- 1. Which of the following is *not* a field? Explain.
 - (a) The integers \mathbb{Z}
- (b) The rational numbers \mathbb{Q}
- (c) The real numbers \mathbb{R}
- (d) The complex numbers \mathbb{C}

Answer. The integers \mathbb{Z} are not a field since not all integers have multiplicative inverses. For example, $2 \in \mathbb{Z}$ and there is no integer $k \in \mathbb{Z}$ so that $2 \times k = 1$.

- 2. Which of the following is *not* a field? Explain.
 - (a) The numbers $\{0,1\}$ with + and \times defined "mod 2".
- (b) The numbers $\{0, 1, 2\}$ with + and \times defined "mod 3".
- (c) The numbers $\{0, 1, 2, 3\}$ with + and \times defined "mod 4".
- (d) The numbers $\{0, 1, 2, 3, 4\}$ with + and \times defined "mod 5".

Answer. The numbers $\{0, 1, 2, 3\}$ with + and \times defined "mod 4" is not a field because 2 does not have a multiplicative inverse. To see this, look at the products of 2 with every other number in the set:

$$2 \times 0 = 0$$
 $2 \times 1 = 2$ $2 \times 2 = 0$ $2 \times 3 = 2$

and observe that there is no number so that when multiplied by 2 results in 1.

3. Let $\alpha \in \mathbb{C}$ be nonzero. Define the number $\frac{1}{\alpha}$ and prove that $\frac{1}{\frac{1}{\alpha}} = \alpha$.

Answer. For any nonzero complex number α , the number $\frac{1}{\alpha}$ is by definition the unique complex number so that

$$(\alpha)\left(\frac{1}{\alpha}\right) = 1.$$

The number $\frac{1}{\frac{1}{\alpha}}$ is, by definition, the unique complex number so that when multiplied by $\frac{1}{\alpha}$ the result is 1, and that number is α .

4. Express $\frac{1}{4+5i}$ in the form a+bi for real numbers a, b.

Answer. Here's one way to do it: write $\frac{1}{4+5i} = a + bi$

$$\left(\frac{1}{4+5i}\right)(4+5i) = 1 \Rightarrow (a+bi)(4+5i) = 1$$

$$\Rightarrow (4a-5b) + (5a+4b)i = 1+0i$$

$$\Rightarrow (4a-5b) = 1 \text{ and } 5a+4b = 0$$

$$\Rightarrow (4a-5b) = 1 \text{ and } b = -\frac{5}{4}a$$

$$\Rightarrow 4a-5\left(-\frac{5}{4}a\right) = 1 \text{ and } b = -\frac{5}{4}a$$

$$\Rightarrow \frac{41}{4}a = 1 \text{ and } b = -\frac{5}{41}a$$

$$\Rightarrow a = \frac{4}{41} \text{ and } b = -\frac{5}{41}$$

So, the answer (which a quick computation will verify) is $\frac{1}{4+5i} = \frac{4}{41} - \frac{5}{41}i$

Answer. Here's another way:

$$\left(\frac{1}{4+5i}\right) = \left(\frac{1}{4+5i}\right)\left(\frac{4-5i}{4-5i}\right) = \frac{4-5i}{16-(-25)} = \frac{4}{41} - \frac{5}{41}i.$$

5. True or False:

(a) There exists a number $\alpha \in \mathbb{R}$ so that $\alpha^2 = -2$.

Answer. False

(b) There exits a number $\alpha \in \mathbb{C}$ so that $\alpha^2 = -2$.

Answer. True. There are two distinct numbers in \mathbb{C} whose square is -2. Namely, $\alpha = \sqrt{2}i$ and $\alpha = -\sqrt{2}i$.

- **6.** True or False:
 - (a) There is only one number $\alpha \in \mathbb{R}$ so that $\alpha^3 = 2$.

Answer. True

(b) There is only one number $\alpha \in \mathbb{C}$ so that $\alpha^3 = 2$.

Answer. False. There are in fact three complex numbers whose cubes are 2. In addition to $\sqrt[3]{2}$, there are:

$$\sqrt[3]{2}\left(-\frac{1}{2}-\frac{i\sqrt{3}}{2}\right)$$
 and $\sqrt[3]{2}\left(-\frac{1}{2}+\frac{i\sqrt{3}}{2}\right)$

You can get the idea about this from exercise 2 in section 1A of the book revealed cube roots of 1, which when multiplied by $\sqrt[3]{2}$ yields cube roots of 2. Another way is to think geometrically about multiplication in \mathbb{C} .

7. Does there exist a number $\alpha \in \mathbb{C}$ so that $\alpha(1+i, 2, 2+2i, 3-2i) = (2, 2-2i, 4, 1-5i)$?

Answer. Yes, a quick computation shows that $\alpha = (1 - i)$ works:

(1-i)(1+i, 2, 2+2i, 3-2i) = (2, 2-2i, 4, 1-5i).

8. Let V be a vector space over a field F. Prove that

(a) For all $v \in V$, 0v = 0.

Note: the zero on the left is the zero scalar in F and the zero on the right is the zero vector in V.

Answer. Since 0 = 0+0, we have 0v = (0+0)v. Using the distributive property yields 0v = 0v + 0v. Adding -0v to both sides gives 0v - 0v = (0v + 0v) - 0v. On the left, we have the zero vector and on the right, we use associativity to get 0 = 0v + (0v - 0v). Using the fact that 0v - 0v = 0 again, gives $0 = 0v + 0 \Rightarrow 0 = 0v$.

(b) For all $v \in V$, (-1)v = -v.

Note: the -1 on the left is a scalar in the field F, the -v on the right is the additive inverse of the vector $v \in V$.

Answer. We need to show that (-1)v + v = 0. So,

(-1) + v = (-1)v + 1v = (-1+1)v = 0v = 0.

9. Using the correspondence $a+bi \leftrightarrow (a,b)$ complex numbers can be identified with points in the Cartesian plane. The four points pictured below correspond to z, w, z + w, and zw for two complex numbers $z, w \in \mathbb{C}$. Which are which?

Answer. Here's the answer. It is also correct to swap z and w.

- 10. Consider the vector space \mathbb{R}^3 . Which of the following subsets are subspaces?
- (a) $\{(a, b, c, d) \in \mathbb{R}^4 : a + b + c = 0\}$

Answer. Subspace.

(b)
$$\{(a, b, c, d) \in \mathbb{R}^4 : abc = 0\}$$

Answer. Not a subspace. It's not closed under addition: the point (1, 1, 0, 0) and (0, 1, 1, 0) are in the set, but the sum (1, 2, 1, 0) is not.

(c) $\{(a, b, c, d) \in \mathbb{R}^4 : a \ge 0\}$

Answer. Not a subspace. It's not closed under scalar multiplication: the point (1,0,0,0) is in the set but -3(1,0,0,0) = (-3,0,0,0) is not in the set.

(d) $\{(a, b, c, d) \in \mathbb{R}^4 : a = 2\}$

Answer. Not a subspace. The zero vector isn't in the set.

(e) $\{(a, b, c, d) \in \mathbb{R}^4 : a = d\}$

Answer. Subspace.

(f) $\{(a, b, c, d) \in \mathbb{R}^4 : a + b + 1 = c\}$

Answer. Not a subspace. The zero vector isn't in the set.

(g) $\{(a, b, c, d) \in \mathbb{R}^4 : a + b = 2c\}$

Answer. Subspace.

- 11. Consider the vector space $\mathbb{R}^{\mathbb{R}}$. Which of the following subsets are subspaces?
- (a) $\{f : \mathbb{R} \to \mathbb{R} : f(1) = 1\}$

Answer. Not a subspace. The zero vector isn't in the set.

(b) $\{f : \mathbb{R} \to \mathbb{R} : f(1) = 0\}$

Answer. Subspace.

(c) $\{f : \mathbb{R} \to \mathbb{R} : f \text{ is onto}\}$

Answer. Not a subspace. The zero vector isn't in the set.

(d) $\{f : \mathbb{R} \to \mathbb{R} : f \text{ is continuous}\}$

Answer. Subspace.

(e) $\{f : \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}$

Answer. Subspace.

(f) $\{f : \mathbb{R} \to \mathbb{R} : f''(x) = f(x)\}$

Answer. Subspace. Here, we'll go through and verify. First, note that the zero function is in the set. Second, note that if f''(x) = f(x) and g''(x) = g(x) then (f+g)''(x) = f''(x) + g''(x) = f(x) + g(x) = (f+g)(x) so the set is closed under addition. Third, note that if f''(x) = f(x) and $\alpha \in \mathbb{R}$ then $(\alpha f)''(x) = \alpha(f''(x)) = \alpha f(x)$ so the set is closed under scalar multiplication.

12. Let $V = \mathbb{R}^3$. Consider the following three subspaces of V

$$W = \{(0, 0, a) \in V : a \in \mathbb{R}\}$$

$$X = \{(a, a, a) \in V : a \in \mathbb{R}\}$$

$$Y = \{(a, b, c) \in V : a + b + c = 0\}$$

$$Z = \{(a, a, b) \in V : a, b \in \mathbb{R}\}$$

True or False:

- (a) $(1, 1, -2) \in W$ False
- (b) $(1, 1, -2) \in X$ False
- (c) $(1, 1, -2) \in Y$ True
- (d) $(1, 1, -2) \in Z$ True
- (e) W is a subspace of X False
- (f) W is a subspace of Y False

- (g) W is a subspace of Z True
- (h) X is a subspace of Z True
- (i) W is a subspace of Z True
- (j) $W \cap X = \{(0,0,0)\}$ True
- (k) $X \cap Z = X$ True.
- (1) Z = W + X True
- (m) $Z = W \oplus X$ True
- (n) V = Y + Z True
- (o) $V = Y \oplus Z$ False

Footnotes

(j) To see that $W \cap X = \{(0,0,0)\}$ note that if $(x, y, z) \in W$, then x = y = 0. If $(x, y, z) \in X$ then z = x = y. So, if (x, y, z) is a vector in both X and W then x = y = 0 and x = y = z, which together mean that (x, y, z) = (0, 0, 0).

(1) The statement W + X = Z means that every vector in Z can be expressed as a sum of a vector in W and a vector in X. For example, $(4, 4, 2) \in Z$ can be written (4, 4, 2) = (0, 0, -2) + (4, 4, 4). To see that this is always possible, suppose $(a, a, b) \in Z$. Consider $(a, a, a) \in X$ and $(0, 0, b-a) \in W$ and observe that (a, a, b) = (a, a, a) + (0, 0, b-a).

(m) To see that $Z = W \oplus X$, it suffices to know that Z = W + X and that $W \cap X = \{0\}$, which are explained above. This is "Blue Box 1.45: Direct Sum of Two Subspaces".

(o) It is true that V = Y + Z, every vector $(a, b, c) \in V$ can be written as the sum of a vector in Y and a vector in Z, but not uniquely, so the sum isn't a direct sum. For example (1, 2, 3) = (-2, -1, 3) + (3, 3, 0) and (1, 2, 3) = (0, 1, -1) + (1, 1, 4)