1 Functions and Counting

1. [2 points] Suppose you are trying to get from the corner of eleventh avenue and 44th street to the corner of eight avenue and 57th street (from the *X* to the *Y* on the map). How many different ways are there to walk there along the streets and avenues, assuming you don't go out of your way?

- **2.** [3 points] Let $X = \{a, e, i, o, u\}$ and $Y = \{\text{red, green, blue, purple, yellow, orange}\}$.
 - a) How many different functions are there $X \to Y$?

Answer. 6^5

b) How many functions $X \to Y$ are injective?

Answer. 6!

c) How many functions $X \to Y$ are surjective?

Answer. 0

3. [**5 points**] Let $X = \{a, e, i, o, u\}$ and $Y = \{\text{red}, \text{green}, \text{blue}, \text{purple}, \text{yellow}, \text{orange}\}$ and consider $f: X \to Y$ defined by

 $a \mapsto \text{green}$ $e \mapsto \text{green}$ $i \mapsto \text{blue}$ $o \mapsto \text{green}$ $u \mapsto \text{red}$

- a) f(e) = green.
- b) $f(\lbrace e, i \rbrace) = \lbrace \text{green, blue} \rbrace$
- c) f^{-1} ({red, purple, blue}) = {i, u}
- d) $f^{-1}(f(\{e\})) = f^{-1}(\{green\}) = \{a, e, o\}$
- *e*) Find two sets $A, B \subseteq X$ for which $f(A \cap B) \neq f(A) \cap f(B)$.

Answer. If $A = \{a, e, i\}$ and $B = \{i, o, u\}$ then $f(A \cap B) = f(\{i\}) = \{\text{blue}\}$. But $f(A) \cap f(B) = \{\text{green, blue}\} \cap \{\text{blue,green,red}\} = \{\text{green, blue}\}$.

2 Short Answer: 1 point each

4. What are the values of $\lfloor 41.23 \rfloor$ and $\lfloor -2.3 \rfloor$?

Answer.
$$\lfloor 41.23 \rfloor = 41$$
 and $\lfloor -2.3 \rfloor = -3$.

5. Define a function $F : \mathbb{N} \to \mathbb{N}$ recursively by setting F(1) = 1, F(2) = 1, and for $n \ge 2$, setting F(n) = F(n-1) + F(n-2). What is F(6)?

Answer.
$$F(3) = F(2) + F(1) = 1 + 1 = 2$$
, $F(4) = F(3) + F(2) = 2 + 1 = 3$, $F(5) = F(4) + F(3) = 3 + 2 = 5$, and $F(6) = F(5) + F(4) = 5 + 3 = 8$.

6. What is the quotient and remainder when 57 is divided by 4?

Answer. 57 = 4 * 14 + 1 so the quotient is 14 and the remainder is 1.

7. Simplify $\frac{6^5}{3^6}$.

Answer.
$$\frac{6^5}{3^6} = \frac{2^5 3^5}{3^6} = \frac{2^5}{3} = \frac{32}{3}$$
.

8. Write $\log_2(a^4) + \log_2(b^2) - \log_2(ab)$ as a single, simple expression.

Answer.
$$\log_2(a^4) + \log_2(b^2) - \log_2(ab) = \log_2\left(\frac{a^4b^2}{ab}\right) = \log_2\left(a^3b\right)$$

9. Write $log_2(703)$ using only log_{10} .

Answer.
$$\log_2(703) = \frac{\log_{10}(703)}{\log_{10}(2)}$$

10. Compute $\log_5\left(\frac{1}{5}\right) \times \log_{\frac{1}{5}}(5)$.

Answer.
$$\log_5\left(\frac{1}{5}\right) \times \log_{\frac{1}{5}}(5) = (-1) \times (-1) = 1.$$

11. Simplify $\frac{402!}{401!}$.

Answer.
$$\frac{402!}{401!} = \frac{402 \cdot 401 \cdot 400 \cdot \dots \cdot 3 \cdot 2 \cdot 1}{401 \cdot 400 \cdot 399 \cdot \dots \cdot 3 \cdot 2 \cdot 1} = 402.$$

12. True or false: A function $\{a,b,c,d\} \rightarrow \{a,b,c,d\}$ is injective if and only if it is surjective.

Answer. This is true! If a function $\{a, b, c, d\} \rightarrow \{a, b, c, d\}$ is injective, then a, b, c, d are all mapped to distinct elements. Therefore, the range must have four elements in it. The only subset of $\{a, b, c, d\}$ with four elements is the set $\{a, b, c, d\}$ itself, which means the function is surjective.

13. True or false: A function $\mathbb{N} \to \mathbb{N}$ is injective if and only if it is surjective.

Answer. This is false! For example, the shift map $n \mapsto n + 1$ defines an injective function $\mathbb{N} \to \mathbb{N}$ that is not surjective.

3 Bonus

14. [2 points] $\lfloor \log_{10} (12345678901234567890123456789012345678901234567890) \rfloor =$

Answer. The answer is 49. To see this, note that the argument of the log here has fifty digits. So, it lies between the number 1 followed by forty nine zeroes and the number 1 followed by fifty zeros:

Applying \log_{10} yields $49 < \log_{10} (12345678901234567890123456789012345678901234567890) < 50. So, the floor function applied to this number is 49.$

15. [2 points] Let $X = \{a, e, i, o, u\}$ and $Y = \{\text{red}, \text{green}, \text{blue}\}$. How many functions $X \to Y$ are surjective?

Answer. The answer is 150. To see this, first carefully count the functions $X \to Y$ that are not surjective. They come in three types: let A be the set of functions $X \to Y$ for which red is not in the range, let B be the set of functions for which green is not in the range, and let C be the set of functions without blue in the range. So, the number of non-surjective functions $X \to Y$ will be $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$.

Note, the functions $X \to Y$ for which red is not in the range are the same as functions $\{a,e,i,o,u\} \to \{green,blue\}$. So, $|A|=2^5$. Similarly $|B|=2^5$ and $|C|=2^5$. A function in $A \cap B$ has neither red nor green in the range, and so must be the constant function that sends every vowel to blue. So $|A \cap B| = 1$. Similarly, $|A \cap C| = 1$ and $|B \cap C| = 1$. There are no functions in $A \cap B \cap C$ since every function must have at least one element in its range. Therefore, there are

$$2^5 + 2^5 + 2^5 - 1 - 1 - 1 = 3 * 32 - 3 = 93$$

non surjective functions. Since there are $3^5 = 243$ functions from $X \to Y$ altogether, there are 243 - 93 = 150 surjective functions $X \to Y$.