1. Prove: If some vector in a list of vectors in a vector space V is a linear combination of the other vectors, then the list is linearly dependent.
2. Does $(1,2,3,-5),(4,5,8,3),(9,6,7,-1)$ span \mathbb{R}^{4} ? Explain.
3. Is the list $(1,2,3),(4,5,8),(9,6,7),(-3,2,8)$ linearly independent in \mathbb{R}^{3} ? Explain.
4. Prove that F^{∞} is infinite-dimensional.
5. Suppose that v_{1}, v_{2}, v_{3} is a basis for a vector space V. Prove or disprove $v_{1}+v_{2}, v_{1}-v_{2}, v_{3}$ is also a basis for V.
6. Prove or disprove: Let $p_{0}, p_{1}, \ldots, p_{n}$ be polynomials in $\mathcal{P}(F)$ and suppose $\operatorname{deg}\left(p_{i}\right)=i$ for $i=0,1, \ldots, n$. Then $p_{0} p_{1}, \ldots, p_{n}$ is a basis for $\mathcal{P}_{n}(F)$.
7. Suppose that $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ is a list polynomials in $\mathcal{P}_{4}(\mathbb{R})$ that all vanish at $x=3$. Prove that $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ is linearly dependent.
8. Let $U=\left\{(a, b, c) \in \mathbb{R}^{3}: a+b+c=0\right\}$.
(a) Find a basis for U.
(b) Extend your basis to a basis of \mathbb{R}^{3}.
(c) Find a subspace W of \mathbb{R}^{3} so that $\mathbb{R}^{3}=U \oplus W$.
9. Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(2)=p(5)\right\}$.
(a) Find a basis for U.
(b) Extend your basis to a basis of $\mathcal{P}_{4}(\mathbb{R})$
(c) Find a subspace W of $\mathcal{P}_{4}(\mathbb{R})$ so that $\mathcal{P}_{4}(\mathbb{R})=U \oplus W$.
10. Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): \int_{-1}^{1} p=0\right\}$.
(a) Find a basis for U.
(b) Extend your basis to a basis of $\mathcal{P}_{4}(\mathbb{R})$
(c) Find a subspace W of $\mathcal{P}_{4}(\mathbb{R})$ so that $\mathcal{P}_{4}(\mathbb{R})=U \oplus W$.
11. Prove that any two three dimensional subspaces of \mathbb{R}^{5} must have a nonzero vector in their intersection.
12. A function $f \in \mathbb{R}^{\mathbb{R}}$ is called even iff $f(-x)=f(x)$ for all $x \in \mathbb{R}$. A function $f \in \mathbb{R}^{\mathbb{R}}$ is called odd iff $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Check that

$$
U=\left\{f \in \mathbb{R}^{\mathbb{R}}: f \text { is even }\right\} \text { and } W=\left\{f \in \mathbb{R}^{\mathbb{R}}: f \text { is odd }\right\}
$$

are subspaces of $\mathbb{R}^{\mathbb{R}}$. Prove or disprove $\mathbb{R}^{\mathbb{R}}=U \oplus W$.

