Compute

1. Let

$$A = \begin{pmatrix} 3 & 1 & 1 & -1 & -3 \\ 0 & -2 & 1 & 0 & -3 \\ -1 & -2 & 2 & -1 & 0 \\ 3 & -1 & 1 & 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} -2 & 0 & -2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 3 & -2 \\ -3 & 0 & -2 \end{pmatrix}.$$

Write down the matrix for AB.

Answer.
$$AB = \begin{pmatrix} 4 & -3 & 2 \\ 7 & 0 & 6 \\ -1 & -3 & 4 \\ -9 & 0 & -8 \end{pmatrix}$$
.

2. Using the basis (x-1), (x-2) for $\mathscr{P}_1(\mathbb{R})$, compute $\mathscr{M}(x-5)$, the matrix for the vector x-5. Answer. The answer is (-3,4) since -3(x-1)+4(x-2)=x-5.

3. Consider the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T(x, y, z) = (x - 2y - 2z, 2x - 6y - 7z, -4x + 10y + 10z).$$

Using the basis standard basis for the domain and the standard basis for the codomain to find $\mathcal{M}(T)$

Answer. To find the matrix for T, apply T to each of the standard basis of \mathbb{R}^3 and express the results as a linear combination of the basis vectors:

$$T(1,0,0) = (1,2,-4) = 1(1,0,0) + 2(0,1,0) - 4(0,0,1)$$

$$T(0,1,0) = (-2,-6,10) = -2(1,0,0) + -6(0,1,0) + 10(0,0,1)$$

$$T(0,0,1) = (-2,-7,10) = -2(1,0,0) + -7(0,1,0) + 10(0,0,1)$$

and use the coeffcients of these expressions for the columns of the matrix:

$$\mathcal{M}(T) = \left(\begin{array}{rrr} 1 & -2 & -2 \\ 2 & -6 & -7 \\ -4 & 10 & 10 \end{array}\right).$$

4. Consider the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T(x, y, z) = (x - 2y - 2z, 2x - 6y - 7z, -4x + 10y + 10z).$$

Using the basis $(5,4,-2), (0,1,-1), (1,\frac{3}{2},-1)$ for the domain and the standard basis for the codomain to find $\mathcal{M}(T)$.

Answer. To finad the matrix for T, apply T to each of the vectors in the given basis and express the results as a linear combination of the basis vectors:

$$T(5,4,-2) = (1,0,0) = 1(1,0,0) + 0(0,1,0) + 0(0,0,1)$$

$$T(0,1,-1) = (0,1,0) = -0(1,0,0) + 1(0,1,0) + 0(0,0,1)$$

$$T(1,3/2,-1) = (0,0,1) = 0(1,0,0) + 0(0,1,0) + 1(0,0,1)$$

and use the coeffcients of these expressions for the columns of the matrix:

$$\mathcal{M}(T) = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

True/False

5. Suppose $S, T \in \mathscr{L}(V)$. If ST = I then TS = I.

Answer. False. For example, consider $V = \mathbb{R}^{\infty}$, $T : V \to V$ defined by $T(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots)$ and $S : V \to V$ defined by $S(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$. Here ST = I but TS is the map $(x_1, x_2, x_3, \ldots) \mapsto (0, x_2, x_3, \ldots)$ which is not the identity.

6. Suppose *V* is finite dimensional and $S, T \in \mathcal{L}(V)$. If ST = I then TS = I.

Answer. True! If ST = I, this means that T is injective and S is surjective. Since a linear operator on finite dimensional vector space is injective iff it is surjective iff it is invertible, we have both S and T are invertible. By the uniqueness of inverses, they are their own inverses: so we have both ST = I and TS = I.

7. Suppose $S, T \in \mathcal{L}(V)$. ST is invertible if and only if both S and T are invertible.

Answer. False. Let's reuse the example we used earlier: $V = \mathbb{R}^{\infty}$, $T : V \to V$ defined by $T(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, ...)$ and $S : V \to V$ defined by $S(x_1, x_2, x_3, ...) = (x_2, x_3, x_4, ...)$. Note that neither S nor T is invertible: S isn't injective and T isn't surjective. However, ST is invertible (it's the identity map).

8. Suppose V is finite dimensional and $S, T \in \mathcal{L}(V)$. ST is invertible if and only if both S and T are invertible.

Answer. True. In general, if V is any vector space and $S, T \in \mathcal{L}(V)$, then if S and T are both invertible, the composition ST is invertible. To see this, note that $T^{-1}S^{-1}$ is the inverse of ST, which we check by verifying that $(T^{-1}S^{-1})(ST) = I$ and $(ST)(T^{-1}S^{-1}) = I$.

Now, in general the invertibility of the composition ST does not imply the invertibility of the factors S and T. However if V is finite dimensional, ST being invertible implies both S and T are invertible. Here's a proof. Let A be the inverse of ST. Then A(ST) = I = (ST)A. Note that I = (ST)A = S(TA). This implies that S is surjective (since there's something you can compose S with on the right to get the identity) hence S is invertible. Similarly, $A(ST) = I \Rightarrow (AS)T = I$ which implies T is injective hence invertible. 9. For $S : \mathbb{R}^3 \to \mathbb{R}$ given by S(x, y, z) = x + y + z, null(S) = span((5, -3, -2), (0, 3, -3)).

Answer. True. Since S is a nonzero map to \mathbb{R} , the range is 1 dimensional. Therefore, the nullspace is two dimensional. The two vectors (5, -3, -2), (0, 3, -3) are two linearly independent vectors in the two dimensional nullspace, hence must be a basis, hence must span the nullspace.

10. The linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, z, x + y - z) is surjective.

Answer. False. Note that T(1,-1,0) = (0,0,0) so $\dim(\operatorname{null}(T)) \ge 1$. This implies the dimension of $\operatorname{range}(T) \le 2$ so T cannot be surjective.

11. The linear map $T: \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}^3$ defined by T(p(x)) = (p(1), p(2), p(3)) is surjective.

Answer. False. Since the domain is two dimensional, the range can have dimension at most two.

12. Let $T : \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}^3$ be the linear map defined by

$$T(p(x)) = (p(1), p(2), p(3))$$

Using the basis (x-1), (x-2) for $\mathscr{P}_1(\mathbb{R})$ and the standard basis is used for \mathbb{R}^3 , the matrix equation $\mathscr{M}(T)\mathscr{M}(x-5) = \mathscr{M}(T(x-5))$ is the equation

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \\ 2 & 1 \end{array}\right) \left(\begin{array}{c} -3 \\ 4 \end{array}\right) = \left(\begin{array}{c} -4 \\ -3 \\ -2 \end{array}\right)$$

Answer. True. Since (x-5) = -3(x-1) + 4(x-2), we know $\mathcal{M}(x-5) = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ To see that the matrix $\mathcal{M}(T)$ is correct, apply T to each of the given basis vectors of $\mathcal{P}_1(\mathbb{R})$

$$T(x-1) = (0,1,2) = 0(1,0,0) + 1(0,1,0) + 2(0,0,1)$$

$$T(x-2) = (-1,0,1) = -1(1,0,0) + 0(0,1,0) + 1(0,0,1)$$

Finally, note that the matrix multiplication is correct and that the righthand side is the vector for T(x-5) = (-4, -3, -2) = -4(1, 0, 0) + -3(0, 1, 0) - 2(0, 0, 1) in the standard basis of \mathbb{R}^3 .

13. The follow homogeneous system of equations has infinitely many solutions:

$$x - 2y - 2z = 0$$
$$2x - 6y - 7z = 0$$
$$-4x + 10y + 10z = 0$$

Answer. False. Note that the given statement is equivalent to the statement that there are infinitely many vectors in the nullspace of the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (x - 2y - 2z, 2x - 6y - 7z, -4x + 10y + 10z).$$

As computed earlier,

T(5,4,-2) = (1,0,0), T(0,1,-1) = (0,1,0), T(1,3/2,-1) = (0,0,1),

so (1,0,0), (0,1,0), (0,0,1) are all in the range of *T*. Thus the range of *T* must be at least three, hence three, dimensional. Therefore null(*T*) is zero dimensional. Therefore, there is only one solution to the given system—the trivial solution (x, y, z) = (0,0,0).

14. The follow inhomogeneous system of equations has exactly one solution:

$$x - 2y - 2z = \frac{1}{5}$$
$$2x - 6y - 7z = -17$$
$$4x + 10y + 10z = 9$$

Answer. *True. Since the linear map* $T : \mathbb{R}^3 \to \mathbb{R}^3$ *defined by*

$$T(x, y, z) = (x - 2y - 2z, 2x - 6y - 7z, -4x + 10y + 10z)$$

is surjective, there is a solution to the given system. Since the linear map T is injective, there is only one solution.

15. There is a linear map $T : \mathbb{R}^5 \to \mathbb{R}^2$ with

$$\operatorname{null}(T) = \{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5 \}.$$

Answer. False. Note that the given space is two dimensional (it is spanned by (3,1,0,0,0), (0,0,1,1,1)). If there existed a linear map with the given subspace as a nullspace, then it would have a three dimensional range, impossible for a map whose codomain is two dimensional.

16. Suppose $T: V \to W$. If v_1, \ldots, v_n is independent in V, then Tv_1, \ldots, Tv_n is independent in W.

Answer. False. For example, if $T : \mathbb{R}^3 \to \mathbb{R}^2$ is zero map and v_1, v_2 is the independent list $(1,0,0), (0,1,0), Tv_1, Tv_2$ is the dependent list (0,0,0), (0,0,0).

17. Suppose $T: V \to W$. If v_1, \ldots, v_n spans V, then Tv_1, \ldots, Tv_n spans the range(T).

Answer. True. Every vector in range(T) has the form Tv for some $v \in V$. If v_1, \ldots, v_n spans V, then there exist scalars a_1, \ldots, a_n so that $v = a_1v_1 + \cdots + a_nv_n$. Then $Tv = a_1Tv_1 + \cdots + a_nTv_n$ and we see Tv is in the span of Tv_1, \ldots, Tv_n .

1 Extras

Here are some extra problems and theorems that we discussed in class, which I'm repeating here for your reference.

1.1 An interesting problem

18. Does there exist a quadratic polynomial q with q(0) = 0, q(1) = 0, and $\int_0^2 q = 0$?

Answer. No. Consider the map $T \in \mathscr{L}((P)_2(\mathbb{R}), \mathbb{R}^3)$ defined by $T(p) = (p(0), p(1), \int_0^2 p)$. The question, then, is whether there is a degree two polynomial in null(T). I claim that dim(range(T)) = 3 \Rightarrow dim(null(T)) = 0. Therefore, the only polynomial $q \in \text{null}(T)$ is the zero polynomial. To see that dim(range(T)) = 3, look at

$$T(x^{2}) = \left(0, 1, \frac{8}{3}\right)$$
$$T(x) = (0, 1, 2)$$
$$T(1) = (1, 1, 1)$$

and note that the three vectors $(0,1,\frac{8}{3}), (0,1,2), (1,1,1)$ are independent vectors in the range of *T*. Therefore, the dimension of the range of *T* is at least (hence equal) to 3.

1.2 Answering a question that was asked several times

There were some questions yesterday after class which are answered by the following theorem:

Theorem. If $T \in \mathscr{L}(V, W)$ is a linear map between vector spaces with the same finite dimension, then T is injective iff T is surjective.

Proof. The fundamental theorem of linear maps says that $\dim(V) = \dim(\operatorname{range}(T)) + \dim(\operatorname{null}(T))$. So, $\dim(\operatorname{null}(T)) = 0$ if and only if $\dim(\operatorname{range}(T)) = \dim(V) = \dim(W)$. Since $\dim(\operatorname{range}(T)) = \dim(W)$ iff T is surjective and $\dim(\operatorname{null}(T)) = 0$ iff T is injective, we see T is injective if and only if T is surjective. \Box

1.3 Injectivity, surjectivity, and left and right invertibility

You may know that for arbitrary functions between sets, *injective* and *left-invertible* are equivalent and *surjective* and *right-invertible* are equivalent. *The same is true for linear maps between vector spaces*. Let's break it down:

Theorem. Suppose $T \in \mathcal{L}(V, W)$. If there exists a map $S \in \mathcal{L}(W, V)$ so that $ST = I_V$ then T is injective.

Proof. Suppose $T \in \mathscr{L}(V,W)$, $S \in \mathscr{L}(W,V)$ and $ST = I_V$. To show T is injective, suppose $T(v_1) = T(v_2)$. Apply S to get $ST(v_1) = ST(v_2)$. Since ST = I, this says $v_1 = v_2$.

Theorem. Suppose $S \in \mathscr{L}(W, V)$. If there exists a map $T \in \mathscr{L}(V, W)$ so that $ST = I_V$ then S is surjective

Proof. Suppose $S \in \mathscr{L}(W, V)$, $T \in \mathscr{L}(V, W)$ and $ST = I_V$. To show $S : W \to V$ is surjective, let $v \in V$. Look at w := Tv. We have Sw = STv = Iv = v.

Theorem. Suppose $T \in \mathcal{L}(V, W)$. If T is injective then there exists a linear map $S \in \mathcal{L}(W, V)$ with $ST = I_V$.

Proof. This is true without any hypotheses on the dimensions of *V* and *W*. However, I will prove it assuming $\dim(V) = m$ and $\dim(W) = n$. Suppose $T \in \mathscr{L}(V, W)$ is injective and let v_1, \ldots, v_n be a basis for *V*. Then Tv_1, \ldots, Tv_m is an independent list of vectors in *W*. Extend this list to a basis $Tv_1, \ldots, Tv_m, w_{n+1}, \ldots, w_n$ of *W*. The map $S \in \mathscr{L}(W, V)$ defined by $Tv_1 \mapsto v_1, \ldots, Tv_m \mapsto v_m, w_{m+1} \mapsto 0, \ldots, w_n \mapsto 0$ satisfies $ST = I_V$.

Theorem. Suppose $S \in \mathscr{L}(W, V)$. If S is surjective then there exists a linear map $T \in \mathscr{L}(V, W)$ with $ST = I_V$.

Proof. This is true without any hypotheses on the dimensions of *V* and *W*. However, I will prove it assuming $\dim(V) = m$ and $\dim(W) = n$. Suppose $S \in \mathscr{L}(W, V)$ is surjective and let v_1, \ldots, v_n be a basis for *V*. There exist w_1, \ldots, w_n with $Sw_1 = v_1, \ldots, Sw_n = v_n$. Becasue the list v_1, \ldots, v_n is independent in *V*, the list w_1, \ldots, w_n is independent in *W*. Extend to a basis $w_1, \ldots, w_n, w_{n+1}, \ldots, w_m$ of *W*. Then $T \in \mathscr{L}(V, W)$ defined by $Tw_1 = v_1, \ldots, Tw_n = v_n, Tw_{n+1} = 0, \ldots, Tw_m = 0$ satisfies $ST = I_V$.

I emphasize that these theorems are true even if V and W are infinite dimensional. I proved them only for finite dimensions since having a basis makes it easy to define a linear map. In infinite dimensions, one needs to use the axiom of choice to construct the one-sided inverses. To summarize we have

Theorem. Suppose $T \in \mathscr{L}(V, W)$. The map T is injective iff there exists $S \in \mathscr{L}(W, V)$ with $ST = I_V$.

Theorem. Suppose $S \in \mathscr{L}(W, V)$. The map S is surjective iff there exists $T \in \mathscr{L}(V, W)$ with $ST = I_V$.

Using pictures, where dashed arrows means "there exists a map", we have

T is injective if and only if $V \xrightarrow{T} W \xrightarrow{W} V$. and *S* is surjective if and only if $V \xrightarrow{V} V$.

Theorem. A map $T \in \mathscr{L}(V, W)$ is invertible if and only if T is bijective.

Proof. Suppose $T \in \mathscr{L}(V, W)$ is invertible. Then there exists a map S with $ST = I_V$ and $TS = I_W$. The first equation implies T is injective, the second implies T is surjective.

Now, suppose T is bijective. Because T is injective, there exists a map S with $ST = I_V$. Because T is surjective, there exists a map R so that $TR = I_W$. If we show R = S, then we are finished. Look:

$$R = I_V R = (ST)R = S(TR) = SI_W = S$$

Be aware that there can be many different one-sided inverses for a map. If $T: V \to W$ is injective but not surjective, there are infinitely many different maps $S: W \to V$ with $ST = I_V$. Likewise, if $S: W \to V$ is surjective but not injective, there are infinitely many different maps $T: V \to W$ with $ST = I_V$. However, the situation collapses for bijections, as the proof above shows: if a map is both left and right invertible, then any left inverse has to equal any right inverse and so there is only a single map that serves as a two sided inverse, which we call *the* inverse.

As a final remark, to pinpoint a difference between maps between finite dimensional spaces and maps between infinite dimensional spaces, we only have the equality

$$\dim(\operatorname{Domain} T) = \dim(\operatorname{range} T) + \dim(\operatorname{null} T)$$

for maps between finite dimensional spaces.