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Introduction

Categories for AI, an online program about cate-
gory theory in machine learning, unfolded over sev-
eral months beginning in the Fall of last year. The
“Cats for AI” organizing committee, which included
several researchers from industry including two from
DeepMind, felt that the machine learning community
ought to be using more rigorous compositional lan-
guage and that category theory has “great potential
to be a cohesive force” in science in general and in
Artificial Intelligence in particular. While this article
is by no means a comprehensive report on that event,
the popularity of “Cats for AI” — the five introduc-
tory lectures on cats.for.ai have been viewed thou-
sands of times — signals the growing prevalence of
category theoretic tools in AI.
One place where category theory is gaining trac-

tion in machine learning is by providing a formal way
to discuss how learning systems can be put together.
This article has a different and somewhat narrow fo-
cus. It’s about how a fundamental piece of AI tech-
nology used in language modeling can be understood,
with the aid of categorical thinking, as a process that
extracts structural features of language from purely
syntactical input. The idea that structure arises from
form may not be a surprise for many readers — cat-
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egory theoretic ideas have been a major influence in
pure mathematics for three-generations — but there
are consequences for linguistics that are relevant for
some of the ongoing debates about artificial intelli-
gence. We include a section that argues that the
mathematics in these pages rebut some widely ac-
cepted ideas in contemporary linguistic thought and
support a return to a structuralist approach to lan-
guage.

The article begins with a fairly pedantic review of
linear algebra which sets up a striking parallel with
the relevant category theory. The linear algebra is
then used to review how to understand word embed-
dings, which are at the root of large language mod-
els. When the linear algebra is replaced, Mad Libs
style, with the relevant category theory, the output
becomes not word embeddings but a lattice of for-
mal concepts. The category theory that gives rise to
the concept lattice is a particularly simplified piece of
enriched category theory and suggests that by sim-
plifying a little less, even more of the structure of
language could be revealed.

Objects versus Functions on Ob-
jects

When considering a mathematical object X that has
little or incomplete structure, one can replace X by
something like “functions on X” which will have con-
siderably more structure than X. Usually, there is a
natural embedding X → Fun(X) so that when work-
ing with Fun(X), one is working with all of X and
more.
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The first example that comes to mind is when the
functions on a set X are valued in a field k, which
forms a vector space. The embedding X → kX is
defined by sending x ∈ X to the indicator func-
tion of x defined by y 7→ δxy. When X is finite,
there is a natural inner product on kX defined by
⟨f |g⟩ =

∑
x∈X f(x)g(x) making kX into a Hilbert

space. The physics “ket” notation |x⟩ for the indica-
tor function of x ∈ X nicely distinguishes the element
x ∈ X from the vector |x⟩ ∈ kX and reminds us that
there is an inner product. The image of X in kX de-
fines an orthonormal spanning set and if the elements
X are ordered, then the vectors {|x⟩ : x ∈ X} become
an ordered basis for kX and each basis vector |x⟩ has
a one-hot coordinate vector : a column vector consist-
ing of all zeroes except for a single 1 in the x entry.
This, by the way, is the starting point of quantum in-
formation theory. Classical bits {0, 1} are replaced by
quantum bits {|0⟩, |1⟩} which comprise an orthonor-
mal basis of a two dimensional complex Hilbert space
C{0,1}. There might not be a way to add elements in
the set X, or average two of them for example, but
those operations can certainly be performed in kX .
In coordinates, for instance, if x ̸= y, then the sum
|x⟩ + |y⟩ will have all zeroes with 1s in both the x-
and y- entries and the sum |x⟩ + |x⟩ has all zeroes
and a 2 in the x-entry.

When the ground field is the field with two ele-
ments k = {0, 1}, the vector space structure seems a
little weak. Scalar multiplication is trivial, but there
are other notable structures on {0, 1}X . Elements of
{0, 1}X can be thought of as subsets of X, the corre-
spondence being between characteristic functions and
the sets on which they are supported. So {0, 1}X has
all the structure of a Boolean algebra: the join v ∨w
and the meet v ∧ w of two vectors correspond to the
union and intersection of the two subsets defined by
v and w, and neither the meet nor the join coincide
with vector addition. Every vector has a “comple-
ment” defined by interchanging 0 ↔ 1, the vectors
in {0, 1}X are partially ordered by containment, ev-
ery vector has a cardinality defined by the number of
nonzero entries, and so on.
Another closely related example comes from cate-

gory theory. By replacing a category C by SetC
op

, the
set-valued functors on C, one obtains a category with

significantly more structure. Here the “op” indicates
the variance of the functors in question (contravari-
ant, in this case), a technical point that isn’t very im-
portant here, but is included for accuracy. It’s com-
mon to call a functor F in SetC

op

a presheaf on C. The
Yoneda lemma provides an embedding C → SetC

op

of
the original category as a full subcategory of SetC

op

.
Given an object x in C, Grothendieck used hx to de-
note a representable presheaf hx := C(−, x) which
is defined by mapping an object y to the set C(y, x)
of morphisms from y to the object x represting the
presheaf. In this notation, the Yoneda embedding is
defined on objects by x 7→ hx. And just as the vector
space kX has more structure than X, the category
SetC

op

has more structure than C. For any category
C, the category SetC

op

of presheaves is complete and
cocomplete, meaning that the categorical limits and
colimits of small diagrams exist in the category, and
more.1 It is also an example of what’s called a topos
which is a natural place in which to do geometry and
logic.

As an illustration, consider a finite set X, which
can be viewed as a discrete category X, that is, a cat-
egory whose only morphisms are identity morphisms.
In this case X = Xop, and a presheaf F on X assigns
a set to every object x in X. If the elements of X
are ordered, then F can be thought of as a column
vector whose entries are sets, with the set F (x) in the
x-entry. The representable functor hx can be thought
of as a column vector whose entries are all the empty
set except for a one-point set ∗ in the x-entry. If we
use 0 for ∅ and 1 for ∗, then these are the same ar-
rays as the one-hot basis vectors that span the vector
space kX . Notably, the categorical coproduct x

∐
y

does not exist in the category X, but the coproduct
hx

∐
hy of the representable functors hx and hy does

exist in the category of presheaves on X. If x ̸= y
then hx

∐
hy is a column consisting of empty sets ex-

cept for a one-point set ∗ in the x- and y-entries; the
coproduct hx

∐
hx consists of all empty sets except

for a two point set ∗ ⊔ ∗ in the x-entry. And just
as the indicator functions form a basis of the vector
space kX , every functor Xop → Set is constructed

1Like “op,” the word “small” is a technicality that isn’t so
important here but is included for accuracy.
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from representable functors. When X is a finite set,
every vector in kX is a linear combination of basis
vectors, and analogously every presheaf in SetX

op

is a
colimit of representables.
In this article, it will be helpful to consider en-

riched category theory, which is the appropriate ver-
sion of category theory to work with when the set
C(y, x) of morphisms between two objects is no longer
a set. That is, it may be a partially-ordered set, or
a group, or a topological space, or something else.
So, enriched category theory amounts to replacing
Set with a different category. This is analogous to
changing the base field of the vector space kX , and
if the new base category has sufficiently nice struc-
ture, then most everything said about replacing C by
SetC

op

goes over nearly word-for-word. For example,
replacing Set by the category 2, which is a category
with two objects 0 and 1 and one non-identity mor-
phism 0 → 1, results in the category 2C

op

of 2-valued
presheaves on C. In the case when C is a setX viewed
as a discrete category X = Xop, the presheaves in 2X

are exactly the same as {0, 1}-valued functions on X,
which are the same as subsets of X. The structure
on 2X afforded by it being a category of 2-enriched
presheaves is the Boolean algebra structure on the
subsets of X previously described. The categorical
coproduct of 2-enriched presheaves f and g is the
join (union) f ∨ g, and the categorical product is the
meet (intersection) f ∧ g. So for any set X, the set
of functions {0, 1}X can either be viewed as a vector
space over F2 = {0, 1}, the field with two elements,
or as enriched presheaves on X valued in 2 = {0, 1},
depending on whether we think of {0, 1} as a field, or
as a category 0 → 1, and we get different structures
depending on which point of view is taken.
Now, before going further, notice that replacing an

object by a free construction on that object can’t im-
mediately reveal much about the underlying object.
Whether it’s the free vector space on a finite set X re-
sulting in kX or the free cocompletion of a category C
resulting in SetC

op

, the structures one obtains are free
and employ the underlying object as little more than
an indexing set. The structures on the “functions”
on X are owed, essentially, to the structure of what
the functions are valued in. For example, the source
of the completeness and cocompleteness of SetC

op

is

the completeness and cocompleteness of the category
of sets. Similarly, vector addition and scalar multipli-
cation in kX arise from addition and multiplication
in the field k. The point is that passing to a free con-
struction on X provides some extra room in which
to investigate X, and in the theory of vector spaces,
for instance, things become interesting when linear
transformations are involved. As another example,
passing from a finite group G to the free vector space
CG doesn’t tell you much about the group, until that
is, you involve the elements of the group as operators
CG → CG. The result is the regular representation
for G, which among its many beautiful properties,
decomposes into the direct sum of irreducible repre-
sentations with every irreducible representation of G
included as a term with meaningful multiplicity.

This brings us back to the strategy suggested in
the first line of this section. When only a little bit is
known about the internal structure of an objectX, an
approach to learn more is to replace X by something
like functions on X and study how the limited known
structure of X interacts with the freely-defined struc-
tures on the functions of X. A choice is required of
what, specifically, to value the functions in and how
mathematically that target is viewed. The remaining
sections of this article can be interpreted simply as
working through the details in an example with lin-
guistic importance for a couple of natural choices of
what to value the functions in.

Embeddings in Natural Lan-
guage Processing

In the last decade, researchers in the field of compu-
tational linguistics and natural language processing
(NLP) have taken the step of replacing words, which
at the beginning only have the structure of a set, or-
dered alphabetically, by vectors. One gets the feeling
that there is structure in words — words appear to
be used in language with purpose and meaning; dic-
tionaries relate each word to other words; words can
be labelled with parts of speech; and so on — though
the precise mathematical nature of the structure of
words and their usage is not clear. Language would
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appear to represent a significant real world test of the
strategy to uncover structure described in the previ-
ous section. While the step of replacing words by
vectors constituted one of the main drivers of cur-
rent advances in the field of artificial intelligence, it
is not readily recognizable as an instance of replacing
a set by functions on that set. This is because replac-
ing words by vectors is typically performed implicitly
by NLP tools, which are mathematically obscured by
their history — a history which we now briefly review.

Following the surprisingly good results obtained
in domains such as image and sound processing, re-
searchers working to process natural language in the
2010s became interested in the application of deep
neural network (DNN) models. As a reminder, in its
most elementary form, a DNN can be described as
a function f : Rn → Rm explicitly expressed as a
composition:

f : Rn f1−→ Rn1
f2−→ Rn2

f3−→ · · ·

· · · fK−→ RnK
g−→ Rm (1)

fi(x) = a(Mix+ bi) (2)

where the Mi are ni×ni−1 matrices, the bi ∈ Rni are
“biases”, the a is a (non-linear) “activation” function,
and g is an output function. After fixing the activa-
tion and output functions, a DNN lives in a moduli
space of functions parametrized by the entries of the
matrices Mi and the bias vectors bi. Training a DNN
is the process of searching through the moduli space
for suitable Mi and bi to find a function that per-
forms a desired task, usually by minimizing a cost
function defined on the moduli space. In the par-
ticular case of natural language tasks, this typically
requires feeding linguistic data into the model and
setting the optimization objective to the minimiza-
tion of the error between the actual and intended
outputs, with the optimization performed by a form
of gradient descent.

Significantly, in this setting, linguistic data (typ-
ically words) would be represented as vectors—the
domain of a DNN is a vector space. A natural first
choice for practitioners was then to represent words
as one-hot vectors. Thus, if one has a vocabulary D

consisting of, say, 30, 000 words, then D → RD em-
beds words as the standard basis vectors in a 30, 000
dimensional real vector space.

aardvark 7→ (1, 0, 0, 0, . . . , 0, 0)

aardwolf 7→ (0, 1, 0, 0, . . . , 0, 0)

...

zyzzyva 7→ (0, 0, 0, 0, . . . , 0, 1).

Likewise, if the output is to be decoded as a word,
then the output function g is to be interpreted as a
probability distribution over the target vocabulary,
which is usually the same RD, though it could cer-
tainly be different in applications like translation.

At the time, a DNN was thought of as an end-
to-end process: whatever happens between the in-
put and the output was treated as a black-box and
left for the optimization algorithm to handle. How-
ever, a surprising circumstance arose. If the first
layer (namely, f1 in Equation (1)) of a model trained
for a given linguistic task was used as the first layer
of another DNN aimed at a different linguistic task,
there would be a significant increase in performance
of the second task. It was not long thereafter that
researchers began to train that single layer indepen-
dently as the unique hidden layer of a model that
predicts a word given other words in the context. De-
noting that single layer σ, one can then obtain

D ↪→ RD σ→ Rn1 (3)

which embeds D in a vector space of much lower di-
mension, typically two or three hundred. Take, for
instance, the vector representations made available
by [ea], where the word aardvark is mapped to a
vector with 200 components:

aardvark 7→ (0.632, 0.370,−0.620, . . . ,−0.475).

In this way, the images of the initial one-hot ba-
sis vectors under the map σ could be used as low-
dimensional dense word vector representations to be
fed as inputs across multiple DNN models. The word
“dense” here is not a technical term but is used in
contrast to the original one-hot word vectors in RD,
which are “sparse” in the sense that all entries were
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0 except for a single 1. On the other hand, the word
vectors in Rn1 generally have nonzero entries.

The set of word vector representations produced
in this way — also known as “word embeddings” —
were found to have some surprising capabilities. Not
only did the performance of models across different
tasks increase substantially, but also unexpected lin-
guistic significance was found in the vector space op-
erations of the embedded word vectors. In particular,
the inner product between two vectors shows a high
correlation with semantic similarity. As an exam-
ple, the vector representations for tubulidentata,
orycteropus, anteaters, shrews, and pangolins

are among the ones with the largest inner product
with that of aardvark. Even more surprisingly, ad-
dition and subtraction of vectors in the embedding
space correlate with analogical relations between the
words they represent. For instance, the vector for
Berlin minus the vector for Germany is numerically
very near the vector for Paris minus the vector for
France [MSC+13], all of which suggests that the
word vectors live in something like a space of mean-
ings into which individual words embed as points.
Subtracting the vector for Germany from the vector
for Berlin does not result in a vector that corre-
sponds to any dictionary word. Rather, the difference
of these vectors is more like the concept of a “capital
city”, not to be confused with the vector for the word
capital, which is located elsewhere in the meaning
space.
Word vector representations as the one described

are now the standard input to current neural linguis-
tic models, including Large Language Models (LLMs)
which are currently the object of so much attention.
And the fact, as suggested by these findings, that
semantic properties can be extracted from the for-
mal manipulation of pure syntactic properties — that
meaning can emerge from pure form — is undoubt-
edly one of the most stimulating ideas of our time.
We will later show that such an idea is not new but
has, in fact, been present in linguistic thought for at
least a century.
But first it is important to understand why word

embeddings illustrate the utility of passing from X to
Fun(X) introduced in the previous section. The se-
mantic properties of word embeddings are not present

in the one-hot vectors embedded in RD. Indeed, the
inner product of the one-hot vectors corresponding
to aardvark and tubulidentata is zero, as it is for
any two orthogonal vectors, and the vector space op-
erations in RD are not linguistically meaningful. The
difference between the one-hot vectors for Germany

and Berlin is as far away from the difference be-
tween the one-hot vectors for France and Paris as
it is from from the difference between the one-hot
vectors for salami and therefore or any other two
one-hot vectors. Linguistically significant properties
emerge only after composing with the embedding
map σ : RD → Rn1 in (3) that was obtained through
neural optimization algorithms, which are typically
difficult to interpret.

In the specific case of word embeddings, however,
the algorithm has been scrutinized and shown to
be performing an implicit factorization of a matrix
comprised of information about how words are used
in language. To elaborate, the optimization objec-
tive can be shown to be equivalent to factorizing a
|D| × |D| matrix M , where the i-j-entry is a linguis-
tically relevant measure of the term-context associ-
ation between words wi and wj . That measure is
based on the pointwise mutual information between
both words, which captures the probability that they
appear near each other in a textual corpus [LG14].
The map σ is then an optimal low-rank approxima-
tion of M . That is, one finds σ′ and σ of sizes |D|×d
and d × |D| respectively, with d ≪ |D|, such that
∥M−σ′σ∥ is mimimal. The upshot is that neural em-
beddings are just low-dimensional approximations to
the columns of M . Therefore, the surprising proper-
ties exhibited by embeddings are less the consequence
of some magical attribute of neural models than the
algebraic structure underlying linguistic data found in
corpora of text. Indeed, it has since been shown that
one can obtain results comparable to those of neural
word embeddings by directly using the columns of
M , or a low-dimensional approximation thereof, as
explicit word-vector representations [LGD15]. Inter-
estingly, the other factor σ′, which is readable as the
second layer of the trained DNN is typically discarded
although it does contain relevant linguistic informa-
tion.

In summary, the math story of word embeddings
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goes like this: first, pass from the set D of vocabulary
words to the free vector space RD. While there is no
meaningful linguistic information in RD, it provides a
large, structured setting in which a limited amount of
information about the structure of D can be placed.
Specifically, this limited information is a |D| × |D|
matrix M consisting of rough statistical data about
how words go with other words in a corpus of text.
Now, the columns of M , or better yet, the columns
of a low-rank factorization of M , then interact with
the vector space structure to reveal otherwise hidden
syntactic and semantic information in the set D of
words. Although a matrix of statistical data seems
more mathematically casual than, say, a matrix rep-
resenting the multiplication table of a group, it has
the appeal of assuming nothing about the structure
that D might possess. Rather, it is purely a witness
of how D has been used in a particular corpus. It’s
like a set of observations is the input, and a more
formal structure is an output.

So, if word embeddings achieved the important
step of finding a linguistically meaningful space in
which words live, then the next step is to better
understand what is the structure underlying that
space. Post facto realizations about vector subtrac-
tion reflecting certain semantic analogies hint that
even more could be discovered. For this next dis-
cussion, it is important to understand that there is
an exact solution for the low-rank factorization of a
matrix M using the truncated singular value decom-
position (SVD), which has a beautiful analogue in
category theory. To fully appreciate the analogy, it
will be helpful to review matrices from an elementary
perspective.

From the Space of Meanings to
the Structure of Meanings

In this section, keep in mind the comparison between
functions on a set X valued in a field k and functors
on a category C valued in Set or another enriching
category. Now, let’s consider matrices.

Given finite sets X and Y , an X-Y matrix valued
in a field k is a function m : X × Y → k. By simple

currying, m defines functions X → kY and Y → kX

defined by x 7→ m(x,−) and y 7→ m(−, y). Ordering
the elements of X and Y , the function m can be rep-
resented as a rectangular array of numbers with |X|
rows and |Y | columns with the value m(x, y) being
the number in the x-th row and y-th column. The
functionm(x,−) ∈ kY is then identified with the x-th
row of the matrix, which has as many entries as the el-
ements of Y and defines a function on Y sending y to
the y-th entry in the row. Similarly, the y-th column
of m represents the function m(−, y) ∈ kX . Linearly
extending the maps X → kY and Y → kX produces
linear maps M∗ : kX → kY and M : kY → kX , which
of course are the linear maps associated with the ma-
trix M and its transpose M∗. Here is a diagram:

kY

X kX

M∗

kY Y

kX

M

Now, the compositions MM∗ : kX → kX and
M∗M : kY → kY are linear operators with spe-
cial properties. If we fix the ground field k to be
the real numbers R, we can apply the spectral the-
orem to obtain orthonormal bases {u1, . . . , um} of
kX and {v1, . . . , vn} of kY consisting of eigenvectors
of MM∗ and M∗M respectively with shared non-
negative real eigenvalues {λ1, . . . , λr, 0, . . . , 0}, where
r = min (m,n). This data can be refashioned into a
factorization of M as M = UΣV ∗. This is the so-
called singular value decomposition of M . The {ui}
are the columns of U , the {vj} are the rows of V ∗,
and Σ is the m× n diagonal matrix whose i-th entry
is σi =

√
λi. The matrices U and V satisfy U∗U = I

and V ∗V = I. In SVD terminology, the non-negative
real numbers σi are the singular values of M , and the
vectors {u1, . . . , ur} and {v1, . . . , vr} are the left and
right singular vectors of M . In other words, we have
pairs of vectors {(u1, v1), . . . , (ur, vr)} in kX ×kY re-
lated to each other as

M∗uj = σjvj and Mvj = σjuj .

Moreover, these pairs are ordered with (ui, vi) ≤
(uj , vj) if the corresponding singular values satisfy
σi ≤ σj . Finally, it is not difficult to show that
the matrix M ′ with rank at most s that is clos-
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est in Frobenius norm to the matrix M is given by
M ′ = UΣ′V ∗ where Σ′ is the m× n diagonal matrix
containing only the s greatest non-zero singular val-
ues on the diagonal. By eliminating the parts of U ,
Σ′, and V ∗ that do not, because of all the zeros entries
in Σ′, participate in the product UΣ′V ∗, one obtains
a factorization M ′ = U ′Σ′′V ′∗ ≈ M where U ′ is an
m × s matrix, V ′∗ is an s × n matrix, and Σ′′ is an
s×s diagonal matrix with the s largest singular values
of M on the diagonal. Principal component analysis
(PCA) employs this approximate factorization of a
matrix into low-rank components for dimensionality
reduction of high-dimensional data.

Moving from linear algebra to category theory, one
finds a remarkably similar story. Given two cate-
gories C and D, the analogy of a C-D matrix is some-
thing called a profunctor, which is a set-valued func-
tor f : Cop × D → Set. As before, the “op” here
and in what follows is used to indicate the variance
of functors and is needed for accuracy, but can on
first reading be ignored. Experts will surely know
of situations in which this op is involved in interest-
ing mathematical dualities, but for the analogy with
linear algebra described here, it can be thought of
as indicating a sort of transpose between rows and
columns, harmlessly moving information around but
fixing a convention required for accurate computa-
tions. If both domain categories are finite sets viewed
as discrete categories, then a profunctor is simply a
collection of sets indexed by pairs of elements — that
is, a matrix whose entries are sets instead of num-
bers. Again, by simple currying, a profunctor defines

a pair of functors C →
(
SetD

)op

and D → SetC
op

defined on objects by c 7→ f(c,−) and d 7→ f(−, d).
As in the linear algebra setting, the functor f(c,−)
can be pictured as the c-th row of sets in the ma-
trix f , which defines a functor D → Set where the
j-th object of D is mapped to the j-th set in the row
f(c,−). The functor f(−, d) : Cop → Set can be simi-
larly be pictured as the d-th column of f . Thinking of
a category as embedded in its category of presheaves
via the Yoneda (or co-Yoneda) embedding, the func-

tors C →
(
SetD

)op

and D → SetC
op

can be extended

in a unique way to functors F ∗ : SetC
op

→ (SetD)op

and F∗ : (Set
D)op → SetC

op

that preserve colimits and
limits, respectively.

(SetD)op

C SetC
op

Y oneda

F∗

(SetD)op D

SetC
op

F∗

Y oneda

Now, just as the composition of a linear map M
and its transpose M∗ define linear maps with special
properties, the functors F ∗ and F∗ are adjoint func-
tors with special properties. This particular adjunc-
tion F ∗ : SetC

op

⇆ (SetD)op : F∗ is known as the Isbell
adjunction, which John Baez recently called “a jewel
of mathematics” in a January 2023 column article in
this publication [Bae23]. Objects that are fixed up to
isomorphism under the composite functors F ∗F∗ and
F∗F

∗ are called the nuclei of the profunctor f and
are analogous to the left and right singular vectors
of a matrix. One can organize the nuclei into pairs
(ci, di) of objects in Cop × D where

F ∗ci ∼= di and F∗di ∼= ci.

The nuclei themselves {(ci, di)} have significant
structure — they organize into a category that is
complete and cocomplete. The pairs {(ui, vi)} of sin-
gular vectors of a matrix have some structure — they
are ordered by the magnitude of their singular values,
and the magnitudes themselves are quite important.
The nuclei {(ci, di)} of a profunctor has a different,
in some ways more intricate, structure because one
can take categorical limits and colimits of diagrams
of pairs, allowing the pairs to be combined in various
algebraic ways. In the context of linguistics, this is
significant because the nuclei are like symbols and the
categorical limits and colimits provide ways to ma-
nipulate the symbols. This is illustrated concretely
in the next section. For now, think word embeddings
obtained from the singular vectors of a matrix can
be used to overlay the structure of a vector space on
meanings. For certain semantic aspects of language,
like semantic similarity, a vector space structure is a
good fit, but it veils others. The Isbell adjunction can
help illuminate other, different structural features of
language.

For flexibility, it is useful to look at the Isbell ad-
junction in the enriched setting. If the base category

7



is 2 instead of Set, then a profunctor r between two
finite sets X and Y , viewed as discrete categories en-
riched over 2, is just a function r : X × Y → {0, 1},
which is the same as a relation on X × Y. The func-
tors R∗ : 2X → 2Y and R∗ : 2

Y → 2X are known ob-
jects in the theory of formal concept analysis [GW99].
The function R∗ maps a subset A ⊆ X to the set
R∗(A) = {y ∈ Y : R(x, y) = 1 for all x ∈ A} and
R∗ maps a subset B ⊆ Y to the set R∗(B) = {x ∈
X : R(x, y) = 1 for all y ∈ B}. The fixed objects of
R∗R∗ and R∗R

∗ are known as formal concepts. They
are organized into pairs (Ai, Bi) ⊂ X × Y with

R∗(Ai) = Bi and R∗(Bi) = Ai

and the set of all formal concepts {(Ai, Bi)} is par-
tially ordered with (Ai, Bi) ≤ (Aj , Bj) if and only if
Ai ⊆ Aj which is equivalent to Bi ⊇ Bj . Moreover,
{(Ai, Bi)} forms a complete lattice, so, like the singu-
lar vectors of a matrix, there is a least and a greatest
formal concept, and more. The product and coprod-
uct, for example, of formal concepts are defined by
(Ai, Bj) ∧ (Aj , Bj) := (Ai ∩Aj , R

∗R∗(Bi ∪Bj)) and
(Ai, Bj)∨(Aj , Bj) := (R∗R

∗(Ai ∪Aj), Bi ∩Bj). The
point is that limits and colimits of formal concepts
have simple, finite formulas that are similar to, but
not exactly, the union and intersection of sets and
give an idea of the kind of algebraic structures one
would see on the nucleus of a profunctor.

Structures in the Real World

If there’s any place where neural techniques have in-
disputably surpassed more principled approaches to
language, it is their capacity to exhibit surprisingly
high performance on empirical linguistic data. What-
ever the nature of formal language models to come,
it will certainly be decisive to judge their quality and
relevance in the real world. In this section, we il-
lustrate how the tools of linear algebra and enriched
category theory work in practice, and in the conclu-
sion we will share how the empirical capabilities of
the enriched category theory presented here can be
used to do more.
To start, consider the English Wikipedia corpus

comprising all Wikipedia articles in English as of

March 2022 [Wik]. If we consider this corpus as a
purely syntactic object without assuming any linguis-
tic structure, then the corpus appears as a long se-
quence of a finite set of independent tokens or char-
acters. To simplify things, let’s restrict ourselves to
the 40 most frequent characters in that corpus (ex-
cluding punctuation), which account for more than
99.7% of occurrences. So, our initial set X contains
the following elements:

X = {-, /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, =, a, b, c, d, e, f,
g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, é}.

(4)

Now let Y = X × X and, in line with what we
have seen in the previous sections, consider a matrix
m : X × Y → R representing some linguistically rele-
vant measure of the association between the elements
of X and Y . A straightforward choice for m is the
empirical probability that the characters (yl, yr) ∈ Y
are the left and right contexts of the character x ∈ X.
For instance, we have thatm(h, (t, e)) ≈ 0.3836 while
m(h, (p, o)) ≈ 0.0037 reflecting that it is over a hun-
dred times more probable to see the sequence the

than pho, given h as the center character.

Considered as elements of X, each character is in-
dependent and as different as it can be from all the
others. However, embedding them X → RY via the
matrix m and leveraging the relationships they ex-
hibit in concrete linguistic practices as reflected by a
corpus brings out revealing structural features. In-
deed, if we perform an SVD on the induced operator
M∗ : RX → RY we can obtain a vector representation
of each character.2 Figure 1 shows a plot of all char-
acters in X as points in a 3-dimensional space, where
the coordinates are given by the singular vectors cor-
responding to the three largest singular values, scaled
by those singular values. We can see how what were
originally unrelated elements now appear organized
into clusters in the embedding space with identifi-
able linguistic significance. Namely, the elements are
distinguished as vowels, consonants, and digits.

2For reasons beyond the scope of this paper, it’s convenient
to take the square roots of the entries and center the matrix
around 0 before performing the SVD.
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Figure 1: Characters of the Wikipedia corpus as 3-
dimensional embeddings obtain through SVD.

What’s more, the dimensions of the embedding
space defined by the singular vectors of M∗ have a
little bit of natural structure — there is a canonical
order given by the singular values that is endowed
with linguistic significance. Looking at the first three
singular vectors, we see that the first one discrimi-
nates between digits and letters, the second one dis-
tinguishes vowels from the rest, and the third one
identifies special characters (see Figure 2). The rapid
decay of the successive singular values indicates that
dimensions beyond three adds only marginal further
distinctions.

While the decomposition into singular values and
vectors reveals important structural features — each
singular vector discriminated between elements in a
reasonable way, and the corresponding singular val-
ues worked to cluster elements into distinct types —
the linear algebra in this narrow context seems to
run aground. However, as discussed in the previous
sections, we can gain further and different structural
insights by considering our sets X and Y as cate-

gories or enriched categories. As a primitive illustra-
tion, view X and Y as discrete categories enriched
over 2. For the next step, a {0, 1}-valued matrix
r : X × Y → {0, 1} is required. A simple and rather
unsophisticated choice is to establish a cutoff value
(such as 0.001) to change the same matrix M used in
the SVD above into a {0, 1}-valued matrix. All the
entries of M less than the cutoff are replaced with
0, and all the entries above the cutoff are replaced
with 1.

Then, extend to obtain functors R∗ : 2X → 2Y

and R∗ : 2
Y → 2X and look at the fixed objects of

R∗R
∗ and R∗R∗, which are organized as described

earlier into formal concepts {(Ai, Bi)} that form a
highly structured and complete lattice. Visualizing
the lattice in its entirety is challenging in a static two-
dimensional image. To give the idea in these pages,
one can look at a sublattice defined by selecting a
single character and looking at only those concepts
{(A,B)} for which A contains the selected charac-
ter. For Figure 4, the characters a and 3 are selected
and to further reduce the complexity of the images,
only nodes representing a large number of contexts,
|B| ≥ 20, are drawn.

Right away the lattices make clear the distinction
between digits and letters, but there is also more.
Each set of characters Ai is associated to an explicit
dual set of contexts Bi suggesting a principle of com-
positionality — namely, the elements of the corre-
sponding classes can be freely composed to produce
a sequence belonging to the corpus. Such composi-
tion reveals relevant features from a linguistic view-
point. While digits tend to compose with other dig-
its or special characters, vowels compose mostly with
consonants. Strictly speaking, a similar duality was
present in the SVD analysis, since left singular vec-
tors are canonically paired (generically) in a one-to-
one fashion with right singular vectors, which dis-
criminate between contexts in Y based on the char-
acters for which they are contexts. The formal con-
cepts, on the other hand, as fixed objects of R∗R

∗

and R∗R∗, display dualities between large but dis-
crete classes of characters. Numbers, consonants,
and letters are all distinguished, but finer distinc-
tions are also made. Moreover, the collection of such
dual classes is not just a set of independent elements
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- / 0 1 2 3 4 5 6 7 8 9 = a b c d e f g h i j k l m n o p q r s t u v w x y z é
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D3 −0.5

0
0.5

Figure 2: Top three left singular vectors of the X-Y matrix of characters in the Wikipedia corpus, scaled by
the corresponding singular values.

but carries the aforementioned operations ∨ and ∧
allowing one to perform algebraic operations on the
concept level.

-/0123456789=abcdefghijklmnopqrstuvwxyzé
D1

D10

D20

D30

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 3: Left singular vectors of the X-Y matrix of
characters in the Wikipedia corpus, scaled by their
corresponding singular values.

Is it Really Meaning? Content
from Form in Linguistic Thought

Upon reflection, it may not be surprising that syn-
tactic features of language can be extracted from a
corpus of text, since a corpus — as a sequence of char-
acters — is a syntactic object itself. After all, from

a linguistic viewpoint, consonants, vowels, and digits
are purely syntactic units devoid of any meaning per
se. What is true for characters, however, is also true
for linguistic units of higher levels. This can be illus-
trated by letting the set X be the 1000 most frequent
words in the British National Corpus [BNC07]. Use
the empirical probabilities that the words yl, yr are
the left and right contexts of word x in that corpus to
make an X-Y -matrix M and repeat the same calcu-
lations done before. The singular vectors of M corre-
sponding to the ten largest singular values capture all
manner of syntactic and semantic features of words,
such as nouns, verbs (past and present), adjectives,
adverbs, places, quantifiers, numbers, countries, and
so on. These ten singular vectors are pictured in de-
scending order in Figure 5 where, for readability, only
eight of the 1000 entries are displayed, namely, the
four greatest and four least.

Further information about the terms appearing in
the singular vectors can be obtained by choosing a
cutoff (here, 0.01) to create a Boolean matrix M ,
just as was done for the character matrix, and a lat-
tice of formal concepts can be extracted for these
1000 words. Figure 6 depicts sublattices for a few
words (France, could, 10) selected from the entries
of the most significant singular vectors pictured in
Figure 5. The linear algebra highlights these words
as significant and goes some of the way toward clus-
tering them. Choosing a cutoff and passing to the
formal concepts reveals the syntactic and semantic
classes these words belong to and reveals interesting
and more refined structural features.

The broader and more philosophical question re-
mains, though. Is it really meaning that has been
uncovered, and if so, how is it possible that impor-
tant aspects of meaning emerge from pure form? In
the wake of recent advances in large language mod-
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{a,e,i,é}

{a}

{a,y}
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{-,a}

{a,e,o,é}

{a,o,u}{a,i,u}{a,u,é} {a,e,u}

{g_n,m_n,
m_t,t_l,…}

{m_l,m_n,
m_r,m_s,…}

{h_d,t_i,
t_l,t_t,…}

{g_n,m_n,
m_s,m_t,…}

{g_t,t_b,
t_g,t_l,…}

{g_n,m_n,
m_r,m_t,…}

{d_n,g_n,
m_n,m_s,…}

{m_l,m_n,
m_s,p_t,…}

{g_l,m_l,
m_n,p_t,…}

{d_l,g_n,
m_n,m_s,…}

{2,3,4,5}

{3}

{3,4,5,6,7,
8,9}

50 100 150 200 250Corpus: en_wiki, Norm: cols_l1, Cutoff: 0.03162277660168379, Threshold: abs, [1, 20]

Figure 4: Sublattices of formal concepts for characters in the Wikipedia corpus for the characters a and 3

for which there are at least 20 contexts. Only the minimal and maximal nodes are labeled. Contexts not
shown for the lattice for 3.

els, this question has become increasingly impor-
tant. One idea that’s often been repeated is that
language models with access to nothing but pure lin-
guistic form (that is, raw text) do not and can not
have any relation to meaning. This idea rests upon
an understanding of meaning as “the relation be-
tween a linguistic form and communicative intent”
[BK20, p. 5185]. Given the relevance to the current
state of the art, it is worth addressing this idea before
concluding this article.

Rather than asserting that formal corpus analysis
bears no relation to meaning, one can instead ask the
following:

What must the relationship between form
and meaning be, given that models with
access only to linguistic form are capable
of identifying features and performing tasks
that were generally assumed to require ac-
cess to meaningful content?

While these pages are not the place to provide a
substantial philosophical treatment of this question,
it seems important to point out that the mathemat-
ics in these pages supports the idea that meaning is
inseparable from the multiple formal dimensions in-
herent in text data. Moreover, the idea that mean-
ing and form are inseparable is not new, it just is
not prevalent in the current debates. From a strictly
philosophical standpoint, Kant and Hegel’s influen-
tial work stood on the principle that form and con-
tent are not exclusive, and idea that one can also find
at the core of Frege’s thought, the father of Analytic
philosophy.

Shortly after, the idea that form and meaning are
not independent became central in linguistics thanks
to the work of Ferdinand de Saussure [Sau59] and the
structuralist revolution motivating the emergence of
modern linguistics. The key argument is that both
form and meaning, signifier and signified, are simul-
taneously determined by common structural features
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church university field house ... used offered found made

use leave keep buy ... club sun uk hotel

show boy project move ... size interests activities nature

used expected made considered ... europe scotland france england

used expected food water ... couple under series lot

perhaps indeed under during ... bit series couple lot
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0

0.2
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Figure 5: Words in the BNC corpus corresponding to the four greatest and four least values for the first 10
singular vectors in decreasing order.

— structural differences on one side correlate with
structural differences on the other. Significantly, one
of the main tools to infer that structure in the struc-
turalist theory is the commutation test, which tries to
establish correlations between pairs of linguistic units
at different levels, thus addressing a phenomenon re-
vealed by the mathematical approach presented here.
For example, substituting “it” by “they” requires
substituting “is” by “are” in the same context, while
substituting “it” by “she” does not, although it might
necessitate substitution in other units.

Saussure’s influential view of language as form
dominated linguistics for the first half of the 20th cen-
tury, advanced by authors like Jakobson and Hjelm-
slev in Europe and developed further by Harris in
America. Often cited as the theoretical foundation
of current neural language models, Harris’ distribu-
tionalism [Har70] maintains that in order for linguis-
tics to be a science, it should account for phenomena
through distributional properties alone—that is, how
units appear together in a given linguistic corpus.
Following this lead, John Firth developed a distri-
butional semantic theory relating meaning to word
distribution. As Firth famously wrote, “You shall
know a word by the company it keeps!” [Fir57, p. 11].
Halfway through the 20th century, Saussure’s idea
that linguistic form and meaning are intimately re-
lated, like two sides of the same sheet of paper, was

dominant in the field of linguistics.
While the introduction of Chomsky’s novel gen-

erative linguistics in the late 1950s, brought a dra-
matic slowdown to the structuralist program, em-
pirical approaches returned to linguistics toward the
end of the 20th century. Connectionism, corpus lin-
guistics, Latent Semantic Analysis, and other formal
approaches to language learnability have provided a
myriad of conceptual and technical means to inter-
twine semantics and syntax (see [CCGP15], and ref-
erences within).

Although it may come as a surprise that seman-
tics are at stake in language models with access to
linguistic form only, the point of this brief review is
that a theory of the emergence of meaning from form
is part of an extensive and well-established tradition
of linguistic thought. And what such a tradition tells
us, in particular in its structuralist version, is that,
if meaning is at stake in the analysis of syntactic ob-
jects, it is entirely due to structural features reflected
in linguistic form.

It is at this precise point, however, where current
neural language models fall short since they do not
reveal the structural features that are necessarily at
work as they perform their tasks. The mathematical
discussion in this article, suggests that this is not an
insurmountable issue but rather is a fascinating re-
search subject, squarely contained in a mathematical
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{britain,france}

{france}

{england,france,london} {europe,france,scotland}

Corpus: en_bnc_w, Norm: cols_l1, Cutoff: 0.01, Threshold: abs, [1, 10]

{'ll,can,could}

{could}

{'ll,could,might,must,
should,would}

{could,did,do} {ca,could,did,wo}

{can,could,may,might,
must,should,will,would}

Corpus: en_bnc_w, Norm: cols_l1, Cutoff: 0.01, Threshold: abs, [1, 5]

{1,10,15,2,
3,4,5,6,…}

{10}

{1,10,15,2,
20,3,4,5}

{10,12,15,3,
4,5}

{10,15,2,3,
30,5,7}

{10,15,2,20,
3,30,4,5}

{10,12,15,30,5} {10,15,20,30,seven}

{10,15,20,eight}

{10,12,15,2,
3,5,7}

{10,12,15,20,
3,5}

{10,15,20,30,
five,ten,twenty}

{10,15,2,20,
3,4,5,6,…}

{10,12,15,2,
20,5}

{10,12,15,20,30}

Corpus: en_bnc_w, Norm: cols_l1, Cutoff: 0.01, Threshold: abs, [1, 10]

Figure 6: Sublattices of formal concepts for words in the British National Corpus for the words France,
could, and 10 for which there are significant contexts (at least ten for the words France and 10, and at
least five for the word could). Only the minimal and maximal nodes are labeled. Contexts are not shown.
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domain, and independent of the architectures of the
language models.

Conclusion: Looking Forward

By understanding word embeddings through well-
known tools in linear algebra and by framing for-
mal concept analysis in categorical terms, one finds
parallel narratives to unearth structural features of
language from purely syntactical input. More specif-
ically, using a real-valued matrix that encodes syn-
tactical relationships found in real world data, one
can use linear algebra to pass to a space of meanings
that displays some semantic information and struc-
ture. By introducing cutoffs to obtain a {0, 1}-valued
matrix, one can use formal concept analysis to re-
veal semantic structures arising from syntax. While
there is nothing new about the well-known tools from
linear algebra and enriched category theory used in
this article (principal component analysis and formal
concept analysis), the parallel narratives surrounding
both sets of tools is less well known. More important
than communicating the narrative, however, is the
possibility that the framework of enriched category
theory can provide new tools, inspired by linear alge-
bra, to improve our understanding of how semantics
emerges from syntax and to study the structure of
semantics.

One approach that immediately comes to mind is
a way to bring the linear algebra and formal con-
cept analysis closer together. The extended real line
[−∞,∞] or the unit interval [0, 1] can be given the
structure of a closed symmetric monoidal category
making it an appropriate base category over which
other categories can be enriched. So, [−∞,∞]X , the
functions on a set X valued in the extended reals,
can be viewed as a category of presheaves enriched
over [−∞,∞], much in the same way that 2X can
be viewed as a category of presheaves enriched over
{0 → 1}. Then, the matrix M or some variation of
it can be regarded as a profunctor enriched over the
category of extended reals. The structure of the nu-
cleus could be studied directly in a way comparable to
the formal concept analysis without introducing cut-
offs to obtain a {0, 1}-matrix and also would involve

the order on the reals that arranges singular vectors
in order of importance. This idea has been around
in certain mathematical circles for about a decade.
See [Pav12,Wil13,Ell17,Bra20,BTV22] and the ref-
erences within. One might think of this approach as
a way to unify the lattices of formal concepts for all
cutoff values into one mathematical object, formal
concepts intricately modulated by real numbers.

Another important point is that the linear alge-
bra discussion began with sets X and Y having no
more structure than an ordering on the elements.
To keep the categorical discussion as parallel as pos-
sible, X and Y were considered discrete categories
with no non-identity morphisms. However, one can
introduce morphisms or enriched morphisms into X
and Y and the presence of those morphisms will be
carried throughout the constructions described and
ultimately reflected in the nucleus of any X-Y pro-
functor. There is no obvious way to account for such
information with existing tools in linear algebra. The
recent PhD thesis [dF22] recasts a number of linguis-
tic models of grammar—regular grammars, context-
free grammars, pregroup grammars, and more—in
the language of category theory, which then fits in
the wider context of Coecke et. al’s compositional
distributional models of language [CCS10]. In these
models, which date back to the 2010s, the meanings
of sentences are proposed to arise from the meanings
of their constituent words together with how those
words are composed according to the rules of gram-
mar. This relationship is modeled by a functor from a
chosen grammar category to a category that captures
distributional information, such as finite dimensional
vector spaces. Such models may also be thought of
as a passage from syntax to semantics, though they
rely heavily on a choice of grammar. The point here,
however, is that if one would like to begin withX hav-
ing more structure than a set, then enriched category
theory provides a way to do so without disrupting the
mathematical narrative described in this article.

One place where the linear algebra tools have de-
veloped further than their analogues in enriched cat-
egory theory is in multilinear algebra. For example,
factorizing a tensor in the tensor product of vector
spaces V1 ⊗ V2 ⊗ · · · ⊗ Vn into what is called a tensor
train, or matrix product state, can be interpreted as
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a sequence of n− 1 compatible truncated SVDs. We
are not aware of any similar theory of “sequences of
compatible nuclei” for a functor on product of cat-
egories C1 × C2 × · · · × Cn. Given that text data is
more naturally regarded as a long sequence of charac-
ters than mere term-context pairs, it is reasonable to
think an enriched categorical version of such an ob-
ject could be the dominant way to understand how
semantic structures emerge from syntactical ones in
language.
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