TWISTED ROOT NUMBERS AND RANKS OF
ABELIAN VARIETIES*

Maria Sabitova†

Department of Mathematics, CUNY Queens College,
65-30 Kissena Blvd., Flushing, NY 11367, USA

January 23, 2013

Abstract

We give a formula for the twisted root number $W(A, \tau)$ associated to an abelian variety A over a number field F and a complex representation τ of the absolute Galois group of F in the case when τ has a real-valued character and the conductors of A and τ are relatively prime. As an application we note that the results of E. Kobayashi for elliptic curves can be generalized to abelian varieties, namely, given the maximal abelian extension F^{ab} of F the rank of $A(F^{ab})$ is infinite provided that both the degree of F over \mathbb{Q} and the dimension of A are odd and the parity conjecture holds for A and all its quadratic twists.

2010 Mathematics Subject Classification: 11G10, 11F80, 11R32.

Introduction

Let A be an abelian variety over a number field F and let τ be a complex continuous finite-dimensional representation with real-valued character of the absolute Galois group $\text{Gal}(\overline{F}/F)$ of F, where \overline{F} denotes a fixed algebraic closure of F. Attached to A and τ there is the twisted root number $W(A, \tau)$, which we denote simply by $W(A)$ when τ is trivial. The root number is a sign in the conjectural functional equation for the L-function of A twisted by τ, and under our assumption on the character of τ it is equal to ± 1. Root numbers are often used for studying and

*Supported by NSF grant DMS-0901230 and by grant 64620-00 42 from The City University of New York PSC-CUNY Research Award Program.
†E-mail address: Maria.Sabitova@qc.cuny.edu
predicting facts about ranks of abelian varieties due to the parity conjecture, one
form of which asserts that

\[W(A, \chi) = (-1)^{\text{rank}_{\mathbb{Z}} A^\chi}, \quad (1) \]

where \(\chi \) is a one-dimensional representation of \(\text{Gal}(\overline{F}/F) \) of order two (a quadratic
character) and \(A^\chi \) is an abelian variety over \(F \) obtained from \(A \) by twisting by \(\chi \).

In this note we prove a formula for \(W(A, \tau) \) assuming that the conductors of \(A \) and \(\tau \) are relatively prime. It is a generalization of a well-known formula for elliptic
curves. We show that

\[W(A, \tau) = (\text{sign}(\det \tau))^g \cdot \det \tau(N) \cdot W(A)^{\dim \tau}, \quad (2) \]

where \(g \) is the dimension of \(A \) and \(N \) is the conductor of \(A \) (see Proposition 1
below). We also remark that (2) allows one to apply the proofs of E. Kobayashi’s
results for elliptic curves [K] to abelian varieties. More precisely, this implies that
if (1) holds for any \(\chi \), the degree of \(F \) over \(\mathbb{Q} \) is odd, and the dimension of \(A \) is
odd, then the rank of \(A(F^{ab}) \) is infinite. (Here \(F^{ab} \) denotes the maximal abelian
extension of \(F \) contained in \(\overline{F} \).) The idea of the proof is to use (2) to prove the
existence of infinitely many (linearly independent over \(\mathbb{F}_2 \) with respect to tensor
product) quadratic characters \(\chi \) satisfying \(W(A, \chi) = -1 \). The parity conjecture
applied to those \(\chi \) then gives points of infinite order on \(A(F^{ab}) \) and one is to show
that they are linearly independent (see Corollary 5 below for more detail). This
argument has restrictions imposed by the use of (1) and cannot be applied in general
when the degree of \(F \) over \(\mathbb{Q} \) or the dimension of \(A \) is even (see Remark 6 below).

The rank of \(A(F^{ab}) \) is expected to be infinite for an arbitrary number field \(F \)
and an abelian variety \(A \) over \(F \); it is a consequence of the conjecture that \(F^{ab} \) is
ample and the theorem stating that for an ample field \(F \) of zero characteristic and
an abelian variety \(A \) over \(F \) the rank of \(A(F) \) is infinite [FP].

Root numbers

We fix an algebraic closure \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \) and for a number field \(F \) by \(F^{ab} \) we denote the
maximal abelian extension of \(F \) contained in \(\overline{\mathbb{Q}} \).

Proposition 1. Let \(A \) be an abelian variety of dimension \(g \) over a number field
\(F \) and let \(N \) denote the conductor of \(A \). Let \(\tau \) be a complex continuous finite-
dimensional representation of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) with real-valued character and of con-
ductor \(f \). Assume that \(f \) is relatively prime to \(N \). Then

\[W(A, \tau) = (\text{sign}(\det \tau))^g \cdot \det \tau(N) \cdot W(A)^{\dim \tau}, \quad (3) \]

(cf. Prop. 10 on p. 337 in [R2]).
Proof. For each place v of F let F_v denote the completion of F with respect to v and let (τ_v) be the restriction of τ to the decomposition subgroup of $\text{Gal}(\overline{\mathbb{Q}}/F)$ at v. Let $W(A_v, \tau_v)$ be the local root number associated to $A_v = A \times F_v$ and τ_v. By definition

$$W(A, \tau) = \prod_v W(A_v, \tau_v),$$

where v runs through all the places of F. If $v = \infty$, then

$$W(A_v, \tau_v) = (-1)^{g \dim \tau} \text{ and hence } W(A_v) = (-1)^g$$

by Lemma 2.1 on p. 4272 in [S]. Suppose $v < \infty$ and let $m_v(A)$ be the exponent of N at v. Then (3) follows from (4) and Proposition 2 below together with

$$\text{sign}(\det \tau) = \prod_{v=\infty} \det \tau_v(-1) = \prod_{v<\infty} \det \tau_v(-1).$$

Q.E.D.

Proposition 2. Let ϖ_v denote a uniformizer of F_v and suppose that $\det \tau_v$ is considered as a multiplicative character of F_v^\times via the local class field theory. Then

$$W(A_v, \tau_v) = \det \tau_v(-1)^g \cdot \det \tau_v(\varpi_v)^{m_v(A)} \cdot W(A_v)^{\dim \tau}. \quad (5)$$

Proof. Note that $\det \tau_v(\varpi_v)^{m_v(A)}$ does not depend on the choice of ϖ_v, since τ_v is unramified whenever $m_v(A) \neq 0$. To prove (5) we first recall the definition of $W(A_v, \tau_v)$ (see e.g., [S] for more detail). For a rational prime l different from the residual characteristic of F_v, let $T_l(A_v)$ be the l-adic Tate module of A_v and let $V_l(A_v)^*$ denote the contragredient of $V_l(A_v) = T_l(A_v) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l$. Let $\sigma'_v = \sigma'_{v,A}$ denote a representation of the Weil–Deligne group $\mathcal{W}(\mathbb{F}_v/F_v)$ of F_v associated to $V_l(A_v)^*$ via the Deligne–Grothendieck construction (see e.g., [R1]). Then

$$W(A_v, \tau_v) = W(\sigma'_v \otimes \tau_v),$$

where τ_v is viewed as a representation of $\mathcal{W}(\mathbb{F}_v/F_v)$. Let ω_v denote the one-dimensional representation of the Weil group $\mathcal{W}(\mathbb{F}_v/F_v)$ of F_v given by

$$\omega_v|_{I_v} = 1, \quad \omega_v(\Phi_v) = q_v^{-1},$$

where I_v is the inertia subgroup of $\text{Gal}(\overline{F}_v/F_v)$, Φ_v is an inverse Frobenius element of $\text{Gal}(\overline{F}_v/F_v)$, and q_v is the cardinality of the residue field of F_v. By properties of root numbers

$$W(\sigma'_v \otimes \tau_v) = W(\sigma'_v \otimes \omega_v^{1/2} \otimes \tau_v),$$

where $\sigma'_v \otimes \omega_v^{1/2}$ is symplectic.
We now prove (5). Suppose \(v \) does not divide \(N \). Then \(A_v \) has good reduction over \(F_v \) and hence by the criterion of Néron–Ogg–Šafarevič \(\sigma'_v \) is actually a representation of \(\mathcal{W}(\overline{F}_v/F_v) \) trivial on \(I_v \). Since \(\sigma'_v \otimes \omega_v^{1/2} \) is symplectic, this implies that

\[
\sigma'_v \otimes \omega_v^{1/2} \cong \alpha \oplus \alpha^*
\]

for some representation \(\alpha \) of \(\mathcal{W}(\overline{F}_v/F_v) \). Thus, taking into account that \(\tau_v \) has finite image and real-valued character, \(\det \alpha(-1) = 1 \) (\(\alpha \) is unramified), and using (6) we have

\[
W(A_v, \tau_v) = W(\sigma'_v \otimes \omega_v^{1/2} \otimes \tau_v) = W(\alpha \otimes \tau_v)W((\alpha \otimes \tau_v)^*) = \det(\alpha \otimes \tau_v)(-1) = \det \alpha(-1)^{\dim \tau} \cdot \det \tau_v(-1)^{\dim \alpha} = \det \tau_v(-1)^{\dim \alpha}.
\]

Since \(\dim \alpha = g, m_v(A) = 0, and \)

\[
W(A_v) = W(\sigma'_v) = W(\sigma'_v \otimes \omega_v^{1/2}) = \det \alpha(-1) = 1,
\]

formula (7) implies (5).

Suppose \(v \) does not divide \(f \). Then \(\tau_v \) is unramified. Let \(V \) be a representation space of \(\tau_v \), let \(\sigma'_v = (\sigma_v, M) \), where \(\sigma_v \) is a representation of \(\mathcal{W}(\overline{F}_v/F_v) \) on a complex vector space \(W \) and \(M \) is a nilpotent endomorphism on \(W \). Denote \(U = W \otimes V \) and \(U^I_{M \otimes 1} = (\ker(M \otimes 1))^I \). By definition, we have

\[
W(\sigma'_v \otimes \tau_v) = W(\sigma_v \otimes \tau_v) \cdot \frac{\delta(\sigma'_v \otimes \tau_v)}{\delta(\sigma'_v \otimes \tau_v)},
\]

where \(\delta(\sigma'_v \otimes \tau_v) = \det \left(-\Phi_v \big|_{U^I_{M \otimes 1}} \right) \) (see [R1], §§11,12). Since \(\tau_v \) is an unramified representation of \(\mathcal{W}(\overline{F}_v/F_v) \), we have \(U^I_v \cong W^I_v \otimes V \) and \(U^I_{M \otimes 1} \cong W^I_{M \otimes 1} \otimes V \), where \(W^I_{M \otimes 1} = (\ker M)^I \). Hence,

\[
\delta(\sigma'_v \otimes \tau_v) = \det \left(-\Phi_v \big|_{W^I_v/W^I_{M \otimes 1}} \right)^{\dim \tau} \cdot \det(\Phi_v|_V)^{\dim W^I_v - \dim W^I_{M \otimes 1}} = \delta(\sigma'_v)^{\dim \tau} \cdot \det \tau_v(\varpi_v)^{\dim W^I_v - \dim W^I_{M \otimes 1}}.
\]

Also, since \(\tau_v \) is unramified and has finite image, for a nontrivial additive character \(\psi_v \) of \(F_v \) by (3.4.6) on p. 15 in [T] we have

\[
W(\sigma_v \otimes \tau_v) = W(\sigma_v)^{\dim \tau} \cdot \det \tau_v(\varpi_v)^{a(\sigma_v) + 2n(\psi_v)},
\]

where \(a(\sigma_v) \) is the exponent of the conductor of \(\sigma_v \) and \(n(\psi_v) \) is an integer. Putting (8), (9), and (10) together and taking into account that the determinant of \(\tau_v \) is \(\pm 1 \) (because \(\tau_v \) has finite image and real-valued character) as well as

\[
a(\sigma'_v) = a(\sigma_v) + \dim W^I_v - \dim W^I_{M \otimes 1},
\]

4
we get

\[W(\sigma_v' \otimes \tau_v) = W(\sigma_v')^{\dim \tau_v} \cdot \det \tau_v(\mathcal{W}_v)^a(\sigma_v'). \]

Since \(\det \tau_v(-1) = 1 \) and by definition \(W(\sigma_v') = W(A_v) \) and \(a(\sigma_v') = m_v(A) \), this implies (5).

Remark 3. In what follows by a quadratic character of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) we mean a one-dimensional (continuous) complex representation of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) of order 2.

Corollary 4. Let \(\chi \) be a quadratic character of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) of conductor relatively prime to \(N \). Then

\[W(A^\chi) = W(A, \chi) = (\text{sign}(\chi))^g \cdot \chi(N) \cdot W(A) \quad (11) \]

(cf. Cor. on p. 338 in [R2]).

The next corollary (Corollary 5 below) is a direct generalization to abelian varieties of a result by E. Kobayashi (Thm. 2 in [K]) for elliptic curves. Using (11), the proof of Corollary 5 is the same as in [K]. Since it is short, we reproduce it for the sake of completeness.

Corollary 5. Let \(A \) be an abelian variety of an odd dimension over a number field \(F \) of an odd degree over \(\mathbb{Q} \). Assuming the parity conjecture (1) for \(A \) and any quadratic character of \(\text{Gal}(\overline{\mathbb{Q}}/F) \), we have \(\text{rank}_{\mathbb{Z}} A(F^{ab}) = \infty \).

Proof. The first step is to show that there exist infinitely many quadratic characters \(\chi \) of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) such that \(W(A, \chi) = -1 \). The claim follows from (11) provided that one can show the existence of infinitely many quadratic characters \(\chi \) of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) such that the conductor of \(\chi \) is coprime with the conductor \(N \) of \(A \), \(\chi(N) = 1 \), and \(\text{sign}(\chi) = -W(A) \). We now repeat the proof in [K] (p. 298–299) of the latter claim. Let \(p_1, \ldots, p_r \) be all the prime ideals of the ring of integers of \(F \) dividing the conductor \(N \) of \(A \). Denote by \(p_1, \ldots, p_r \in \mathbb{Z} \) the primes lying below \(p_1, \ldots, p_r \), respectively, i.e., \(p_i \mathbb{Z} = p_i \cap \mathbb{Z} \), \(i \in \{1, \ldots, r\} \). Let \(l \in \mathbb{Z} \) be a prime satisfying

\[l \equiv \begin{cases}
1 \mod 4p_1p_2 \cdots p_r & \text{if } W(A) = -1, \\
-1 \mod 4p_1p_2 \cdots p_r & \text{if } W(A) = 1.
\end{cases} \]

In both cases there are infinitely many such \(l \) by the Dirichlet’s theorem on arithmetic progressions. Also, among those \(l \) we take the ones unramified in \(F \) (there are still infinitely many choices). Then

\[K = \mathbb{Q} \left(\sqrt{(-1)^{\frac{l-1}{2}}l} \right) \]

is a quadratic extension of \(\mathbb{Q} \) and each \(p_i \) splits in \(K \). Hence,

\[L = FK = F \left(\sqrt{(-1)^{\frac{l-1}{2}}l} \right) \]
is a quadratic extension of \(F \) (note that \(K \not\subseteq F \), since \(l \) is ramified in \(K \) and unramified in \(F \)) and each \(p_i \) splits in \(L \). Let \(\chi \) be the quadratic character of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) corresponding to \(L \), i.e., \(\chi \) is the quadratic character of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) with kernel \(\text{Gal}(\overline{\mathbb{Q}}/L) \). Since the decomposition subgroup of \(\text{Gal}(L/F) \) corresponding to each \(p_i \) is trivial, the conductor of \(\chi \) is coprime with the conductor \(N \) of \(A \) and \(\chi(N) = 1 \). Finally, one can check that

\[
\text{sign}(\chi) = (-1)^{r_0},
\]

where \(r_0 \) is the number of (infinite) real places of \(F \) that ramify in \(L \). In the first case (when \(l \equiv 1 \mod 4 \)) every real place of \(F \) is unramified in \(L \) and we have \(\text{sign}(\chi) = 1 \). In the second case (when \(l \equiv -1 \mod 4 \)) each real place of \(F \) ramifies in \(L \) and since the degree of \(F \) over \(\mathbb{Q} \) is odd, \(F \) has an odd number of real places, so that \(r_0 \) is odd and \(\text{sign}(\chi) = -1 \).

In [K] the author writes that the set \(\mathcal{G} \) of all quadratic characters \(\chi \) of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) satisfying \(W(A) = -1 \) together with the trivial representation of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) form an \(\mathbb{F}_2 \)-vector space (with respect to tensor product). This does not seem to be true if \(W(A) = 1 \). Indeed, let \(\chi_1, \chi_2 \in \mathcal{G} \) be two distinct quadratic characters with conductors coprime with the conductor \(N \) of \(A \). Then \(\chi_1 \otimes \chi_2 \) is not trivial with the conductor coprime with \(N \). Using (11), it is easy to check that

\[
W(A^{\chi_1 \otimes \chi_2}) = W(A^{\chi_1}) \cdot W(A^{\chi_2}) \cdot W(A),
\]

so that \(\chi_1 \otimes \chi_2 \not\in \mathcal{G} \) if \(W(A) = 1 \). However, as follows from the preceding paragraph there are still infinitely many linearly independent (over \(\mathbb{F}_2 \)) quadratic characters \(\chi \) satisfying \(W(A, \chi) = W(A^\chi) = -1 \). Let \(\chi_1, \chi_2, \ldots \in \mathcal{G} \) be linearly independent and let \(L_i \subset \overline{\mathbb{Q}} \) be the quadratic extension of \(F \) corresponding to \(\chi_i \), \(i \in \{1, 2, \ldots \} \). For any quadratic character \(\chi \) of \(\text{Gal}(\overline{\mathbb{Q}}/F) \) we assume the parity conjecture

\[
W(A, \chi) = (-1)^{\text{rank}_2 \chi^A(F)},
\]

so that for each \(\chi_i \) there is a point \(P_i \in \chi^A(F) \) of infinite order. Given the non-trivial element \(\sigma \) of \(\text{Gal}(L_i/F) \) we identify \(P_i \) with an element of the subgroup

\[
\{ P \in A(L_i) \mid \sigma(P) = -P \}
\]

via an isomorphism defining \(A^{\chi_i} \) as a twist of \(A \) by a quadratic character. Then, since \(P_i \) has an infinite order, one can easily check that \(m P_i \not\in A(K) \) for any \(m \in \mathbb{Z} \). Finally, one concludes that \(P_1, P_2, \ldots \) are linearly independent over \(\mathbb{Z} \), for otherwise there exists \(L_j \) contained in a compositum \(L_{i_1} L_{i_2} \cdots L_{i_k} \), \(j \not\in \{i_1, i_2, \ldots, i_k\} \). In other words, \(\chi_j \) is a non-trivial tensor product of some characters in \(\{\chi_1, \chi_2, \ldots\} \). This gives a contradiction and thus \(A(F^{ad}) \) is of infinite rank.

\[\square \]

Remark 6. If \(g \) is even, then there are examples of abelian varieties such that \(W(A) = 1 \) and \(W(A^\chi) = 1 \) for any quadratic character \(\chi \) of \(\text{Gal}(\overline{\mathbb{Q}}/F) \), so that the
proof of Corollary 5 cannot be applied. For example, we can take \(A = E \times E \), a product of two elliptic curves. Then \(\sigma'_{v,A} = \sigma'_{v,E} \oplus \sigma'_{v,E} \) for each place \(v \) of \(F \), so that \(W(A) = W(E)^2 = 1 \) and \(W(A^\chi) = W(E, \chi)^2 = 1 \). Similarly, if \(F \) is of even degree. For example, let \(F \) be an imaginary quadratic field such that there exists an elliptic curve \(E \) over \(F \) with good reduction everywhere. Then \(W(E^\chi) = 1 \) for every quadratic character \(\chi \) of \(\text{Gal}(\mathbb{Q}/F) \). However, under an additional assumption \(W(A) = -1 \) Corollary 5 remains true for a number field \(F \) of an even degree over \(\mathbb{Q} \). Indeed, in the notation of the proof of Corollary 5 above one can take primes \(l \in \mathbb{Z} \) unramified in \(F \) satisfying \(l \equiv -1 \mod 4p_1p_2\cdots p_r \). Then \(\text{sign}(\chi) = 1 \) and the rest of the proof does not depend on the degree of \(F \) and carries over. In particular, each \(p_i \) still splits in \(L \) and \(W(A^\chi) = -1 \) by (11).

References

