- 1. Prove: If some vector in a list of vectors in a vector space V is a linear combination of the other vectors, then the list is linearly dependent.
- **2.** Does (1,2,3,-5), (4,5,8,3), (9,6,7,-1) span \mathbb{R}^4 ? Explain.
- **3.** Is the list (1,2,3), (4,5,8), (9,6,7), (-3,2,8) linearly independent in \mathbb{R}^3 ? Explain.
- **4.** Prove that F^{∞} is infinite-dimensional.
- **5.** Suppose that v_1, v_2, v_3 is a basis for a vector space V. Prove or disprove $v_1 + v_2, v_1 v_2, v_3$ is also a basis for V.
- **6.** Prove or disprove: Let p_0, p_1, \ldots, p_n be polynomials in $\mathcal{P}(F)$ and suppose $\deg(p_i) = i$ for $i = 0, 1, \ldots, n$. Then $p_0 p_1, \ldots, p_n$ is a basis for $\mathcal{P}_n(F)$.
- **7.** Suppose that p_1, p_2, p_3, p_4, p_5 is a list polynomials in $\mathcal{P}_4(\mathbb{R})$ that all vanish at x = 3. Prove that p_1, p_2, p_3, p_4, p_5 is linearly dependent.
- **8.** Let $U = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\}.$
 - (a) Find a basis for U.
 - (b) Extend your basis to a basis of \mathbb{R}^3 .
 - (c) Find a subspace W of \mathbb{R}^3 so that $\mathbb{R}^3 = U \oplus W$.
- **9.** Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) : p(2) = p(5) \}.$
 - (a) Find a basis for U.
 - (b) Extend your basis to a basis of $\mathcal{P}_4(\mathbb{R})$
 - (c) Find a subspace W of $\mathcal{P}_4(\mathbb{R})$ so that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.
- **10.** Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) : \int_{-1}^1 p = 0 \}.$
 - (a) Find a basis for U.
 - (b) Extend your basis to a basis of $\mathcal{P}_4(\mathbb{R})$
 - (c) Find a subspace W of $\mathcal{P}_4(\mathbb{R})$ so that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.
- 11. Prove that any two three dimensional subspaces of \mathbb{R}^5 must have a nonzero vector in their intersection.
- **12.** A function $f \in \mathbb{R}^{\mathbb{R}}$ is called *even* iff f(-x) = f(x) for all $x \in \mathbb{R}$. A function $f \in \mathbb{R}^{\mathbb{R}}$ is called *odd* iff f(-x) = -f(x) for all $x \in \mathbb{R}$. Check that

$$U = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is even } \} \text{ and } W = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is odd } \}$$

are subspaces of $\mathbb{R}^{\mathbb{R}}$. Prove or disprove $\mathbb{R}^{\mathbb{R}} = U \oplus W$.