Compute

1. Let

$$
A=\left(\begin{array}{ccccc}
3 & 1 & 1 & -1 & -3 \\
0 & -2 & 1 & 0 & -3 \\
-1 & -2 & 2 & -1 & 0 \\
3 & -1 & 1 & 0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
-2 & 0 & -2 \\
2 & 0 & 0 \\
2 & 0 & 0 \\
3 & 3 & -2 \\
-3 & 0 & -2
\end{array}\right)
$$

Write down the matrix for $A B$.
Answer. $A B=\left(\begin{array}{ccc}4 & -3 & 2 \\ 7 & 0 & 6 \\ -1 & -3 & 4 \\ -9 & 0 & -8\end{array}\right)$.
2. Using the basis $(x-1),(x-2)$ for $\mathscr{P}_{1}(\mathbb{R})$, compute $\mathscr{M}(x-5)$, the matrix for the vector $x-5$.

Answer. The answer is $(-3,4)$ since $-3(x-1)+4(x-2)=x-5$.
3. Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z) .
$$

Using the basis standard basis for the domain and the standard basis for the codomain to find $\mathscr{M}(T)$
Answer. To find the matrix for T, apply T to each of the standard basis of \mathbb{R}^{3} and express the results as a linear combination of the basis vectors:

$$
\begin{aligned}
& T(1,0,0)=(1,2,-4)=1(1,0,0)+2(0,1,0)-4(0,0,1) \\
& T(0,1,0)=(-2,-6,10)=-2(1,0,0)+-6(0,1,0)+10(0,0,1) \\
& T(0,0,1)=(-2,-7,10)=-2(1,0,0)+-7(0,1,0)+10(0,0,1)
\end{aligned}
$$

and use the coeffcients of these expressions for the columns of the matrix:

$$
\mathscr{M}(T)=\left(\begin{array}{ccc}
1 & -2 & -2 \\
2 & -6 & -7 \\
-4 & 10 & 10
\end{array}\right)
$$

4. Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z) .
$$

Using the basis $(5,4,-2),(0,1,-1),\left(1, \frac{3}{2},-1\right)$ for the domain and the standard basis for the codomain to find $\mathscr{M}(T)$.

Answer. To finad the matrix for T, apply T to each of the vectors in the given basis and express the results as a linear combination of the basis vectors:

$$
\begin{aligned}
T(5,4,-2) & =(1,0,0)=1(1,0,0)+0(0,1,0)+0(0,0,1) \\
T(0,1,-1) & =(0,1,0)=-0(1,0,0)+1(0,1,0)+0(0,0,1) \\
T(1,3 / 2,-1) & =(0,0,1)=0(1,0,0)+0(0,1,0)+1(0,0,1)
\end{aligned}
$$

and use the coeffcients of these expressions for the columns of the matrix:

$$
\mathscr{M}(T)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

True/False

5. Suppose $S, T \in \mathscr{L}(V)$. If $S T=I$ then $T S=I$.

Answer. False. For example, consider $V=\mathbb{R}^{\infty}, T: V \rightarrow V$ defined by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$ and $S: V \rightarrow V$ defined by $S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)$. Here $S T=I$ but $T S$ is the map $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto$ $\left(0, x_{2}, x_{3}, \ldots\right)$ which is not the identity.
6. Suppose V is finite dimensional and $S, T \in \mathscr{L}(V)$. If $S T=I$ then $T S=I$.

Answer. True! If $S T=I$, this means that T is injective and S is surjective. Since a linear operator on finite dimensional vector space is injective iff it is surjective iff it is invertible, we have both S and T are invertible. By the uniqueness of inverses, they are their own inverses: so we have both $S T=I$ and $T S=I$.
7. Suppose $S, T \in \mathscr{L}(V)$. $S T$ is invertible if and only if both S and T are invertible.

Answer. False. Let's reuse the example we used earlier: $V=\mathbb{R}^{\infty}, T: V \rightarrow V$ defined by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=$ $\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$ and $S: V \rightarrow V$ defined by $S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)$. Note that neither S nor T is invertible: S isn't injective and T isn't surjective. However, ST is invertible (it's the identity map).
8. Suppose V is finite dimensional and $S, T \in \mathscr{L}(V)$. $S T$ is invertible if and only if both S and T are invertible.

Answer. True. In general, if V is any vector space and $S, T \in \mathscr{L}(V)$, then if S and T are both invertible, the composition ST is invertible. To see this, note that $T^{-1} S^{-1}$ is the inverse of ST, which we check by verifying that $\left(T^{-1} S^{-1}\right)(S T)=I$ and $(S T)\left(T^{-1} S^{-1}\right)=I$.

Now, in general the invertibility of the composition ST does not imply the invertibility of the factors S and T. However if V is finite dimensional, ST being invertible implies both S and T are invertible. Here's a proof. Let A be the inverse of ST. Then $A(S T)=I=(S T)$ A. Note that $I=(S T) A=S(T A)$. This implies that S is surjective (since there's something you can compose S with on the right to get the identity) hence S is invertible. Similarly, $A(S T)=I \Rightarrow(A S) T=I$ which implies T is injective hence invertible.
9. For $S: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $S(x, y, z)=x+y+z, \operatorname{null}(S)=\operatorname{span}((5,-3,-2),(0,3,-3))$.

Answer. True. Since S is a nonzero map to \mathbb{R}, the range is 1 dimensional. Therefore, the nullspace is two dimensional. The two vectors $(5,-3,-2),(0,3,-3)$ are two linearly independent vectors in the two dimensional nullspace, hence must be a basis, hence must span the nullspace.
10. The linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+y, z, x+y-z)$ is surjective.

Answer. False. Note that $T(1,-1,0)=(0,0,0)$ so $\operatorname{dim}(\operatorname{null}(T)) \geq 1$. This implies the dimension of range $(T) \leq 2$ so T cannot be surjective.
11. The linear map $T: \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ defined by $T(p(x))=(p(1), p(2), p(3))$ is surjective.

Answer. False. Since the domain is two dimensional, the range can have dimension at most two.
12. Let $T: \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear map defined by

$$
T(p(x))=(p(1), p(2), p(3)) .
$$

Using the basis $(x-1),(x-2)$ for $\mathscr{P}_{1}(\mathbb{R})$ and the standard basis is used for \mathbb{R}^{3}, the matrix equation $\mathscr{M}(T) \mathscr{M}(x-5)=\mathscr{M}(T(x-5))$ is the equation

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
2 & 1
\end{array}\right)\binom{-3}{4}=\left(\begin{array}{l}
-4 \\
-3 \\
-2
\end{array}\right)
$$

Answer. True. Since $(x-5)=-3(x-1)+4(x-2)$, we know $\mathscr{M}(x-5)=\binom{-3}{4}$ To see that the matrix $\mathscr{M}(T)$ is correct, apply T to each of the given basis vectors of $\mathscr{P}_{1}(\mathbb{R})$

$$
\begin{aligned}
& T(x-1)=(0,1,2)=0(1,0,0)+1(0,1,0)+2(0,0,1) \\
& T(x-2)=(-1,0,1)=-1(1,0,0)+0(0,1,0)+1(0,0,1)
\end{aligned}
$$

Finally, note that the matrix multiplcation is correct and that the righthand side is the vector for $T(x-5)=$ $(-4,-3,-2)=-4(1,0,0)+-3(0,1,0)-2(0,0,1)$ in the standard basis of \mathbb{R}^{3}.
13. The follow homogeneous system of equations has infinitely many solutions:

$$
\begin{aligned}
x-2 y-2 z & =0 \\
2 x-6 y-7 z & =0 \\
-4 x+10 y+10 z & =0
\end{aligned}
$$

Answer. False. Note that the given statement is equivalent to the statement that there are infinitely many vectors in the nullspace of the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z)
$$

As computed earlier,

$$
T(5,4,-2)=(1,0,0), \quad T(0,1,-1)=(0,1,0), \quad T(1,3 / 2,-1)=(0,0,1),
$$

so $(1,0,0),(0,1,0),(0,0,1)$ are all in the range of T. Thus the range of T must be at least three, hence three, dimensional. Therefore $\operatorname{null}(T)$ is zero dimensional. Therefore, there is only one solution to the given system-the trivial solution $(x, y, z)=(0,0,0)$.
14. The follow inhomogeneous system of equations has exactly one solution:

$$
\begin{aligned}
x-2 y-2 z & =\frac{1}{5} \\
2 x-6 y-7 z & =-17 \\
-4 x+10 y+10 z & =9
\end{aligned}
$$

Answer. True. Since the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z)
$$

is surjective, there is a solution to the given system. Since the linear map T is injective, there is only one solution.
15. There is a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ with

$$
\operatorname{null}(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}=3 x_{2} \text { and } x_{3}=x_{4}=x_{5}\right\}
$$

Answer. False. Note that the given space is two dimensional (it is spanned by $(3,1,0,0,0),(0,0,1,1,1)$). If there existed a linear map with the given subspace as a nullspace, then it would have a three dimensional range, impossible for a map whose codomain is two dimensional.
16. Suppose $T: V \rightarrow W$. If v_{1}, \ldots, v_{n} is independent in V, then $T v_{1}, \ldots, T v_{n}$ is independent in W.

Answer. False. For example, if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is zero map and v_{1}, v_{2} is the independent list $(1,0,0),(0,1,0)$, $T v_{1}, T v_{2}$ is the dependent list $(0,0,0),(0,0,0)$.
17. Suppose $T: V \rightarrow W$. If v_{1}, \ldots, v_{n} spans V, then $T v_{1}, \ldots, T v_{n}$ spans the $\operatorname{range}(T)$.

Answer. True. Every vector in range (T) has the form $T v$ for some $v \in V$. If v_{1}, \ldots, v_{n} spans V, then there exist scalars a_{1}, \ldots, a_{n} so that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$. Then $T v=a_{1} T v_{1}+\cdots a_{n} T v_{n}$ and we see $T v$ is in the span of $T v_{1}, \ldots, T v_{n}$.

1 Extras

Here are some extra problems and theorems that we discussed in class, which I'm repeating here for your reference.

1.1 An interesting problem

18. Does there exist a quadratic polynomial q with $q(0)=0, q(1)=0$, and $\int_{0}^{2} q=0$?

Answer. No. Consider the map $T \in \mathscr{L}\left((P)_{2}(\mathbb{R}), \mathbb{R}^{3}\right)$ defined by $T(p)=\left(p(0), p(1), \int_{0}^{2} p\right)$. The question, then, is whether there is a degree two polynomial in $\operatorname{null}(T)$. I claim that $\operatorname{dim}(\operatorname{range}(T))=3 \Rightarrow$ $\operatorname{dim}(\operatorname{null}(T))=0$. Therefore, the only polynomial $q \in \operatorname{null}(T)$ is the zero polynomial. To see that $\operatorname{dim}(\operatorname{range}(T))=$ 3, look at

$$
\begin{aligned}
T\left(x^{2}\right) & =\left(0,1, \frac{8}{3}\right) \\
T(x) & =(0,1,2) \\
T(1) & =(1,1,1)
\end{aligned}
$$

and note that the three vectors $\left(0,1, \frac{8}{3}\right),(0,1,2),(1,1,1)$ are independent vectors in the range of T. Therefore, the dimension of the range of T is at least (hence equal) to 3 .

1.2 Answering a question that was asked several times

There were some questions yesterday after class which are answered by the following theorem:
Theorem. If $T \in \mathscr{L}(V, W)$ is a linear map between vector spaces with the same finite dimension, then T is injective iff T is surjective.

Proof. The fundamental theorem of linear maps says that $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(\operatorname{null}(T))$. So, $\operatorname{dim}(\operatorname{null}(T))=0$ if and only if $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(V)=\operatorname{dim}(W)$. Since $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(W)$ iff T is surjective and $\operatorname{dim}(\operatorname{null}(T))=0$ iff T is injective, we see T is injective if and only if T is surjective.

1.3 Injectivity, surjectivity, and left and right invertibility

You may know that for arbitrary functions between sets, injective and left-invertible are equivalent and surjective and right-invertible are equivalent. The same is true for linear maps between vector spaces. Let's break it down:

Theorem. Suppose $T \in \mathscr{L}(V, W)$. If there exists a map $S \in \mathscr{L}(W, V)$ so that $S T=I_{V}$ then T is injective.
Proof. Suppose $T \in \mathscr{L}(V, W), S \in \mathscr{L}(W, V)$ and $S T=I_{V}$. To show T is injective, suppose $T\left(v_{1}\right)=T\left(v_{2}\right)$. Apply S to get $S T\left(v_{1}\right)=S T\left(v_{2}\right)$. Since $S T=I$, this says $v_{1}=v_{2}$.

Theorem. Suppose $S \in \mathscr{L}(W, V)$. If there exists a map $T \in \mathscr{L}(V, W)$ so that $S T=I_{V}$ then S is surjective
Proof. Suppose $S \in \mathscr{L}(W, V), T \in \mathscr{L}(V, W)$ and $S T=I_{V}$. To show $S: W \rightarrow V$ is surjective, let $v \in V$. Look at $w:=T v$. We have $S w=S T v=I v=v$.

Theorem. Suppose $T \in \mathscr{L}(V, W)$. If T is injective then there exists a linear map $S \in \mathscr{L}(W, V)$ with $S T=I_{V}$.
Proof. This is true without any hypotheses on the dimensions of V and W. However, I will prove it assuming $\operatorname{dim}(V)=m$ and $\operatorname{dim}(W)=n$. Suppose $T \in \mathscr{L}(V, W)$ is injective and let v_{1}, \ldots, v_{n} be a basis for V. Then $T v_{1}, \ldots, T v_{m}$ is an independent list of vectors in W. Extend this list to a basis $T v_{1}, \ldots, T v_{m}, w_{n+1}, \ldots, w_{n}$ of W. The map $S \in \mathscr{L}(W, V)$ defined by $T v_{1} \mapsto v_{1}, \ldots, T v_{m} \mapsto v_{m}, w_{m+1} \mapsto 0, \ldots, w_{n} \mapsto 0$ satisfies $S T=I_{V}$.

Theorem. Suppose $S \in \mathscr{L}(W, V)$. If S is surjective then there exists a linear map $T \in \mathscr{L}(V, W)$ with $S T=I_{V}$.
Proof. This is true without any hypotheses on the dimensions of V and W. However, I will prove it assuming $\operatorname{dim}(V)=m$ and $\operatorname{dim}(W)=n$. Suppose $S \in \mathscr{L}(W, V)$ is surjective and let v_{1}, \ldots, v_{n} be a basis for V. There exist w_{1}, \ldots, w_{n} with $S w_{1}=v_{1}, \ldots, S w_{n}=v_{n}$. Becasue the list v_{1}, \ldots, v_{n} is independent in V, the list w_{1}, \ldots, w_{n} is independent in W. Extend to a basis $w_{1}, \ldots, w_{n}, w_{n+1}, \ldots, w_{m}$ of W. Then $T \in \mathscr{L}(V, W)$ defined by $T w_{1}=v_{1}, \ldots, T w_{n}=v_{n}, T w_{n+1}=0, \ldots, T w_{m}=0$ satisfies $S T=I_{V}$.

I emphasize that these theorems are true even if V and W are infinite dimensional. I proved them only for finite dimensions since having a basis makes it easy to define a linear map. In infinite dimensions, one needs to use the axiom of choice to construct the one-sided inverses. To summarize we have

Theorem. Suppose $T \in \mathscr{L}(V, W)$. The map T is injective iff there exists $S \in \mathscr{L}(W, V)$ with $S T=I_{V}$.
Theorem. Suppose $S \in \mathscr{L}(W, V)$. The map S is surjective iff there exists $T \in \mathscr{L}(V, W)$ with $S T=I_{V}$.
Using pictures, where dashed arrows means "there exists a map", we have

Theorem. A map $T \in \mathscr{L}(V, W)$ is invertible if and only if T is bijective.
Proof. Suppose $T \in \mathscr{L}(V, W)$ is invertible. Then there exists a map S with $S T=I_{V}$ and $T S=I_{W}$. The first equation implies T is injective, the second implies T is surjective.

Now, suppose T is bijective. Because T is injective, there exists a map S with $S T=I_{V}$. Because T is surjective, there exists a map R so that $T R=I_{W}$. If we show $R=S$, then we are finished. Look:

$$
R=I_{V} R=(S T) R=S(T R)=S I_{W}=S
$$

Be aware that there can be many different one-sided inverses for a map. If $T: V \rightarrow W$ is injective but not surjective, there are infinitely many different maps $S: W \rightarrow V$ with $S T=I_{V}$. Likewise, if $S: W \rightarrow V$ is surjective but not injective, there are infinitely many different maps $T: V \rightarrow W$ with $S T=I_{V}$. However, the situation collapses for bijections, as the proof above shows: if a map is both left and right invertible, then any left inverse has to equal any right inverse and so there is only a single map that serves as a two sided inverse, which we call the inverse.

As a final remark, to pinpoint a difference between maps between finite dimensional spaces and maps between infinite dimensional spaces, we only have the equality

$$
\operatorname{dim}(\operatorname{Domain} T)=\operatorname{dim}(\operatorname{range} T)+\operatorname{dim}(\operatorname{null} T)
$$

for maps between finite dimensional spaces.

