Problem set 1

Math 625 Spring 2024
Due Thursday, March 14

1 Hermite Interpolation

Choose n distinct numbers $x_{1}<\cdots<x_{n+1}$ and let f be a differentiable function f. There is a unique polynomial p of degree $2 n+1$ satisfying $f\left(x_{i}\right)=p\left(x_{i}\right)$ and $f^{\prime}\left(x_{i}\right)=p^{\prime}\left(x_{i}\right)$ for $i=1, \ldots, n+1$. Let's call p the 1 st order Hermite interpolate of f.

Problem 1. Explain why p exists and why it is unique.
Problem 2. Find the 11th order Hermite interpolate of $\frac{1}{1+10 t^{2}}$ using the interpolation points $-1,-0.6,-0.2,0.2,0.6,1$.

Problem 3. For $i=1, \ldots, n+1$, let $L_{i}(t)$ be the associated i-th Lagrange polynomial. For $i=1, \ldots, n+1$, define

$$
a_{i}(t)=\left(1-2\left(t-x_{i}\right) L_{i}^{\prime}\left(x_{i}\right)\right)\left(L_{i}(t)\right)^{2} . \text { and } b_{i}(t)=\left(t-x_{i}\right)\left(L_{i}(t)\right)^{2}
$$

Show that the $2 n+2$ polynomials $\left\{a_{1}, \ldots, a_{n+1}, b_{1}, \ldots, b_{n+1}\right\}$ form an orthonormal basis of the space of polynomials of degree $\leq 2 n+1$ with the inner product given by

$$
\langle f, g\rangle=\sum_{i=0}^{n} f\left(x_{i}\right) g\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) g^{\prime}\left(x_{i}\right)
$$

Problem 4. Write a program that inputs a set of points $\left\{x_{1}, \ldots, x_{n+1}\right\}$ and outputs the polynomials $\left\{a_{i}, b_{i}\right\}$.

Problem 5. Find a simple formula for the approximation p of an arbitrary differentiable function f as a linear combination of the $\left\{a_{i}, b_{i}\right\}$.

Problem 6. Prove:
Theorem. If f is differentiable at least $2 n+2$ times, then for any number x, the difference $f(x)-p(x)$ between the value of f and the Hermite interpolate is given by

$$
f(x)-p(x)=\frac{f^{(2 n+2)}(\theta)}{(2 n+2)!} w(x)
$$

where w is the polynomial $w(t)=\prod_{i=1}^{n+1}\left(t-x_{i}\right)^{2}$ and θ is some number between x and x_{1} and x_{n+1}.

Problem 7. Analyze the error terms for the 11th degree Hermite interpolate for $\frac{1}{1+10 t^{2}}$ using
(a) the interpolation points $-1,-0.5,0,0.5,1$.
(b) Analyze the error terms for the 11th degree Hermite interpolate for $\frac{1}{1+10 t^{2}}$ using the 5 Chebyshev interpolation points on the interval $[-1,1]$.
(c) If you want to guarantee that the error in the degree $2 n+1$ Hermite interpolate for $\frac{1}{1+10 t^{2}}$ is less than 10^{-100}, how many interpolate points do you need if you use n Chebyshev points?

2 Fourier Series

Problem 8. Let V be the vector space of integrable functions with the inner product defined by

$$
\langle f, g\rangle:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) g(t) d t
$$

Let W be the eleven dimensional subspace of functions spanned by
$\{1, \sin (t), \sin (2 t), \sin (3 t), \sin (4 t), \sin (5 t), \cos (t), \cos (2 t), \cos (3 t), \cos (4 t), \cos (5 t)\}$.
(a) Project the absolute value function onto W.
(b) Let h be the periodic function (with period 2π) defined by

$$
h(t)= \begin{cases}-1 & \text { if }-\pi \leq t<0 \\ 1 & \text { if } 0 \leq t<\pi\end{cases}
$$

Project h onto W.
Problem 9. In general, orthogonally projecting a function f onto the space spanned by

$$
\{1, \sin (t), \cos (t), \sin (2 t), \cos (2 t), \ldots, \sin (n t), \cos (n t)\}
$$

yields a function of the form
$A_{0}+A_{1} \cos (t)+B_{1} \sin (t)+A_{2} \cos (2 t)+B_{2} \sin (2 t)+\cdots+A_{n} \cos (n t)+B_{n} \sin (n t)$.
Explain why for $n=1,2, \ldots$, the numbers A_{n} and B_{n} satisfy

$$
A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t \text { and } \frac{1}{\pi} B_{n}=\int_{-\pi}^{\pi} f(t) \sin (n t) d t
$$

