_1, \ldots, Tv_m is a linear independent list in W. Then v_1, \ldots, v_m is independent in V.

Proof. Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that Tv_1, \ldots, Tv_m is a linear independent list in W. To show that v_1, \ldots, v_m is independent, suppose that $0 = \alpha_a v_1 + \cdots + \alpha_m v_m$. Apply T to get

$$0 = T(\alpha_a v_1 + \dots + \alpha_m v_m)$$

= $\alpha_1 T v_1 + \dots + \alpha_m T v_m.$

Since Tv_1, \ldots, Tv_m is independent, $\alpha_1 = \cdots = \alpha_m = 0$ as needed to prove v_1, \ldots, v_m is independent.

Problem 3 Section 3B Suppose V is a vector space over a field F. Given any list of vectors v_1, \ldots, v_m in V, one can define a linear map $T: F^m \to V$ by

$$T(\alpha_1,\ldots,\alpha_m) = \alpha_1 v_1 + \cdots + \alpha_m v_m.$$

Properties of the list v_1, \ldots, v_m translate into properties of the linear map T. Specifically, T is surjective if and only if v_1, \ldots, v_m spans V and T is injective if and only if v_1, \ldots, v_m is independent.

Problem 9 Section 3B Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_m is an independent list of vectors in V. Then Tv_1, \ldots, Tv_m is a linear independent list in W.

Proof. Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_m is independent. To see that Tv_1, \ldots, Tv_m is a linear independent list in W suppose that $0 = \alpha_a Tv_1 + \cdots + \alpha_m Tv_m$. We have

$$0 = \alpha_a T v_1 + \dots + \alpha_m T v_m$$

= $T(\alpha_a v_1 + \dots + \alpha_m v_m)$

Since T is injective, this implies $\alpha_1 v_1 + \cdots + T v_m = 0$. Since v_1, \ldots, v_m is independent, $\alpha_1 = \cdots = \alpha_m = 0$ as needed to prove $T v_1, \ldots, T v_m$ is independent.

Problem 10 Section 3B Suppose $T \in \mathcal{L}(V, W)$ and that v_1, \ldots, v_m spans V. Then Tv_1, \ldots, Tv_m spans the range of T.

Proof. Suppose $T \in \mathcal{L}(V, W)$ and that v_1, \ldots, v_m spans V. First notice that $\text{span}(Tv_1, \ldots, Tv_m) \subseteq \text{range}(T)$ since each vector $Tv_1, \ldots, Tv_m \in \text{range}(T)$ and range(T) is a subspace closed under addition and scalar multiplication.

To complete the proof that $\operatorname{span}(Tv_1, \ldots, Tv_m) = \operatorname{range}(T)$, we will show $\operatorname{range}(T) \subseteq \operatorname{span}(Tv_1, \ldots, Tv_m)$. To do so, let $w \in \operatorname{range}(T)$. This means that there exists a vector $v \in V$ with Tv = w. Since v_1, \ldots, v_m spans V, there exists $\alpha_1, \ldots, \alpha_m \in F$ with $v = \alpha_1 v_1 + \cdots + \alpha_m v_m$. Apply T to get

$$w = Tv$$

= $T\alpha_1v_1 + \cdots + \alpha_mv_m$
= $\alpha_1Tv_1 + \cdots + \alpha_mTv_m$

This proves that w is in the span of Tv_1, \ldots, Tv_m as needed.

Problem 13 Section 3B Suppose $T \in \mathcal{L}(F^4, F^2)$ such that

$$(T) = \{(x_1, x_2, x_3, x_4) \in F^4 : x_1 = 5x_2 \text{ and } x_3 = 7x^4\}.$$

Then T is surjective.

Proof. The fact that T is surjective follows from the fact that (T) has dimension 2 since $\dim(F^4) = 4 = \dim((T)) + \dim(\operatorname{range}(T))$. To see that (T) is two dimensional, notice that every vector $v \in (T)$ has the form

$$v = (5x_2, x_2, 7x_4, x_4) = x_2(5, 1, 0, 0) + x_4(0, 0, 7, 1).$$

This says that (T) is the span of (5,1,0,0), (0,0,7,1) and since (5,1,0,0), (0,0,7,1) is independent, it's a basis for (T).