1. Which of the following is not a field? Explain.
(a) The integers \mathbb{Z}
(b) The rational numbers \mathbb{Q}
(c) The real numbers \mathbb{R}
(d) The complex numbers \mathbb{C}
2. Which of the following is not a field? Explain.
(a) The numbers $\{0,1\}$ with + and \times defined " $\bmod 2$ ".
(b) The numbers $\{0,1,2\}$ with + and \times defined $" \bmod 3$ ".
(c) The numbers $\{0,1,2,3\}$ with + and \times defined "mod 4".
(d) The numbers $\{0,1,2,3,4\}$ with + and \times defined $" \bmod 5$ ".
3. Let $\alpha \in \mathbb{C}$ be nonzero. Define the number $\frac{1}{\alpha}$ and prove that $\frac{1}{\frac{1}{\alpha}}=\alpha$.
4. Express $\frac{1}{4+5 i}$ in the form $a+b i$ for real numbers a, b.
5. True or False:
(a) There exists a number $\alpha \in \mathbb{R}$ so that $\alpha^{2}=-2$.
(b) There exits a number $\alpha \in \mathbb{C}$ so that $\alpha^{2}=-2$.
6. True or False:
(a) There is only one number $\alpha \in \mathbb{R}$ so that $\alpha^{3}=2$.
(b) There is only one number $\alpha \in \mathbb{C}$ so that $\alpha^{3}=2$.
7. Does there exist a number $\alpha \in \mathbb{C}$ so that $\alpha(1+I, 2,2+2 I, 3-2 I)=(2,2-2 I, 4,1-5 I)$?
8. Let V be a vector space over a field F. Prove that
(a) For all $v \in V, 0 v=0$.

Note: the zero on the left is the zero scalar in F and the zero on the right is the zero vector in V.
(b) For all $v \in V,(-1) v=-v$.

Note: the -1 on the left is a scalar in the field F, the $-v$ on the right is the additive inverse of the vector $v \in V$.
9. Using the correspondence $a+b i \longleftrightarrow(a, b)$ complex numbers can be identified with points in the Cartesian plane. The four points pictured below correspond to $z, w, z+w$, and $z w$ for two complex numbers $z, w \in \mathbb{C}$. Which are which?

10. Consider the vector space \mathbb{R}^{4}. Which of the following subsets are subspaces?
(a) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b+c=0\right\}$
(b) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a b c=0\right\}$
(c) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a \geq 0\right\}$
(d) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a=2\right\}$
(e) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a=d\right\}$
(f) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b+1=c\right\}$
(g) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b=2 c\right\}$
11. Consider the vector space $\mathbb{R}^{\mathbb{R}}$. Which of the following subsets are subspaces?
(a) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f(1)=1\}$
(b) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f(1)=0\}$
(c) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is onto $\}$
(d) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$
(e) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is differentiable $\}$
(f) $\left\{f: \mathbb{R} \rightarrow \mathbb{R}: f^{\prime \prime}(x)=f(x)\right\}$
12. Let $V=\mathbb{R}^{3}$. Consider the following three subspaces of V

$$
\begin{aligned}
W & =\{(0,0, a) \in V: a \in \mathbb{R}\} \\
X & =\{(a, a, a) \in V: a \in \mathbb{R}\} \\
Y & =\{(a, b, c) \in V: a+b+c=0\} \\
Z & =\{(a, a, b) \in V: a, b \in \mathbb{R}\}
\end{aligned}
$$

True or False:
(a) $(1,1,-2) \in W$
(b) $(1,1,-2) \in X$
(c) $(1,1,-2) \in Y$
(d) $(1,1,-2) \in Z$
(e) W is a subspace of X
(f) W is a subspace of Y
(g) W is a subspace of Z
(h) X is a subspace of Z
(i) W is a subspace of Z
(j) $W \cap X=\{(0,0,0)\}$
(k) $X \cap Z=X$
(l) $Z=W+X$
(m) $Z=W \oplus X$
(n) $V=Y+Z$
(o) $V=Y \oplus Z$

