MATH 120 In-class Activity Day 16 **Question 1.** Let $X = \{A, B, C, D, E, F\}$ and let $Y = \{1, 2, 3, 4, 5, 6\}$. (a) Use an arrow diagram to draw a function $f: X \to Y$ where f is not injective. $A \quad B \quad C \quad D \quad E \quad F$ 1 2 3 4 5 6 Now explain why your answer is correct. If no such function is possible, explain why not. (b) Use an arrow diagram to draw a function $g: X \to Y$ where g is surjective. $A \quad B \quad C \quad D \quad E \quad F$ 1 2 3 4 5 6 Now explain why your answer is correct. If no such function is possible, explain why not. (c) Must the function g also be a bijection? Why or why not? ## Question 2. Is it possible to find a function from the power set $\mathcal{P}(\{1,2,3\})$ to the set $\{0,1,2,3,4\}$? Why or why not? Is it possible to find a **bijection** from the power set $\mathcal{P}(\{1,2,3\})$ to the set $\{0,1,2,3,4\}$? Why or why not? | be the function that takes as input a word w and outputs $\ell(w)$, the number of letters in w . (In other words, $\ell(w)$ is the length of w .) | |---| | (a) Is ℓ injective? Explain why or why not. | | (b) Is ℓ surjective? Explain why or why not. | | (c) Is ℓ a bijection? Explain why or why not. | | Question 4. | | Let N be the set of all numbers that appear as a building number in an address in New York City.
Let B be the set of all buildings in New York City. | | (a) Give a well defined function from N to B OR from B to N that relates building numbers and buildings in a systematic way. Justify that your function is well defined. | | (b) Is your function injective? Is your function surjective? | | (c) Take an element e in your codomain. What is the pre-image of e ? | Question 3. Let W be the set of all words of any length on the alphabet $\{a,b\}$. Let $\ell: W \to \mathbb{N}$