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IS IT HARDER TO FACTOR A POLYNOMIAL OR TO FIND A
ROOT?

RUSSELL MILLER

Abstract. For a computable field F , the splitting set S is the set of poly-

nomials p(X) ∈ F [X] which factor over F , and the root set R is the set of
polynomials with roots in F . Work by Frohlich and Shepherdson essentially

showed these two sets to be Turing-equivalent, surprising many mathemati-

cians, since it is not obvious how to compute S from R. We apply other
standard reducibilities from computability theory, along with a healthy dose

of Galois theory, to compare the complexity of these two sets. We show, in

contrast to the Turing equivalence, that for algebraic fields the root set has
slightly higher complexity: both are computably enumerable, and computable

algebraic fields always have S ≤1 R, but it is possible to make R 6≤m S. So

the root set may be viewed as being more difficult than the splitting set to
compute.

1. Introduction

Let F be any field, and p(X) any polynomial with coefficients in F . Two basic
questions can immediately be asked. First, does p(X) factor in the polynomial ring
F [X]? (We ignore constant factors, of course.) Second, does p(X) have a root in
the field F?

Mathematicians often have conflicting instincts about which of these questions is
easier. Plugging an element r into p(X) to check whether p(r) = 0 seems easier than
multiplying together two polynomials f(X) and g(X) to check whether f · g = p,
and so a blind search for roots will go faster than a blind search for factorizations.
On this basis, the second question seems “easier.” On the other hand, for most
fields F , more polynomials will have factorizations than will have roots (aside from
the trivial case of linear polynomials). A search for an arbitrary factorization has
more possible answers than a search for a factorization in which one factor is linear,
and so positive answers are more “easily” found for the first question. Of course,
this reaction is soon tempered by the realization that therefore, negative answers
are more easily found for the second question, blurring one’s instincts about which
question is easier.

In a field F , these questions are essentially the inductive steps in two larger
processes: (1) factoring p(X) into its irreducible factors in F [X]; and (2) finding
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all roots of p(X) in F . A full factorization of p(X) in F [X] clearly determines the
roots of p(X) in F , whereas knowledge of all the roots of p(X) is often insufficient
to determine all its irreducible factors. Thus, most mathematicians eventually
agree that factorizability is the more difficult question: if one knows how to factor
arbitrary polynomials, one can readily determine which polynomials have roots,
whereas the converse seems false. Of course, to determine the existence of roots of
p(X), one must check not only whether p(X) can be factored, but also whether its
factors can be factored, and so on down to linear factors. So one may have to ask
about factorizability many times, for different polynomials, in order to get a single
answer about roots.

In computability theory, several reducibilities are widely used to compare the
complexity of sets of natural numbers. Turing-reducibility is the best known of
these, but 1-reducibility, m-reducibility, several types of truth-table reducibility,
and assorted other methods are also well known and often applied. Some of these
are strictly finer than others: for instance, 1-reducibility implies m-reducibility,
which implies Turing reducibility, but both converse implications fail. We give ex-
act definitions below for certain of these notions, and then use them to compare
the problem of factoring an arbitrary polynomial p(X) within a computable field F
with the problem of finding a root of p(X) in F . It has been known since the work
of Frohlich and Shepherdson in [5] that these two problems are Turing-equivalent,
which was already a surprise to many mathematicians: it means that, knowing
which polynomials in F [X] have roots, we can determine whether an arbitrary
polynomial is reducible in F [X] (and conversely, as described above). In this paper
we review these results and then go further, showing that for algebraic fields the two
problems are not always 1-equivalent, nor even m-equivalent. However, they are
comparable under 1-reducibility, and the further surprise is that the reduction con-
tradicts the mathematician’s intuition: the factorization problem for a computable
algebraic field is 1-reducible to the root problem, but the root problem may fail
even to be m-reducible to the factorization problem.

Definitions are necessary before going further. We will need an assortment of
results, both standard and advanced, about Galois theory and hilbertian fields,
and these will be stated and considered in Section 2. Right now we give rigorous
definitions for our basic object, a computable field; for our basic problems of whether
polynomials split into factors and/or have roots; and for the reducibilities we will
apply to these problems.

Definition 1.1. A computable field F consists of two computable functions f and
g from ω× ω into ω, such that ω forms a field under these functions, with f as the
addition and g as the multiplication. We may also refer to this F as a computable
presentation of the isomorphism type of F .

When dealing with positive characteristic, we usually allow ω to be replaced by
any finite subset of itself, so as to allow finite fields in our definition.

A function is computable if it can be computed by a Turing machine – which is
to say, according to a finite program of instructions. As always in logic, ω denotes
the set of natural numbers, beginning with 0. (Hence every computable field is
countable.) Here f and g must be total functions, i.e. on every input 〈m,n〉 ∈ ω2,
their programs must eventually halt and give the correct outputs m+ n and m · n
under the field operations. This is obviously necessary in order for us to say that
f and g “compute” the field addition and multiplication; we remark it mainly
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because computability theory also considers partial computable functions, which
are also computed according to finite programs, but which allow the domain to be
a subset of the natural numbers, since the program may not halt on every input.
The Halting Problem is the question of whether a given program will halt on a
given input; since this is (famously) unsolvable, it is more natural to consider all
programs and allow “computable functions” to be partial. The term strictly partial
refers to partial functions which are not total.

For computable fields, [16] gives a good survey of results, and [9] is useful as a
basic introduction. For more general questions about computability theory, we sug-
gest [15], the canonical reference, and also [14], which both give good explanations
of the reducibilities we will use in this paper.

Definition 1.2. Let A and B be subsets of ω.

(a) A is m-reducible to B, written A ≤m B, if there exists a total computable
function h such that

n ∈ A ⇐⇒ h(n) ∈ B

for every n ∈ ω. (This h is called an m-reduction of A to B.)
(b) Likewise, A is 1-reducible to B, written A ≤1 B, if the computable function

h in part (a) may be taken to be one-to-one.
(c) A is Turing-reducible to B, written A ≤T B, if there exists an oracle Turing

machine Φ, as described below, such that

ΦB(n) = χA(n)

for every n ∈ ω, where χA is the characteristic function of A.

We write A ≡m B to indicate that both A ≤m B and B ≤m A; likewise for A ≡1 B
and A ≡T B. In these cases A and B are m-equivalent, 1-equivalent, and Turing-
equivalent, respectively. A Turing degree is an equivalence class of sets under ≡T .

The oracle Turing machine ΦB also runs according to a finite program, but
is allowed to ask questions of the form “is m in B?” and to execute different
instructions depending on whether the answer is yes or no. We refer to B as the
oracle, and think of this as saying that if we were able to compute membership
in B, then we could use that ability to compute membership in A as well. Thus
A is no harder than B to compute, assuming that we are allowed to ask as many
questions as we like about membership of different numbers in B. On the other
hand, m-reducibility restricts us to a single question about membership of one
particular number f(n) in B, and requires that answer to be the correct answer
about membership of n in A as well. (As an example, the reader could consider
whether a given A need be either Turing-reducible or m-reducible to its complement
ω −A.)

Occasionally we will give a function f : ω → ω, rather than a subset B ⊆ ω, as
an oracle. When this is the case, we mean the oracle to be the graph of f , viewed
as a subset of ω×ω, under a bijective computable coding between ω×ω and ω. A
moment’s reflection should make this seem reasonable.

Definition 1.3. The splitting set SF for a field F is the set of reducible polynomials
in F [X], i.e. products of two nonconstant factors there. The root set RF of F is
{p(X) ∈ F [X] : (∃a ∈ F )p(a) = 0}.
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Both these sets are computably enumerable (or c.e.), being defined by existential
formulas. Each may therefore be viewed as the range of a computable enumeration,
that is, of a total computable function.

Throughout the literature on computable fields, the phrase “F has a splitting
algorithm” is used to mean that F has a computable splitting set: the characteristic
function of SF is computable. In this paper we will be concerned with the Turing
degree of the splitting set, not just with its computability, so we follow [11] and
use the new term to avoid conflict with the existing one. Likewise, F has a root
algorithm if its root set is computable.

Notice also that in the traditional terminology “splitting algorithm,” and in our
adaptation, a polynomial is said to split in F [X] is it has any proper factorization
there; it is not necessary for it to split into linear factors in F [X]. Nevertheless,
we will also retain the traditional meaning of the term splitting field : the smallest
field over which the polynomial splits into linear factors. Minimal fields over which
the polynomial is reducible will be called symmetric subfields of the splitting field,
with Lemma 2.12 as justification.

With SF as an oracle, one can decompose any polynomial p(X) ∈ F [X] into its
irreducible components in F [X]: if p(X) is not itself irreducible, then we simply
search through pairs of elements of F [X] until we find a factorization, and continue
by induction on the degree of p(X). Likewise, with RF as an oracle, one can find all
roots in F of an arbitrary p(X): if RF indicates that p(X) has a root in F , search
through F for such a root r, and then continue inductively on the polynomial
p(X)
X−r ∈ F [X].

2. Known Results on Computable Fields

Any discussion of computable fields of characteristic 0 should begin with the
question of a splitting algorithm for Q.

It is not obvious that Q must have a splitting algorithm, but Kronecker provided
one. It works for every computable presentation of Q, since Q is a computably
categorical field. In fact, Kronecker showed that every finitely generated extension
of Q has a splitting algorithm, using the following theorem. Since the original
paper dates to 1882, the reader may prefer to see the more recent version in [1],
or Lemmas 17.3 and 17.5 of [2]. Part (c) is an obvious relativization of the proofs
there.

Theorem 2.1 (Kronecker [7]). (a) Q has a splitting algorithm.
(b) Let L be a c.e. subfield of a computable field K. If L has a splitting algo-

rithm, then for any x ∈ K transcendental over L, L(x) also has a splitting
algorithm. When x ∈ K is algebraic over L, again L(x) has a splitting
algorithm, which requires knowledge of the minimal polynomial of x over
L.

(c) More generally, for any c.e. subfield L of a computable field K and any x ∈
K transcendental over L, the splitting set of L(x) is Turing-equivalent to the
splitting set for L, via reductions uniform in x. Also, if x ∈ K is algebraic
over L, L(x) and L have Turing-equivalent splitting sets, uniformly in x
and the minimal polynomial of x over L.
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The algorithms for algebraic and transcendental extensions are different, so it is
essential to know whether x is algebraic. If it is, then from the splitting set for L
one can determine its minimal polynomial. This yields the following.

Lemma 2.2. For every computable field F algebraic over its prime subfield P , there
is a computable function which accepts as input any finite tuple ~x = 〈x1, . . . , xn〉
of elements of F and outputs an algorithm for computing the splitting set for the
subfield P [~x] of F . (We therefore say that the splitting set of P [~x] is computable
uniformly in ~x.)

Proof. Clearly there are splitting algorithms for all finite fields, just by checking
all possible factorizations. (So in fact there is a single algorithm which works in all
positive characteristics.) In characteristic 0, one can readily compute the unique
isomorphism onto the prime subfield P of F from the computable presentation of Q
for which Kronecker’s splitting algorithm works, and this computable isomorphism
allows us to compute the splitting set of P . The lemma then follows by induction
on the size of the tuple ~x = 〈x1, . . . , xn〉, using part (b) of Theorem 2.1. Since our
F is algebraic over P , we may simply search for a polynomial p(X) with root xn
and coefficients in P [x0, . . . , xn−1], and then factor it, using the splitting algorithm
for P [x0, . . . , xn−1] (by inductive hypothesis), until we have found the minimal
polynomial of xn over P [x0, . . . , xn−1]. �

These splitting algorithms also allow us to compute the Galois groups of the
corresponding fields. A proof appears in [11].

Lemma 2.3. Let Q be any computable presentation of the algebraic closure of
the field of rational numbers. There is an algorithm which accepts any finite tuple
〈x0, . . . , xn〉 of elements of Q and computes the automorphism group G of the field
F = Q[~x] – that is, the Galois group of F over Q. Specifically, the algorithm
computes both the cardinality and the characteristic function of {〈y0, . . . , yn〉 ∈
Fn+1 : (∃σ ∈ G)(∀i ≤ n)σ(xi) = yi}.

Therefore, if Q ⊆ E ⊆ F are finite field extensions within Q, we can compute
Gal(F/E) uniformly in finite generating sets for E and F over Q, by computing
Gal(F/Q) and checking which of its elements fix every generator of E.

We will also require Rabin’s Theorem. To begin with, we give his name to the
type of field embedding he considered.

Definition 2.4. Let F and E be computable fields. A function g : F → E is a
Rabin embedding if:

• g is a homomorphism of fields; and
• E is both algebraically closed and algebraic over the image of g; and
• g is a computable function.

Theorem 2.5 (Rabin [13]). Let F be any computable field.
(1) There exists a computable algebraically closed field F with a Rabin embed-

ding of F into F .
(2) For every Rabin embedding g of F (into any computable ACF E), the image

of g is a computable subset of E iff F has a splitting algorithm.

The following result had been proven by Frohlich and Shepherdson in [5] four
years before Rabin’s work, which provided a much simpler proof. (In fact, [5] and
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[13] both consider only the Turing degree 0, but their proofs relativize to other
degrees.) It shows that under Turing reducibility, the splitting set and the root
set of a field have the same degree of complexity, thus giving one answer to the
basic question of this paper. Our work in Sections 3 and 4 will examine these sets
under the finer notion of 1-reducibility – largely because this corollary contradicts
the instincts of many mathematicians!

Corollary 2.6. For any computable field F , the following are Turing equivalent:
(i.) the image g(F ) of F under any Rabin embedding g;
(ii.) the splitting set SF of F ;
(iii.) the root set RF of F ;
(iv.) the root function of F , i.e. the function with domain F [X] which computes

the number of distinct roots in F of any p(X) ∈ F [X];
(v.) the root multiplicity function of F , i.e. the function with domain F [X]

which computes the number of roots in F , counted by multiplicity, of any
p(X) ∈ F [X].

Proof. (i) and (ii) are Turing equivalent by Rabin’s Theorem, the proof of which
easily relativizes to the splitting set, or to the image g(F ), when either is not
computable. Using an SF -oracle, we may readily check whether any irreducible
factor of a given p(X) is linear, thereby computingRF . FromRF , we may determine
whether a given p(X) has a root and, if so, find such a root r ∈ F and repeat
the process for p(X)

X−r until there are no more roots, thereby computing the root
function. The root function and the root multiplicity function are quickly seen to
compute each other. It is possible to compute the splitting set from the root function
using symmetric polynomials, as shown in [5], but we give a direct computation of
g(F ) instead, based on Rabin’s proof of his theorem. Given a Rabin embedding
g : F ↪→ E and any x ∈ E, find any polynomial p(X) ∈ F [X] such that p(x) = 0,
where p ∈ E[X] is the image of p under the map g on its coefficents. With a root
function for F , we may find all the roots r0, . . . , rn of p in F . Then x ∈ g(F ) iff
(∃i ≤ n)x = g(ri). �

Rabin’s Theorem suggests that we may view a computable field as a computably
enumerable subfield of its (computable) algebraic closure, using a computable iso-
morphism, namely the Rabin embedding. The converse is readily seen as well.

Lemma 2.7. Let E be a computable field, and F any subfield of E which is com-
putably enumerable (as a subset of the domain ω of E). Then F is computably
isomorphic to a computable field F ′.

Proof. Fix a computable enumeration {x0, x1, . . .} of the subfield F . F ′ has domain
ω, of course, and we define addition on F ′ by:

m+ n = p ⇐⇒ xm + xn = xp in E

and multiplication similarly. Clearly F ′ is a computable field, with a computable
isomorphism onto F given by n 7→ xn. We sometimes speak of F ′ as the pullback
of F to ω. In positive characteristic, if F happens to be a finite subfield, the same
construction works, with the domain of F ′ now being {0, 1, . . . , |F | − 1}. �

Lemma 2.8. For any single computable presentation of the algebraic closure Q,
there is an algorithm which accepts as input any finite subsets {x0, . . . , xm} and
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{y0, . . . , yn} of Q, and decides whether Q[~x] ⊆ Q[~y] or not. (Consequently, there is
also an algorithm for deciding equality of these subfields.)

Proof. By Theorems 2.1 and 2.5, Q[~y] is computable, uniformly in ~y, so we simply
check whether (∀i ≤ m)xi ∈ Q[~y]. �

In this paper we will be concerned only with algebraic fields. Since the second
part of the following definition is not standard, we state it here:

Definition 2.9. If F ⊆ E are fields, then E is algebraic over F if every x ∈ E is
algebraic over F , i.e. is a root of some p(X) ∈ F [X]. When F is the prime subfield
of E, we simply call E an algebraic field.

Thus the algebraic fields are precisely the subfields of the algebraically closed
fields Q and Z/pZ. Elements of Q are traditionally called algebraic numbers, but,
by a longstanding and widely used definition, an algebraic number field is a finite
algebraic extension of Q, not an infinite one. Thus Q itself is a field of algebraic
numbers, but not an algebraic number field. We reiterate here that for us, every
algebraic extension of either Q or Z/pZ, whether finite or infinite, will be called an
algebraic field.

The following are standard results in field theory; see for instance [6], p. 215,
Thm. 4.2 and Lemma 4.14.

Lemma 2.10. If F ⊆ E ⊆ K are finite field extensions, then their indices satisfy
[K : F ] = [K : E] · [E : F ]. Hence if E1 and E2 are finite extensions of F within a
larger field, and [E1 : F ] is relatively prime to [E2 : F ], then E1 ∩ E2 = F .

Lemma 2.11. In a finite normal algebraic extension F ⊆ L, |Gal(L/F )| = [L : F ]
and each root in L of an irreducible p(X) ∈ F [X] can be mapped to each other root
of p(X) in L by an element of Gal(L/F ). In fact, p(X) is irreducible in F [X] iff
the Galois group of the splitting field of p(X) over F acts transitively on the roots
of p(X).

Recall that the elementary symmetric polynomials in {X1, . . . , Xm} over F are
by definition the polynomials

sk(X1, . . . , Xm) =
∑

1≤i1<···<ik≤m

Xi1Xi2 · · ·Xik (for 1 ≤ k ≤ m).

The symmetric polynomials are the elements of F [s1, . . . , sm]; they include precisely
those polynomials in F [X1, . . . , Xm] invariant under permutations of the variables.

Lemma 2.12. Let p(X) ∈ F [X] be a polynomial over a field F , and let F ⊆ E
be a field extension. Let E be the algebraic closure of E, and A the set of roots of
p(X) in E. Assume that every root of p(X) is a simple root, i.e. of multiplicity 1.
Then the following are equivalent.

(1) p(X) is reducible in E[X].
(2) There exists I = {x1, . . . , xm} with ∅ ( I ( A such that every symmetric

polynomial h ∈ F [X1, . . . , Xm] has h(x1, . . . , xm) ∈ E.
(3) There exists I = {x1, . . . , xm} with ∅ ( I ( A such that every elementary

symmetric polynomial h ∈ F [X1, . . . , Xm] has h(x1, . . . , xm) ∈ E.

Proof. The elementary symmetric polynomials in I are the coefficients (up to sign)
of the polynomial Πx∈I(X − x), so if they all lie in E, then this is a proper factor



8 RUSSELL MILLER

of p(X) in E[X]. Thus (3) implies (1). Conversely, if q(X) ∈ E[X] is any proper
factor of p(X), let I be the set of roots of q(X) in E. These are all simple roots
of p(X), hence of q(X), so the coefficients of q(X) are (up to sign) the elementary
symmetric polynomials in this I, and they all lie in E. The equivalence of (2) and
(3) is clear. �

Lemma 2.13. With F , E, p(X), and A as in Lemma 2.12, let I ⊆ A and J = A−I.
Then the elementary symmetric polynomials in I generate the same subfield LI of
E as do the elementary symmetric polynomials in J .

Proof. The polynomial qI(X) = Πr∈I(X − r) lies in LI [X], so LI [X] also contains
the quotient p(X)

qI(X) = Πr∈J(X−r), whose coefficients are the elementary symmetric
polynomials in J . The reverse inclusion likewise holds. �

We will also need the following, which can be found in many sources, including
Section 6.10 of [17].

Theorem 2.14 (Theorem of the Primitive Element). Every finite separable alge-
braic extension F ⊆ E is a simple extension. That is, there exists z ∈ E such that
E = F [z].

Indeed, algorithms for finding this z were known to Kronecker; for a modern
treatment, see Lemma 17.12 of [2].

The remaining theorem we will need from field theory requires nontrivial Galois-
theoretic results, for which we recommend the book [18] by Völklein. The author
is grateful to Kevin Keating for pointing out these results and explaining how they
combine to yield the theorem.

Theorem 2.15. Let E be any finite algebraic extension of Q, and fix any positive
integer d. Then there exists a polynomial q(X) ∈ E[X] of degree d such that the
splitting field of q(X) over E has Galois group Sd, the symmetric group on the roots
of q(X).

Proof. Keating showed how to prove this theorem from a series of results in [18],
as follows. A field K is hilbertian if for every polynomial f(X,Y ) in K[X,Y ] which
is irreducible over K(X) as a polynomial in Y , there exist infinitely many b ∈ K
such that the polynomial f(b, Y ) is irreducible in K[Y ]. (Corollary 1.8 in [18] gives
two other equivalent conditions.) Hilbert’s Irreducibility Theorem states that the
rational numbers have this property.

Theorem 2.16 (Hilbert; Thm. 1.23 in [18]). The field Q is hilbertian.

It then follows that the E in our theorem is hilbertian:

Lemma 2.17 (Corollary 1.11 in [18]). Every finitely generated extension (either
algebraic or transcendental) of a hilbertian field is hilbertian.

Lemma 2.18 (Example 1.17 in [18]). For all fields K and all n > 0, the symmetric
group Sd occurs as a Galois group over the rational function field K(X1, . . . , Xn).

Lemma 2.19 (Thm. 1.13 in [18]). If K is hilbertian and a finite group G occurs
as a Galois group over some K(X1, . . . , Xn), then G also occurs as a Galois group
over K.
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Since our field E is hilbertian, there must exist a Galois extension E ⊆ L with
Galois group G = Gal(L/E) ∼= Sd. Theorem 4.7 of [6] shows that L is the splitting
field for some polynomial in E[X], but our theorem requires that polynomial to
have degree d. For each element σ ∈ G, let σ be the corresponding permutation of
{1, . . . , d}. Let L1 ⊆ L be the subfield fixed pointwise by the subgroup

G1 = {σ ∈ G : σ(1) = 1}

and let r1 ∈ L1 be a primitive generator of L1 over E, as given by Theorem 2.14.
Now for any σ, τ ∈ G,

σ(r1) = τ(r1) ⇐⇒ σ−1 ◦ τ ∈ G1 ⇐⇒ σ(1) = τ(1).

The polynomial q(X) ∈ E[X] required by the theorem will be the minimal polyno-
mial of r1 over E. Since L is normal over E, Lemma 2.11 shows that the conjugates
of r1 over E are precisely the images σ(r1) with σ ∈ G, and since |G/G1| = d, there
are exactly d of them, say r1, . . . , rd. Since E is separable, q(X) must have degree
d. A similar analysis for the other roots rj shows the action of G on {r1, . . . , rd} to
be precisely the action of Sd on {1, . . . , d}. But each σ ∈ G is determined by the
action of σ on {1, . . . , d}, so the roots {r1, . . . , rd} must generate all of L over E.
Thus L is the splitting field of q(X) over E, proving Theorem 2.15. �

3. 1-Reducibility

In this section we give our positive result: uniform 1-reducibility of the splitting
set of an algebraic field to its root set.

Theorem 3.1. For every computable algebraic field F with splitting set S and root
set R, in any characteristic, we have S ≤1 R, via a computable function ϕ whose
index is computable from the indices for addition and multiplication in F .

Proof. Begin by fixing a Rabin embedding g of F into a computable field which we
will call F . For simplicity we will view the image g(F ) as F itself, a computably
enumerable subfield within F . Since g is computable, g−1 is also computable; g−1

is partial, of course, but we will only need to apply g−1 to elements already known
to lie in the image of g.

Fix a computable enumeration {p0(X), p1(X), . . .} of the polynomial ring F [X].
We define ϕ(pe) for each e = 0, 1, . . . in order, according to the following com-
putable process. Given e, first find an s such that all coefficients of pe(X) lie in
{0, 1, . . . , s}. We will write Fs for the computably enumerable subfield of F gener-
ated by {0, . . . , s}. Thus Fs is a finite algebraic extension of the prime field P of F .
By Lemma 2.2, we have a splitting algorithm for Fs, uniformly in s, and so we can
check whether pe(X) splits over Fs. If it does, then we immediately define ϕ(pe) to
be the polynomial (X− t), where t is the first element in the enumeration of F such
that (X − t) /∈ {ϕ(p0), . . . , ϕ(pe−1)}. In this case clearly pe ∈ S and ϕ(pe) ∈ R.

Assuming that pe(X) is irreducible over Fs, therefore, let d be its degree, and
find all the roots r1, . . . , rd of p(X) in the algebraically closed field F . (Being a
finite algebraic extension of its prime field, Fs is perfect, so these roots are all simple
and distinct.) Let G be the Galois group of the splitting field K ⊂ F of p(X) over
Fs, viewed as a group of permutations of the set A = {r1, . . . , rd}. For each I ⊆ A,
let KI ⊆ K be the subfield generated by the coefficients of the polynomial

Πr∈I (X − r),
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i.e. by the elementary symmetric polynomials in the elements of I. Lemma 2.2
yields splitting algorithms for K and for each KI , uniformly in e and I, each of
these is a computable subfield of F .

By Theorem 2.14, there must exist a single element xI for each I ⊆ A, such
that KI = Fs[xI ]. We search for such elements, and eventually, for each I, we find
one and recognize it, since it must lie in KI and generate the finite generating set
of KI . Using the splitting algorithm for Fs, we may find the minimal polynomial
qI(X) ∈ Fs[X] of each xI . Define q(X) to be the product of these polynomials, for
all nontrivial I:

q(X) = Π∅(I(A qI(X)

Fix the least k > 0 such that (q(X))k /∈ {ϕ(p0), . . . , ϕ(pe−1)}, and set ϕ(pe) =
(q(X))k. (Thus we ensure that ϕ remains one-to-one, by checking against all pre-
vious values of ϕ.)

Now we claim that the polynomial ϕ(pe) has a root in F iff pe(X) itself factors
over F . First, suppose that ϕ(pe) has a root x ∈ F . Then for some nonempty I ( A
we have qI(x) = 0. Now x ∈ K, since the splitting field K is normal over Fs, and
so Fs[x] is a subfield of K, and is isomorphic to Fs[xI ] since qI(X) was irreducible
over Fs. By Lemma 2.11, some ρ in the Galois group of qI over Fs must have
ρ(xI) = x, and this ρ must extend to an element ρ ∈ G since K is normal. Since
the elementary symmetric polynomials in I generate KI , we see that all elementary
symmetric polynomials in ρ(I) = {ρ(r) : r ∈ I} lie in the image ρ(KI) and generate
this image. Therefore the coefficients of the polynomial

pρ(X) = Πr∈I(X − ρ(r))

all lie in ρ(KI). But ρ(KI) is generated by x over Fs, and x ∈ F by assumption,
so ρ(KI) ⊆ F , and thus pρ(X) ∈ F [X]. Since ρ ∈ G must map roots of pe to roots
of pe, and since ∅ ( I ( A, this pρ(X) is a proper factor of pe(X) within F [X].

Conversely, suppose that pe(X) has some proper factor in F [X]. Since pe(X) =
Πr∈A(X − r) in F [X], we may write this factor as

pI(X) = Πr∈I(X − r)

for some nonempty I ( A, and the coefficients of pI(X) are precisely the elementary
symmetric polynomials in I. So all these coefficients lie in F . But the subfield KI

is generated by these polynomials, and since xI ∈ KI , we must have xI ∈ F .
Therefore ϕ(pe) has a root in F , completing the proof that ϕ is a 1-reduction from
S to R.

Finally, the claim about computability of an index of ϕ follows from a careful
reading of the above proof: the only information about F necessary for the con-
struction of ϕ was the ability to add and multiply elements of F . With indices for
the addition and multiplication functions in F , we can build the field F and the
Rabin embedding g, enumerate F [X], and perform all the steps required by the
program we gave for computing ϕ(pe). Computability theorists therefore say that
ϕ is given uniformly in the computable algebraic field F : from the field operations
in F we can figure out the program for computing ϕ. If this notion is new to the
reader, the beginning of the next section will help explain it. �

The foregoing proof generalizes to any computable extension of Q for which we
have a computable transcendence basis.
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Corollary 3.2. Let F be a computable field of characteristic 0 with a computably
enumerable transcendence basis. Then SF ≤1 RF , and the reduction is uniform in
F and an enumeration of the transcendence basis.

Proof. Let B = {b0, b1, . . .} enumerate a transcendence basis. Rabin’s Theorem
still applies, and the image of B in F is a c.e. transcendence basis for F . Take
F0 = P (B), the (purely transcendental) extension of the prime subfield P by B.
This F0 is still c.e. within F , and has a splitting algorithm, since the coefficients of
any p(X) ∈ F0[X] eventually all appear in some P (b0, . . . , bn), for which Theorem
2.1 provides a splitting algorithm. Let Fs = F0[0, . . . , s], and proceed with the
reduction described in the proof of Theorem 3.1. �

In fact, in a computable field, any c.e. transcendence basis is computable, since
we can find the minimal polynomial of an arbitrary element x over the c.e. tran-
scendence basis and use it to check whether x is in the basis.

4. 1-Nonreducibility

As a warm-up for the principal negative result of this paper: we prove first that
there is no uniform m-reduction of splitting sets to root sets. Here we will use
the standard enumeration ϕ0, ϕ1, . . . of all partial computable functions by their
programs; see for instance [15, I.3.1]. We claim that if ψ is a partial computable
function, then there exist some a and b such that ϕa and ϕb define the addition and
multiplication in some computable algebraic field F , yet ψ(a, b) either diverges or
converges to a value e such that ϕe is not an m-reduction from RF to SF . In fact,
in Theorem 4.2 below we will build a single computable field F for which there is
no such m-reduction at all, thereby generalizing Proposition 4.1 and showing the
failure of the reverse reduction from Theorem 3.1. However, this proposition gives a
useful introduction, in a simpler context, to the techniques we will use in Theorem
4.2.

Proposition 4.1. For computable algebraic fields F , there is no m-reduction uni-
form in F from the root set RF to the splitting set SF .

Proof. The key to this result is the Recursion Theorem, presented in most standard
computability textbooks, including [15], where it appears as Theorem II.3.1. It
allows us to take an arbitrary computable function ψ and run it on the indices a
and b for addition and multiplication in the field that we construct below. The
construction itself requires waiting for ψ(a, b) to converge, and therefore appears
circular, but the circularity is removed by application of the Recursion Theorem
(or more precisely, by Smullyan’s Double Recursion Theorem, item II.3.15 in [15]).

Fixing ψ, we define our field F as follows. First build a computable copy F0 of the
rationals themselves. We define the polynomial q(X) = X5 −X − 1 ∈ F0[X]. Now
our programs ϕa and ϕb simply wait for ψ(a, b) to converge. If it never converges,
then we never add any more elements to F0; in this case F = F0. If it does converge,
say to a value e, then we run the e-th program ϕe on input q(X), and wait for it to
converge. If this computation never converges, then again F = F0. In both these
cases ψ fails to produce the index for an m-reduction of RF to SF . (Technically,
we actually build F by adding only finitely many elements of F0 to F at a time;
thus, if ψ(a, b) never converges, the domain of F will be ω, whereas if ψ(a, b) does
eventually converge, we still have cofinitely many domain elements available on
which to change our strategy as described below.)
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If we find a stage s such that ψ(a, b)↓= e and also ϕe(q(X)) converges to some
polynomial p(X) ∈ F0[X], all within s steps, then ψ thinks that ϕe is an m-
reduction for F , and therefore thinks that q(X) ∈ RF iff p(X) ∈ SF . If we left F
equal to F0, this might be the case, so when convergence occurs, we act to ensure
that it is false.

Let A = {r1, . . . , r5} be the set of roots of q(X) in a fixed computable presenta-
tion Q ⊃ F0 of the algebraic closure of Q. First we find these five roots and let K
be the field they generate. This K has a splitting algorithm and is a computable
subfield of Q, by Rabin’s Theorem. It is shown in [17, Section 8.10] that q(X) is
irreducible over Q and that the Galois group Gal(K/F0) is S5, the symmetric group
on A. (This is why we chose this q.)

We also have the polynomial p(X) ∈ F0[X] produced by ϕe. Let n be its degree,
and use the splitting algorithm for F0 to determine whether it is reducible over F0.
If so, then we leave F = F0, since then q(X) /∈ RF but p(X) ∈ SF . Also, if p(X)
is a linear or constant polynomial, then it can never factor, so we set F = F0[r1],
thus putting q(X) into RF , while p(X) /∈ SF .

If p(X) is irreducible over F0 of degree > 1, then we find its n roots (all distinct)
in Q. Let B = {x1, . . . , xn} be the set of these roots, and let L = F0[x1, . . . , xn] ⊂ Q
be the splitting field of p(X). The subfield F0[x1] ⊂ Q is computable, by Theorem
2.5, since Lemma 2.2 provides a splitting algorithm for it. So we check whether
any ri lies in F0[x1]. If not, then we adjoin x1 in our construction of F , so that
F is (a computable isomorphic copy of) F0[x1]. Thus p(X) factors over F , having
(X − x1) has a factor, yet q(X) /∈ RF , since no ri lies in Q[x1].

Finally, therefore, suppose that some ri (say r1, without loss of generality) lies in
F0[x1]. Notice that since the splitting field L is normal over F0, this forces K ⊆ L.
Now we can find an h(X) ∈ F0[X] with h(x1) = r1. For every xj we have some
σ ∈ Gal(L/F0) with σ(x1) = xj , since p(X) is irreducible, and so

q(h(xj)) = q(h(σ(x1))) = σ(q(h(x1)) = σ(q(r1)) = σ(0) = 0,

forcing h(xj) = rk for some k. Likewise, for every rk, the element ρ ∈ Gal(K/F0)
interchanging r1 with rk extends by normality to ρ ∈ Gal(L/F0), so that rk =
ρ(r1) = h(ρ(x1)) = h(xj) for some j. We now add elements to F so that F
is the subfield of L containing those field elements fixed by the subgroup G12 ⊂
Gal(L/F0), where

G12 = {σ ∈ Gal(L/F0) : {σ(r1), σ(r2)} = {r1, r2}}.

This is the subgroup of automorphisms fixing {r1, r2} setwise (but not necessarily
pointwise; for instance, the τ ∈ Gal(K/F0) interchanging r1 with r2 does extend to
an element of G12). Let

I = {xj : h(xj) = r1 or h(xj) = r2}.

Then x1 ∈ I, but I 6= B, since there is some j with h(xj) = r3, as remarked above.
Moreover, I is fixed setwise by every element of G12. Therefore, every symmetric
polynomial g(X1, . . . , X|I|) over F0 has g(I) ∈ F , and so p(X) factors in F [X], by
Lemma 2.12, with proper factor

Πx∈I(X − x).

Thus we have p(X) ∈ SF . On the other hand, since Gal(K/F0) ∼= S5, we have a
τ ∈ Gal(K/F0) which interchanges r1 with r2 and has τ(r3) = r4, τ(r4) = r5, and
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τ(r5) = r3. By normality, this τ extends to a τ ∈ G12, which shows that no rk lies
in F . Thus q(X) /∈ RF , and so once again ϕe fails to be an m-reduction from RF
to SF . This completes our construction of F and proves Proposition 4.1. �

Now we wish to construct a single field F in which there is no m-reduction
whatsoever from RF to SF . The difficulty here is that we cannot just repeat the
construction above for all different partial computable functions ϕe. Obviously we
can only use the same polynomial q(X) = X5−X−1 once, to make one particular
ϕe fail; but it is not hard to find other polynomials qe(X), indeed of arbitrary
degree, whose splitting fields have symmetric Galois group, and to use one of them
against each ϕe. The difficulty is that, as above, we may have to adjoin elements to
Q to form F . In Proposition 4.1, if this happened, we found that either [F : Q] = n,
the degree of p(X), if F = Q[x1]; or that [F : Q] =

(
5
2

)
= 10 if we adjoined the fixed

field of the group G. (In general, adjoining the fixed field of a subgroup G of the
Galois group of a splitting field extends the ground field by a degree equal to the
index of G in that Galois group.) When we adjoin elements to defeat one function
ϕe, it may be that the polynomials qe′(X), with e′ 6= e, no longer have symmetric
Galois group over the new field. Worse yet, we might even have adjoined a root
of some qe′ , rendering it useless in our effort to show that ϕe does not compute an
m-reduction. (ϕe′(qe′) could then converge to a polynomial which already factors
over F , so that qe′ ∈ RF and ϕe′(qe′) ∈ SF .) The latter of these cases is less of a
problem, since we have some control over it: we can define de, the degree of qe(X),
to make

(
de

2

)
have whatever value we wish. The former is more difficult: ϕe gets to

choose n and the roots xi, by choosing ϕe(qe), and so the degree of x1 over F may
be any value at all.

If we knew that all computations ϕe(qe) would eventually converge, then we
might be able to carry out the strategy from Proposition 4.1 with ϕ0 over F0 = Q
to build F1, then repeat it with ϕ1 over F1 to build F2, while being sure not to
disturb the result for ϕ0 on F1, and so on. However, a further complication is
that we have no way to determine in general whether the computation of ϕe on
the polynomial qe will even converge at all; this is (a subproblem of) the Halting
Problem. To take care of all these difficulties, we appeal to the method of the finite-
injury priority construction, introduced independently by Friedberg and Muchnik
in [3] and [12] and described in Chapter VII of [15].

Theorem 4.2. There exists a computable algebraic field F with splitting set S = SF
and root set R = RF , for which R 6≤m S (and hence R 6≤1 S).

Proof. We first give our construction of the computable field F , and then prove
that R 6≤m S. Using an effective listing of all the computable partial functions:

ϕ0, ϕ1, ϕ2, . . . ,

we will build F to satisfy for every e the requirement

Re : ϕe is not an m-reduction from R to S.

This will enable us to show that R 6≤m S: no total computable function succeeds
in the role required for m-reducibility. Our numbering acts as a priority ranking on
these requirements: satisfying R0 is our highest priority, satisfying R1 is our next
highest, and so on. Occasionally two requirements will demand that we perform
contradictory actions; when this happens, we follow the demand of the higher-
priority requirement, and say that the lower-priority one has been injured by the
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higher-priority one at this stage. Our construction will ensure that each requirement
is injured at only finitely many stages, so that we will have cofinitely many stages
during which to satisfy it.

(Of course, all total computable functions appear in our listing of the functions
ϕe above. For arbitrary e and n, though, we have no way to know whether ϕe(n)
is defined or not; we can only run the e-th program on the input n and wait to
see whether it ever halts. So our construction will allow for the possibility that
ϕe(n) never halts, but also must allow it infinitely much time to run, just in case
it ever does halt. For instance, if ϕ2(q2) runs for very many stages and then finally
halts, then in order to satisfy R2 after that halt, we will likely have to injure many
requirements Re with e > 2, on whose behalf we had already acted. After satisfying
R2, we will return our attention to those other Re and start over from scratch to
satisfy them.)

We enumerate F as a subfield of (a computable presentation of) the algebraic
closure Q. By Lemma 2.7, there exists a computable field F ′ with a computable
isomorphism from F ′ onto F . So any m-reduction of the root set of F ′ to its
splitting set would yield such a reduction for F as well, by applying the computable
isomorphism (and its inverse, which is also computable with domain F ).

Our construction proceeds in stages. For each e, we will eventually choose a
witness polynomial qe(X) ∈ Q[X], and will give it to ϕe and wait (forever, if
necessary) for ϕe(qe) to halt. If this computation ever does halt, then we will add
elements to the field F to ensure that qe(X) ∈ R iff ϕe(qe) /∈ S. Thus we will
satisfy the requirement Re. Of course, if ϕe(qe) fails to halt, then Re is satisfied,
since an m-reduction must be total. However, at certain stages we may have to
change this witness polynomial used for Re, and so we write qe,s for the witness
polynomial in use at stage s. We will ensure that it changes at only finitely many
stages, so that the argument above does apply to qe itself, which equals qe,s for all
but finitely many s.

By each stage s we will have added finitely many elements to the prime field
F0 = Q, and we will write Fs for the subfield they generate within Q. (We may
imagine building the rest of the entire finitely-generated field Fs at the end of
each stage s; the construction tacitly assumes this to have been done.) Each Fs+1

will therefore be a finite algebraic extension of Fs, with F = ∪sFs, and since the
extensions are finite, Lemma 2.2 yields splitting algorithms for each Fs, uniformly
in s. Thus in fact each Fs is a computable subfield of Q.

To begin with, F0 is just the field Q within Q. Every polynomial qe,0 is undefined,
and every requirement Re is unsatisfied at this stage. For simplicity we set d−1,0 =
3; all de,0 with e ∈ ω are undefined.

At stage s+ 1, we assume that we have already constructed the field Fs to be a
finite algebraic extension of F0 within Q, so that we know a splitting algorithm for
Fs. For each e < s such that qe,s is defined and Re is not currently satisfied, we
check whether the computation of ϕe(qe,s) halts within s steps.

If there is no e < s for which this computation halts, then we consider the least
e such that qe,s was not defined. For this e, we know by induction that de−1,s is
defined, and we use it to define a new witness polynomial qe,s+1(X) ∈ Fs[X], of
degree de,s+1 as follows. Let M be the product of all the prime numbers ≤ de−1,s.
We set de,s+1 = 2M · [Fs : Q]−1, so that both de,s+1 and de,s+1−1

2 = M · [Fs : Q]−1
are relatively prime to [Fs : Q] and to all di,s with i < e, and indeed to any number
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less than any such di,s. Then by Theorem 2.15, there must exist some polynomial
q(X) ∈ Fs[X] of degree de,s+1 such that the Galois group of its splitting field
over Fs is the symmetric group on the de,s+1 (distinct) roots of q(X) in Q. Using
Lemmas 2.2 and 2.3, we search until we find such a polynomial, and define it to
be the witness polynomial qe,s+1(X). We leave Fs+1 = Fs, and for all i < e we
set qi,s+1 = qi,s and di,s+1 = di,s, so (by induction) every di,s+1 is divisible by the
degree of the current witness polynomial qi,s+1(X) for Ri. For j > e, dj,s+1 and
qj,s+1 remain undefined. The requirements satisfied by stage s + 1 are precisely
those satisfied by stage s, since our action at this stage did not fulfill any more of
the Re.

On the other hand, if there exists an e < s for which ϕe(qe,s) halts within s steps
and Re is not currently satisfied, then we fix the least such e and act to satisfy
Re at this stage. Immediately we make qj,s+1 and dj,s+1 undefined for all j > e,
and say that these requirements Rj are all unsatisfied at stage s+ 1 and have been
injured at this stage by the higher-priority requirement Re. For all i < e we set
qe,s+1 = qe,s and de,s+1 = de,s; Ri is satisfied at stage s + 1 iff it was satisfied at
stage s.

Write p(X) for the polynomial given by ϕe(qe,s), and x1, . . . , xn for its roots
in Q, and set L = Fs[x1, . . . , xn] to be the splitting field of p(X) over Fs within
Q. Likewise, let r1, . . . , rd ∈ Q be the roots of the polynomial q(X) = qe,s(X) (so
d = de,s), and let K = Fs[r1, . . . , rd] ⊆ Q be its splitting field.

Define the intermediate fields L0, L1, . . . , L2n−3 to be the symmetric subfields for
p(X) over Fs. That is, for each set I with ∅ ( I ( {x1, . . . , xn}, let the next Li be
the subfield of L generated by the elementary symmetric polynomials in I. We do
not worry that this list includes some repetitions, but note that if p(X) has degree
≤ 1, then there are no symmetric subfields. Now if p(X) has only simple roots,
then Lemma 2.12 shows that for fields E with Fs ⊆ E ⊆ Q, p(X) factors in E[X]
iff E contains some Li.

We act according to the following four cases.

(1) Check whether p(X) is reducible over Fs, using the splitting algorithm for
Fs. If it is, then p(X) ∈ S and q(X) /∈ RFs

, so we simply set Fs+1 = Fs,
and keep de,s+1 = de,s and qe,s+1 = qe,s so as to ensure that q(X) stays out
of R.

(2) Otherwise, check whether, for all i < 2n − 2, we have Li 6⊆ Fs[r1]. (This
includes the case in which p(X) has degree ≤ 1.) If so, then set Fs+1 =
Fs[r1], so that q(X) ∈ R but p(X) /∈ SFs+1 , by Lemma 2.12. In this case
we set qe,s+1 = qe,s and define de,s+1 to be the least prime which is both
≥ de,s and ≥ |Gal(L/Fs)| = [L : Fs]. (So the degree of qe,s+1 may not
equal de,s+1.) Whenever a polynomial qj,s′ with j > e is defined at a stage
s′ > s+1, its degree dj,s′ will be chosen to be relatively prime to all numbers
≤ de,s+1, hence relatively prime both to de,s and to |Gal(L/Fs)| = [L : Fs].
This will ensure that if we subsequently adjoin a root of qj,s′ to F to satisfy a
lower-priority requirementRj , we cannot accidentally make p(X) reducible,
and so p(X) will stay out of S.

(3) Otherwise, check whether there is an i such that Li ( Fs[r1]. If so, then for
the least such i, set Fs+1 = Li; this will ensure that p(X) ∈ S. To preserve
q(X) /∈ R, we set de,s+1 = de,s, with qe,s+1 = qe,s.
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(4) Otherwise, consider the subgroups G12, G13, and G23, where

Gjk = {σ ∈ Gal(L/Fs) : σ fixes {rj , rk} setwise}.
Lemma 4.4 below shows that the fixed field of at least one of these groups
contains some symmetric subfield Li for some i. Let Fs+1 be that fixed
field (for the least i, if we have a choice). Now we know that p(X) ∈ S, by
Lemma 2.12. On the other hand, there is an element of Gal(L/Fs) ∼= Sde,s

interchanging rj with rk, by our choice of qe,s from an earlier stage and by
Lemma 4.3 below. Hence rj and rk do not lie in the fixed field Li = Fs+1.
Also, de,s+1 > 3, and so there is likewise an element of Gal(L/Fs) which
permutes the set ({r1, . . . , rde,s} − {rj , rk}) cyclically, with no fixed point.
Thus no root of qe,s lies in Fs+1. We set qe,s+1 = qe,s and de,s+1 = de,s, to
ensure that this remains true at subsequent stages, so that qe,s+1 /∈ RF .

In each of these four cases, we now declare Re satisfied. This completes stage s+1.
Our construction builds fields Fs ⊆ Fs+1 ⊂ Q for all s. The union of these is a

computably enumerable subfield F ⊆ Q, which we may view as a computable field
in its own right, using Lemma 2.7. It is clear (in light of Theorem 2.15) that the
construction continues through all stages, without spending eternity at any single
stage s + 1. We claim that every requirement Re is true for this F . For this, we
need to prove that the relevant properties were preserved at every stage.

Lemma 4.3. For every e and every stage s at which Fs+1 6= Fs, if Re is the
requirement satisfied at stage s + 1, then [Fs+1 : Fs] is not divisible by any prime
≤ de−1,s.

Proof. We consider the four possible ways in which Re may be satisfied at stage
s + 1, as listed on page 15, and argue by induction on s. Suppose that at stage
s+ 1 we satisfied Re. Set d = de,s and q = qe,s.

Now r1 is a root of the polynomial q(X) ∈ Fs[X], which has degree dividing d
(indeed equal to d, unless we used Case 2 to satisfy Re). Moreover, from the stage
s0 at which q = qe,s0 was chosen up until the current stage s + 1, no requirement
ri with i < e has acted, since such an action at such a stage s′ would have caused
qe,s′ to become undefined. On the other hand, at stage s0, all requirements Rj
with j > e had dj,s0 undefined, and if dj,s′ was subsequently defined at some stage
s′ with s0 < s′ ≤ s, then it was chosen to be relatively prime to every prime
≤ de,s′ = d. By inductive hypothesis, therefore, we see that d! is relatively prime to
[Fs′+1 : Fs′ ] for all such s′. Therefore q(X) remains irreducible over Fs, and indeed
the Galois group of its splitting field over Fs is still the symmetric group on the
roots {r1, . . . , rd}, since the intersection of this splitting field with Fs′+1 is still Fs.

If we were in Case (1) at stage s + 1, then [Fs+1 : Fs] = 1. In Cases (2) and
(3), Fs+1 is chosen to be a subfield of Fs[r1]. But by irreducibility of q(X) over Fs,
[Fs[r1] : Fs] = d, relatively prime to all primes ≤ de,s−1 (since d = de,s0 was chosen
thus), and so the intermediate field Fs+1 must also have [Fs+1 : Fs] relatively prime
to all those primes, by Lemma 2.10.

Finally, if we used Case (4) to satisfy Re, then we adjoined to Fs the fixed
field of a subgroup Gjk of Gal(L/Fs). Notice that in this case, p(X) is irreducible
and not linear, since Cases (1) and (2) did not apply. Moreover, there is an i
with Li = Fs[ri]: the failure of Case (2) gives us this i, and the failure of Case
(3) shows the equality. So ri ∈ Li ⊆ L, and since L is normal over Fs, all of
r1, . . . , rd lie in L. Let N = {σ ∈ Gal(L/Fs) : (∀i ≤ d)σ(ri) = ri}; this is just
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Gal(L/K). Now by normality, every ρ ∈ Gal(K/Fs) extends to exactly |N |-many
distinct elements of Gal(L/Fs). But Gal(K/Fs) ∼= Sd has d!-many elements, of
which exactly 2 · (d− 2)!-many fix the set {rj , rk}. So, out of the |N | · d! elements
of Gal(L/Fs), exactly |N | · 2 · (d− 2)! lie in Gjk. Lemma 2.11 then yields

[Fs+1 : Fs] =
[L : Fs]

[L : Fs+1]
=
|Gal(L/Fs)|
|Gal(L/Fs+1)|

=
|N | · d!

|N | · 2 · (d− 2)!
= d · d− 1

2

and our choice of d = de,s0 at stage s0 made both d and d−1
2 relatively prime to all

primes ≤ de−1,s0 = de−1,s. This completes the induction. �

Lemma 4.4. At stage s + 1 in the above construction, if we reach Case (4) for
the chosen value of e, then at least one of the given groups G12, G13, and G23 has
fixed field containing some symmetric subfield Li of p(X) over Fs (and hence p(X)
factors over that fixed field).

Proof. Recall that Gjk = {σ ∈ Gal(L/Fs) : σ(r1) ∈ {rj , rk}}, and define Gj = {σ ∈
Gal(L/Fs) : σ(r1) = rj}. Since Cases (1), (2), and (3) all do not apply, we know
that Fs[r1] itself is a symmetric subfield of L, and that p(X), being irreducible, has
distinct roots x1, . . . , xn. For simplicity, reorder these roots so that Fs[r1] is the
subfield of symmetric polynomials in the set I = {x1, . . . , xd}, with 1 ≤ d < n. By
Lemma 2.13, we may assume that d ≤ n

2 .
Now every elementary symmetric polynomial s1, . . . , sd in the elements of I lies in

Fs[r1], so we have polynomials hi ∈ Fs[X] with hi(r1) = si(I) for all i ≤ d. (Since
si is symmetric, we may simply write si(I).) Sublemma 4.5 below, with Fs[r1]
as E, will use these equations to show that x1 must be a root of a polynomial
h(X) of degree d, with coefficients in Fs[r1]. Therefore, if σ ∈ Gal(L/Fs), has
σ(r1) = r1, there are only d possible values for σ(x1). (Those values must all
satisfy h(σ(x1)) = σ(h(x1)) = σ(0) = 0, since such a σ fixes the coefficients of h.)
Likewise, for any fixed value of σ(r1) (such as r2 or r3), there are at most d possible
values for σ(x1): the roots of the image of the polynomial h(X) after σ has acted
on its coefficients. That is, the orbit Xj = {σ(x1) : σ(r1) = rj} of x1 under Gj
contains at most d elements, and the orbit Xjk = {σ(x1) : σ ∈ Gjk} of x1 under
Gjk contains at most 2d elements,

If d < n
2 , this means that not every element of {x1, . . . , xn} lies in the orbit

of x1 under the action of G12 on this set. If d = n
2 , then it is possible that

X12 = {x1, . . . , xn}. Assuming this to be the case, the nonempty subset X3 of
{x1, . . . , xn} intersects X12, hence must intersect either X1 or X2. But each Xj

contains at most d elements, so if X1 ∩X3 6= ∅, then X13 = X1 ∪X3 contains < n
elements, and otherwise X2 ∩X3 6= ∅ and X23 contains < n elements.

So in every case we see that one of these three subgroups Gjk has more than
one orbit in {x1, . . . , xn}, since the orbit of x1 contains < n elements. But if J is a
proper nonempty orbit under the action of Gjk, then every symmetric polynomial
in J over Fs is fixed by every σ ∈ Gjk, because such a σ must map J bijectively
onto itself. Lemma 2.12 then shows that p(X) is reducible over the fixed field of
Gjk.

It remains to prove the promised result on symmetric polynomials:

Sublemma 4.5. For any d, any field E, and any system of d equations in the
elementary symmetric polynomials

a1 = s1(X1, . . . , Xd) · · · ad = sd(X1, . . . , Xd)
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with all ai ∈ E, every coordinate b of every solution in Ed to this system satisfies
t(b) = 0, where t(Y ) = Y d − a1Y

d−1 + a2Y
d−2 − · · ·+ (−1)dad.

Proof. Suppose ~b = (b1, . . . , bd) ∈ Ed is a solution. Then each ai = si(~b), and so

t(Y ) = Y d − s1(~b)Y d−1 + s2(~b)Y d−2 − · · ·+ (−1)dsd(~b) = Πd
i=1(Y − bi).

Hence t(bi) = 0 for every i, proving Sublemma 4.5 and also Lemma 4.4. �

�

Now we are ready to prove the following claim, by induction on e.

Lemma 4.6. For every e ∈ ω, there exists a stage s1 such that:
• Re is never injured after stage s1; and
• (∀s ≥ s1)qe,s(X) = qe,s1(X); and
• either ϕe(qe,s1)↑ or else Re is satisfied at every stage ≥ s1.

Moreover, if ϕe(qe,s1)↓= p(X), then for all s ≥ s1,

qe,s1(X) ∈ RFs
⇐⇒ p(X) /∈ SFs

,

and so qe(X) = lims qe,s(X) exists and (qe(X) ∈ RF ⇐⇒ p(X) /∈ SF ).

Proof. We assume inductively that the lemma holds for all e′ < e. Hence there
is a stage after which we never again act to satisfy any of the (finitely many!)
requirements of higher priority thanRe. At the greatest stage s at which any higher-
priority requirement did act, qe,s became undefined, as did the witness polynomials
for all requirements of lower priority than Re. At the end of that stage, only finitely
many qe′,s were defined at all, and within finitely many more stages qe,s will come to
be defined as well. At the stage s when it is defined, its Galois group over Fs is the
symmetric group on its roots, so clearly Fs contains no root of qe,s. Moreover, from
then on, qe,s will never again become undefined – that is, Re will never again be
injured – since no higher-priority requirement ever acts again. (This is the reason
for calling this proof a finite-injury construction.) We may therefore write qe(X)
for this final polynomial assigned to Re. Of course, we do not claim that we can
compute whether a given polynomial assigned to Re at some stage is the final one
or not; but our proof only requires that a final one exist.

Now if the computation ϕe(qe) diverges, then Re will never again act, so the
induction goes through without a hitch. Moreover, in this situation, the requirement
Re does turn out to be true, since in this case ϕe is a strictly partial function, hence
cannot be an m-reduction.

Assume, therefore, that ϕe(qe) does converge to some p(X), and let s1 be the
least number > s0 such that the computation converges within s1 steps. This
number will be the s1 required by the Lemma. Now no ϕe′(qe′) with e′ < e ever
converges at any stage > s0, so the construction dictates that at stage s1 we will
act to satisfy Re. We consider the four possible cases from the construction, and
show that in each of them, our action at stage s1 ensures that Re will hold of the
field F we build. In all four cases, the construction declared Re to be satisfied at
the end of stage s1, and therefore never again acts on behalf of Re, so part of the
Lemma is immediate for this e and s1. What we need to show is that, for all s ≥ s1,
(qe,s1 ∈ RFs ⇐⇒ p /∈ SFs). This will be done by induction on s ≥ s1.

Suppose first that we are in Case (1) at stage s1. Then ϕe(qe) = p(X) ∈ SFs1
,

and so p(X) ∈ SFs
for all subsequent s as well. On the other hand, we keep de,s
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equal to de, the degree of qe(X), at stage s = s1 and all subsequent stages, and
we injure all lower-priority requirements at stage s1. Whenever de+1,s is defined
again at a stage s > s1, the construction chooses it to be relatively prime to all
prime numbers ≤ de, hence relatively prime to de as well, and the same holds by
induction for all di,s with i > e chosen at any stage s > s1. Lemma 4.3 then shows
that for all s ≥ s1, [Fs+1 : Fs] is relatively prime to de. Therefore, by Lemma 2.10,
no root of qe(X) can lie in Fs+1 − Fs, and so qe(X) /∈ RFs

for all s ≥ s1.
Now suppose that we are in Case (2) at stage s1. Then we took the opposite

strategy: now qe ∈ RFs1
, since the construction set Fs1 = Fs1−1[r1] for a root r1

of qe(X). On the other hand, since we are in Case (2), p(X) is irreducible over
Fs1−1 and Fs1 = Fs1−1[r1] contains no symmetric subfield Li for p(X). Therefore
p(X) stays irreducible over Fs1 , by Lemma 2.12. For stages after s1, we note that
de,s1 is chosen relatively prime to all primes ≤ |Gal(L/Fs1)|. Therefore, by Lemma
4.3, for all s ≥ s1 we have [Fs+1 : Fs] relatively prime to |Gal(L/Fs1)| = [L : Fs1 ].
Therefore, no element of L ever enters F after stage s1, and so p(X) remains
irreducible over each Fs+1, as required.

If Case (3) applies at stage s1, then Fs1 is the symmetric subfield Li chosen in
that case, so p(X) ∈ SFs1

⊆ SFs for all s ≥ s1. By the choice of Li, no root of
qe(X) lies in Fs1 , and since de,s = de,s1 is the degree of qe for all s ≥ s1, Lemma 4.3
shows again that no root of qe enters Fs+1 at any subsequent stage. Thus qe /∈ RFs

for all those stages.
Case (4) is similar: we again chose Fs1 to contain a symmetric subfield Li, so

that p(X) ∈ SFs1
⊆ SFs for all s ≥ s1. Moreover, we again made sure that no root

of qe(X) lies in Fs1 , as follows. At the stage s0 when qe was first defined, we chose
it so that Gal(Ks0/Fs0) ∼= Sde

was the symmetric group on the roots {r1, . . . , rde
}

of qe, where Ks0 was the splitting field of qe over Fs0 . Lemma 4.3 shows that this
has remained true at all subsequent stages up through stage s1 − 1. So there is
an element of the subgroup Gjk chosen in Case (4) which interchanges rj with rk
and permutes the other roots of qe cyclically. (We made sure to choose de > 3,
so there are at least two more roots to permute!) Specifically, there is such an
element in Gal(Ks1−1/Fs1−1) ∼= Sde

, and by normality it extends to an element
of Gal(L/Fs1−1). This shows that Gjk does not fix any single root of qe(X), and
therefore Fs1 , the fixed field of Gjk, contains no such root. So qe /∈ RFs1

, and by
Lemma 4.3 we keep qe /∈ RFs

for all s ≥ s1, completing the proof of Lemma 4.6. �

It now follows that F is a field, clearly computable and also clearly algebraic
over Q, such that no partial computable function ϕe can be an m-reduction from
RF to SF . Theorem 4.2 is proven. �

5. Further Ideas

The most natural further reducibility to consider between RF and SF would be
weak truth-table reducibility. By definition, for A,B ⊆ ω, A is weak truth-table
reducible to B, written A ≤wtt B, if there exists an oracle Turing functional Φe and
a total computable function f such that ΦBe computes the characteristic function
of A and for all x ∈ ω, the computation ΦBe (x) asks its oracle questions only about
the membership in B of elements < f(x). (So, for all x, ΦB�f(x)

e (x) ↓= χA(x).)
Details appear in [4] and in [15, V.2.16]. We conjecture that the proof of Theorem
4.2 can be adapted to build a computable algebraic field F such that RF 6≤wtt SF .



20 RUSSELL MILLER

The idea is to adjust the requirements to say

Re,i : If ΦSF
e and ϕi are total and ∀q(ΦSF

e (q) = 1 ⇐⇒ q ∈ RF ), then

(∃q ∈ F [X])(∃y ≥ ϕi(q))[ΦSF
e (q) asks an oracle question about y].

On the other hand, m-reducibility implies wtt-reducibility, and so Theorem 3.1
shows that SF ≤wtt RF for every computable algebraic field F . Therefore, if the
above conjecture holds, wtt-reducibility also distinguishes the splitting set from the
root set.

It would also be natural to ask how these reducibilities relate the splitting set
and the root set to the image g(F ) of a computable algebraic field F under a Rabin
embedding. That image too is naturally a computably enumerable set and closely
tied to the splitting set and root set by Corollary 2.6, but there is no immediate
reason to hope for m-reducibility or 1-reducibility among them. We leave these
investigations for another time.

Finally, these questions can also be asked about computable fields which fail to
be algebraic. Computable fields of finite transcendence degree over Q are covered
by Corollary 3.2; the main difference is that some uniformity is lost, since one needs
to assume knowledge of a finite transcendence basis for the field in order to compute
the 1-reduction from SF to RF . We refer the reader to the final section of [11] for
a discussion of these issues and their applicability to fields of positive characteristic
(where separability becomes an issue). The proof of Theorem 4.2 could easily be
adapted to make the field F have arbitrary finite transcendence degree over Q,
although extending a negative result in that way seems almost redundant. On
the other hand, for positive characteristic, Theorem 4.2 appears more challenging,
even in the algebraic case, since adapting our proof would require some version of
Theorem 2.15 in that characteristic.

For computable fields of infinite transcendence degree, the situation is completely
different. Rabin’s Theorem still applies to such fields, but there is no obvious reason
to expect the reducibility from Theorem 3.1 to carry over to that case, except in the
specific case of a field of characteristic 0 with a computable (infinite) transcendence
basis, which was covered in Corollary 3.2. In positive characteristic, separability
issues again prevent us from applying the techniques used here, and moreover,
Metakides and Nerode proved in [8] that a computable field, even of characteristic
0, can fail to have a computable transcendence basis. We offer no conjectures about
the general case.
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