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Abstract We prove the modularity of minimally ramified ordinary residually reducible p-adic Galois
representations of an imaginary quadratic field F under certain assumptions. We first exhibit conditions
under which the residual representation is unique up to isomorphism. Then we prove the existence of
deformations arising from cuspforms on GL2(AF ) via the Galois representations constructed by Taylor
et al . We establish a sufficient condition (in terms of the non-existence of certain field extensions which
in many cases can be reduced to a condition on an L-value) for the universal deformation ring to be a
discrete valuation ring and in that case we prove an R = T theorem. We also study reducible deformations
and show that no minimal characteristic 0 reducible deformation exists.
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1. Introduction

Starting with the work of Wiles [35,44] there has been a lot of progress in recent years on
modularity results for two-dimensional p-adic Galois representations of totally real fields
(see, for example, [6,14,19,29–31,34]). The goal of this paper is to prove such a result
for imaginary quadratic fields, a case that requires new techniques since the associated
symmetric space has no complex structure.

Let F �= Q(
√

−1),Q(
√

−3) be an imaginary quadratic field of discriminant dF . Under
certain assumptions we prove an ‘R = T ’ theorem for residually reducible two-
dimensional representations of the absolute Galois group of F . We pin down conditions
(similar to [29], where an analogous problem is treated for representations of Gal(Q̄/Q))
that determine our residual representation up to isomorphism and then study its mini-
mal ordinary deformations. Modular deformations are constructed using the congruences
involving Eisenstein cohomology classes of [3] and the result of Taylor on associating
Galois representations to certain cuspidal automorphic representations over imaginary
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quadratic fields (using the improvements of [5]). The approach of [29] to prove the iso-
morphism between universal deformation ring and Hecke algebra fails in our case because
of the non-existence of an ordinary reducible characteristic 0 deformation. This failure,
however, allows under an additional assumption to show (using the method of [1]) that
the Eisenstein deformation ring is a discrete valuation ring. As in [7] it is then easy to
deduce an ‘R = T ’ theorem.

To give a more precise account, let c be the non-trivial automorphism of F , and let
p > 3 be a prime split in the extension F/Q. Fix embeddings F ↪→ Q̄ ↪→ Q̄p ↪→ C. Let
FΣ be the maximal extension of F unramified outside a finite set of places Σ and put
GΣ = Gal(FΣ/F ). Suppose F is a finite field of characteristic p and that χ0 : GΣ → F ×

is an anticyclotomic character ramified at the places dividing p. Suppose also that ρ0 :
GΣ → GL2(F ) is a continuous representation of the form

ρ0 =

(
1 ∗
0 χ0

)

and having scalar centralizer. Under certain conditions on χ0 and Σ we show that ρ0 is
unique up to isomorphism (see § 3) and we fix a particular choice. This setup is similar
to that of [29]. Note that, as explained in Remark 4.6, under our conditions ρ0 does not
arise as twist by a character of the restriction of a representation of Gal(Q̄/Q).

Following Mazur [22] we study ordinary deformations of ρ0. Let O be a local com-
plete Noetherian ring with residue field F . An O-deformation of ρ0 is a local complete
Noetherian O-algebra A with residue field F and maximal ideal mA together with a
strict equivalence class of continuous representations ρ : GΣ → GL2(A) satisfying ρ0 = ρ

mod mA. An ordinary deformation is a deformation that satisfies

ρ|Dv
∼=

(
χ1 ∗
0 χ2

)

for v | p, where χi|Iv = εki with integers k1 � k2 depending on v and ε is the p-adic
cyclotomic character. Here Dv and Iv denote the decomposition group and the inertia
group of v | p, corresponding to F ↪→ Q̄p or the conjugate embedding, respectively.

To exhibit modular deformations we apply the cohomological congruences of [3] and
the Galois representations constructed by Taylor et al . using a strengthening of Taylor’s
result in [5]. We also make use of a result of Urban [40] who proves that ρπ|Dv

is ordinary
at v | p if π is ordinary at v. We show that these results imply that there is an O-algebra
surjection

R � T, (1.1)

where R is the universal Σ-minimal deformation ring (cf. Definition 5.1) and T is a Hecke
algebra acting on cuspidal automorphic forms of GL2(AF ) of weight 2 and fixed level.

As in [7] we can deduce that the surjection (1.1) is, in fact, an isomorphism if R is a
discrete valuation ring (see Theorem 5.7). Using the method of [1] we prove in Proposi-
tion 5.8 that the latter reduces to the non-existence of reducible Σ-minimal deformations
to GL2(O/�2O) (where � denotes a uniformizer of O). We then show (Theorem 5.12)
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that this last property can often be deduced from a condition on the L-value at 1 of a
Hecke character of infinity type z/z̄ which is related to χ0. Finally, we combine these
results in Theorem 5.16 to prove the modularity of certain residually reducible Σ-minimal
GΣ-representations. For an explicit numerical example where we can verify the conditions
of Theorem 5.16 see Example 5.19.

To demonstrate our modularity result we give here the following special case.

Theorem 1.1. Assume # ClF = 1, that p does not divide the class number of the ray
class field of F of conductor p, and that any prime q | dF satisfies q �≡ ±1 (mod p). Let p

be the prime of F over (p) corresponding to the embedding F ↪→ Q̄ ↪→ Q̄p that we have
fixed. Let τ be the unramified Hecke character of infinity type τ∞(z) = z/z̄ and let τp :
GΣ → Z×

p be the associated p-adic Galois character. Assume that valp(Lint(1, τ)) = 1.
(For definitions see § 2.)

Let ρ : GΣ → GL2(Q̄p) be a continuous irreducible representation that is ordinary at
all places v | p. Suppose ρ̄ss ∼= 1 ⊕ τ̄p. If the following conditions are satisfied:

(1) Σ ⊃ {v | pdF },

(2) if v ∈ Σ, v � p, then τ̄p(Frobv) �= (#kv)±1 as elements of Fp,

(3) det(ρ) = τp,

(4) ρ is Σ-minimal,

then ρ is isomorphic to the Galois representation associated to a cuspform of GL2(AF )
of weight 2, twisted by the p-adic Galois character associated to a Hecke character of
infinity type z.

We also study the existence of reducible deformations (see § 5.5). In contrast to the
situation in [29] there exists no reducible Σ-minimal O-deformation in our case, only a
nearly ordinary (in the sense of Tilouine [37]) reducible deformation which is, however,
not de Rham at one of the places above p. This means that the method of [29] to prove
R = T via the numerical criterion of Wiles and Lenstra [20,44] cannot be implemented
despite having all the ingredients on the Hecke side (i.e. a lower bound on the congruence
module measuring congruences between cuspforms and Eisenstein series).

The assumption on χ0 being anticyclotomic is not necessary for the methods of this
paper or the congruence result we use (see [3, Theorem 13]) but is necessary for construct-
ing the modular deformations, and is related to a condition on the central character in
Taylor’s result on associating Galois representation to cuspforms. The restrictions in Def-
inition 3.2 on the places contained in Σ and on the class group of the splitting field of χ0

are similar to those of [29] and are essential for the uniqueness of ρ0. Our methods do not
allow to go beyond the Σ-minimal case (to achieve that in the Q-case, [29] uses Propo-
sition 1 of [35], but its analogue fails for imaginary quadratic fields) or treat residually
irreducible Galois representations. To complement our study of the absolute deforma-
tion problem of a residually reducible Galois representation the reader is referred to the
analysis of the nearly ordinary relative deformation problem in [9].
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2. Notation and terminology

2.1. Galois groups

Let F be an imaginary quadratic extension of Q of discriminant dF �= 3, 4 and p > 3 a
rational prime which splits in F . Fix a prime p of F lying over (p) and denote the other
prime of F over (p) by p̄. Let ClF denote the class group of F . We assume that p � # ClF
and that any prime q | dF satisfies q �≡ ±1 (mod p).

For a field K write GK for the Galois group Gal(K̄/K). If K is a finite extension of
Q� for some rational prime 	, we write OK (respectively �K , and FK) for the ring of
integers of K (respectively for a uniformizer of K, and OK/�KOK).

If K ⊃ F is a number field, OK will denote its ring of integers. If v is a place of K, we
write Kv for the completion of K with respect to the absolute value | · |v determined by
v and set OK,v = OKv (if v is archimedean, we set OK,v = Kv). We also write �v for a
uniformizer of Kv, Pv for the maximal ideal of OK,v, and kv for its residue field.

Fix once and for all compatible embeddings iv : F̄ ↪→ F̄ v and F̄ v ↪→ C, for every prime
v of F , so we will often regard elements of F̄ v as complex numbers without explicitly
mentioning it. If w is a place of K ⊂ F̄ , it determines a place v of F , and we always
regard Kw as a subfield of F̄ v as determined by the embedding iv. This also allows us to
identify GKw

with the decomposition group Dv̄ ⊂ GK of a place v̄ of F̄ . We will denote
that decomposition group by Dv. Abusing notation somewhat we will denote the image
of Dv in any quotient of GK also by Dv. We write Iv ⊂ Dv for the inertia group.

Let Σ be a finite set of places of K. Then KΣ will denote the maximal Galois extension
of K unramified outside the primes in Σ. We also write GΣ for GFΣ

. Moreover, for a
positive integer n, denote by µn the group of nth roots of unity.

2.2. Hecke characters

For a number field K, denote by AK the ring of adeles of K and set A = AQ. By a
Hecke character of K we mean a continuous homomorphism

λ : K× \ A×
K → C×.

For a place v of K write λ(v) for the restriction of λ to Kv and λ(∞) for the restriction
of λ to

∏
v|∞ Kv. The latter will be called the infinity type of λ. We also usually write

λ(�v) to mean λ(v)(�v). Given λ there exists a unique ideal fλ of K largest with respect
to the following property: λ(v)(x) = 1 for every finite place v of K and x ∈ O×

K,v such
that x − 1 ∈ fλOK,v. The ideal fλ is called the conductor of λ. If K = F , there is only
one archimedean place, which we will simply denote by ∞. For a Hecke character λ of F ,
one has λ(∞)(z) = zmz̄n with m, n ∈ R. If m, n ∈ Z, we say that λ is of type (A0). We
always assume that our Hecke characters are of type (A0). Write L(s, λ) for the Hecke
L-function of λ.

Let λ be a Hecke character of infinity type za(z/z̄)b with conductor prime to p. Assume
a, b ∈ Z and a > 0 and b � 0. Put

Lalg(0, λ) := Ω−a−2b

(
2π√
dF

)b

Γ (a + b)L(0, λ),
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where Ω is a complex period. In most cases, this normalization is integral, i.e. lies in the
integer ring of a finite extension of Fp. See [4, Theorem 3] for the exact statement. Put

Lint(0, λ) =

{
Lalg(0, λ) if valp(Lalg(0, λ)) � 0,

1 otherwise.

For z ∈ C we write z̄ for the complex conjugate of z. The action of complex conjugation
extends to an automorphism of A×

F and we will write x̄ for the image of x ∈ A×
F under

that automorphism.
For a Hecke character λ of F , we denote by λc the conjugate Hecke character of F

defined by λc(x) = λ(x̄).

2.3. Galois representations

For a field K and a topological ring R, by a Galois representation we mean a continuous
homomorphism ρ : GK → GLn(R). If n = 1 we usually refer to ρ as a Galois character.
We write K(ρ) for the fixed field of ker ρ and call it the splitting field of ρ. If ρ is a Galois
character and M is an R-module, we denote by M(ρ) the R[GK ]-module M with the
GK-action given by ρ. If K is a number field and v is a finite prime of K with inertia
group Iv we say that ρ is unramified at v if ρ|Iv

= 1. If Σ is a finite set of places of K such
that ρ is unramified at all v �∈ Σ, then ρ can be regarded as a representation of GKΣ

.
Let E be a finite extension of Qp. Every Galois representation ρ : GK → GLn(E) can

be conjugated (by an element M ∈ GLn(E)) to a representation ρM : GK → GLn(OE).
We denote by ρ̄M : GK → GLn(FE) its reduction modulo �EOE . It is sometimes called
a residual representation of ρ. The isomorphism class of its semisimplification ρ̄ss

M is
independent of the choice of M and we simply write ρ̄ss.

Let ε : GF → Z×
p denote the p-adic cyclotomic character. For any subgroup G ⊂ GF

we will also write ε for ε|G. Our convention is that the Hodge–Tate weight of ε at p is 1.
Let λ be a Hecke character of F of type (A0) and Σλ = {v | pfλ}. We define (following

Weil) a p-adic Galois character
λp : GΣλ

→ F̄×
p

associated to λ by the following rule. For a finite place v � pfλ of F , put λp(Frobv) =
ip(i−1

∞ (λ(�v))) where Frobv denotes the arithmetic Frobenius at v. It takes values in the
integer ring of a finite extension of Fp.

Definition 2.1. For a topological ring R we call a Galois representation ρ : GΣ →
GL2(R) ordinary if

ρ|Dv
∼=

(
χ1 ∗
0 χ2

)

for v | p, where χi|Iv = εki with integers k1 � k2 depending on v.

2.4. Automorphic representations of AF and their Galois representations

Set G = ResF/Q GL2. For Kf an open compact subgroup of G(Af ), denote by S2(Kf )
the space of cuspidal automorphic forms of G(A) of weight 2, right-invariant under Kf
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(for more details see § 3.1 of [38]). For ψ a finite order Hecke character write S2(Kf , ψ)
for the forms with central character ψ. This is isomorphic as a G(Af )-module to

⊕
π

Kf

f

for automorphic representations π of a certain infinity type (see Theorem 2.2 below) with
central character ψ. Here πf denotes the restriction of π to GL2(Af ) and π

Kf

f stands for
the Kf -invariants.

For g ∈ G(Af ) we have the usual Hecke action of [KfgKf ] on S2(Kf ) and S2(Kf , ψ).
For primes v such that the vth component of Kf is GL2(OF,v) we define

Tv =

[
Kf

[
�v

1

]
Kf

]
.

Combining the work of Taylor, Harris and Soudry with results of Friedberg–Hoffstein
and Laumon or Weissauer, one can show the following (see [5] for general case of cusp-
forms of weight k).

Theorem 2.2 (Berger and Harcos [5, Theorem 1.1]). Given a cuspidal automorphic
representation π of GL2(AF ) with π∞ isomorphic to the principal series representation
corresponding to [

t1 ∗
t2

]
�→

(
t1
|t1|

)(
|t2|
t2

)

and cyclotomic central character ψ (i.e. ψc = ψ), let Σπ denote the set consisting of the
places of F lying above p, the primes where π or πc is ramified, and the primes ramified
in F/Q.

Then there exists a finite extension E of Fp and a Galois representation

ρπ : GΣπ → GL2(E)

such that if v �∈ Σπ, then ρπ is unramified at v and the characteristic polynomial of
ρπ(Frobv) is x2−av(π)x+ψ(�v)(#kv), where av(π) is the Hecke eigenvalue corresponding
to Tv. Moreover, ρπ is absolutely irreducible.

Remark 2.3. Taylor has some additional technical assumption in [33] and only showed
the equality of the Hecke and Frobenius polynomial outside a set of places of zero density.
Conjecture 3.2 in [8] describes a conjectural extension of Taylor’s theorem.

Urban studied in [39] the case of ordinary automorphic representations π, and together
with results in [40] on the Galois representations attached to ordinary Siegel modular
forms proved the following theorem.

Theorem 2.4 (Urban [40, Corollary 2]). Let v be a prime of F lying over p. If π is
unramified at v and ordinary at v, i.e. |av(π)|v = 1, then the Galois representation ρπ is
ordinary at v. Moreover,

ρπ|Dv
∼=

[
Ψ1 ∗

Ψ2

]
,

where Ψ2|Iv = 1 and Ψ1|Iv = det ρπ|Iv = ε.
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Definition 2.5. Let E be a finite extension of Fp and ρ : GΣ → GL2(E) a Galois
representation for a finite set of places Σ. We say that ρ is modular if there exists a
cuspidal automorphic representation π as in Theorem 2.2, such that ρ ∼= ρπ (possibly
after enlarging E).

From now on we fix a finite extension E of Fp which we assume to be sufficiently
large (see § 4.2 and Remark 4.5, where this condition is made more precise). To simplify
notation we put O := OE , F = FE and � = �E .

3. Uniqueness of a certain residual Galois representation

Let Σ be a finite set of finite primes of F containing the primes lying over p. In this
section we study residual Galois representations ρ0 : GΣ → GL2(F ) of the form

ρ0 =

[
1 ∗

χ0

]

having scalar centralizer for a certain class of characters χ0 (cf. Definition 3.2). We
show that for a fixed χ0 there exists at most one such representation up to isomorphism
(Corollary 3.7). The existence of such a representation follows from the global Euler
characteristic formula [24, Theorem 5.1], which implies

dimF (H1(GΣ ,F (χ−1
0 ))) � 1.

In § 4 we show that there exists an ordinary one provided that valp(Lint(0, φ)) > 0 for a
certain Hecke character φ of F such that the reduction of φpε is χ0. Alternatively, one
could invoke the generalizations of Kummer’s criterion to imaginary quadratic fields (see,
for example, [11,17,21,45]).

Definition 3.1. Let R be a commutative ring, J ⊂ R an ideal, M a free R-module and
N a submodule of M . We will say that N is saturated with respect to J if

N = {m ∈ M | mJ ⊂ N}.

Let χ0 : GΣ → F × be a Galois character. Let Sp be the set of primes of F (χ0) lying
over p. Write Mχ0 for

∏
v∈Sp

(1 + Pv) and Tχ0 for its torsion submodule. The quotient
Mχ0/Tχ0 is a free Zp-module of finite rank. Let Ēχ0 be the closure in Mχ0/Tχ0 of the
image of Eχ0 , the group of units of the ring of integers of F (χ0) which are congruent to 1
modulo every prime in Sp.

We will now restrict ourselves to studying a certain class of characters χ0, which we will
call Σ-admissible. The definition of Σ-admissibility (Definition 3.2) pins down conditions
under which we are able to prove that the space Ext1GΣ

(1, χ0), where 1 denotes the trivial
character, is one dimensional, i.e. that ρ0 is unique up to isomorphism (Corollary 3.7).

Definition 3.2. We say that χ0 is Σ-admissible if all of the following conditions are
satisfied.



676 T. Berger and K. Klosin

(1) χ0 is ramified at p.

(2) If v ∈ Σ, then either χ0 is ramified at v or χ0(Frobv) �= (#kv)±1 (as elements
of F ).

(3) χ0 is anticyclotomic, i.e. χ0(cσc) = χ0(σ)−1 for every σ ∈ GΣ and c the generator
of Gal(F/Q).

(4) The Zp-submodule Ēχ0 ⊂ Mχ0/Tχ0 is saturated with respect to the ideal pZp.

(5) The χ−1
0 -eigenspace of the p-part of ClF (χ0) is trivial.

Remark 3.3. Note that Conditions (1) and (3) of Definition 3.2 imply that χ0 is also
ramified at p̄. Moreover, observe that χ0 is Σ-admissible if and only if χ−1

0 is. Indeed,
Conditions (1)–(4) in Definition 3.2 are invariant under taking the inverse. Moreover,
since χ0 is anticyclotomic, the extension F (χ0)/Q is Galois, hence the χ−1

0 -eigenspace of
the p-part of ClF (χ0) vanishes if and only if the χ0-eigenspace does.

Remark 3.4. Condition (4) in Definition 3.2 implies that every ε ∈ Ēχ0 which is a pth
power of an element of Mχ0/Tχ0 must be a pth power of an element of Ēχ0 . In particular
the map

Ēχ0 ⊗Zp F̄p → (Mχ0/Tχ0) ⊗Zp F̄p

is injective. One way to check Condition (4) in practice is to compute the p-part C of the
class group of F (χ0)(µp) as a Gal(F (χ0)(µp)/F (χ0))-module. In particular, if ω denotes
the character of Gal(F (χ0)(µp)/F (χ0)) giving the action on µp, then Kummer theory
implies that Condition (4) is satisfied if the ω-part of C is trivial.

Let
ρ0 : GΣ → GL2(F )

be a Galois representation satisfying both of the following two conditions

(Red) ρ0 =

[
1 ∗

χ0

]
for a Σ-admissible character χ0;

(Sc) ρ0 has scalar centralizer.

We have the following tower of fields: F ⊂ F (χ0) ⊂ F (ρ0). Note that p does not
divide [F (χ0) : F ]. Moreover, F (ρ0)/F (χ0) is an abelian extension of exponent p,
hence Gal(F (ρ0)/F (χ0)) can be regarded as an Fp-vector space V0 on which the group
G := Gal(F (χ0)/F ) operates Fp-linearly by conjugation and thus defines a representation

r0 : G → GLFp(V0),

which is isomorphic to the irreducible Fp-representation associated with χ−1
0 .
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Let L denote the maximal abelian extension of F (χ0) unramified outside the set Σ

and such that p annihilates Gal(L/F (χ0)). Then, as before, V := Gal(L/F (χ0)) is an
Fp-vector space endowed with an Fp-linear action of G, and one has

V ⊗Fp F̄p
∼=

⊕
ϕ∈Hom(G,F̄ ×

p )

V ϕ,

where for a Zp[G]-module N and an F̄ p-valued character ϕ of G, we write

Nϕ = {n ∈ N ⊗Zp F̄p | σn = ϕ(σ)n for every σ ∈ G}. (3.1)

Note that V0 ⊗Fp F̄p is a direct summand of V χ−1
0 .

Theorem 3.5. If χ0 is Σ-admissible, then dimF̄p
V χ−1

0 = 1.

Proof. Let L0 be the maximal abelian extension of F (χ0) of exponent p unramified
outside the set Σ and such that G acts on Gal(L0/F (χ0)) via the irreducible Fp-repre-
sentation associated with χ−1

0 . It is enough to show that

dimF̄p
(Gal(L0/F (χ0)) ⊗ F̄p) � 1.

Condition (2) of Definition 3.2 ensures that L0/F (χ0) is unramified outside the set
{p, p̄}. Hence it is enough to study the extensions L/F (χ0) and L0/F (χ0) with Σ =
{p, p̄}. For p0 ∈ {p, p̄} let Sp0 be the set of primes of F (χ0) lying over p0. Then Sp :=
Sp ∪ Sp̄. Write M (respectively T , Ē) for Mχ0 (respectively Tχ0 , Ēχ0). By Condition (5)
of Definition 3.2 and class field theory (see, for example, Corollary 13.6 in [42]) one has
Gal(L/F (χ0)) ∼= (M/Ē) ⊗ Fp. Hence Gal(L0/F (χ0)) is a quotient of (M/Ē) ⊗ Fp. On
the other hand, using Condition (3) of Definition 3.2 one can show that Gal(L0/F (χ0))
is a quotient of (M/T )⊗Fp. This follows from the fact that T is a product of the groups
µp; thus χ0 being anticyclotomic by Condition (3) of Definition 3.2 cannot occur in T .
We will now study both (M/T ) ⊗ F̄ p and (M/Ē) ⊗ F̄ p, beginning with the former one.

Let G∨ := Hom(G, F̄ ×
p ). Since G is abelian, (M/T ) ⊗ F̄ p decomposes into a direct

sum of F̄ p[G]-modules
(M/T ) ⊗ F̄p =

⊕
ψ∈G∨

(M/T )ψ,

with (M/T )ψ defined as in (3.1). Note that we can refine this by writing

M/T =
∏

p0∈{p,p̄}
Mp0/Tp0 ,

where Mp0 =
∏

v∈Sp0
(1 + Pv) and Tp0 is the torsion subgroup of Mp0 . Each Mp0/Tp0 is

G-stable.

Lemma 3.6. Let p0 ∈ {p, p̄}. For every ψ ∈ G∨, we have

dimF̄p
(Mp0/Tp0)

ψ = 1.
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Proof of Lemma 3.6. Note that to decompose (Mp0/Tp0)⊗ F̄ p it is enough to decom-
pose

∏
v∈Sp0

Pv ⊗ F̄p, since (1+Pv)/(torsion) ∼= Pv as Zp[Dv]-modules. It is not difficult
to see that ∏

v∈Sp0

Pv ⊗ F̄p
∼=

⊕
φ∈G∨

F̄p(φ),

where F̄p(φ) denotes the one-dimensional F̄p-vector space on which G acts via φ. The
lemma follows easily. �

We are now ready to complete the proof of Theorem 3.5. Recall that the tensor product
Gal(L0/F (χ0)) ⊗ F̄ p is both a quotient of (M/T ) ⊗ F̄ p and of (M/Ē) ⊗ F̄ p. Since
(M/T ) ⊗ F̄ p = (Mp/Tp) ⊗ F̄ p × (Mp̄/Tp̄) ⊗ F̄ p, Lemma 3.6 implies that

(M/T ) ⊗ F̄p =
⊕

ψ∈G∨

(F̄p(ψ) ⊕ F̄p(ψ)).

On the other hand, one has

Ē ⊗ F̄p =
⊕

ψ∈G∨\{1}
F̄p(ψ),

where 1 denotes the trivial character. Now, Condition (4) of Definition 3.2 ensures that
the map

Ē ⊗ F̄p → (M/T ) ⊗ F̄p

is an injection (see Remark 3.4). So, Gal(L0/F (χ0)) ⊗ F̄ p is a quotient of

((M/T ) ⊗ F̄p)/(Ē ⊗ F̄p) ∼= F̄p(1) ⊕ F̄p(1) ⊕
⊕

ψ∈G∨\{1}
F̄p(ψ).

Since χ0 �= 1, we have dimF̄p
(Gal(L0/F (χ0)) ⊗ F̄p) � 1, which is what we wanted to

show. �

Corollary 3.7. Suppose ρ′ : GΣ → GL2(F ) is a Galois representation satisfying condi-
tions (Red) and (Sc). Then ρ′ ∼= ρ0.

Proof. As ρ0 and ρ′ correspond to elements in ExtF̄p[GΣ ](1, χ0) ∼= H1(GΣ , F̄p(χ−1
0 )),

it is enough to show that H1(GΣ , F̄p(χ−1
0 )) is one dimensional as an F̄ p-vector space.

Using the inflation-restriction sequence we see that H1(GΣ , F̄p(χ−1
0 )) is isomorphic to

HomG(ker χ0, F̄p(χ−1
0 )) ∼= HomF̄p[G](V

χ−1
0 , F̄p(χ−1

0 )).

Since V χ−1
0 ∼= F̄p(χ−1

0 ) by Theorem 3.5, the corollary follows. �

4. Modular forms and Galois representations

In this section we exhibit irreducible ordinary Galois representations that are residually
reducible and arise from weight 2 cuspforms.
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4.1. Eisenstein congruences

Let φ1, φ2 be two Hecke characters with infinity types φ
(∞)
1 (z) = z and φ

(∞)
2 (z) = z−1.

Put γ = φ1φ2.
Denote by S the finite set of places where both φi are ramified, but φ = φ1/φ2 is

unramified. Write Mi for the conductor of φi. For an ideal N in OF and a finite place v

of F put Nv = NOF,v. We define

K1(Nv) =

{ (
a b

c d

)
∈ GL2(OF,v)

∣∣∣∣∣ a − 1, c ≡ 0 mod Nv

}
,

and
U1(Nv) = {k ∈ GL2(OF,v) | det(k) ≡ 1 mod Nv}.

Now put
Kf :=

∏
v∈S

U1(M1,v)
∏
v/∈S

K1((M1M2)v) ⊂ G(Af ). (4.1)

From now on, let Σ be a finite set of places of F containing

Sφ := {v | M1M
c
1M2M

c
2} ∪ {v | pdF }.

We denote by T (Σ) the O-subalgebra of EndO(S2(Kf , γ)) generated by the Hecke
operators Tv for all places v �∈ Σ. Following [32, p. 107] we define idempotents ep and ep̄,
commuting with each other and with T (Σ) acting on S2(Kf , γ). They are characterized
by the property that any element h ∈ X := epep̄S2(Kf , γ) which is an eigenvector
for Tp and Tp̄ satisfies |ap(h)|p = |ap̄(h)|p = 1, where ap(h) (respectively ap̄(h)) is the
Tp-eigenvalue (respectively Tp̄-eigenvalue) corresponding to h. Let T ord(Σ) denote the
quotient algebra of T (Σ) obtained by restricting the Hecke operators to X.

Let J(Σ) ⊂ T (Σ) be the ideal generated by

{Tv − φ1(�v)#kv − φ2(�v) | v �∈ Σ}.

Definition 4.1. Denote by m(Σ) the maximal ideal of T ord(Σ) containing the image of
J(Σ). We set TΣ := T ord(Σ)m(Σ). Moreover, set JΣ := J(Σ)TΣ . We refer to JΣ as the
Eisenstein ideal of TΣ .

Theorem 4.2 (Berger [2, Theorem 6.3], [3, Theorem 14]). Let φ be an unramified
Hecke character of infinity type φ(∞)(z) = z2. There exist Hecke characters φ1, φ2 with
φ1/φ2 = φ such that their conductors are divisible only by ramified primes or inert primes
not congruent to ±1 mod p and such that

#(TΣ/JΣ) � #(O/(Lint(0, φ))).

Proof. Theorem 14 in [3] states this inequality for the Hecke algebra T (Σ). However,
the Eisenstein cohomology class used in the proof of Theorem 14 in [3] is ordinary
because by [4, Lemma 9] its Tp-eigenvalue (respectively Tp̄-eigenvalue) is the p-adic unit
pφ1(p) + φ2(p) (respectively pφ1(p̄) + φ2(p̄)). Therefore, one can prove the statement for
the ordinary cuspidal Hecke algebra. �
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Remark 4.3. If φ is unramified then φpε is anticyclotomic (see [3, Lemma 1]). The
condition on the conductor of the auxiliary character φ1 together with our assumption on
the discriminant of F therefore ensure that for χ0 = φpε, Condition (2) of Σ-admissibility
is automatically satisfied for all primes v ∈ Sφ.

The assumption on the ramification of φ can be relaxed. For example, Proposition 16
and Theorem 28 of [4] and Proposition 9 and Lemma 11 of [3] imply the following
theorem.

Theorem 4.4. Let φ1, φ2 be as at the start of this section. Assume both M1 and M2 are
coprime to (p) and divisible only by primes split in F/Q and that p � #(OF /M1M2)×.
Suppose (φ1/φ2)c = φ1/φ2. If the torsion part of H2

c (SKf
,Zp) is trivial, where

SKf
= G(Q)\G(A)/KfU(2)C×

then
#(TΣ/JΣ) � #(O/(Lint(0, φ1/φ2))).

Remark 4.5. In fact, by replacing Zp by the appropriate coefficient system, the result
is true for characters φ1, φ2 of infinity type zz̄−m and z−m−1, respectively, for m � 0.
For Theorems 4.2 and 4.4, the field E needs to contain the values of the finite parts of
φ1 and φ2 as well as Lint(0, φ1/φ2).

We will from now on assume that we are either in the situation of Theorem 4.2 or
Theorem 4.4 and fix the characters φ1, φ2 and φ = φ1/φ2, with corresponding conditions
on the set Σ and definitions of Kf , TΣ and JΣ . We also assume from now on that
valp(Lint(0, φ)) > 0. Put χ0 = φpε and assume that χ0 is Σ-admissible. If we are in the
situation of Theorem 4.4, then suppose also that M1 and M2 are not divisible by any
primes v such that #kv ≡ 1 mod p. (This last assumption is only used in the proof of
Theorem 5.2.)

4.2. Residually reducible Galois representations

Write
S2(Kf , γ)m(Σ) =

⊕
π∈ΠΣ

π
Kf

f

for a finite set ΠΣ of ordinary cuspidal automorphic representations with central charac-
ter γ, such that π

Kf

f �= 0. The set ΠΣ is non-empty by Theorem 4.2 under our assumption
that valp(Lint(0, φ)) > 0.

Let π ∈ ΠΣ . Let ρπ : GΣ → GL2(E) be the Galois representation attached to π by
Theorem 2.2. (This is another point where we assume that E is large enough.) The condi-
tion on the central character in Theorem 2.2 can be satisfied (after possibly twisting with
a finite character) under our assumptions on φ (see [3, Lemma 8]). The representation
ρπ is unramified at all v /∈ Sφ, and satisfies

tr ρπ(Frobv) = av(π)
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and
det ρπ(Frobv) = γ(�v)#kv.

By definition, TΣ injects into
∏

π∈ΠΣ
EndO(πKf ). Since Tv acts on π by multiplication

by av(π) ∈ O the Hecke algebra TΣ embeds, in fact, into B =
∏

π∈ΠΣ
O.

Observe that (tr ρπ(σ))π∈ΠΣ
∈ TΣ ⊂ B for all σ ∈ GΣ . This follows from the Cheb-

otarev density theorem and the continuity of ρπ (note that TΣ is a finite O-algebra).
Fix π ∈ ΠΣ for the rest of this subsection. Define ρ′

π := ρπ ⊗ φ−1
2,p. Then ρ′

π satisfies

tr ρ′
π(Frob v) ≡ 1 + (φpε)(Frob v) (mod �) for v /∈ Sφ,

and
det ρ′

π = γφ−2
2,pε = φpε.

By choosing a suitable lattice Λ one can ensure that ρ′
π has image inside GL2(O). The

Chebotarev density theorem and the Brauer–Nesbitt theorem imply that

(ρ̄′
π)ss ∼= 1 ⊕ φ̄pε̄.

By Theorem 2.2 ρ′
π is irreducible, so a standard argument (see, for example, Proposi-

tion 2.1 in [27]) shows the lattice Λ may be chosen in such a way that ρ̄′
π is not semisimple

and

ρ̄′
π =

[
1 ∗

φ̄pε̄

]
. (4.2)

Hence ρ̄′
π satisfies conditions (Red) and (Sc) of § 3. By Theorem 2.4, ρ′

π is ordinary which
combined with (4.2) implies that

ρ̄′
π|Dp̄

∼=
[
1

(φ̄pε̄)|Dp̄

]
. (4.3)

We put
ρ0 := ρ̄′

π. (4.4)

Remark 4.6. It follows from the proof of Theorem 3.5 that since ρ0 splits when restricted
to Dp̄ (see (4.3)), the extension F (ρ0)/F (χ0) is totally ramified at p and split at p̄, so,
in particular, there exists τ ∈ Ip such that

ρ0(τ) =

[
1 1

1

]
.

This implies that no twist of ρ0 by a character is invariant under c ∈ Gal(F/Q) and so
no character twists of ρ0 and the deformations of ρ0 considered in the following sections
arise from base change.

Furthermore, the ordinary modular deformations of ρ0 in § 5.2 cannot be induced from a
character of a quadratic extension of F because such representations split when restricted
to the decomposition groups Dv for v | p. This follows from Urban’s result (Theorem 2.3)
and the restriction of these characteristic 0 representations being semisimple on an open
subgroup of each of the decomposition groups.
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5. Deformations of ρ0

Let Σ, φ, χ0 and ρ0 be as in § 4. Recall that we have assumed that χ0 is Σ-admissible
and have shown in § 4.2 that ρ0 satisfies conditions (Red) and (Sc) of § 3. Hence by
Corollary 3.7, ρ0 is unique up to isomorphism. By Remark 4.6 the extension F (ρ0)/F (χ0)
is ramified at p but splits at p̄. In this section we study deformations of ρ0.

5.1. Definitions

Denote the category of local complete Noetherian O-algebras with residue field F by
LCN(E). An O-deformation of ρ0 is a pair consisting of A ∈ LCN(E) and a strict equiva-
lence class of continuous representations ρ : GΣ → GL2(A) such that ρ0 = ρ (mod mA),
where mA is the maximal ideal of A. As is customary we will denote a deformation by
a single member of its strict equivalence class. Note that the Hodge–Tate weights of φpε

are −1 at p and +1 at p̄.
Following [29] we make the following definition.

Definition 5.1. We say that an O-deformation ρ : GΣ → GL2(A) of ρ0 is Σ-minimal
if ρ is ordinary,

det ρ = φpε,

and for all primes v ∈ Σ such that #kv ≡ 1 (mod p) one has

ρ|Iv
∼=

[
1

φp|Iv

]
.

Note that by our assumption on the conductor of φ, we in fact have φp|Iv
= 1 for v as

above. Also the ordinarity condition means in this case that

ρ|Ip

∼=
[
1 ∗

ε−1

]
and ρ|Ip̄

∼=
[
ε ∗

1

]
.

Since ρ0 has a scalar centralizer and Σ-minimality is a deformation condition in the
sense of [22], there exists a universal deformation ring which we will denote by RΣ,O ∈
LCN(E), and a universal Σ-minimal O-deformation ρΣ,O : GΣ → GL2(RΣ,O) such that
for every A ∈ LCN(E) there is a one-to-one correspondence between the set of O-algebra
maps RΣ,O → A (inducing identity on F ) and the set of Σ-minimal deformations ρ :
GΣ → GL2(A) of ρ0.

5.2. Irreducible modular deformations of ρ0

The arguments from § 4.2 together with the uniqueness of ρ0 (Corollary 3.7) can now
be reinterpreted as the following theorem.

Theorem 5.2. For any π ∈ ΠΣ there is an O-algebra homomorphism rπ : RΣ,O � O
inducing ρ′

π.
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Proof. The only property left to be checked is Σ-minimality. This is clear since ρπ is
unramified away from Sφ, and no v ∈ Sφ satisfies #kv ≡ 1 (mod p) by construction (if
we are in the case of Theorem 4.2) or assumption (in the case of Theorem 4.4). �

Remark 5.3. The assumption on the conductors of φ1, φ2 made at the end of § 4.1 could
be relaxed if local–global compatibility was known for the Galois representations con-
structed by Taylor. For a discussion of the Langlands conjecture for imaginary quadratic
fields see [8, Conjecture 3.2].

Proposition 5.4. There does not exist any non-trivial upper-triangular Σ-minimal
deformation of ρ0 to GL2(F [x]/x2).

Proof. Let ρ : GΣ → GL2(F [x]/x2) be an upper-triangular Σ-minimal deformation.
Then ρ has the form [

1 + xα ∗
χ0 + xβ

]

for α : GΣ → F + a group homomorphism (here F + denotes the additive group of F )
and β : GΣ → F a function.

By ordinarity of ρ we have det ρ = χ0, which forces β = −αχ0. Let v be a prime of F

and consider the restriction of α to Iv. If v ∈ Σ, v � p and #kv �≡ 1 mod p, one must have
(by local class field theory) that α(Iv) = 0. If v ∈ Σ and #kv ≡ 1 mod p (respectively
v = p), then Σ-minimality (respectively ordinarity at p) implies that α(Iv) = 0. Thus α

can only be ramified at p̄. However, since ρ is ordinary at p̄, ρ|Ip̄
can be conjugated to a

representation of the form [
1
∗ χ0

]
.

This, together with the fact that χ0 is ramified at p̄ (see the remark after Definition 3.2)
easily implies that α must be unramified at p̄. Since p � # ClF , we must have α = 0.
Hence ρ is of the form [

1 ∗
χ0

]

and for G′ = ker(χ0) ⊂ GΣ we have

ρ|G′ =

[
1 b0 + xb1

1

]

for b0, b1 : G′ → F + group homomorphisms. Note that F (ρ)/F (χ0) is thus an abelian
extension unramified outside Σ which is annihilated by p. Moreover, Gal(F (χ0)/F ) acts
on Gal(F (ρ)/F (χ0)) via χ−1

0 . Hence Gal(F (ρ)/F (χ0))⊗Fp F̄ p is a quotient of V χ−1
0 with

V χ−1
0 as in § 3. By an argument analogous to that in the proof of Corollary 3.7, it follows

from Theorem 3.5 that ρ must be the trivial deformation. �

Proposition 5.5. The universal deformation ring RΣ,O is generated as an O-algebra
by traces.
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Proof. We follow the argument of [7, Lemma 4.2]. If suffices to show that any non-trivial
deformation of ρ0 to GL2(F [x]/x2) is generated by traces. Let ρ be such a deformation.
Observe that for σ ∈ Gal(Q̄/F (χ0)) the element ρ(σ) can be written as(

1 + xa(σ) b0(σ) + xb1(σ)
xc(σ) 1 + xd(σ)

)
,

so det(ρ)(σ) − tr(ρ)(σ) = −1 − xb0(σ)c(σ). Since c is non-trivial by Proposition 5.4, the
Chebotarev density theorem implies there exists a σ such that xb0(σ)c(σ) �= 0. Since
det(ρ)(σ) = 1, it follows that the traces of ρ generate F [x]/x2. �

Lemma 5.6. The image of the map RΣ,O →
∏

π∈ΠΣ
O given by x �→ (rπ(x))π is TΣ .

Proof. The O-algebra RΣ,O is generated by the set {tr ρΣ,O(Frobv) | v �∈ Σ}. For
v �∈ Σ, we have

rπ(tr ρΣ,O(Frobv)) = φ2,p(Frobv)−1av(π).

Hence the image of the map in the lemma is the closure of the O-subalgebra of
∏

π∈ΠΣ
O

generated by the set {φ2,p(Frobv)−1Tv | v �∈ Σ} which is the same as the closure of the
O-subalgebra of

∏
π∈ΠΣ

O generated by the set {Tv | v �∈ Σ} which in turn is TΣ . �

By Lemma 5.6 we obtain a surjective O-algebra homomorphism r : RΣ,O � TΣ . As
in [7] we can now deduce the following theorem.

Theorem 5.7. If RΣ,O is a discrete valuation ring and if

valp(Lint(0, φ)) > 0,

then the map r : RΣ,O → TΣ defined above is an isomorphism.

Proof. This follows easily because the Hecke algebra is torsion free since by definition
it acts faithfully on a vector space of characteristic 0. �

5.3. When is RΣ,O a discrete valuation ring?

Set Ψ := φpε and write Ψ2 for Ψ (mod �2).

Proposition 5.8. Assume that ρ0 does not admit any Σ-minimal upper-triangular defor-
mation to GL2(O/�2O). Then RΣ,O is a discrete valuation ring.

Remark 5.9. The condition on the non-existence of a Σ-minimal upper-triangular defor-
mation of ρ0 to GL2(O/�2O) follows from the following condition on the character φ

(or, which is the same, on the splitting field F (Ψ2) of Ψ2): there does not exist an abelian
p-extension L of F (Ψ2), unramified outside p such that Gal(L/F (Ψ2)) is isomorphic to a
Z[Gal(F (Ψ2)/F )]-submodule of (O/�2O)(Ψ−1

2 ) on which Gal(F (Ψ2)/F ) operates faith-
fully. Indeed, as in the proof of Proposition 5.4, the condition of Σ-minimality forces any
such deformation to be of the form [

1 ∗
0 Ψ2

]

with ∗ corresponding to an extension of F (Ψ2) unramified away from p.
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Proof of Proposition 5.8. We briefly recall some general facts about Eisenstein repre-
sentations from § 3 of [7] and § 2 of [1]. Let (A,m, k) be a local p-adically complete ring.
Let G be a topological group and consider a continuous representation ρ : G → GL2(A)
such that tr(ρ) mod m is the sum of two distinct characters τi : G → k×, i = 1, 2.

Definition 5.10. The ideal of reducibility of A is the smallest ideal I of A such that
tr(ρ) mod I is the sum of two characters.

Lemma 5.11 (Belläıche and Chenevier [1, Corollaire 2], Calegari [7, Lemma
3.4]). Suppose A is Noetherian, that the ideal of reducibility is maximal, and that

dimk Ext1cts,k[G](τ1, τ2) = dimk Ext1cts,k[G](τ2, τ1) = 1.

If A admits a surjective map to a ring of characteristic 0, then A is a discrete valuation
ring.

We apply this lemma for G = GΣ , A = RΣ,O, τ1 = 1 and τ2 = χ0. Σ-admissibility
of χ0 (which implies Σ-admissibility of its inverse by Remark 3.3) guarantees that the
dimension condition in Lemma 5.11 is satisfied. Moreover, since RΣ,O → TΣ is surjective
and TΣ is a ring of characteristic zero, we infer that RΣ,O is a discrete valuation ring
whenever the ideal of reducibility I of RΣ,O is maximal. This is the case if and only if
there does not exist a surjection RΣ,O/I � F [x]/x2 or RΣ,O/I � O/�2O, or, by the
universality of RΣ,O if ρ0 does not admit any non-trivial Σ-minimal deformations of ρ0

to GL2(F [x]/x2) or GL2(O/�2O) that are upper-triangular. The latter cannot occur by
assumption and the former by Proposition 5.4. �

Note that Gal(F (Ψ)/F ) ∼= Γ × ∆ with Γ ∼= Zp and ∆ a finite group.

Theorem 5.12. Assume p � #∆. If

#(O/Lint(0, φ)) = p[O:Zp],

then ρ0 does not admit any Σ-minimal upper-triangular deformation to GL2(O/�2O).
In particular, RΣ,O is a discrete valuation ring.

Remark 5.13. Let O′ be the ring of integers in any finite extension of Qp con-
taining Lint(0, φ). Note that the L-value condition in Theorem 5.12 is equivalent to
#(O′/Lint(0, φ)) = p[O′:Zp].

Proof. Put χ̃0 = Ψ |∆. Write X∞ for Gal(M(F (Ψ))/F (Ψ)) with M(F (Ψ)) the maxi-
mal abelian pro-p-extension of F (Ψ) unramified away from the primes lying over p and
(X∞ ⊗ O)χ̃−1

0 the χ̃−1
0 -part of X∞ ⊗ O. Moreover, write M(F (Ψ2))Ψ for the maximal

abelian pro-p-extension of F (Ψ2) unramified away from p on which Gal(F (Ψ2)/F ) acts
via Ψ−1. We will use the following two lemmas.

Lemma 5.14. We have

#((X∞ ⊗ O)χ̃−1
0 /(γ − Ψ−1(γ))(X∞ ⊗ O)χ̃−1

0 ) � #(O/Lint(0, φ)).
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Lemma 5.15. We have

#(Gal(M(F (Ψ2))Ψ/F (Ψ2))⊗O)χ̃−1
0 � #((X∞⊗O)χ̃−1

0 /(γ−Ψ−1(γ))(X∞⊗O)χ̃−1
0 ). (5.1)

We first show how Theorem 5.12 follows from these lemmas. Suppose that L as in
Remark 5.9 existed. Then one would have L ⊂ M(F (Ψ2))Ψ . One also has F (Ψ2)F (ρ0) ⊂
M(F (Ψ2))Ψ , hence

#(Gal(F (Ψ2)F (ρ0)/F (Ψ2)) ⊗ O)χ̃−1
0 � #(Gal(M(F (Ψ2))Ψ/F (Ψ2)) ⊗ O)χ̃0

−1
, (5.2)

but F (Ψ2)F (ρ0) �= L, because Gal(F (Ψ2)/F ) does not act faithfully on the group
Gal(F (Ψ2)F (ρ0)/F (Ψ2)). It is easy to see that the quantity on the left-hand side of (5.2)
is p[O:Zp]. Hence, if the conditions of Theorem 5.12 are satisfied, the inequalities in
Lemmas 5.14 and 5.15 become equalities and this easily implies that F (Ψ2)F (ρ0) =
M(F (Ψ2))Ψ . Thus L cannot exist. �

Proof of Lemma 5.14. For any Galois character τ : GF → O× put Aτ = E/O(τ)
and set G := Gal(F (Ψ)/F ). It follows from Proposition 5.21 (see § 5.5) that the module
HomG(X∞, AΨ−1) is finite. By [15, Propositions 2.2(i) and 2.3],

HomG(X∞, AΨ−1) ∼= Sstr
AΨ−1

(F ),

where Sstr
AΨ−1

(F ) ⊂ H1(GF, AΨ−1) denotes the strict Selmer group defined by Greenberg
(see [15, § 1] for a definition). Note that the class number restriction in [15] is not required
for these results.

It is clear that
Sstr

AΨ−1
(F ) ∼= Sstr

A(Ψ−1)c
(F ) = Sstr

AΨ
(F ).

The duality result of [16, Theorem 2] implies an isomorphism

Sstr
AΨ

(F ) ∼= Sstr
AΨ−1ε

(F )

if both Selmer groups are finite. By the observation at the beginning of the proof we
know that Sstr

AΨ
(F ) is finite. For the Selmer group of the dual character the arguments of

the proof of Proposition 2.2 of [15] imply that

Sstr
AΨ−1ε

(F ) ↪→ HomG(X∞, AΨ−1ε).

By applying the main conjecture of Iwasawa theory, Wiles [44, p. 532] proves that

# HomG(X∞, AΨ−1ε) � #(O/Lint(0, φ)).

(For similar results towards the Bloch–Kato conjecture see also [15] who treats imaginary
quadratic fields of class number one but Hecke characters of general infinity types.)
Finally, it is easy to see that

# HomG(X∞, AΨ−1) = #(X∞ ⊗ O)χ̃−1
0 /(γ − Ψ−1(γ))(X∞ ⊗ O)χ̃−1

0 .

�
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Proof of Lemma 5.15. The restriction provides a surjective O-linear homomorphism

(X∞ ⊗ O)χ̃−1
0 � (Gal(M(F (Ψ2))/F (Ψ2)) ⊗ O)χ̃−1

0 .

Since Gal(F (Ψ2)/F ) acts on Gal(M(F (Ψ2))Ψ/F (Ψ2)) via Ψ−1 the composite

(X∞ ⊗ O)χ̃−1
0 � (Gal(M(F (Ψ2))/F (Ψ2)) ⊗ O)χ̃−1

0 � (Gal(M(F (Ψ2))Ψ/F (Ψ2)) ⊗ O)χ̃−1
0

(5.3)
clearly factors through

(X∞ ⊗ O)χ̃−1
0 /(γ − Ψ−1(γ))(X∞ ⊗ O)χ̃−1

0 .

�

5.4. Modularity theorem

In this section we state a modularity theorem which is a consequence of the results of
the previous sections. To make its statement self-contained, we explicitly include all the
assumptions we have made so far.

Theorem 5.16. Let φ1, φ2 be Hecke characters of F with split conductors and of
infinity type z and z−1 respectively such that φ := φ1/φ2 is unramified. Assume that the
conductor M1 of φ1 is coprime to (p) and that p � #(OF /M1)×. Moreover, assume that
valp(Lint(0, φ)) > 0.

Let ρ : GΣ → GL2(E) be a continuous irreducible representation that is ordinary at
all places v | p. Suppose ρ̄ss ∼= χ1 ⊕ χ2 with χ1 = φ1,pε, χ2 = φ2,p. Set χ0 := χ1χ

−1
2 . If

all of the following conditions are satisfied:

(1) Σ ⊃ {v | pdF M1M
c
1},

(2) the representation ρ̄ ⊗ χ−1
2 admits no upper-triangular Σ-minimal deformation to

GL2(O/�2O),

(3) χ0 is Σ-admissible,

(4) det(ρ) = φ1φ2ε,

(5) ρ ⊗ φ−1
2,p is Σ-minimal,

then ρ is modular in the sense of Definition 2.5.

Remark 5.17. Write Gal(F (Ψ)/F ) = Γ × ∆ with Γ ∼= Zp. If p � #∆ then by Theo-
rem 5.12, Condition (2) in Theorem 5.16 can be replaced by #(O/Lint(0, φ)) = p[O:Zp].

Remark 5.18. Theorem 4.4 and Remark 4.5 show that the conditions for the conductor
and infinity type of φ can be relaxed if one imposes a condition on the torsion freeness
of a cohomology group.
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Example 5.19. We now turn to a numerical example in which we can verify the con-
ditions of Theorem 5.16 (under an additional assumption which we discuss below). Let
F = Q(

√
−51) and p = 5 (which splits in F ). Since the class number is 2, there are two

unramified Hecke characters of infinity type z2. For each of them the functional equation
relates the L-value at 0 to the L-value at 0 of a Hecke character of infinity type z̄/z.
The latter one in turn is equal (by the Weil lifting; see, for example, [25, Theorem 4.8.2]
or [18, Theorem 12.5]) to the L-value at 1 of a weight 3 modular form of level 51 and
character the Kronecker symbol (−51

· ). Let φ be the Hecke character of infinity type z2

corresponding to the modular form with q-expansion starting with q + 3q3 + . . . . Using
Magma [10] one calculates (see Remark 5.20) that

val5(Lint(0, φ)) � 1.

Assuming that the 5-valuation is exactly 1 (see Remark 5.20 explaining the computational
issues involved) this is enough to satisfy Condition (2) of Theorem 5.16 (cf. Remarks 5.13
and 5.17). The character χ0 = φpε is Σ-admissible for appropriate sets Σ (i.e. they satisfy
Conditions (1), (3), (4) and (5) of Definition 3.2) because the ray class field of conductor 5
(a degree 16 extension over F ) has class number 3 (as calculated by Magma assuming the
Generalized Riemann Hypothesis). Here we use that the splitting field F (χ0) is contained
in the ray class field of F of conductor 5.

Remark 5.20. In our calculation above we use an operation in Magma called LRatio
which calculates a rational normalization of the L-value of a modular form using modular
symbols. This calculation gives 5-valuation equal to 1. Because of the different period used
by Magma we can only confirm that this provides a lower bound on the 5-valuation of
Lint(0, φ) = L(0, φ)/Ω2, for Ω the Neron period of a suitable elliptic curve with complex
multiplication by F (see, for example, [13, p. 768]). This follows from the following
relations between the different periods.

(1) The proof of Lemma 7.1 of [12] shows that the period used by Magma (RealVolume)
is an integral multiple of the canonical period Ω(f)+ defined by Vatsal [41] (up to
divisors of Nk! for the level N = 51 and weight k = 3 of the modular form).

(2) Vatsal [41] proves that one can find a Dirichlet character χ such that

τ(χ̄)
L(1, f, χ)

(−2πi)Ω(f)±

(with χ(−1) = (−1)±) is a 5-unit. Note that Vatsal’s condition that ρ̄f is absolutely
irreducible is satisfied in our case and Ω(f)− ∼ Ω(f)+ because f has complex
multiplication. Here we write ‘∼’ to indicate equivalence up to 5-unit. Because
πL(1, f, χ) ∼ L(0, φ · resQ

F (χ̄)) this implies that π2 · Ω(f)+ is a 5-integral multiple
of Ω2.

5.5. A reducible deformation of ρ0

Let Ψ = φpε. Then χ0 = Ψ̄ . For a finite set of primes S of F , let LΨ (S) denote the max-
imal abelian pro-p extension of F (Ψ) unramified outside S and such that Gal(F (Ψ)/F )
acts on Gal(LΨ (S)/F (Ψ)) via Ψ−1.
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Proposition 5.21. The group Gal(LΨ (Σ \ {p̄})/F (Ψ)) is a torsion Zp-module.

Proof. The Σ-admissibility of χ0 implies that the extension LΨ (Σ\{p̄})/F (Ψ) is unram-
ified away from the primes lying over p. Then the claim follows from the anticyclotomic
main conjecture of Iwasawa theory for imaginary quadratic fields (see [23,28,36]) after
noting that L(0, φ) �= 0. �

Corollary 5.22. There does not exist a Σ-minimal reducible deformation of ρ0 into
GL2(A) if A is not a torsion O-algebra.

Proof. As in Proposition 5.4 such a deformation would have to be of the form

ρ =

[
1 ∗

Ψ

]
. (5.4)

By ordinarity, one must also have

ρ|Ip̄

∼=
[
1

Ψ |Ip̄

]
,

which implies that the upper shoulder ∗ in (5.4) corresponds to an extension L/F (Ψ)
which is unramified away from primes lying over p. Since A is not a torsion Zp-module,
this would contradict Proposition 5.21. �

Remark 5.23. In [29] Skinner and Wiles prove an R = T theorem for deformations of
a certain class of reducible (non-semisimple) residual representations of GQ of the form
[ 1 ∗

χ ] for χ : GQ → F̄ ×
p a continuous character. They apply the numerical criterion of

Wiles and Lenstra [20,44] by first relating the size of the relevant universal deformation
ring to a special value of the L-function of χ. They achieve this by studying the Galois
cohomology of ad ρ for a Σ-minimal reducible deformation ρ with values in a character-
istic zero Zp-algebra O. Here Σ is a finite set of primes of Q satisfying similar conditions
to the ones we imposed on our sets Σ. Corollary 5.22 means that their method cannot
be applied in our case.

Even though no Σ-minimal characteristic zero deformations of ρ0 exist, we now show
that if one drops the ordinarity condition at p̄, it is possible to construct a reducible
(non-ordinary) deformation of ρ0 into GL2(O).

Proposition 5.24. There exists a unique deformation ρ : GΣ → GL2(O) of ρ0 of the
form

ρ ∼=
[
1 ∗

Ψ

]
.

The extension F (ρ)/F (Ψ) is unramified away from {p, p̄}.
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Proof. To show that a deformation of the desired form exists (and is unique up to strict
equivalence) it is enough to show that

H1(GΣ ,O(Ψ−1)) ∼= O (5.5)

as O-modules. Noting the equality of the Euler–Poincaré characteristics∑
i

(−1)i rkO(Hi(GΣ ,O(Ψ−1))) =
∑

i

(−1)i dimF (Hi(GΣ ,F (χ−1
0 )))

(see, for example, [26, Lemma A.1.8]), it follows from the global Euler characteristic
formula [24, Theorem 5.1] that

rkO(H1(GΣ ,O(Ψ−1))) � 1. (5.6)

On the other hand, uniqueness of ρ0 (Corollary 3.7) implies that

dimF (H1(GΣ ,O(Ψ−1))/�) � dimF (H1(GΣ ,F (Ψ−1))) = 1.

This, together with (5.6) and Nakayama’s lemma gives (5.5). Finally, note that Σ-admis-
sibility of χ0 forces F (ρ)/F (χ0) to be unramified away from {p, p̄}. �

Remark 5.25. The representation ρ in Proposition 5.24 is not ordinary. Indeed, if it
were ordinary the representation ρ|Dp̄

would have an unramified quotient. Since it clearly
has an unramified submodule, it would be split and thus the upper shoulder ∗ would
correspond to a non-Zp-torsion extension of F (Ψ) unramified away from p, which does
not exist by Proposition 5.21. On the other hand, ρ is nearly ordinary in the sense of
Tilouine (see, for example, Definition 3.1 of [43]) with respect to the upper-triangular
Borels at p and p̄. Since one has

ρ|Ip̄

∼=
[
1 ∗

ε|Ip̄

]
,

the representation ρ is, however, not de Rham.
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‘conjectures principales’, Publ. Math. IHES 71 (1990), 65–103.

24. J. S. Milne, Arithmetic duality theorems, 2nd edn (BookSurge, Charleston, SC, 2006).
25. T. Miyake, Modular forms (transl. from Japanese by Y. Maeda) (Springer, 1989).
26. B. Perrin-Riou, p-adic L-functions and p-adic representations (transl. from the 1995

French original by L. Schneps and revised by the author), Société Mathématique de
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