1. Which of the following is not a field? Explain.
(a) The integers \mathbb{Z}
(b) The rational numbers \mathbb{Q}
(c) The real numbers \mathbb{R}
(d) The complex numbers \mathbb{C}

Answer. The integers \mathbb{Z} are not a field since not all integers have multiplicative inverses. For example, $2 \in \mathbb{Z}$ and there is no integer $k \in \mathbb{Z}$ so that $2 \times k=1$.
2. Which of the following is not a field? Explain.
(a) The numbers $\{0,1\}$ with + and \times defined " $\bmod 2$ ".
(b) The numbers $\{0,1,2\}$ with + and \times defined " $\bmod 3$ ".
(c) The numbers $\{0,1,2,3\}$ with + and \times defined "mod 4 ".
(d) The numbers $\{0,1,2,3,4\}$ with + and \times defined $" \bmod 5$ ".

Answer. The numbers $\{0,1,2,3\}$ with + and \times defined "mod 4 " is not a field because 2 does not have a multiplicative inverse. To see this, look at the products of 2 with every other number in the set:

$$
2 \times 0=0 \quad 2 \times 1=2 \quad 2 \times 2=0 \quad 2 \times 3=2
$$

and observe that there is no number so that when multiplied by 2 results in 1 .
3. Let $\alpha \in \mathbb{C}$ be nonzero. Define the number $\frac{1}{\alpha}$ and prove that $\frac{1}{\frac{1}{\alpha}}=\alpha$.

Answer. For any nonzero complex number α, the number $\frac{1}{\alpha}$ is by definition the unique complex number so that
$(\alpha)\left(\frac{1}{\alpha}\right)=1$.
The number $\frac{1}{\frac{1}{\alpha}}$ is, by definition, the unique complex number so that when multiplied by $\frac{1}{\alpha}$ the result is 1 , and that number is α.
4. Express $\frac{1}{4+5 i}$ in the form $a+b i$ for real numbers a, b.

Answer. Here's one way to do it: write $\frac{1}{4+5 i}=a+b i$

$$
\begin{aligned}
\left(\frac{1}{4+5 i}\right)(4+5 i)=1 & \Rightarrow(a+b i)(4+5 i)=1 \\
& \Rightarrow(4 a-5 b)+(5 a+4 b) i=1+0 i \\
& \Rightarrow(4 a-5 b)=1 \text { and } 5 a+4 b=0 \\
& \Rightarrow(4 a-5 b)=1 \text { and } b=-\frac{5}{4} a \\
& \Rightarrow 4 a-5\left(-\frac{5}{4} a\right)=1 \text { and } b=-\frac{5}{4} a \\
& \Rightarrow \frac{41}{4} a=1 \text { and } b=-\frac{5}{41} a \\
& \Rightarrow a=\frac{4}{41} \text { and } b=-\frac{5}{41}
\end{aligned}
$$

So, the answer (which a quick computation will verify) is $\frac{1}{4+5 i}=\frac{4}{41}-\frac{5}{41} i$
Answer. Here's another way:

$$
\left(\frac{1}{4+5 i}\right)=\left(\frac{1}{4+5 i}\right)\left(\frac{4-5 i}{4-5 i}\right)=\frac{4-5 i}{16-(-25)}=\frac{4}{41}-\frac{5}{41} i
$$

5. True or False:
(a) There exists a number $\alpha \in \mathbb{R}$ so that $\alpha^{2}=-2$.

Answer. False
(b) There exits a number $\alpha \in \mathbb{C}$ so that $\alpha^{2}=-2$.

Answer. True. There are two distinct numbers in \mathbb{C} whose square is -2 . Namely, $\alpha=\sqrt{2} i$ and $\alpha=-\sqrt{2} i$.
6. True or False:
(a) There is only one number $\alpha \in \mathbb{R}$ so that $\alpha^{3}=2$.

Answer. True
(b) There is only one number $\alpha \in \mathbb{C}$ so that $\alpha^{3}=2$.

Answer. False. There are in fact three complex numbers whose cubes are 2. In addition to $\sqrt[3]{2}$, there are:

$$
\sqrt[3]{2}\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) \text { and } \sqrt[3]{2}\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)
$$

You can get the idea about this from exercise 2 in section 1A of the book revealed cube roots of 1 , which when multiplied by $\sqrt[3]{2}$ yields cube roots of 2 . Another way is to think geometrically about multiplication in \mathbb{C}.
7. Does there exist a number $\alpha \in \mathbb{C}$ so that $\alpha(1+i, 2,2+2 i, 3-2 i)=(2,2-2 i, 4,1-5 i)$?

Answer. Yes, a quick computation shows that $\alpha=(1-i)$ works:

$$
(1-i)(1+i, 2,2+2 i, 3-2 i)=(2,2-2 i, 4,1-5 i) .
$$

8. Let V be a vector space over a field F. Prove that
(a) For all $v \in V, 0 v=0$.

Note: the zero on the left is the zero scalar in F and the zero on the right is the zero vector in V.

Answer. Since $0=0+0$, we have $0 v=(0+0) v$. Using the distributive property yields $0 v=0 v+0 v$. Adding $-0 v$ to both sides gives $0 v-0 v=(0 v+0 v)-0 v$. On the left, we have the zero vector and on the right, we use associativity to get $0=0 v+(0 v-0 v)$. Using the fact that $0 v-0 v=0$ again, gives $0=0 v+0 \Rightarrow 0=0 v$.
(b) For all $v \in V,(-1) v=-v$.

Note: the -1 on the left is a scalar in the field F, the $-v$ on the right is the additive inverse of the vector $v \in V$.
Answer. We need to show that $(-1) v+v=0$. So,

$$
(-1)+v=(-1) v+1 v=(-1+1) v=0 v=0 .
$$

9. Using the correspondence $a+b i \longleftrightarrow(a, b)$ complex numbers can be identified with points in the Cartesian plane. The four points pictured below correspond to $z, w, z+w$, and $z w$ for two complex numbers $z, w \in \mathbb{C}$. Which are which?

Answer. Here's the answer. It is also correct to swap z and w.

10. Consider the vector space \mathbb{R}^{3}. Which of the following subsets are subspaces?
(a) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b+c=0\right\}$

Answer. Subspace.
(b) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a b c=0\right\}$

Answer. Not a subspace. It's not closed under addition: the point ($1,1,0,0$) and $(0,1,1,0)$ are in the set, but the sum $(1,2,1,0)$ is not.
(c) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a \geq 0\right\}$

Answer. Not a subspace. It's not closed under scalar multiplication: the point $(1,0,0,0)$ is in the set but $-3(1,0,0,0)=(-3,0,0,0)$ is not in the set.
(d) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a=2\right\}$

Answer. Not a subspace. The zero vector isn't in the set.
(e) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a=d\right\}$

Answer. Subspace.
(f) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b+1=c\right\}$

Answer. Not a subspace. The zero vector isn't in the set.
(g) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b=2 c\right\}$

Answer. Subspace.
11. Consider the vector space $\mathbb{R}^{\mathbb{R}}$. Which of the following subsets are subspaces?
(a) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f(1)=1\}$

Answer. Not a subspace. The zero vector isn't in the set.
(b) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f(1)=0\}$

Answer. Subspace.
(c) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is onto $\}$

Answer. Not a subspace. The zero vector isn't in the set.
(d) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$

Answer. Subspace.
(e) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is differentiable $\}$

Answer. Subspace.
(f) $\left\{f: \mathbb{R} \rightarrow \mathbb{R}: f^{\prime \prime}(x)=f(x)\right\}$

Answer. Subspace. Here, we'll go through and verify. First, note that the zero function is in the set. Second, note that if $f^{\prime \prime}(x)=f(x)$ and $g^{\prime \prime}(x)=g(x)$ then $(f+g)^{\prime \prime}(x)=f^{\prime \prime}(x)+g^{\prime \prime}(x)=f(x)+g(x)=(f+g)(x)$ so the set is closed under addition. Third, note that if $f^{\prime \prime}(x)=f(x)$ and $\alpha \in \mathbb{R}$ then $(\alpha f)^{\prime \prime}(x)=\alpha\left(f^{\prime \prime}(x)\right)=$ $\alpha f(x)$ so the set is closed under scalar multiplication.
12. Let $V=\mathbb{R}^{3}$. Consider the following three subspaces of V

$$
\begin{aligned}
W & =\{(0,0, a) \in V: a \in \mathbb{R}\} \\
X & =\{(a, a, a) \in V: a \in \mathbb{R}\} \\
Y & =\{(a, b, c) \in V: a+b+c=0\} \\
Z & =\{(a, a, b) \in V: a, b \in \mathbb{R}\}
\end{aligned}
$$

True or False:
(a) $(1,1,-2) \in W$ False
(b) $(1,1,-2) \in X$ False
(c) $(1,1,-2) \in Y$ True
(d) $(1,1,-2) \in Z$ True
(e) W is a subspace of X False
(f) W is a subspace of Y False
(g) W is a subspace of Z True
(h) X is a subspace of Z True
(i) W is a subspace of Z True
(j) $W \cap X=\{(0,0,0)\}$ True
(k) $X \cap Z=X$ True.
(1) $Z=W+X$ True
(m) $Z=W \oplus X$ True
(n) $V=Y+Z$ True
(o) $V=Y \oplus Z$ False

Footnotes
(j) To see that $W \cap X=\{(0,0,0)\}$ note that if $(x, y, z) \in W$, then $x=y=0$. If $(x, y, z) \in X$ then $z=x=y$. So, if (x, y, z) is a vector in both X and W then $x=y=0$ and $x=y=z$, which together mean that $(x, y, z)=(0,0,0)$.
(1) The statement $W+X=Z$ means that every vector in Z can be expressed as a sum of a vector in W and a vector in X. For example, $(4,4,2) \in Z$ can be written $(4,4,2)=(0,0,-2)+(4,4,4)$. To see that this is always possible, suppose $(a, a, b) \in Z$. Consider $(a, a, a) \in X$ and $(0,0, b-a) \in W$ and observe that $(a, a, b)=(a, a, a)+(0,0, b-a)$.
(m) To see that $Z=W \oplus X$, it suffices to know that $Z=W+X$ and that $W \cap X=\{0\}$, which are explained above. This is "Blue Box 1.45: Direct Sum of Two Subspaces".
(o) It is true that $V=Y+Z$, every vector $(a, b, c) \in V$ can be written as the sum of a vector in Y and a vector in Z, but not uniquely, so the sum isn't a direct sum. For example $(1,2,3)=(-2,-1,3)+(3,3,0)$ and $(1,2,3)=(0,1,-1)+(1,1,4)$

