Math 232 Review problem solutions for 3C and 3D Spring 2020

Compute
1. Let
3 01 1 -1 -3 —2 0 =2
0 -2 1 0 3 2 0.0
A= and B = 2 0 O
-1 =22 -1 0
3 -1 1 0 1 303 =2
-3 0 -2

Write down the matrix for AB.

4 -3 2

7 0 6

Answer. AB = 1 -3 4
-9 0 -8

2. Using the basis (x— 1), (x —2) for £} (R), compute .# (x — 5), the matrix for the vector x — 5.

Answer. The answer is (—3,4) since —3(x—1)+4(x—2) =x—5.

3. Consider the linear map T : R* — R? given by
T(x,y,2) = (x—2y—2z,2x— 6y — 7z,—4x+ 10y + 10z).
Using the basis standard basis for the domain and the standard basis for the codomain to find . (T')

Answer. To find the matrix for T, apply T to each of the standard basis of R® and express the results as a
linear combination of the basis vectors:

T(1,0,0) = (1,2,—4) = 1(1,0,0) +2(0,1,0) —4(0,0, 1)
7(0,1,0) = (—2,—6,10) = —2(1,0,0) + —6(0,1,0) + 10(0,0, 1)
7(0,0,1) = (=2,—7,10) = —2(1,0,0) + —7(0,1,0) + 10(0,0, 1)

and use the coeffcients of these expressions for the columns of the matrix:

1 -2 =2
AT)=| 2 -6 -7
—4 10 10

4. Consider the linear map T : R? — R? given by
T(x,y,2) = (x —2y—2z,2x — 6y — 7z, —4x + 10y + 10z).

Using the basis (5,4,-2),(0,1,—1), (1, %, —1) for the domain and the standard basis for the codomain to
find #(T).
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Answer. To finad the matrix for T, apply T to each of the vectors in the given basis and express the results
as a linear combination of the basis vectors:

T(5747_2) = (17070) = 1(17070)+0(07110)+0(070>1)
T(Ovlv_l) = (07170) = _0(170’0)+1(0’170)+0(0?071)
T(1,3/2,—1)=(0,0,1) =0(1,0,0)+0(0,1,0)+1(0,0,1)

and use the coeffcients of these expressions for the columns of the matrix:

100
MT)=[0 10
00 1

True/False

5. Suppose S, T € Z(V). If ST =Ithen TS =1.

Answer. False. For example, consider V=R, T :V — V defined by T (x1,x2,x3,...) = (0,x1,x2,x3,...)
and S :V — 'V defined by S(x1,x2,x3,...) = (x2,X3,X4,...). Here ST =1 but TS is the map (x,x2,x3,...) —
(0,x2,x3,...) which is not the identity.

6. Suppose V is finite dimensional and S,7 € (V). If ST =Ithen TS =1.

Answer. True! If ST = I, this means that T is injective and S is surjective. Since a linear operator on finite
dimensional vector space is injective iff it is surjective iff it is invertible, we have both S and T are invertible.
By the uniqueness of inverses, they are their own inverses: so we have both ST =1and TS = I.

7. Suppose S,T € £ (V). ST is invertible if and only if both S and 7 are invertible.

Answer. Fualse. Let’s reuse the example we used earlier: V =R, T : V — V defined by T (x1,x2,x3,...) =
(0,x1,x2,x3,...) and S : V. — 'V defined by S(x1,x2,x3,...) = (x2,X3,X4,...). Note that neither S nor T is
invertible: S isn’t injective and T isn’t surjective. However, ST is invertible (it’s the identity map).

8. Suppose V is finite dimensional and S,T € Z(V). ST is invertible if and only if both S and T are
invertible.

Answer. True. In general, if V is any vector space and S,T € £ (V), then if S and T are both invertible, the
composition ST is invertible. To see this, note that T~'S™! is the inverse of ST, which we check by verifying
that (T~'S™")(ST) =I and (ST)(T~'S~ ") =1L

Now, in general the invertibility of the composition ST does not imply the invertibility of the factors S
and T. However if V is finite dimensional, ST being invertible implies both S and T are invertible. Here’s
a proof. Let A be the inverse of ST. Then A(ST) =1 = (ST)A. Note that I = (ST)A = S(TA). This implies
that S is surjective (since there’s something you can compose S with on the right to get the identity) hence S
is invertible. Similarly, A(ST) = I = (AS)T = I which implies T is injective hence invertible.
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9. For S: R* — R given by S(x,y,z) = x +y +z, null(S) = span((5, -3, -2),(0,3,-3)).

Answer. True. Since S is a nonzero map to R, the range is 1 dimensional. Therefore, the nullspace is
two dimensional. The two vectors (5,—3,—2),(0,3,—3) are two linearly independent vectors in the two
dimensional nullspace, hence must be a basis, hence must span the nullspace.

10. The linear map T : R* — R? defined by T'(x,y,z) = (x+,z,x+y — z) is surjective.

Answer. Fualse. Note that T(1,—1,0) = (0,0,0) so dim(null(T)) > 1. This implies the dimension of
range(T) <2 so T cannot be surjective.

11. The linear map T : & (R) — R3 defined by T (p(x)) = (p(1), p(2), p(3)) is surjective.

Answer. False. Since the domain is two dimensional, the range can have dimension at most two.

12. Let T : 2,(R) — R? be the linear map defined by

Using the basis (x — 1), (x —2) for £;(R) and the standard basis is used for R?, the matrix equation
M(T) M (x—5) =4 (T(x—15)) is the equation

0 -1

o =
—_ O
N

|
PUJ
~_

Il

|
N W

Answer. True. Since (x—5) = —=3(x—1)+4(x—2), we know A (x—5) = ( _43 > To see that the matrix
A (T) is correct, apply T to each of the given basis vectors of 2 (R)

T(x—1)=(0,1,2) = 0(1,0,0)+1(0,1,0) +2(0,0,1)
T(x—2)=(—1,0,1) = —1(1,0,0)+0(0,1,0) +1(0,0,1)

Finally, note that the matrix multiplcation is correct and that the righthand side is the vector for T (x —5) =
(—4,-3,-2) = —4(1,0,0) + —3(0,1,0) —2(0,0, 1) in the standard basis of R>.

13. The follow homogeneous system of equations has infinitely many solutions:

x—2y—2z=0
2x—6y—T7z=0
—4x+10y+10z=0
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Answer. False. Note that the given statement is equivalent to the statement that there are infinitely many
vectors in the nullspace of the linear map T : R3 — R3 defined by

T(x,y,z) = (x—2y—2z,2x— 6y — 7z, —4x+ 10y + 10z).
As computed earlier,
T(5,4,-2)=(1,0,0), T(0,1,—1)=(0,1,0), T(1,3/2,—1)=(0,0,1),

so (1,0,0),(0,1,0),(0,0,1) are all in the range of T. Thus the range of T must be at least three, hence
three, dimensional. Therefore null(T) is zero dimensional. Therefore, there is only one solution to the given
system—the trivial solution (x,y,z) = (0,0,0).

14. The follow inhomogeneous system of equations has exactly one solution:

1
x—2y—2z:g

2x—6y—"Tz=—17
—4x+10y+10z=9

Answer. True. Since the linear map T : R> — R3 defined by
T(x,y,z) = (x —2y—2z,2x — 6y — 7z, —4x+ 10y + 10z)

is surjective, there is a solution to the given system. Since the linear map T is injective, there is only one
solution.

15. There is a linear map 7 : R° — R? with
null(7) = {(x1,X2,X3,%4,X5) € R :x; =3x; and x3 = x4 =Xxs}.

Answer. False. Note that the given space is two dimensional (it is spanned by (3,1,0,0,0),(0,0,1,1,1)). If
there existed a linear map with the given subspace as a nullspace, then it would have a three dimensional
range, impossible for a map whose codomain is two dimensional.

16. Suppose T :V — W. If vy,...,v, is independent in V, then Tvy,...,Tv, is independent in W.

Answer. False. For example, if T : R? — R? is zero map and vy, v, is the independent list (1,0,0),(0,1,0),
Tvy,Tv; is the dependent list (0,0,0),(0,0,0).

17. Suppose T :V — W. If vy,...,v, spans V, then Tvy,...,Tv, spans the range(T).

Answer. True. Every vector in range(T) has the form Tv for some v € V. If vy,...,v, spans V, then there
exist scalars ay,...,a, so thatv=a\vi+---+ayv,. Then Tv=aTvi+---a,Tv, and we see Tv is in the
span of Tvy,...,Tvy,.
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1 Extras

Here are some extra problems and theorems that we discussed in class, which I’'m repeating here for your
reference.

1.1 An interesting problem
2
18. Does there exist a quadratic polynomial ¢ with g(0) =0, ¢(1) =0, and / q=0?
0

Answer. No. Consider the map T € £ ((P)>(R),R?) defined by T (p) = (p(O),p(l),fO2 p). The ques-
tion, then, is whether there is a degree two polynomial in null(T). I claim that dim(range(T)) = 3 =
dim(null(7)) = 0. Therefore, the only polynomial q € null(T) is the zero polynomial. To see that dim(range(T)) =

3, look at
8
T3 =1(01,-
@)= (0.1.5)

T(x)=(0,1,2)
T(1)=(1,1,1)

and note that the three vectors (O, 1, %) ,(0,1,2),(1,1,1) are independent vectors in the range of T. There-

fore, the dimension of the range of T is at least (hence equal) to 3.

1.2 Answering a question that was asked several times

There were some questions yesterday after class which are answered by the following theorem:

Theorem. If T € £ (V,W) is a linear map between vector spaces with the same finite dimension, then T is
injective iff T is surjective.

Proof. The fundamental theorem of linear maps says that dim(V) = dim(range(7")) + dim(null(7)). So,
dim(null(7)) = 0 if and only if dim(range(7')) = dim(V) = dim(W). Since dim(range(T')) = dim(W) iff T
is surjective and dim(null(7")) = 0 iff T is injective, we see T is injective if and only if 7 is surjective. [

1.3 Injectivity, surjectivity, and left and right invertibility

You may know that for arbitrary functions between sets, injective and left-invertible are equivalent and
surjective and right-invertible are equivalent. The same is true for linear maps between vector spaces. Let’s
break it down:

Theorem. Suppose T € £ (V,W). If there exists amap S € £ (W,V) so that ST = Iy then T is injective.

Proof. Suppose T € Z(V,W),S € £ (W,V) and ST = Iy. To show T is injective, suppose T’ (vi) =T (v2).
Apply S to get ST (vy) = ST (v2). Since ST = I, this says v; = v,. O

Theorem. Suppose S € L (W,V). If there exists amap T € £ (V,W) so that ST = Iy then S is surjective

Proof. Suppose S € Z(W,V), T € Z(V,W)and ST =1Iy. To show S: W — V is surjective, let v € V. Look
atw:=Tv. We have Sw = STv=1Iv =v. O
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Theorem. Suppose T € L (V,W). If T is injective then there exists a linear map S € £ (W, V) with ST =Iy.

Proof. This is true without any hypotheses on the dimensions of V and W. However, I will prove it assuming
dim(V) = m and dim(W) = n. Suppose T € £ (V,W) is injective and let vy,...,v, be a basis for V. Then

Tvy,...,Tvy is an independent list of vectors in W. Extend this list to a basis Tvy,..., TV, Wyi1,..., W,
of W. The map S € Z(W,V) defined by Tvi — vi, ..., TV — Vigy W1 — 0, ..., wy, — 0 satisfies
ST =1y. ]

Theorem. Suppose S € £ (W, V). IfS is surjective then there exists a linearmap T € £ (V,W ) with ST =Iy.

Proof. This is true without any hypotheses on the dimensions of V and W. However, I will prove it assuming
dim(V) = m and dim(W) = n. Suppose S € .Z(W,V) is surjective and let vy,...,v, be a basis for V.

There exist wy,...,w, with Sw; =vy,...,Sw, = v,. Becasue the list v,...,v, is independent in V, the list
Wi,...,w, is independent in W. Extend to a basis wi,...,wy,Wy11,...,w, of W. Then T € £ (V,W) defined
by Twi =vi,...,Tw, =v,, Tw,+1 =0,...,Tw,, = 0 satisfies ST = Iy. ]

I emphasize that these theorems are true even if V and W are infinite dimensional. I proved them only
for finite dimensions since having a basis makes it easy to define a linear map. In infinite dimensions, one
needs to use the axiom of choice to construct the one-sided inverses. To summarize we have

Theorem. Suppose T € £ (V,W). The map T is injective iff there exists S € £ (W, V) with ST = Iy.
Theorem. Suppose S € £ (W,V). The map S is surjective iff there exists T € £ (V,W) with ST = 1Iy.

Using pictures, where dashed arrows means “there exists a map”, we have

T is injective if and only if V LW > V. and S is surjective if and only if V ----- yW — V

1 1
Theorem. A map T € £ (V,W) is invertible if and only if T is bijective.

Proof. Suppose T € £ (V,W) is invertible. Then there exists a map S with ST = Iy and T'S = Iy. The first
equation implies 7 is injective, the second implies T is surjective.

Now, suppose T is bijective. Because T is injective, there exists a map S with ST = Iy. Because T is
surjective, there exists a map R so that TR = Iy. If we show R = S, then we are finished. Look:

R=1IyR= (ST)R=S(TR) =Sly =S
O

Be aware that there can be many different one-sided inverses for a map. If T : V — W is injective but
not surjective, there are infinitely many different maps S : W — V with ST = Iy. Likewise, if S: W — V is
surjective but not injective, there are infinitely many different maps 7' : V — W with ST = Iy. However, the
situation collapses for bijections, as the proof above shows: if a map is both left and right invertible, then
any left inverse has to equal any right inverse and so there is only a single map that serves as a two sided
inverse, which we call the inverse.

As a final remark, to pinpoint a difference between maps between finite dimensional spaces and maps
between infinite dimensional spaces, we only have the equality

dim(Domain7') = dim(range T') 4+ dim(null T")

for maps between finite dimensional spaces.



