Problem 4 Section 3A Suppose $T \in \mathcal{L}(V, W)$ and v_{1}, \ldots, v_{m} is a list of vectors in V such that $T v_{1}, \ldots, T v_{m}$ is a linear independent list in W. Then v_{1}, \ldots, v_{m} is independent in V.

Proof. Suppose $T \in \mathcal{L}(V, W)$ and v_{1}, \ldots, v_{m} is a list of vectors in V such that $T v_{1}, \ldots, T v_{m}$ is a linear independent list in W. To show that v_{1}, \ldots, v_{m} is independent, suppose that $0=\alpha_{a} v_{1}+\cdots+\alpha_{m} v_{m}$. Apply T to get

$$
\begin{aligned}
0 & =T\left(\alpha_{a} v_{1}+\cdots+\alpha_{m} v_{m}\right) \\
& =\alpha_{1} T v_{1}+\cdots \alpha_{m} T v_{m}
\end{aligned}
$$

Since $T v_{1}, \ldots, T v_{m}$ is independent, $\alpha_{1}=\cdots=\alpha_{m}=0$ as needed to prove v_{1}, \ldots, v_{m} is independent.

Problem 3 Section 3B Suppose V is a vector space over a field F. Given any list of vectors v_{1}, \ldots, v_{m} in V, one can define a linear map $T: F^{m} \rightarrow V$ by

$$
T\left(\alpha_{1}, \ldots, \alpha_{m}\right)=\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}
$$

Properties of the list v_{1}, \ldots, v_{m} translate into properties of the linear map T. Specifically, T is surjective if and only if v_{1}, \ldots, v_{m} spans V and T is injective if and only if v_{1}, \ldots, v_{m} is independent.

Problem 9 Section 3B Suppose $T \in \mathcal{L}(V, W)$ is injective and v_{1}, \ldots, v_{m} is an independent list of vectors in V. Then $T v_{1}, \ldots, T v_{m}$ is a linear independent list in W.

Proof. Suppose $T \in \mathcal{L}(V, W)$ is injective and v_{1}, \ldots, v_{m} is independent. To see that $T v_{1}, \ldots, T v_{m}$ is a linear independent list in W suppose that $0=\alpha_{a} T v_{1}+\cdots+\alpha_{m} T v_{m}$. We have

$$
\begin{aligned}
0 & =\alpha_{a} T v_{1}+\cdots+\alpha_{m} T v_{m} \\
& =T\left(\alpha_{a} v_{1}+\cdots+\alpha_{m} v_{m}\right)
\end{aligned}
$$

Since T is injective, this implies $\alpha_{1} v_{1}+\cdots+T v_{m}=0$. Since v_{1}, \ldots, v_{m} is independent, $\alpha_{1}=\cdots=\alpha_{m}=0$ as needed to prove $T v_{1}, \ldots, T v_{m}$ is independent.

Problem 10 Section 3B Suppose $T \in \mathcal{L}(V, W)$ and that v_{1}, \ldots, v_{m} spans V. Then $T v_{1}, \ldots, T v_{m}$ spans the range of T.

Proof. Suppose $T \in \mathcal{L}(V, W)$ and that v_{1}, \ldots, v_{m} spans V. First notice that $\operatorname{span}\left(T v_{1}, \ldots, T v_{m}\right) \subseteq$ range (T) since each vector $T v_{1}, \ldots, T v_{m} \in \operatorname{range}(T)$ and range (T) is a subspace closed under addition and scalar multiplication.

To complete the proof that $\operatorname{span}\left(T v_{1}, \ldots, T v_{m}\right)=\operatorname{range}(T)$, we will show range $(T) \subseteq$ $\operatorname{span}\left(T v_{1}, \ldots, T v_{m}\right)$. To do so, let $w \in \operatorname{range}(T)$. This means that there exists a vector $v \in V$ with $T v=w$. Since v_{1}, \ldots, v_{m} spans V, there exists $\alpha_{1}, \ldots, \alpha_{m} \in F$ with $v=$ $\alpha_{1} v_{1}+\cdots \alpha_{m} v_{m}$. Apply T to get

$$
\begin{aligned}
w & =T v \\
& =T \alpha_{1} v_{1}+\cdots \alpha_{m} v_{m} \\
& =\alpha_{1} T v_{1}+\cdots+\alpha_{m} T v_{m} .
\end{aligned}
$$

This proves that w is in the span of $T v_{1}, \ldots, T v_{m}$ as needed.

Problem 13 Section 3B Suppose $T \in \mathcal{L}\left(F^{4}, F^{2}\right)$ such that

$$
(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in F^{4}: x_{1}=5 x_{2} \text { and } x_{3}=7 x^{4}\right\} .
$$

Then T is surjective.
Proof. The fact that T is surjecive follows from the fact that (T) has dimension 2 since $\operatorname{dim}\left(F^{4}\right)=4=\operatorname{dim}((T))+\operatorname{dim}(\operatorname{range}(T))$. To see that (T) is two dimensional, notice that every vector $v \in(T)$ has the form

$$
v=\left(5 x_{2}, x_{2}, 7 x_{4}, x_{4}\right)=x_{2}(5,1,0,0)+x_{4}(0,0,7,1) .
$$

This says that (T) is the span of $(5,1,0,0),(0,0,7,1)$ and since $(5,1,0,0),(0,0,7,1)$ is independent, it's a basis for (T).

