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Abstract

We define the automorphism spectrum of a computable structure
M, a measurement of the complexity of the symmetries of M, and
prove that certain sets of Turing degrees can be realized as automor-
phism spectra, while certain others cannot.

1 Introduction

Throughout the history of mathematics, the study of symmetry has been
central to the subject. It is an intrinsic part of geometry, with wide-ranging
aesthetic and philosophical connotations. Moreover, it has come to have
meaning not merely for geometric forms, but for abstract mathematical ob-
jects as well. Since the introduction of the Erlanger Programm by Felix Klein
in 1872, it has become widely accepted that one studies the symmetries of any
mathematical object by examining its automorphisms: those bijective maps
from the object onto itself which preserve the essential properties of the ob-
ject. For geometric forms, this is intuitively natural, but the definition lends
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itself to almost all structures one meets in mathematics. In model theory, for
example, the essential properties of a structure are its functions, relations,
and constants, as named by the signature in which the structure is built.
An automorphism of the structure gives an abstract way of “reflecting” the
structure onto itself, so that the reflected image is indistinguishable from the
original structure. If the integers Z are regarded as a linear order, i.e. with
only the < relation in the signature, they have countably many symmetries,
whereas in the signature with only the addition function (i.e. as an additive
group) they have just two symmetries, including the trivial one, and in the
signature with both these symbols – that is, as an ordered additive group –
they have only the trivial symmetry of the identity map.

In this paper we introduce a notion of complexity for the symmetries of a
computable structure. (Below we remind the reader of this and other basic
notions from computable model theory.) The automorphisms of the struc-
ture will all be functions from its domain ω, the set of natural numbers, onto
ω, so it is natural to consider the Turing degree of an automorphism. A com-
putable automorphism suggests a relatively simple symmetry, from the point
of view of complexity: an algorithm given by a finite program can determine
the symmetry defined by that automorphism. Automorphisms of larger Tur-
ing degree, on the other hand, suggest symmetries of greater complexity. For
example, a computable finite-dimensional rational vector space will have only
computable automorphisms: its symmetries are all readily presented, even
though there are infinitely many of them. On the other hand, an infinite-
dimensional space, assuming that it has a computable basis, would have an
automorphism (hence a symmetry) of each Turing degree. Although we will
not address vector spaces in this paper, the reader may find it illuminating
also to consider the case of a computable rational vector space with no com-
putable basis, and to ask whether such a space will still have symmetries of
all possible degrees. (Such spaces are discussed in [1] and [13].)

For these reasons we consider our definition of the automorphism spectrum
both natural and compelling.

Definition 1.1 Let M be any computable structure. The automorphism
spectrum of M is the set

AutSp∗(M) = {deg(f) : f ∈ Aut(M) & (∃x ∈M)[f(x) 6= x]}

where Aut(M) is the group of all automorphisms of M.
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Of course, the identity function on M is always an automorphism, with
Turing degree 0. We exclude it from consideration, on grounds that under
this exclusion, AutSp∗(M) provides more information about the symmetries
of M: it may still contain 0, if there is a computable automorphism of M
besides the identity, or it may not. Readers who feel that (Z,+) has just one
symmetry, not two (as stated above), should approve of this exclusion. The
star in our notation AutSp∗(M) is intended to denote the exclusion, much
as Q∗ often denotes the set of nonzero rational numbers.

One could equally well apply the definition of automorphism spectrum
to a noncomputable structure M with domain ω. However, this paper is
devoted mainly to the following question.

Question 1.2 Which sets of Turing degrees can be the automorphism spec-
trum of a computable structure?

Recall that in a computable language, an infinite structure is computable if
its domain is ω, and its atomic diagram is computable. This is equivalent to
requiring that all the functions and relations in the structure be computable,
when viewed as functions and relations on ω. (If the language is infinite,
it also requires a uniformity in the presentation of the functions, relations,
and constants of the structure.) For example, the three examples in our first
paragraph are all readily seen to be isomorphic to computable structures,
although technically, having domain Z, they are not themselves computable.
For finite structures, one applies the same definition, allowing a finite sub-
set of ω as the domain. However, all symmetries of such a structure are
computable, so we will have no interest in finite structures.

The use of the term spectrum is intended to connect this topic to two
related notions: the spectrum of a structure, and the spectrum of a relation.
For a countable infinite structure S, the spectrum Spec(S) is the set of all
Turing degrees of structures (with domain ω) isomorphic to S. Thus Spec(S)
measures both the complexity intrinsic to the isomorphism type of S, by
excluding degrees which cannot compute a copy of S, and the possibility of
encoding additional complexity into a copy of S, by including higher degrees
in Spec(S). Likewise, for an additional relation R on a computable structure
A, the spectrum DgSpA(R) is the set of all Turing degrees of images of R
under isomorphisms from A onto other computable structures; again, this
measures both the relation’s intrinsic complexity and its capacity to encode
additional complexity. In posing Question 1.2, we exclude noncomputable
structures for the same reason that they are excluded from the definition
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of the spectrum of a relation: we wish to measure purely the complexity of
the symmetries, without interference from any particular complexity built
into the structure. Many of our results would carry over to noncomputable
structures if one relativized the results to a specific Turing degree and allowed
the structure to be computable in that degree.

In Sections 2, 3, and 4, we begin considering Question 1.2 by trying to re-
alize finite sets of arithmetical Turing degrees as automorphism spectra. For
singleton sets, we prove that the known property of containing a Π0

1-function
singleton is equivalent to being the unique degree in the automorphism spec-
trum of some computable structure. For certain sets of degrees we also have
uniformity results, which lead to a theorem allowing us to realize many in-
finite sets as well, including the set of all c.e. degrees, the set of all Σ0

n+1

degrees which compute 0(n), and the union of those sets for all n. It also
yields a structure A with AutSp∗(A) = {0(ω)}, showing that one can move
beyond arithmetical degrees.

The structures built in these sections are not readily recognizable to math-
ematicians, since their specific purpose is to realize particular automorphism
spectra. However, in Section 5, we cite a construction from [6] to show that
for every computable structure M, there is a computable graph G with the
same automorphism spectrum asM. This result includes the case whereM
has infinite computable signature.

The set of automorphisms of M carries a natural group structure un-
der composition, and the composition of two automorphisms is always com-
putable from the join of their Turing degrees. However, the degree of the
composition may be strictly below that join, so it is not clear that the au-
tomorphism spectrum need be closed under the join operation. In Section
6 we show that it is possible for an automorphism spectrum to consist of
exactly three degrees, pairwise incomparable with each other. However, if an
automorphism spectrum contains exactly two degrees, we show that those
two degrees must be comparable.

Finally in Section 7, we show how to take a given computableM and build
a computable S such that AutSp∗(S) is the upward closure of AutSp∗(M)
under Turing reducibility. This allows us to build automorphism spectra
which are the unions of the upper cones above the members of various (finite
or countable) antichains of degrees. It remains unknown whether such unions
can be spectra of structures.

Our computability-theoretic notation is standard and follows [20]. We
use the usual notation 〈x1, . . . , xn〉 to denote a computable coding of tuples
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from ω<ω by elements of ω.

2 Singleton Automorphism Spectra

The goal of Sections 2, 3, and 4 is to prove that various well-known sets, finite
and infinite, of arithmetical degrees can be realized as the automorphism
spectra of computable structures. Indeed, a few of our results will pass
beyond the arithmetical degrees. Along the way we notice that it is common
for two isomorphic computable (but not computably isomorphic) structures
to have distinct automorphism spectra.

We begin with singleton automorphism spectra, by considering the struc-
ture A1 consisting of two disjoint copies of (ω,<). We build A1 itself to be
the disjoint union of two standard copies of this structure. (For simplicity,
each chain will have domain ω.) By definition, the standard copy of the ordi-
nal ωn is given by the lexicographic order on the set ωn, under a computable
bijection from this set onto ω. Thus the immediate-successor relation and
the set of limit points (and the set of limit points of limit points, etc.) are
computable.

Now fix any infinite c.e. set C, and let B1 be the isomorphic copy of A1

which we build as follows. One string in B1 is a standard copy of ω, and for
the other, which we call BC , we start by defining

0 ≺ 2 ≺ 4 ≺ 6 ≺ · · · .

Call these the key numbers kn = 2n. Then, every time an element n enters
C, we add to BC the least remaining odd number, placing it between kn and
kn+1. Since C is infinite, BC has domain ω, and clearly the disjoint union of
these two strings forms a computable copy B1 of A1.

Now A1 has a unique nontrivial automorphism, which is computable.
For B1, however, the nontrivial automorphism f has the same Turing degree
as C: if one knows f , then one can compute whether n ∈ C by checking
whether f(kn) + 1 = f(kn+1); and if one can compute C, then it is clear how
to compute f . (Notice that f = f−1, since f has order 2.) This proves:

Proposition 2.1 There exists a computable structure A1 such that for every
c.e. degree d, some computable copy of A1 has automorphism spectrum {d}.
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Corollary 2.2 There exists a structure whose computable copies have in-
finitely many distinct automorphism spectra.

We give a name to the technique used here.

Definition 2.3 For any computable structuresM and N in a relational sig-
nature, the disjoint sum of M and N is the computable structure C whose
domain is the disjoint union of the domains of M and N . For each relation
symbol P , P C = PM ∪ PN , but the language of C has an additional equiva-
lence relation R(x, y), which holds in C for all pairs (x, y) from M2 and all
pairs from N 2, but does not hold for any x ∈M and y ∈ N or vice versa.

If, as with A1 in Proposition 2.1, C is the disjoint sum of two copiesM andN
of a rigid structure, then the only possible automorphisms of C map the M
part either entirely onto itself or entirely onto the N part. (This is the role of
the relation R.) By rigidity, the first of these is the identity and the second
interchanges M with N , using the unique isomorphism between them. So
the only nontrivial automorphism of C has precisely the same degree as that
isomorphism.

We give one further example in this vein. Let A2 be the disjoint sum of
two standard copies of the linear order ω2. Fix a set C which is c.e. in ∅′
and ≥T ∅′; we say for short that C is c.e.a. in ∅′. Then there exists a 1-1
computable function g such that C ≤1 Fin via g. (Recall that Fin = {e :
We is finite} is a Σ2-complete set.) We define B2 to be the disjoint sum of
two computable ω2-chains built as follows. Again the first ω2-chain is the
standard copy. For the second chain BC , we start with half the numbers, in
order:

0 ≺ 2 ≺ 4 ≺ · · · .

Again we refer to these numbers as the key numbers kn = 2n. At stage s+1,
for each n such that Wg(n) acquires a new element at stage s, we add the
least available odd number as the immediate predecessor of kn in the second
chain. Let f be the unique nontrivial automorphism of B2. Then n ∈ C
iff g(n) ∈ Fin, iff kn has an immediate predecessor in the structure BC , iff
f(kn) is a pair 〈j1, j2〉 in the standard copy with j2 > 0. Hence C ≤T f .
On the other hand, given a C-oracle, we can build f . First, for each n /∈ C,
f(kn) = 〈|C ∩ {0, . . . , n}|, 0〉, which computes f on all limit points in each
chain. For each n ∈ C, we can use the C-oracle to determine the size of
Wg(n), since C ≥T ∅′ and Wg(n) is finite, and thus we can determine f(kn)
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for all those n as well. To compute f on any remaining element j in the
second chain, we just run the construction until j appears in B2, and then
find f(kn) for the greatest key number kn ≺ j. Since no elements > j will
ever be placed between j and this kn, we can now compute f(j). This proves:

Proposition 2.4 There exists a computable structure A2 such that for every
Σ0

2 degree d ≥T 0′, some computable copy of A2 has automorphism spectrum
{d}.

It is possible to continue with similar constructions for all Σ0
n+1 degrees

above 0(n), for each n ∈ ω, either for individual n or by induction on n.
In fact, Theorem 2.6 will prove similar results for a significantly larger class
of Turing degrees, but only for individual degrees: for two distinct degrees,
the corresponding computable structures will not be isomorphic. Here we
wish to extend Proposition 2.4 to the Σ0

n degrees, preserving the uniformity.
To do so, we apply a technique of Marker and others, as given in [12] and
described in [2]. For simplicity, we will assume Corollary 5.2 for the moment,
so that our structures may be taken to have finite relational signature. Given
a structure A of relational signature, Marker’s technique builds structures A∀
and A∃. For each n-ary predicate P in the signature of A such that PA is
infinite and coinfinite, the signature of A∃ contains one (n+ 1)-ary predicate
P∃ and one unary predicate XP . (The predicate symbol P itself is not in the
signature of A∃, unless PA was finite or cofinite, in which case PA∃ = PA.)

Each XP defines an infinite set XA∃P of witness elements for P in A∃, and
the domain of A∃ contains all these disjoint sets XA∃P , along with the original
domain of A. If P (~a) holds in A, then P∃(~a, x) holds for exactly one x ∈ A∃,
and that witness x lies in XP ; if not, then P∃(~a, x) holds for no x in A∃.
Every x ∈ XP serves as witness for exactly one tuple ~a.

The model A∀ is dual, with the same signature as A∃. Each x ∈ XP

now serves as a negative witness for exactly one ~a, with P (~a) holding iff
P∀(~a, x) fails for exactly one x ∈ XP ; when P (~a) is false, then P∀(~a, x) holds
iff x ∈ XP . (Again the original predicate symbol P is in the language of A∀
iff PA was finite or cofinite.)

The usefulness of these new structures for us follows from Proposition 5.7
of [2], which we summarize here, with A∀∃ = (A∀)∃ built by applying both
of these operations in turn.

Theorem 2.5 (various authors; see [2]) In a finite signature, a struc-
ture A is ∅(n+1)-presentable iff the structure A∀∃ is ∅(n)-presentable. More-
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over, isomorphisms between A and B correspond bijectively with isomor-
phisms between A∀∃ and B∀∃, and if A∀∃ and B∀∃ are built in the natural
way (as suggested by the description above), then this correspondence pre-
serves the Turing degree of any isomorphism of degree ≥ deg(A).

The construction in Proposition 2.1 built isomorphic computable struc-
tures for all infinite c.e. sets. Since A∀ ∼= B∀ and A∃ ∼= B∃ whenever A ∼= B,
we retain uniformity in the case of Σ0

n+1 degrees: the structures we get from
Theorem 2.5 are all isomorphic (for any single n), and their construction is
uniform in the oracle set.

Theorem 2.6 For each n ∈ ω, there exists a rigid computable structure Cn
such that for every Σ0

n+1 degree d ≥T 0(n), some computable Dd
∼= Cn has an

isomorphism onto Cn of degree d. Consequently, the disjoint sum Bd of Cn
and Dd has automorphism spectrum {d}, and its isomorphism type depends
only on n. Indeed, Dd and Bd may be computed uniformly in any index e
such that the set W ∅(n)

e is infinite and of degree d.

The standard copy of An is the structure (A0)∀∃···∃, with the ∀∃-technique
applied n times to the structure A0 from Proposition 2.1, which consisted of
two disjoint chains (ω,<). We view it as the disjoint sum of two copies of
Cn. Using techniques from [10], we can show that one could also have taken
this An to be the disjoint union of two standard copies of the linear order
ωm+1, where n = 2m or n+ 1 = 2m.

One naturally asks whether the results in this section for Σ0
1 degrees can

be extended to the ∆0
2 degrees. An affirmative answer for individual ∆0

2

degrees has been proven, by Hirschfeldt [5] and independently by Schmerl
[19], and Theorem 2.5 then lifts their results to the set of ∆0

n+2 degrees
above 0(n). However, both of their proofs are nonuniform: given d ≤T 0′,
they construct a computable Bd with AutSp∗(Bd) = {d}, but for d0 6= d1,
one may have Bd0 6∼= Bd1 . Since these results follow from Theorem 3.4 below,
we omit Hirschfeldt’s and Schmerl’s proofs, even though the structures they
build help illustrate the challenge of trying to uniformize their results. It
remains open whether there exists a single computable structure A such
that {AutSp∗(B) : B ∼= A & B computable} contains every singleton {d}
with d ≤T 0′. Likewise, the results about Σ0

n degrees in Section 4 depend on
uniformity, and therefore the question of extending those results to the ∆0

n

degrees also remains open.
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3 Π0
2-Singletons

Now we investigate singleton automorphism spectra in more generality. For
this purpose, it is often useful to view automorphisms as paths in the tree
ω<ω, or in subtrees of this tree.

Definition 3.1 A total function f : ω → ω is said to be a Π0
1-function

singleton if there exists a computable tree T ⊆ ω<ω through which f is the
unique (infinite) path. (To be a computable tree, this T must be a computable
subset of ω<ω closed under initial segments.)

Theorem 3.2 Let M be a computable structure. Then the following state-
ments are equivalent:

1. The set AutSp∗(M) is at most countable.

2. The automorphism group of M is at most countable.

3. Every degree in AutSp∗(M) contains a Π0
1-function singleton.

Proof. (1 ⇐⇒ 2) follows from the fact that each Turing degree is countable,
and (3 =⇒ 1) is immediate, since there are countably many computable
trees. So we prove (2 =⇒ 3). By Kueker’s theorem [11], there is a tuple
p̄ = p1, . . . , pn ∈ M such that 〈M, p̄〉 has no nontrivial automorphisms.
Hence each automorphism ϕ ∈ Aut(M) is uniquely defined by the tuple

q̄ = 〈q1, . . . , qn〉 = 〈ϕ(p1), . . . , ϕ(pn)〉 = ϕ(p̄),

i.e., ϕ is the only automorphism taking p̄ to q̄. To prove that such a ϕ is a
Π0

1-function singleton, we let f0 be the finite function {〈pi, qi〉 | i = 1, . . . , n}.
Consider a tree T constructed as follows.

Let σ be the signature of M; we may assume σ to be relational. Denote
by σn the finite part of σ formed by its first n symbols. Let M� σn be the
reduct of M to the language σn, i.e., the structure whose universe is the
same as that forM and whose operations are exactly those whose names are
contained in σn.

The vertices of our tree T are pairs 〈n, f〉 such that:

1. n ∈ ω, f ∈ ω<ω, f ⊇ f0; and

2. f is a partial automorphism of M�σn; and
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3. n ⊆ dom (f) ∩ ran (f); and

4. among functions satisfying the properties (1) — (3), f is minimal under
inclusion.

If 〈m, g〉, 〈n, h〉 ∈ T , we say that 〈m, g〉 is a successor of 〈n, h〉 in T if n < m
and h ⊆ g. Identifying the vertices of T with their Gödel numbers, we see
that T is computable.

One can easily check that if ξ = (〈i, hi〉)i<ω is an infinite branch of T then
hξ = ∪i<ωhi is an automorphism of M taking p̄ to q̄. On the other hand, if
ψ is an automorphism of M taking p̄ to q̄, then the family ξψ = (〈i, hi〉)i<ω,
where

hi = ψ�({0, . . . , i− 1} ∪ p̄ ∪ ψ−1({0, . . . , i− 1})),
is an infinite branch of T . Note that the mappings ξ 7→ hξ and ψ 7→ ξψ
are mutually inverse. Hence T has a unique infinite branch. It is readily
checked that the above mappings preserve Turing degrees. Thus, the unique
automorphism ϕ taking p̄ to q̄ is a Π0

1-function singleton.

Our next equivalence combines Theorem 3.2 with a theorem of Jockusch
and McLaughlin.

Proposition 3.3 For a Turing degree d, the following are equivalent.

1. d contains a Π0
1-function singleton.

2. d contains a Π0
2-set singleton. By definition, this means that d contains

a set A for which there is a Π0
2 formula ϕ with a free set variable X to

which A is the unique solution in 2ω:

X = A ⇐⇒ X |= ϕ.

3. {d} is the automorphism spectrum of some computable structure A.

Proof. (1 ⇐⇒ 2) follows from results of Jockusch and McLaughlin in [7];
see also [16, XII.2.14(d)]. The forward implication (1 =⇒ 3) was proven in
Chapter 8 of [15], and its converse is immediate from Theorem 3.2.

These equivalences, along with known facts about Π0
2-set singletons, yield

a substantial number of results on singleton automorphism spectra. Most of
the known facts have been gathered together by Odifreddi [16]; Sacks [18]
also includes some of them.
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Theorem 3.4 For all Turing degrees d satisfying any of the following con-
ditions, there exists a computable structure A with automorphism spectrum
{d}:

1. c ≤T d ≤T c′, where there exists a computable B with AutSp∗(B) = {c}.

2. 0(n) ≤T d ≤T 0(n+1), for any n ∈ ω.

3. d = 0(ω).

4. d = 0(α), for any computable ordinal α.

5. 0(α) ≤T d ≤T 0(α+1), for any computable ordinal α.

6. d is the degree of some ω-c.e.a. set. (This notion is defined using the
ω-hop operator; see [16, XIII.2].) However, not all singleton automor-
phism spectra contain degrees of ω-c.e.a. sets.

Moreover, every nonempty countable Σ0
3 class of sets contains a set of some

degree d such that {d} is an automorphism spectrum.

Proof. The first item follows from [16, XII.2.15 (d)], and the third from
[16, XII.2.19] (first proven by Hilbert and Bernays in [4]), using Proposition
3.3. The fourth is an immediate consequence of the existence of Π0

1-function
singletons of these degrees (see [16, p. 797]), and indeed has already been
proven in [14] and [15]. These in turn imply the second and fifth items. Notice
that the fifth item shows that singleton automorphism spectra are cofinal in
the ∆1

1 degrees. The sixth item follows from the result [16, XIII.2.7], proven
in [8] by Jockusch and Shore.

Finally, the remark about Σ0
3 classes follows from [16, XII.2.20], which is

a basis theorem proven by Tanaka.

In 1976 Harrington proved that there exists a Π0
2-set singleton (containing

an ω-c.e.a. set, in fact) whose degree d is not arithmetical, but also satisfies
∀n(0(ω) 6≤T d(n)). (See [16, XIII.3] for a sketch of the proof, which Harrington
never published.) This can be viewed as a much stronger version of our
Corollary 3.8 below. Strictly speaking, it does not generalize that corollary,
but this d lies well outside the “bubbles” defined by item 5 in Theorem 3.4.

Theorem 3.5 There exists a nonarithmetical singleton automorphism spec-
trum {d} such that for all n ∈ ω, 0(ω) 6≤T d(n).
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Finally, we also have some restrictions on the degrees which can form
singleton automorphism spectra. First, if {d} is an automorphism spectrum,
then d must be ∆1

1, by [16, XII.2.16]. Also, if such a d is a minimal degree (i.e.
minimal under Turing reducibility among all nonzero Turing degrees), then
d ≤T 0′, by [16, XII.2.15(f)]. This result was first established by Jockusch
and McLaughlin in [7]. Since there do exist minimal Turing degrees which
are arithmetical but not ∆0

2, this yields the following.

Theorem 3.6 If {d} is an automorphism spectrum, then d is a hyperarith-
metical degree. However, the converse fails, and indeed there exists an arith-
metical Turing degree d such that no computable structure has automorphism
spectrum {d}.

For completeness, we now exhibit singleton automorphism spectra con-
taining arithmetical degrees outside the union of the intervals [0(n),0(n+1)].

Proposition 3.7 There exists a computable structure with singleton auto-
morphism spectrum containing a degree d ≤T 0′′ incomparable with 0′.

Proof of Proposition 3.7. Let A <T ∅′ be any nonlow c.e. set. By relativizing
to A a theorem of Yates from [21] (see [20, Thm. VIII.4.3]), we get a set
B ≥T A which is c.e. in A, hence computable in ∅′′, but Turing-incomparable
to ∅′. The chain ∅ ≤T A ≤T B shows that this B is 2-c.e.a., as defined in
[16, Section XI.5], since each set in the chain is c.e. in the previous one.
However, every n-c.e.a. degree forms a singleton automorphism spectrum,
by n applications of part (1) of Theorem 3.4.

Corollary 3.8 For every n ∈ ω, there exists a computable structure An and
a Turing degree d with 0(n) ≤T d ≤T 0(n+2) such that d is incomparable with
0(n+1) and AutSp∗(An) = {d}.

Proof. One proof builds an (n + 1)-c.e.a. set B with ∅(n) <T B |T ∅(n+1).
A second proof relativizes the constructions of Proposition 3.7 to 0(n), re-
placing A by A ⊕ ∅(n) before choosing B. This yields a 0(n)-computable
structure Bn whose unique nontrivial automorphism has degree d |T 0(n+1)

with d = deg(B⊕∅(n)) ≥T 0(n), and Theorem 2.5 allows us to work down to
a computable structure An with AutSp∗(An) = {d}.
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4 Building Larger Automorphism Spectra

Our next goal is to be able to collect together the structures we have built
with singleton automorphism spectra, and use them to form larger automor-
phism spectra. For finite sets of degrees, this is simple, except for concerns
about the join. Indeed, the result may be stated for any finite collection of
computable structures.

Lemma 4.1 Let A0, . . . ,An be computable structures, each in some com-
putable language. Then there is a computable structure B whose automor-
phism spectrum consists of all finite joins of the form

⋃
i∈I di, where ∅ 6= I ⊆

{0, . . . , n} and, for each i ∈ I, di ∈ AutSp∗(Ai).

If all AutSp∗(Ai) are closed under join, then of course so is AutSp∗(B).
Indeed, if every AutSp∗(Ai) is finite, we can build A with AutSp∗(A) being
the closure of AutSp∗(B) under join, simply by applying Lemma 4.1 to the
finite set {Aji : i ≤ n & j < ji} in which each Aji is just Ai itself and
ji = |AutSp∗(Ai)|.

Proof of Lemma 4.1. We may assume that the language of each Ai is purely
relational, since this does not change the automorphisms of Ai. The lan-
guage of B will be the disjoint union of the languages of each Ai, along with
unary predicates R0, . . . , Rn. We partition ω into (n+1) disjoint computable
subsets, which will be RB0 , . . . , R

B
n . Then we make each RBi identical to Ai,

with the predicates of the language of Ai holding for no tuples except those
from RAi .

Then any nontrivial automorphism f of B restricts to automorphisms of
the substructures RBi , hence yields an automorphism fi of each Ai. Since
f is nontrivial, so is at least one fi, and the degree of f is the join of the
degrees of those fi which are not the identity, hence is of the desired form.
Conversely, given a nonempty join ∪i∈Idi as in the lemma, we have a non-
trivial automorphism fi of Ai for each i ∈ I, and we can regard each as an
automorphism of RBi of the same degree as fi. The union of these, along with
the identity on those Aj with j /∈ I, gives a nontrivial automorphism f of B
Turing equivalent to ∪i∈Idi.

Lemma 4.1 allows us to create an automorphism spectrum of any finite
cardinality, generalizing a result from [14].
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Corollary 4.2 If {d0, . . . ,dn} is a set of Turing degrees such that each sin-
gleton {di} is an automorphism spectrum, then there exists a computable
structure A whose automorphism spectrum is the closure of {d0, . . . ,dn} un-
der joins. In the particular case where d0 ≤T · · · ≤T dn is a chain of such
degrees, {di : i ≤ n} forms an automorphism spectrum.

To collect infinitely many automorphism spectra together into a single
automorphism spectrum, we need some uniformity in the language, of course.
Indeed, we usually require uniformity in the construction of the computable
structures, as in Proposition 2.1, for example. Theorem 4.3, our main tool for
building larger automorphism spectra, does not use arbitrary automorphism
spectra, but requires specific rigid computable structures. It applies nicely
to the computable structures Dd which we built to prove Theorem 2.6.

Theorem 4.3 Let (Mi)i∈ω be a computable sequence of computable struc-
tures, in a single computable signature, such that

1. Mi
∼=Mj for all i, j ∈ ω; and

2. each Mi, i ∈ ω, is rigid.

It follows that for each i ∈ ω, there exists a unique isomorphism fi :M0
onto−→

Mi. Let di = deg(fi). Then there exists a computable structure M in a
computable signature, such that

AutSp∗(M) = {⊕i∈Jdi | J is a finite nonempty subset of ω} .

Proof. The following result will be useful in understanding the idea of the
proof:

Theorem 4.4 (G. Birkhof) Let G be a group. Define the operations `g,
g ∈ G as follows: `g(x) = gx. Then the set of all automorphisms of the
structure 〈G; `g〉g∈G consists of precisely the functions ϕa(x) = xa, a ∈ G.

The general idea of the proof is that we consider the free group F =
F (x0, x1, . . .) of rank ω with the operations `g in the predicate form and
attach to each element of F a corresponding isomorphic copy of the structure
Mi, so that the isomorphisms between these attached structures will give us
the desired Turing degrees of automorphisms.

Without loss of generality we may assume that |M0| = ω. The structure
M0 will be called the base copy. Its signature consists of:

14



1. a countable set of binary predicate symbols `w, where w is an arbitrary
element of F ;

2. all symbols from the signature of M0;

3. a binary predicate symbol P .

The domain of M is the disjoint union of the set F of all elements of a free
group F (x0, x1, . . .) of countable rank and of the set F × ω. The identity
element of F will be denoted by e.

Define the binary predicates `w, for all w ∈ F , as follows:

1. `w(x, y)⇔ (x, y ∈ F ∧ y = wx);

2. for any n-ary predicate symbol Q in the signature of M0, M |=
Q(x1, . . . , xn) if and only if there exists some w ∈ F such that x1 =
〈w,m1〉, x2 = 〈w,m2〉, . . . , xn = 〈w,mn〉, andMk+1 |= Q(m1, . . . ,mn),
where the normal form of w is xεk · . . . for ε 6= 0, or w = e and
M0 |= Q(m1, . . . ,mn);

3. M |= P (x, y) if and only if there exists n ∈ ω such that y = 〈x, n〉.

Note that the structureM is computable. InM, the set F is computable
since F = {x | ∃y P (x, y)} and F̄ = {x | ∃y P (y, x)}.

For w ∈ F , letMw be the substructure ofM with domain {〈w,m〉 : m ∈
ω}. It is easily seen that each Mw is isomorphic to M0.

Note that for each automorphism ϕ of M there exists a unique w ∈ F
such that for all v ∈ F , ϕ(v) = vw, and ϕ isomorphically maps each Mv

onto Mvw. Denote such an automorphism by ϕw. Note also that such an
automorphism ϕw exists for each w ∈ F .

Lemma 4.5 Under this construction, ϕxi
≡T fi. Moreover,

1. there exists a uniform procedure that, given i and the oracle for fi,
computes ϕxi

.

2. there exists a uniform procedure that, given an oracle ϕxi
, computes i

and fi.

Proof. First we prove that ϕxi
≤T fi. The automorphism ϕxi

is computable
on F . To compute an isomorphism Mv →Mvxi

, note that

15



(i) when v 6= x−1
i or v 6= e, this is just the computable mapping 〈v,m〉 7→

〈vxεi ,m〉;

(ii) when v = x−1
i , this is the mapping 〈x−1

i ,m〉 7→ 〈e, f−1
i (m)〉; and

(iii) when v = e, this is the mapping 〈e,m〉 7→ 〈xi, fi(m)〉.

Thus, ϕxi
≤T fi.

Now we prove that fi ≤T ϕxi
. To compute i, it suffices to look at the

element ϕxi
(e) = xi. The automorphism ϕxi

is an isomorphism fromMe onto
Mxi

. Therefore, if ϕxi
(〈e,m〉) = 〈xi, n〉 then fi(m) = n, and the statement

follows.
Items (1) and (2) follow immediately from the above remarks, completing

the proof of Lemma 4.5.

Lemma 4.6 ϕvw = ϕv · ϕw.

Lemma 4.7 For any i1, i2, . . . , ik ∈ ω, ε1, ε2, . . . , εk ∈ {1,−1}, we have

ϕxε1
i1
x

ε2
i2
···xεk

ik

≡T fi1 ⊕ fi2 ⊕ · · · ⊕ fik .

Proof. The part ≤T follows from Lemmas 4.5 and 4.6. Since ϕxε1
i1
x

ε2
i2
·...·xεk

ik

is an isomorphism from Me onto Mx
ε1
i1
x

ε2
i2
·...·xεk

ik

which maps second coordi-

nates in the same way as fi1 does, we can compute fi1 . Using this fi1 ,
by Lemma 4.5, we can compute ϕxε1

i1
. Then we can compute ϕxε2

i2
·...·xεk

ik

=

(ϕxε1
i1

)−1ϕxε1
i1
x

ε2
i2
·...·xεk

ik

. Using the same procedure, we can compute fi2 , etc.

This proves Lemma 4.7, and Theorem 4.3 then follows directly from the
preceding description of the automorphisms.

Corollary 4.8 There exists a computable structureM such that AutSp∗(M)
consists of all c.e. degrees.

Proof. Apply Theorem 4.3 to the structures BC built in Proposition 2.1.

Proposition 4.9 Let (Ai)i∈ω be a uniformly c.e. sequence of sets of natural
numbers. Then there exists a computable family of structures Mi such that

{deg(f) | f :M0

∼=−→Mn, n ∈ ω} = {deg(Ai) | i ∈ ω}.

Consequently, there exists a computable structure M such that AutSp∗(M)
consists of all finite joins of degrees deg(Ai), i ∈ ω.
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Proof. The construction of BC in Proposition 2.1 is uniform in the enumera-
tion of C, so we simply build Mi = BAi

for each i. Theorem 4.3 then yields
the structure M.

Corollary 4.10 For each α ≤ ω, there exists a structure M for which
AutSp∗(M) consists precisely of α-many pairwise incomparable Turing de-
grees and all finite joins of those degrees.

Proof. This follows from Proposition 4.9, since it is straightforward to build a
uniformly c.e. sequence of α-many pairwise incomparable sets. (For instance,
see [20, Section VII.2].)

Continuing beyond the Σ0
1 degrees requires a bit more care, because The-

orem 2.6 only applies to Σ0
n+1 degrees d ≥T 0(n). Once seen, however, the

trick is easy.

Corollary 4.11 There exists a computable structure M such that

AutSp∗(M) = {d ∈ Σ0
n+1 : d ≥T 0(n)}.

Proof. We can enumerate all Σ0
n+1-formulas θ(x), of course. For each such

θ(x), let ψ(x) be a formula defining {x : θ(x)}⊕∅(n). Then every ψ(x) defines
a Σ0

n+1 set which computes ∅(n). Conversely, if d is a Σ0
n+1 degree above 0(n),

with some D ∈ d defined by some Σ0
n+1 formula θ, then the corresponding

ψ also defines a set of degree d. Thus, when we apply Theorem 4.3 to the
structures built by Theorem 2.6 for all such formulas ψ, with a standard copy
of that structure as the base copy, we get the desired M.

Lemma 4.1 then allows us to make finite unions of these sets of degrees
into automorphism spectra as well. However, we can do more.

Theorem 4.12 There exists a computable structure M with

AutSp∗(M) = {d : (∃n < ω)[d ∈ Σ0
n+1 & d ≥T 0(n)]}.

Proof. For this we will again appeal to Theorem 4.3. Each index i describes
a particular formula ψi(x) which is Σ0

n+1 for some n computable from i,
with every such formula (for every n) corresponding to at least one i. We
recall that in Theorem 2.6 we built structures Cn for each n, and a structure
Di = Ddeg(Si) for the set Si = {x : ψi(x)}⊕∅(n), uniformly in i and n. For any

17



fixed i and the corresponding n, the structure Mi is the cardinal sum of all
structures Cm with m 6= n, each one identified by the predicate PMi

m , along
with one copy of the structure Di. The predicate PMi

n refers to this Di, of
course, and the entire structureMi is computable uniformly in i. Moreover,
for every i, Mi is isomorphic to the cardinal sum Cω of all Cm (including
m = n), hence is rigid, and in each case the unique isomorphism fi fromMi

onto Cω maps Di onto Cn, hence computes the set Si. On the other hand, Si
computes the isomorphism from Di onto Cn, and fi is the identity on all the
rest of Mi. Thus fi is Turing-equivalent to Si, and Theorem 4.3 completes
the proof.

The same process applies to any c.e. collection of arithmetical formulas,
as long as we note that we might change the degrees of the sets defined by
these formulas as we pass from ϕi to the corresponding set Si above 0(n).

Of course, we can apply Lemma 4.1 to Theorem 3.4 to add the degree 0(ω),
or others, to the spectrum of theM in Theorem 4.12. Also, it is now easy to
build a computable structure with automorphism spectrum {0(α) : α ≤ ω}.

5 Transfer of Automorphism Spectra

In this section we describe methods of transferring automorphism spectra:
given a structure A, we wish to build a nicer structure with the same au-
tomorphism spectrum. In particular, we may wish to transfer an automor-
phism spectrum to a model of a more recognizable theory. The cardinal sums
and other structures constructed in Section 2 were built specifically for the
purpose of realizing various automorphism spectra, and are not structures
one ordinarily meets in mainstream mathematics. However, the well-known
construction given in [6] by Hirschfeldt, Khoussainov, Shore, and Slinko en-
ables us to transfer our new automorphism spectra to standard mathematical
structures. The construction fails only when A is automorphically trivial, i.e.
possesses a finite subset F such that every permutation of the domain of A
which fixes F pointwise is an automorphism of A.

Theorem 5.1 Let A be any computable structure in any computable sig-
nature, and assume A is not automorphically trivial. Then the symmetric
irreflexive graph G built in [6] from A has the same automorphism spectrum
as A.

18



Proof. This is clear upon inspection of the constructions in Appendix A and
Section 3.1 of [6], in which first a computable directed graph and then a
computable symmetric irreflexive graph G are built from A. The automor-
phisms of A (excluding the identity) correspond precisely to those of G, and
from any automorphism of either A or G we can compute the corresponding
automorphism of the other, so their automorphism spectra must be equal.

Corollary 5.2 Every automorphism spectrum of any computable structure
is also the automorphism spectrum of a computable structure in a finite re-
lational signature (specifically, of a graph).

Proof. Given Theorem 5.1, we need only consider automorphically trivial
structures A. If A is finite, then of course AutSp∗(A) is either {0} or ∅,
which are also the possible automorphism spectra of finite graphs. Other-
wise, every permutation of ω fixing a finite set is an automorphism of A,
so clearly AutSp∗(A) contains all Turing degrees, hence equals the automor-
phism spectrum of the complete graph on domain ω (which is also a trivial
structure).

Moreover, the methods used by the authors of [6] for transferring spectra
and other properties from graphs to models of another theory T work for
automorphism spectra as well. They list four requisite properties, which we
repeat below in simplified form and use to extend their results to automor-
phism spectra.

Proposition 5.3 Let G be a computable nontrivial graph with edge relation
E, and A a structure with invariant relations D(x) and R(x, y) on its do-
main, such that:

(P0) A is computable; and

(P1) there is a computable bijective function g mapping D onto G such that
for all x, y ∈ D

R(x, y) ⇐⇒ E(g(x), g(y));

and

(P2) every permutation of D respecting R extends to an automorphism of
A; and
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(P3) there exists a computable defining family for (A, b)b∈D, as defined in
[6].

Then AutSp∗(A) = AutSp∗(D).

The properties given in [6] are stronger than these, since there one needs to
consider all copies of A together, not just a single computable structure A.
For automorphism spectra, however, these suffice.

Proof. Any automorphism f of G, of arbitrary Turing degree, gives rise to
a permutation fA = g−1 ◦ f ◦ g of D (using the map g from (P1)). But for
x, y ∈ D, (P1) then yields:

R(x, y) ⇐⇒ E(g(x), g(y)) ⇐⇒ E(f(g(x)), f(g(y)))

⇐⇒ R(g−1(f(g(x))), g−1(f(g(y)))) ⇐⇒ R(fA(x), fA(y))

so that fA on D respects R. By (P2), fA therefore extends to an automor-
phism of all of A, and (P3) allows us to compute the value of fA(x) for any
x ∈ A, using an f -oracle to compute fA on D. The defining family shows
that fA is the identity iff f is.

On the other hand, any automorphism fA of A respects R and restricts
to a permutation of D (since D and R are invariant), which, according to
(P3), is the identity iff fA is. Therefore the function fG = g ◦ fA ◦ g−1 is a
permutation of G, and by (P1) again, this fG is actually an automorphism of
G, which is the identity iff fA was. Moreover, fG is computable from an fA
oracle, and if fA was built from an automorphism f of G as in the preceding
paragraph, then

fG = g ◦ (g−1 ◦ f ◦ g) ◦ g−1 = f ≥T fA ≥T fG.

This proves that A and G have the same automorphism spectrum.

Corollary 5.4 For every computable structure A (in any computable signa-
ture), there exist a computable partial order and a computable lattice, each
with the same automorphism spectrum as A.

Proof. Section 3 of [6] shows that, for both lattices and partial orders, we
can find a model A satisfying properties (P0)-(P3) for any given nontrivial
computable graph G. If G is trivial and finite, its automorphism spectrum
{0} is easily realized by finite models. For infinite trivial G, we need an
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automorphism spectrum containing all Turing degrees. Consider the partial
order with a least element 0, a greatest element 1, and an infinite antichain of
elements in between. This becomes a computable lattice under the obvious
meet and join operators, and any permutation of the elements of the antichain
is an automorphism.

6 Spectra of Incomparable Degrees

In Section 2 we saw many examples where the automorphism spectrum con-
tains a single degree. Proposition 6.1 and Theorem 6.7 consider the same
question for pairs and triples of incomparable degrees.

Proposition 6.1 Let d0 and d1 be incomparable Turing degrees. Then no
computable structure M has either AutSp∗(M) = {d0,d1} or AutSp∗(M) =
{0,d0,d1}.

Proof. Assume for a contradiction that such a model M exists. Fix f0, f1 ∈
Aut(M) so that deg(f0) = d0 and deg(f1) = d1. Now if deg(f0f1) ≤T d1,
then f0 = (f0f1) ◦ f−1

1 would be computable in d1. Likewise, if deg(f0f1) ≤T
d0, then f1 = f−1

0 ◦ (f0f1) would be computable in d0.

Theorem 6.2 There exist f0, f1 ∈ Sym (ω) such that f0, f1 ≤T ∅′ and the
Turing degrees of f0f1 and f1f0 are incomparable.

Proof. We use a ∅′-oracle to construct finite one–to–one mappings f 0
i ⊆ f 1

i ⊆
· · · ⊆ fki ⊆ · · · so that the unions fi = ∪s∈ωf si will have the desired proper-
ties, for i = 0, 1.

We need to satisfy the following requirements, for every n ∈ ω:

Rn: Φf1f0
n 6= f0f1;

Qn: Φf0f1
n 6= f1f0;

T : f0, f1 ∈ Sym (ω).

If f is a partial function then we use a notation Φ
[f ]
n (x) = y to denote the

fact that nth Turing machine with oracle f and argument x gives the result
y and in the process of computation, questions “what is the value of f(z)?”
are asked for z ∈ dom (f) only.
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We describe the strategy to satisfy the requirement Rn at stage s. Assume
we have already constructed finite one–to–one mappings f s0 and f s1 . Take
the least finite one–to–one extensions f ′i ⊇ f si , i = 0, 1, so that ran (f ′0) =
dom (f ′1). If there exist an a ∈ ω \ ran (f ′0) and a one–to–one finite extension

f ∗ ⊇ f ′1f
′
0 such that Φ

[f∗]
n (a) ↓, select some extensions f ′′i ⊇ f ′i , i = 0, 1, so

that f ′′1 f
′′
0 = f ∗ and a /∈ dom (f ′′1 ) ∪ ran (f ′′0 ). (Since a /∈ ran (f ′0) = dom (f ′1),

we have enough freedom to choose new values for f ′′0 and f ′′1 to do so.) We
will have

Φ[f ′′1 f
′′
0 ]

n (a) ↓= Φ[f∗]
n (a).

Then extend the mappings f ′′i , i = 0, 1, to one–to–one mappings f s+1
i , i =

0, 1, respectively, so that f s+1
0 f s+1

1 (a) ↓6= Φ
[f∗]
n (a). If such a and f ∗ do not

exist, the requirement Rn will be satisfied anyway, and we may set f s+1
i = f si .

One can easily see that this construction can be executed with a ∅′-oracle
and that for any extensions g0 ⊇ f s+1

0 , g1 ⊇ f s+1
1 , g0, g1 ∈ Sym (ω) we have

g0g1(a) 6= {n}g1g0(a).
A symmetric strategy could be used to satisfy a requirement Qn.
To satisfy the requirement T , we just need to extend f si , for i = 0, 1, to

one–to–one mappings f s+1
i , i = 0, 1, so that we satisfy the requirement

{0, . . . , s} ⊆ dom (f s+1
0 ) ∩ dom (f s+1

1 ) ∩ ran (f s+1
0 ) ∩ ran (f s+1

1 ).

Construction.
Let f s0 = f s1 = ∅.

Stage 3n. Execute the strategy to satisfy Rn;

Stage 3n+1. Execute the strategy to satisfy Qn;

Stage 3n+2. Execute the strategy to satisfy T .

Theorem 6.3 Let (Ai)i∈ω ∈ (2ω)ω. There exists a permutation f ∈ Sym (ω)

such that for all n ∈ ω we have f 2n ≡T
⊕
i≥n

Ai.

Proof. Without loss of generality we may assume all sets Ai to be infinite.
Fix a family (Ri)i∈ω of pairwise disjoint infinite subsets of ω such that the
relation x ∈ Ri is computable. Let Ri = {r0

i < r1
i < · · · < rsi < · · · }. The

permutation f is defined as follows: Let Ai = {a0
i < a1

i < · · · }. Partition
each Ai into convex parts of length 2i each, as follows:

Ai =
{
a0
i , a

1
i , . . . , a

2i−1
i

}
∪ · · · ∪

{
ak·2

i

i , ak·2
i+1

i , . . . , a
(k+1)·2i−1
i

}
∪ · · · .
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Define a permutation pi as the infinite product of cycles

pi =
∏
k∈ω

(
ak·2

i

i , ak·2
i+1

i , . . . , a
(k+1)·2i−1
i

)
.

Define now bijections gi : ω → Ri as gi(j) = rji , for i, j ∈ ω; and finally let
f =

∏
i∈ω gipig

−1
i .

One can easily verify that f satisfies the above conditions.

Corollary 6.4 Let d be a Turing degree and (Ai)i∈ω be a family of sets such
that Ai ≤T Aj for i > j uniformly in A0 and such that the relation x ∈ Ai
is A0–computable. Then there exists an A0–computable permutation f such
that if we define a sequence (fn)n∈ω by f0 = f and fn+1 = f 2

n, then

deg(fi) = deg(Ai)

holds for all i ∈ ω.
On the other hand, for each sequence (fi)i∈ω defined from f as above,

there exist an appropriate sequence of Ai’s.

Theorem 6.5 Let A,B,C be arbitrary pairwise disjoint subsets of ω. Then
there exist permutations f0 and f1 such that

f0 ≡T A⊕B (1)

f1 ≡T B ⊕ C (2)

f0f1 ≡T (A ∪B)⊕ C (3)

f1f0 ≡T A⊕ (B ∪ C). (4)

Proof. For an arbitrary set S ⊂ ω, define

f+
S =

∏
i∈S

(3i, 3i+ 1, 3i+ 2),

f−S =
∏
i∈S

(3i+ 2, 3i+ 1, 3i),

g+
S =

∏
i∈S

(3i+ 1, 3i+ 2),

g−S =
∏
i∈S

(3i, 3i+ 1).
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It is immediate that g+
S g
−
S = f+

S and g−S g
+
S = f−S , for any S. Parts (1) and

(2) are likewise easy to check.
Let f0 = f+

A g
+
B and f1 = f−C g

−
B . One can easily see that f0f1 = f+

A∪Bf
−
C ≡T

(A∪B)⊕C and f1f0 = f+
A f
−
B∪C ≡T A⊕(B∪C), which implies the conclusion.

Theorem 6.5 gives another proof of the existence of f0f1 and f1f0 whose
degrees are incomparable. Indeed, it gives the existence of such an f0 and f1

for any pair of incomparable degrees.

Theorem 6.6 Let d0 and d1 be Turing degrees. Then there exist permuta-
tions f0 and f1 such that deg(f0) = deg(f1) = d0 ⊕ d1, deg(f0f1) = d0, and
deg(f1f0) = d1.

Proof. Assume deg(A) and deg(C) are arbitrary degrees. Without loss of
generality we may assume A ∩ C = ∅. Let B = ω \ (A ∪ C). The result
follows from A⊕B ≡T A⊕C, B⊕C ≡T A⊕C, (A∪B)⊕C = C̄⊕C ≡T C,
and A⊕ (B ∪ C) = A⊕ Ā ≡T A.

A question remains open here: what are the possible Turing degrees of
f0, f1 such that f0f1 ≡T d0 and f1f0 ≡T d1?

Now we move to sets of three incomparable degrees. Here, in contrast to
Proposition 6.1, we have the following result.

Theorem 6.7 There exist pairwise incomparable ∆0
2 Turing degrees d0, d1,

d2, and computable structures A and B such that AutSp∗(A) = {d0,d1,d2}
and AutSp∗(B) = {0,d0,d1,d2}.

Proof. We begin with a lemma which constructs sets A and B such that the
Turing degrees of the sets A, B, and (B \A) will be the degrees d0, d1, and
d2 that we need.

Lemma 6.8 There exist c.e. sets A and B such that A ⊂ B and the degrees
deg(A), deg(B \ A), deg(B) (= deg(B)) are pairwise incomparable.

Proof. We enumerate A and B using standard Friedberg-Muchnik require-
ments:

R3e : ΦA
e 6= B

R3e+1 : ΦB\A
e 6= A

R3e+2 : ΦB
e 6= B \ A.
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The requirements ensure that none of the sets A, (B \ A), and B computes
both of the other two. Since these sets will form a partition of ω, this
suffices to prove the lemma. (If C1 t C2 t C3 = ω and C1 ≤T C2, then
C3 = (C1 ∪ C2) ≤T C2 as well.)

Start with A0 = B0 = ∅. At stage s+ 1, find the least i ≤ s for which Ri

is currently not satisfied and one of the conditions below holds, and follow
the instruction for satisfying Ri:

• If i = 3e and ΦAs
e,s(xi,s)↓= 0, enumerate xi,s into Bs+1.

• If i = 3e+ 1 and Φ
(Bs\As)
e,s (xi,s)↓= 0, enumerate xi,s into As+1 and into

Bs+1. (Thus Bs+1\As+1 = Bs\As, since by our construction xi,s /∈ Bs.)

• If i = 3e + 2 and ΦBs
e,s(xi,s) ↓= 1, enumerate xi,s into As+1. (By our

construction xi,s ∈ Bs already, so this action removes xi,s from (B\A).)

In each of these cases, we then make all witnesses xj,s+1 with j > i undefined,
declare all corresponding Rj unsatisfied, and end the stage. If there is no
i ≤ s to which these conditions apply, then for the least i for which xi,s
is undefined, we choose a new number xi,s+1 bigger than any number yet
seen in the construction. If this i is of the form 3e + 2, then enumerate the
new xi,s+1 into Bs+1; otherwise, leave it out of both As+1 and Bs+1. This
completes stage s+ 1.

We show by induction that eachRi acts only finitely often and is satisfied.
Once all Rj with j < i have finished acting, xi = lims xi,s will be chosen as a
large element (not already in A or B) and will remain permanently defined.
In the first two cases, if (and only if) the relevant functional ever converges to
0, we satisfy Ri by putting xi into the appropriate set (A or B) as required,
without changing the oracle. In the third case, with i = 3e + 2, xi enters B
as soon as it is chosen, and if ΦB

e (xi) ever converges to 1, we act by putting
xi into A. This removes xi from B \ A without changing the oracle B, thus
making ΦB

e and (B \A) disagree on xi. Making all xj with j > i undefined at
this stage ensures that the convergence of the functional is preserved, so Ri

is satisfied and never acts again. Finally, notice that whenever an element
xi is enumerated into A, either it is enumerated into B at the same stage (if
i = 3e+ 1) or else it was already in B (if i = 3e+ 2). Thus A ⊂ B, proving
the lemma.

Lemma 6.9 Let M be a structure of finite predicate signature whose uni-
verse is the set of all natural numbers and whose predicates are all either c.e.
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or co–c.e. Then there exists a computable structureM′ whose automorphism
degree spectrum coincides with automorphism degree spectrum for M.

Proof. Without loss of generality, we may assume that all our predicates
are c.e. and the universe of our structure is the set of even numbers. The
proof is really just Marker’s construction ofM∃ (cf. Theorem 2.5). For each
predicate in the signature, we fix its enumeration. Simultaneously enumerate
all the signature predicates and for each n-ary predicate P , enumerate a new
(n+ 1)–ary predicate XP as follows: each time a new n–tuple 〈x1, . . . , xn〉 is
enumerated into P at step t, we add to the structure the least unused odd
number aPt and enumerate the tuple 〈aPt , x1, . . . , xn〉 into XP .

One can easily verify that this new structure satisfies the conditions of
the lemma.

Now we prove the theorem. Fix c.e. sets A and B as in Lemma 6.8.
The basic set of our model will be a family of pairwise distinct elements

S = {aki | i < ω, k ∈ {0, 1}}. Consider a natural ordering ≺ on S defined as

aki ≺ amj ⇔ (k = m) ∧ (i < j).

The ordering ≺ will be used to define the basic predicates of our model but
will be not contained among them.

Let Ak = {aki | i ∈ A}, Bk = {aki | i ∈ B}, for k = 0, 1.
Our model will have the following three predicates:

RA = ≺� (A0 ∪ A1), i.e., the restriction of ≺ to (A0 ∪ A1),

RB = ≺� (B0 ∪B1),

R = [≺� (B0 ∪B1)] ∪ [(B0 ∪B1)× (A0 ∪ A1)] .

Let now B = 〈S;RA,RB,R〉. By the definition, each predicate of B is
either c.e. or co–c.e.; and the automorphism group of B is generated by the
automorphisms ϕH , H ∈ {A, (B\A), B} completely defined by the following
conditions:

ϕH(a0
i ) =

{
a1
i , if i ∈ H
a0
i , if i /∈ H ϕH(a1

i ) =

{
a0
i , if i ∈ H
a1
i , if i /∈ H.

An immediate check shows that the group Aut(B) consists of the eight
elements 1, ϕA, ϕB\A, ϕB, ϕAϕB\A, ϕB\AϕB, ϕAϕB, and ϕAϕB\AϕB, and
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that
deg(1) = deg(ϕAϕB\AϕB) = 0;
deg(ϕA) = deg(ϕB\AϕB) = deg(A);
deg(ϕB\A) = deg(ϕAϕB) = deg(B \ A);
deg(ϕB) = deg(ϕAϕB\A) = deg(B).

It follows that the automorphism degree spectrum of B equals

{0, deg(A), deg(B \ A), deg(B)}.

We then apply Lemma 6.9 to turn B into a computable structure B∃∀ with
automorphisms of precisely the same degrees.

Finally, the structure A is identical to B, only in a language with an extra
constant symbol c added. We fix cA to be any element a0

i , i ∈ A. This elim-
inates the automorphism ϕA from the generating set of the automorphism
group, leaving the identity, ϕB\A, ϕB, and ϕB\AϕB, as the automorphisms.
However, ϕB\AϕB leaves fixed precisely those ai with i ∈ A, hence is Turing-
equivalent to A, as required. Again, Lemma 6.9 turns A into a computable
structure with this same automorphism spectrum, completing the proof of
Theorem 6.7.

7 Upper Cones of Degrees

Proposition 7.1 Let A be any computable non-rigid structure. Then there
exists a computable structure C of finite signature such that AutSp∗(C) con-
tains precisely those Turing degrees d which compute a nontrivial automor-
phism of A. That is, AutSp∗(C) is the upward closure of AutSp∗(A) under
Turing reducibility.

Proof. We begin by working in an infinite signature, containing unary pred-
icates Pi for each i ∈ ω, along with all symbols from the signature of A. By
Corollary 5.2, the result will also hold for a finite signature.

Our structure C will consist of countably many planes, and the predicate
Pi will hold of all elements of the i-th plane. Pi contains precisely the i-th
row {〈i, x〉 : x ∈ ω} of ω2, and we make Pi into a copy of A using the second
coordinate:

RC(〈i1, x1〉, . . . , 〈in, xn〉) ⇐⇒ i1 = · · · = in & RA(x1, . . . , xn);

fC(〈i1, x1〉, . . . , 〈in, xn〉) =

{
〈i1, fA(x1, . . . , xn)〉, if i1 = i2 = · · · = in,

〈i1, x1〉, otherwise.

27



In a relational signature, this C is just the cardinal sum of countably many
copies of A.

Now suppose that ϕ is an automorphism of C. The predicates Pi ensure
that ϕ maps each plane onto itself. Within a single plane Pi, ϕ may or may
not fix the entire plane pointwise. Of course, if all planes are fixed pointwise,
then ϕ is the identity. Otherwise, there exists a plane Pi such that ϕ�Pi is a
nontrivial automorphism of the copy of A in that plane, so ϕ computes some
degree in AutSp∗(A).

Conversely, let D compute some nontrivial automorphism ψ of A, and fix
an a ∈ A such that ψ(a) 6= a. We define an automorphism ϕ of C by:

ϕ(〈i, x〉) =

{
〈i, x〉, if i ∈ D,
〈i, ψ(x)〉, if i /∈ D.

Thus ϕ ≤T D, and conversely D ≤T ϕ, because i ∈ D iff ϕ(〈i, a〉) = 〈i, a〉.
So deg(D) = deg(ϕ) ∈ AutSp∗(C). This proves the proposition.

Corollary 7.2 Let A be any computable rigid structure, and assume that B
is a computable copy of A such that the unique isomorphism ϕ : A → B is of
degree d. Then there exists a computable structure C of finite signature such
that AutSp∗(C) contains precisely those Turing degrees which compute d.

In concert with this result, Proposition 3.3 yields:

Corollary 7.3 For any Π0
1-function singleton f , there exists a computable

structure whose automorphism spectrum is the upper cone of degrees ≥T
deg(f). In particular, for any ordinal α < ωCK1 and any Turing degree d
with 0(α) ≤T d ≤T 0(α+1), the upper cone of degrees ≥T d forms an auto-
morphism spectrum. For Σ0

n+1 degrees, the construction is uniform in any
∅(n)-computable enumeration of a set of that degree.

With these results, we may now show that a union of upper cones above
incomparable degrees can be the automorphism spectrum of a computable
structure.

Corollary 7.4 For any finite set {di : i < n} of Turing degrees, each with
structures Ai and Bi as described in Corollary 7.2, there exists a computable
structure D of finite signature such that

AutSp∗(D) = {c : (∃i) di ≤T c}.

Indeed, the same result holds for any countable collection {di : i ∈ ω} of such
degrees, provided that the structures Ai and Bi can be given uniformly in i.
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Proof. Let the structure A be the cardinal sum of one copy of each Ai and
one copy of each Bi, with a predicate Pi (for each i) which holds precisely of
the elements of Ai ∪ Bi. Then for each i there is a nontrivial automorphism
of A of degree di, which interchanges Ai and Bi and fixes everything else.
Conversely, every nontrivial automorphism of A computes some di. Apply
Proposition 7.1 to A.

Corollary 7.5 There exists a computable structure M whose spectrum is
the union of the upper cones above each degree of an infinite antichain of
Σ0

1 degrees. The same holds in general for Σ0
n degrees, and also for arbitrary

finite antichains of degrees of Π0
1-function singletons.

Proof. This follows from Proposition 7.1 and Corollary 4.10. For n > 1,
it uses a uniform sequence of Σn formulas αi(x) defining sets which form a
countable antichain under ≤T .

On the other hand, we have restrictions on which upper cones, and which
countable unions of cones, can be automorphism spectra of computable struc-
tures. Indeed, our results apply more generally to minimal degrees of such
spectra. (To clarify: here minimal degree means “minimal in AutSp∗(C) un-
der ≤T ,” as opposed to the notion of a degree which is minimal among all
nonzero Turing degrees.)

Theorem 7.6 (Minimal Degree Theorem) Let C be a computable struc-
ture. If there are no more than countably many Turing degrees d which are
minimal under ≤T within AutSp∗(C), then each such minimal d is hyper-
arithmetical.

Proof. Let d be such a degree. Since C is a computable structure in a com-
putable language, being a nontrivial automorphism of C is arithmetically de-
finable. (We denote the set of nontrivial automorphisms by Aut∗(C).) Thus
the set

{f ∈ Aut∗(C) : (∀e)[Φf
e ∈ Aut∗(C) =⇒ f ≤T Φf

e ]}

contains precisely the automorphisms of C of minimal degree in AutSp∗(C).
By assumption, there are at most countably many such automorphisms, so
the Perfect Set Theorem shows that the elements of this set are hyperarith-
metical.
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Corollary 7.7 For a computable structure C, if AutSp∗(C) is the upper cone
of degrees ≥T d, then d is hyperarithmetical.

Finally, since Aut(C) is definable, the Perfect Set Theorem yields one more
condition equivalent to those of Theorem 3.2.

Proposition 7.8 For a computable structure C, AutSp∗(C) is at most count-
able iff it contains only hyperarithmetical degrees.

References

[1] R. Dimitrov, V. Harizanov, and A. Morozov, Dependence relations in
computably rigid computable vector spaces, Annals of Pure and Applied
Logic 132 (2005), 97–108.

[2] E. Fokina, I. Kalimullin, and R.G. Miller, Degrees of categoricity of
computable structures, to appear in the Archive for Mathematical Logic,
DOI 10.1007/s00153-009-0160-4.

[3] V.S. Harizanov and R.G. Miller, Spectra of structures and relations,
Journal of Symbolic Logic 72 (2007), 324–348.

[4] D. Hilbert and P. Bernays, Grundlagen der Mathematik, vol. II, Berlin,
1939.

[5] D.R. Hirschfeldt, unpublished result.

[6] D.R. Hirschfeldt, B. Khoussainov, R.A. Shore, and A.M. Slinko, Degree
spectra and computable dimensions in algebraic structures, Annals of
Pure and Applied Logic 115 (2002), 71–113.

[7] C.G. Jockusch and T.G. McLaughlin, Countable retracing functions and
Π0

2 predicates, Pacific Journal of Mathematics 30 (1969), 67–93.

[8] C.G. Jockusch and R.A. Shore, Pseudo-jump operators II: transfinite
iterations, hierarchies, and minimal covers, Journal of Symbolic Logic
49 (1984), 1209–1236.

[9] J.F. Knight, Degrees coded in jumps of orderings, Journal of Symbolic
Logic 51 (1986), 1034–1042.

30



[10] G. Kreisel, J. Shoenfield, and H. Wang, Number theoretic concepts and
recursive well-orderings, Arch. Math. Logik Grundlagenforsch 5 (1960),
42–64.

[11] D.W. Kueker, Definability, automorphisms, and infinitary languages, in
The Syntax and Semantics of Infinitary Logic, ed. J. Barwise, Springer-
Verlag, Berlin, 1968, 152–165.

[12] D. Marker, Non Σn axiomatizable almost strongly minimal theories,
Journal of Symbolic Logic 54 (1989), 921–927.

[13] A.S. Morozov, Rigid constructive modules, Algebra & Logic 28 (1989)
379–387 (English translation).

[14] A.S. Morozov, Functional trees and automorphisms of models, Algebra
& Logic 32 (1993) 28–38 (English translation).

[15] A.S. Morozov, Groups of computable automorphisms, in Handbook of
Recursive Mathematics, vol. 1: Recursive Model Theory, Studies in Logic
and Foundations of Mathematics, vol. 138, ed. Yu.L. Ershov, S.S. Gon-
charov, A. Nerode, & J.B. Remmel, Elsevier, Amsterdam, 1998, 311–
345.

[16] P.G. Odifreddi, Classical Recursion Theory, vol. II, Elsevier, Amster-
dam, 1999.

[17] H. Rogers, Jr., Theory of Recursive Functions and Effective Computabil-
ity McGraw-Hill Book Co., New York, 1967.

[18] G.E. Sacks, Higher Recursion Theory Springer-Verlag, Berlin, 1990.

[19] J. Schmerl, unpublished result.

[20] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag,
Berlin, 1987.

[21] C.E.M. Yates, On the degrees of index sets, Transactions of the Ameri-
can Mathematical Society 121 (1966), 309–328.

31



Department of Mathematics
The George Washington University
Washington, DC 20052 U.S.A.

E-mail: harizanv@gwu.edu

Department of Mathematics
Queens College – C.U.N.Y.
65-30 Kissena Blvd.
Flushing, New York 11367 U.S.A.

Ph.D. Programs in Mathematics & Computer Science
C.U.N.Y. Graduate Center
365 Fifth Avenue
New York, New York 10016 U.S.A.

E-mail: Russell.Miller@qc.cuny.edu

Sobolev Institute of Mathematics
Russian Academy of Sciences
Siberian Branch
630090 Novosibirsk Russia

E-mail: morozov@math.nsc.ru

32


