1. Prove: If some vector in a list of vectors in a vector space V is a linear combination of the other vectors, then the list is linearly dependent.

Answer. Suppose that $v_{k}=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots \lambda_{n} v_{n}$. Subtracting v_{k} from both sides gives $0=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+(-1) v_{k}+\cdots \lambda_{n} v_{n}$ proving that v_{1}, \ldots, v_{n} is dependent.
2. Does $(1,2,3,-5),(4,5,8,3),(9,6,7,-1)$ span \mathbb{R}^{4} ? Explain.

Answer. No. Since \mathbb{R}^{4} is four dimensional, no set with fewer than four vectors can span \mathbb{R}^{4}.
3. Is the list $(1,2,3),(4,5,8),(9,6,7),(-3,2,8)$ linearly independent in \mathbb{R}^{3} ? Explain.

Answer. No. Since \mathbb{R}^{3} is three dimensional, no set with greater than three vectors can be independent.
4. Prove that F^{∞} is infinite-dimensional.

Answer. Let $s_{1}, s_{2}, \ldots, s_{n}$ be any finite list of vectors in F^{∞}. I'll prove that this list cannot span F^{∞}. I can make an independent list in F^{∞} that's longer. Specifically, $(1,0,0,0 \ldots)$, $(0,1,0,0, \ldots), \ldots,(0,0, \ldots, 0,1,0, \ldots)$. Since any spanning list must be at least as long as an independent list, we know s_{1}, \ldots, s_{n} cannot span F^{∞}.
5. Suppose that v_{1}, v_{2}, v_{3} is a basis for a vector space V. Prove or disprove $v_{1}+v_{2}, v_{1}-v_{2}, v_{3}$ is also a basis for V.

Answer. If v_{1}, v_{2}, v_{3} is a basis for V, then V is three-dimensional, so it suffices to check whether the list $v_{1}+v_{2}, v_{1}-v_{2}, v_{3}$ spans V. Note that v_{1}, v_{2}, and v_{3} are in the span of $v_{1}+v_{2}, v_{1}-v_{2}, v_{3}$ since:

$$
\begin{aligned}
& v_{1}=\frac{1}{2}\left(v_{1}+v_{2}\right)-\frac{1}{2}\left(v_{1}-v_{2}\right)+0 v_{3} \\
& v_{2}=\frac{1}{2}\left(v_{1}+v_{2}\right)+\frac{1}{2}\left(v_{1}-v_{2}\right)+0 v_{3} \\
& v_{3}=0\left(v_{1}+v_{2}\right)+0\left(v_{1}-v_{2}\right)+1 v_{3}
\end{aligned}
$$

Therefore, $V=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \subseteq \operatorname{span}\left(v_{1}+v_{2}, v_{1}-v_{2}, v_{3}\right)$. We conclude the list $v_{1}+v_{2}, v_{1}-$ v_{2}, v_{3} spans V.
6. Prove or disprove: Let $p_{0}, p_{1}, \ldots, p_{n}$ be polynomials in $\mathcal{P}(F)$ and suppose $\operatorname{deg}\left(p_{i}\right)=i$ for $i=0,1, \ldots, n$. Then $p_{0} p_{1}, \ldots, p_{n}$ is a basis for $\mathcal{P}_{n}(F)$.

Answer. If p_{0}, \ldots, p_{n} were dependent, one of the p_{i} would be a linear combination of p_{0}, \ldots, p_{i-1}. But every linear combination of p_{0}, \ldots, p_{i-1} will have degree at most $i-1$ and p_{i} has degree i. So, p_{0}, \ldots, p_{n} must be independent.
7. Suppose that $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ is a list polynomials in $\mathcal{P}_{4}(\mathbb{R})$ that all vanish at $x=3$. Prove that $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ is linearly dependent.

Answer. The space $\mathcal{P}_{4}(\mathbb{R})$ of all polynomials of degree less than or equal to 4 is 5 dimensional since $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ is a basis. The space U of polynomials that vanish at $x=3$ is a proper subspace of this 5 dimensional space. Therefore, U has dimension at most 4 . So, any list of 5 or more polynomials in this space must be dependent.
8. Let $U=\left\{(a, b, c) \in \mathbb{R}^{3}: a+b+c=0\right\}$.
(a) Find a basis for U.

Answer. As a proper subspace of \mathbb{R}^{3}, the dimension of U is at most 2. The vectors $(1,0,-1),(0,1,-1)$ are an independent list in U, hence are a basis.
(b) Extend your basis to a basis of \mathbb{R}^{3}.

Answer. Adding any vector not in U works. For example, $(1,0,-1),(0,1,-1),(1,2,3)$.
(c) Find a subspace W of \mathbb{R}^{3} so that $\mathbb{R}^{3}=U \oplus W$.

Answer. Let W be the span of $(1,2,3)$.
9. Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(2)=p(5)\right\}$.
(a) Find a basis for U.

Answer. Notice that since U is a proper subspace of of the five dimensional space $\mathcal{P}_{4}(\mathbb{R})$, we know the dimension of U is at most 4 . Here's an independent list of four polynomials in U :

$$
1,(x-2)(x-5),(x-2)^{2}(x-5),(x-2)^{2}(x-5)^{2}
$$

and so it is a basis for U. To see that the list is independent, note that no polynomial in this list can be a linear combination of the previous polynomials since the degree of each polynomial is strictly greater than the degrees of the polynomials that preceed it.
(b) Extend your basis to a basis of $\mathcal{P}_{4}(\mathbb{R})$

Answer. It suffices to add any polynomial not in U. For example x works since it has a different value at 2 and at 5 . So

$$
1,(x-2)(x-5),(x-2)^{2}(x-5),(x-2)^{2}(x-5)^{2}, x
$$

is a basis for $\mathcal{P}_{4}(\mathbb{R})$.
(c) Find a subspace W of $\mathcal{P}_{4}(\mathbb{R})$ so that $\mathcal{P}_{4}(\mathbb{R})=U \oplus W$.

Answer. Let W be the span of x.
10. Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): \int_{-1}^{1} p=0\right\}$.
(a) Find a basis for U.

Answer. As a proper subspace of the five dimensional space $\mathcal{P}_{4}(\mathbb{R})$, the dimension of U is at most four. The list $x, 3 x^{2}-1, x^{3}, 5 x^{4}-1$ is a list of four independent polynomials in U, hence is a basis. To see that the list is independent, note that no polynomial in this list can be a linear combination of the previous polynomials since the degree of each polynomial is strictly greater than the degrees of the polynomials that preceed it.
(b) Extend your basis to a basis of $\mathcal{P}_{4}(\mathbb{R})$

Answer. It suffices to add any polynomial not in U. For example, the polynomial 1 works: $x, 3 x^{2}-1, x^{3}, 5 x^{4}-1,1$.
(c) Find a subspace W of $\mathcal{P}_{4}(\mathbb{R})$ so that $\mathcal{P}_{4}(\mathbb{R})=U \oplus W$.

Answer. Let W be the span of 1 - that's the space of constant polynomials.
11. Prove that any two three dimensional subspaces of \mathbb{R}^{5} must have a nonzero vector in their intersection.

Answer. Let U_{1}, U_{2} be two three dimensional subspaces of \mathbb{R}^{5}. We know

$$
\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)-\operatorname{dim}\left(U_{1} \cap U_{2}\right)=\operatorname{dim}\left(U_{1}+U_{2}\right)
$$

Therefore, $3+3-\operatorname{dim}\left(U_{1} \cap U_{2}\right) \leq 5 \Rightarrow \operatorname{dim}\left(U_{1} \cap U_{2}\right)>0$ and therefore must contain a nonzero vector.
12. A function $f \in \mathbb{R}^{\mathbb{R}}$ is called even iff $f(-x)=f(x)$ for all $x \in \mathbb{R}$. A function $f \in \mathbb{R}^{\mathbb{R}}$ is called odd iff $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Check that

$$
U=\left\{f \in \mathbb{R}^{\mathbb{R}}: f \text { is even }\right\} \text { and } W=\left\{f \in \mathbb{R}^{\mathbb{R}}: f \text { is odd }\right\}
$$

are subspaces of $\mathbb{R}^{\mathbb{R}}$. Prove or disprove $\mathbb{R}^{\mathbb{R}}=U \oplus W$.
Answer. I'll prove that $\mathbb{R}^{\mathbb{R}}=U \oplus W$. First, we'll show $\mathbb{R}^{\mathbb{R}}=U+W$. We have to prove that every function can be written as the sum of an even function and an odd function. So, let $f: \mathbb{R}^{\mathbb{R}}$ be an arbitrary function. Define $g \in \mathbb{R}^{\mathbb{R}}$ and $h \in \mathbb{R}^{\mathbb{R}}$ by

$$
g(x)=\frac{1}{2}(f(x)+f(-x)) \text { and } h(x)=\frac{1}{2}(f(x)-f(-x))
$$

Note that g is even, h is odd, and $f(x)=g(x)+h(x)$. This proves that $\mathbb{R}^{\mathbb{R}}=U+W$. To see that ths um is direct, just observe that if $f \in U \cap W$, then $f(x)=f(-x)=-f(x) \Rightarrow$ $f(x)=0$ for all x. So, $U \cap W=\{0\}$ proving that the sum is direct: $\mathbb{R}^{\mathbb{R}}=U \oplus W$.

