Name:

1 Functions and Counting

1. [2 points] Suppose you are trying to get from the corner of eleventh avenue and 44th street to the corner of eight avenue and 57th street (from the *X* to the *Y* on the map). How many different ways are there to walk there along the streets and avenues, assuming you don't go out of your way?

- **2. [3 points]** Let $X = \{a, e, i, o, u\}$ and $Y = \{\text{red}, \text{green}, \text{blue}, \text{purple}, \text{yellow}, \text{orange}\}$.
 - *a*) How many different functions are there $X \rightarrow Y$?
 - *b*) How many functions $X \rightarrow Y$ are injective ?
 - *c*) How many functions $X \rightarrow Y$ are surjective ?

3. [5 points] Let $X = \{a, e, i, o, u\}$ and $Y = \{\text{red}, \text{green}, \text{blue}, \text{purple}, \text{yellow}, \text{orange}\}$ and consider $f : X \to Y$ defined by

 $a \mapsto \text{green} \quad e \mapsto \text{green} \quad i \mapsto \text{blue} \quad o \mapsto \text{green} \quad u \mapsto \text{red}$

a) f(e) =

- b) $f(\{e, i\}) =$
- c) $f^{-1}(\{\text{red}, \text{purple}, \text{blue}\}) =$

 $d) \ f^{-1}(f(\{e\})) =$

e) Find two sets $A, B \subseteq X$ for which $f(A \cap B) \neq f(A) \cap f(B)$.

2 Short Answer: 1 point each

4. What are the values of $\lfloor 41.23 \rfloor$ and $\lfloor -2.3 \rfloor$?

5. Define a function $F : \mathbb{N} \to \mathbb{N}$ recursively by setting F(1) = 1, F(2) = 1, and for $n \ge 2$, setting F(n) = F(n-1) + F(n-2). What is F(6)?

6. What is the quotient and remainder when 57 is divided by 4?

7. Simplify $\frac{6^5}{3^6}$.

- 8. Write $\log_2(a^4) + \log_2(b^2) \log_2(ab)$ as a single, simple expression.
- **9.** Write $\log_2(703)$ using only \log_{10} .

10. Compute
$$\log_5\left(\frac{1}{5}\right) \times \log_{\frac{1}{5}}(5)$$
.

11. Simplify $\frac{402!}{401!}$.

12. True or false: A function $\{a, b, c, d\} \rightarrow \{a, b, c, d\}$ is injective if and only if it is surjective.

13. True or false: A function $\mathbb{N} \to \mathbb{N}$ is injective if and only if it is surjective.

3 Bonus

14. [2 points] $\lfloor \log_{10} (12345678901234567890123456789012345678901234567890) \rfloor =$

15. [2 points] Let $X = \{a, e, i, o, u\}$ and $Y = \{\text{red}, \text{green}, \text{blue}\}$. How many functions $X \rightarrow Y$ are surjective?