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Abstract. We answer several questions of Meer and Ziegler about the Blum-Shub-Smale model of
computation on R: the set Ad of algebraic numbers of degree ≤ d is not decidable in Ad−1, and the
BSS halting problem is not decidable in any countable oracle.
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1 Introduction

Blum, Shub, and Smale introduced in [2] a notion of computation with full-precision real arithmetic, in which
the ordered field operations are axiomatically computable, and the computable functions are closed under
the usual operations. A more complete account of this model is given in [1].

The key question for this paper was posed by Meer and Ziegler in [5]. Section 2 gives the basic technical
result, Lemma 1, applied in Section 3 to Question 1.

Question 1 (Meer-Ziegler). Let Ad be the set of algebraic numbers with degree (over Q) at most d. Then is
it true that

A0 �BSS A1 �BSS · · ·Ad �BSS · · ·?

Ad−1 ≤BSS Ad is clear: if x ∈ Ad, find its minimal polynomial in Q[X]; while if x /∈ Ad then x /∈ Ad−1. The
question asks if Ad ≤BSS Ad−1.

2 BSS-Computable Functions At Transcendentals

Here we introduce our basic method for showing that various functions on the real numbers fail to be BSS-
computable. In many respects, it is equivalent to the method, used by many others (see for example [1]),
of considering BSS computations as paths through a finite-branching tree of countable height, branching
whenever there is a forking instruction in the program. However, we believe our method can be more readily
understood by a mathematician unfamiliar with computability theory.

Lemma 1. Let M be a BSS-machine, and z the finite tuple of real parameters mentioned in the program
for M . Suppose that y ∈ Rm+1 is a tuple of real numbers algebraically independent over the field Q = Q(z),
such that M converges on input y. Then there exists ε > 0 and rational functions f0, . . . , fn ∈ Q(Y ), (that
is, rational functions of the variables Y with coefficients from Q) such that for all x ∈ Rm+1 in the ε-ball
Bε(y), M converges on input x with output 〈f0(x), . . . , fn(x)〉 ∈ Rn+1.
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Proof. The intuition is that by choosing x sufficiently close to y, we can ensure that the computation on x
branches in exactly the same way as the computation on y, at each of the (finitely many) branch points in
the computation on y. Say that the run of M on input y halts at stage t, and that at each stage s ≤ t, the
non-blank cells contain the reals 〈f0,s(y), . . . , fns,s(y)〉. Each fi,s is a rational function in Q(Y ), uniquely
determined, since y is algebraically independent over Q. Let F = {fi,s(Y ) : s ≤ t & i ≤ ns & fi,s /∈ Q} be the
finite set of nonconstant rational functions used in the computation. For each fi,s ∈ F , the preimage f−1

i,s (0)
is closed in Rm+1, and therefore so is the finite union U of all these f−1

i,s (0). By algebraic independence,
y /∈ U , so there exists an ε > 0 with Bε(y) ∩ U = ∅. Indeed, for all fi,s ∈ F and all x ∈ Bε(y), fi,s(x) and
fi,s(y) must have the same sign. Therefore, for any x ∈ Bε(y), it is clear that in the run of M on input x, at
each stage s ≤ t, the cells will contain precisely 〈f0,s(x), . . . , fns,s(x)〉 and the machine will be in the same
state in which it was at stage s on input y. Therefore, at stage t, the run of M on input x must also have
halted, with 〈f0,t(x), . . . , fnt,t(x)〉 in its cells as the output. ut

Lemma 1 provides quick proofs of several known results, including the undecidability of every proper
subfield F ⊂ R.

Corollary 1 No BSS-decidable set S ⊆ Rn is both dense and co-dense in Rn.

Proof. If the characteristic function χS were computed by some BSS machine M with parameters z, then by
Lemma 1, it would be constant in some neighborhood of every y ∈ Rn algebraically independent over z. ut

Corollary 2 Define the boundary of a subset S ⊆ Rn to be the intersection of the closure of S with the
closure of its complement. If S is BSS-decidable, then there is a finite tuple z such that every point on the
boundary of S has coordinates algebraically dependent over z. ut

Of course, Corollaries 1 and 2 follow from other results that have been established long since, in particular
from the Path Decomposition Theorem described in [1]. We include them here because of the simplicity of
these proofs, and because they introduce the method to be used in the following section.

3 Application to Algebraic Numbers

Here we modify the method of Lemma 1 to answer Question 1.

Theorem 1 For all d > 0, Ad 6≤BSS Ad−1.

Proof. Suppose that M is an oracle BSS machine with real parameters z, such that MAd−1 computes the
characteristic function of Ad. Fix any y ∈ R which is transcendental over the field Q = Q(z), and run
MAd−1 on input y. As in the proof of Lemma 1, we set F to be the finite set of all nonconstant rational
functions f ∈ Q(Y ) such that f(y) appears in some cell during this computation. Again, there is an ε > 0
such that all x within ε of y satisfy f(x) · f(y) > 0 for all f ∈ F . However, when MAd−1 runs on an arbitrary
input x ∈ Bε(y) ∩ Ad, it may have a different computation path, because such an x might lie in Ad−1, or
might have f(x) ∈ Ad−1 for some f ∈ F , and in this case the computation on input x might ask its oracle
whether f(x) ∈ Ad−1 and would then branch differently from the computation on input y. (Of course, for
all f ∈ F , f(y) /∈ Ad−1, since f(y) must be transcendental over Q for nonconstant f .) So we must establish
the existence of some x ∈ Bε(y) ∩Ad with f(x) /∈ Ad−1 for all f ∈ F . Of course, we do not need to give any
effective procedure which produces this x; its existence is sufficient.

We will need the following lemma from calculus. The lemma uses complex numbers, but only for mathe-
matical results about R; no complex number is ever an input to M .

Lemma 2. If ζ is a primitive k-th root of unity and f ∈ R(Y ) and there are positive real values of v
arbitrarily close to 0 for which at least one of f(b + ζv), f(b + ζ2v), . . . , f(b + ζk−1v) has the same value as
f(b + v), then f ′(b) = 0. ut
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Fix ζ to be a primitive d-th root of unity. We choose b ∈ Q such that |y − b| < ε
2 and such that b lies in

the domain of every f ∈ F , with all f ′(b) 6= 0. Such a b must exist, since all f ∈ F are differentiable and
nonconstant. Now Lemma 2 yields a δ > 0, such that every v ∈ R with 0 < v < δ satisfies f(b+v) 6= f(b+ζmv)
for every f ∈ F and every m with 0 < m < d. So fix x = b+ d

√
u for some u ∈ Q with 0 < d

√
u < min(δ, ε

2 ), for
which (Xd−u) is irreducible in Q[X]. (This ensures d

√
u /∈ Q, of course. If there were no such u, then Q could

not be finitely generated over Q; this follows from the criterion for irreducibility of (Xd−u) in [4, Thm. 9.1,
p. 331], along with [6, Thm. 3.1.4, p. 82].) Thus |x− y| < ε and all f ∈ F satisfy f(b + d

√
u) 6= f(b + ζm d

√
u)

for all 0 < m < d.
Suppose that f(x) = a ∈ Ad−1. Then Q ⊆ Q(a) ⊆ Q(x), and a has degree < d over Q (since Q ⊆ Q),

while [Q(x) : Q] = d, so Q(a) is a proper subfield of Q(x). Indeed [Q(x) : Q(a)] · [Q(a) : Q] = [Q(x) : Q] = d,
so the degree of a over Q is some proper divisor of d. Now let p(X) be the minimal polynomial of x over
the field Q(a). Of course p(X) may fail to lie in Q[X], but p(X) must divide the minimal polynomial of
x in Q[X], and so the roots of p(X) are x and some of the Q-conjugates (b + ζm d

√
u) of x. At least one

(b + ζm d
√

u) with 0 < m < d must be a root of p(X), since deg(p(X)) = [Q(x) : Q(a)] > 1. We fix this m
and let x = b + ζm d

√
u, and also fix k = deg(p(X)).

Now we apply the division algorithm to write

f(X) =
g(X)
h(X)

=
qg(X) · p(X) + rg(X)
qh(X) · p(X) + rh(X)

with rg(X) and rh(X) both in Q(a)[X] of degree < k. We write rg(X) = gk−1X
k−1 + · · · + g1X + g0 and

rh(X) = hk−1X
k−1 + · · · + h1X + h0, with all coefficients in Q(a). Then rg(x) = g(x) = ah(x) = arh(x),

since p(x) = p(x) = 0. The equation 0 = rg(x)− arh(x) can then be expanded in powers of d
√

u:

0 =
∑
j<k

(
gj · (b + d

√
u)j − ahj · (b + d

√
u)j

)
=

[
(gk−1b

k−1 + gk−2b
k−2 + · · ·+ g1b + g0)

− a(hk−1b
k−1 + hk−2b

k−1 + · · ·+ h1b + h0)
]

+ d
√

u ·
[((

k − 1
1

)
gk−1b

k−2 +
(

k − 2
1

)
gk−2b

k−3 + · · ·+
(

1
1

)
g1b

0

)
−a

((
k − 1

1

)
hk−1b

k−2 +
(

k − 2
1

)
hk−2b

k−3 + · · ·+
(

1
1

)
h1b

0

)]
...

+ ( d
√

u)k−2

[((
k − 1
k − 2

)
gk−1b + gk−2

)
− a

((
k − 1
k − 2

)
hk−1b + hk−2

)]
+ ( d

√
u)k−1

[
gk−1 − ahk−1

]
Here all bracketed expressions lie in Q(a). However, x = b + d

√
u has degree k over Q(a), and therefore

so does d
√

u. It follows that {1, d
√

u, ( d
√

u)2, . . . , ( d
√

u)k−1} forms a basis for Q(x) as a vector space over Q(a),
and hence, in the equation above, all bracketed expressions must equal 0. One then proceeds inductively:
the final bracket shows that gk−1 = ahk−1, and plugging this into the second-to-last bracket shows that
gk−2 = ahk−2, and so on up. Thus rg(X) = arh(X), and so

f(x) =
rg(x)
rh(x)

= a =
rg(x)
rh(x)

= f(x),

contradicting the choice of δ above. This contradiction shows that f(x) /∈ Ad−1, for every f ∈ F , and as in
Lemma 1, it follows immediately that the computations by the machine M with oracle Ad−1 on inputs x
and y proceed along the same path and result in the same output. Since x ∈ Ad and y /∈ Ad, this proves the
theorem. ut
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4 Further Results

We state here a few further results we have recently proven. For these we extend the notation: given any
subset S ⊆ N, write AS = ∪d∈SA=d.

Theorem 2 For sets S, T ⊆ N, if AS ≤BSS AT , then there exists M ∈ N such that all p ∈ S satisfy
{p, 2p, 3p, . . . ,Mp} ∩ T 6= ∅. As a near-converse, if (S − T ) is finite and (∀p ∈ S − T )(∃q > 0)[pq ∈ T ], then
AS ≤BSS AT .

Corollary 3 There exists a subset L of the BSS-semidecidable degrees such that (L,≤BSS) ∼= (P(N),⊆).

Proof. We may replace the power set P(N) by the power set P({primes}). The latter maps into the BSS-
semidecidable degrees via S 7→ AS , and Theorem 2 shows this to be an embedding of partial orders. (The
same map on all of P(N) is not an embedding.) In particular, if S and T are sets of primes and n ∈ S − T ,
then no multiple of n can lie in T ; thus, by the theorem, S 6⊆ T implies AS 6≤BSS AT . The converse is
immediate (for subsets of N in general, not just for prime numbers): if S ⊆ T , then ask whether an input
x lies in the oracle set AT . If not, then x /∈ AS ; if so, find the minimal polynomial of x over Q and check
whether its degree lies in S. (This program requires one parameter, to code the set S.) ut

Theorem 3 If C ⊆ R∞ is a set to which the Halting Problem for BSS machines is BSS-reducible, then
|C| = 2ω. Indeed, R has finite transcendence degree over the field K generated by (the coordinates of the
tuples in) C.

For the definition of the Halting Problem, see [1, pp. 79-81]. Since a program is allowed finitely many real
parameters, it must be coded by a tuple of real numbers, not merely by a natural number. Theorem 3 is a
specific case of a larger result on cardinalities, which is a rigorous version of the vague intuition that a set
of small cardinality cannot contain enough information to compute a set of larger cardinality.

Definition 4 A set S ⊆ R is locally of bicardinality ≤ κ if there exist two open subsets U and V of R with
|R− (U ∪ V )| ≤ κ and and |U ∩ S| ≤ κ and |V ∩ S| ≤ κ. (Here S = R− S.)

This definition roughly says that up to sets of size κ, each of S and S is equal to an open subset of R. For
example, the BSS-computable set S = {x ∈ R : (∃m ∈ N) 2−(2m+1) ≤ x ≤ 2−(2m)}, containing those x which
have a binary expansion beginning with an even number of zeroes, is locally of bicardinality ω. The property
of local bicardinality ≤ κ does not appear to us to be equivalent to any more easily stated property, but it
is exactly the condition needed in our general theorem on cardinalities.

Theorem 5 If C ⊆ R∞ is an oracle set of infinite cardinality κ < 2ω, and S ⊆ R is a set with S ≤BSS C,
then S must be locally of bicardinality ≤ κ. The same holds for oracles C of infinite co-cardinality κ < 2ω.
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