Noncomputable Functions in the Blum-Shub-Smale Model

Wesley Calvert ${ }^{1}$, Ken Kramer ${ }^{2}$ and Russell Miller ${ }^{2 \star}$
${ }^{1}$ Murray State University
Murray, Kentucky 42071 USA
wesley.calvert@murraystate.edu
http://campus.murraystate.edu/academic/faculty/wesley.calvert
${ }^{2}$ Queens College of CUNY
65-30 Kissena Blvd., Flushing, NY 11367 USA
and the CUNY Graduate Center
365 Fifth Avenue, New York, NY 10016 USA
kkramer@qc.cuny.edu \& Russell.Miller@qc.cuny.edu
http://qcpages.qc.cuny.edu/ \sim rmiller

Abstract

We answer several questions of Meer and Ziegler about the Blum-Shub-Smale model of computation on \mathbb{R} : the set \mathbb{A}_{d} of algebraic numbers of degree $\leq d$ is not decidable in \mathbb{A}_{d-1}, and the BSS halting problem is not decidable in any countable oracle.

Key words: Blum-Shub-Smale model, computability, real computation.

1 Introduction

Blum, Shub, and Smale introduced in [2] a notion of computation with full-precision real arithmetic, in which the ordered field operations are axiomatically computable, and the computable functions are closed under the usual operations. A more complete account of this model is given in [1].

The key question for this paper was posed by Meer and Ziegler in [5]. Section 2 gives the basic technical result, Lemma 1, applied in Section 3 to Question 1.

Question 1 (Meer-Ziegler). Let \mathbb{A}_{d} be the set of algebraic numbers with degree (over \mathbb{Q}) at most d. Then is it true that

$$
\mathbb{A}_{0} \lesseqgtr_{B S S} \mathbb{A}_{1} \leq_{B S S} \cdots \mathbb{A}_{d} \leq_{B S S} \cdots ?
$$

$\mathbb{A}_{d-1} \leq_{B S S} \mathbb{A}_{d}$ is clear: if $x \in \mathbb{A}_{d}$, find its minimal polynomial in $\mathbb{Q}[X]$; while if $x \notin \mathbb{A}_{d}$ then $x \notin \mathbb{A}_{d-1}$. The question asks if $\mathbb{A}_{d} \leq_{B S S} \mathbb{A}_{d-1}$.

2 BSS-Computable Functions At Transcendentals

Here we introduce our basic method for showing that various functions on the real numbers fail to be BSScomputable. In many respects, it is equivalent to the method, used by many others (see for example [1]), of considering BSS computations as paths through a finite-branching tree of countable height, branching whenever there is a forking instruction in the program. However, we believe our method can be more readily understood by a mathematician unfamiliar with computability theory.

Lemma 1. Let M be a BSS-machine, and \boldsymbol{z} the finite tuple of real parameters mentioned in the program for M. Suppose that $\boldsymbol{y} \in \mathbb{R}^{m+1}$ is a tuple of real numbers algebraically independent over the field $Q=\mathbb{Q}(\boldsymbol{z})$, such that M converges on input \boldsymbol{y}. Then there exists $\epsilon>0$ and rational functions $f_{0}, \ldots, f_{n} \in Q(\boldsymbol{Y})$, (that is, rational functions of the variables \boldsymbol{Y} with coefficients from Q) such that for all $\boldsymbol{x} \in \mathbb{R}^{m+1}$ in the ϵ-ball $B_{\epsilon}(\boldsymbol{y}), M$ converges on input \boldsymbol{x} with output $\left\langle f_{0}(\boldsymbol{x}), \ldots, f_{n}(\boldsymbol{x})\right\rangle \in \mathbb{R}^{n+1}$.

[^0]Proof. The intuition is that by choosing \boldsymbol{x} sufficiently close to \boldsymbol{y}, we can ensure that the computation on \boldsymbol{x} branches in exactly the same way as the computation on \boldsymbol{y}, at each of the (finitely many) branch points in the computation on \boldsymbol{y}. Say that the run of M on input \boldsymbol{y} halts at stage t, and that at each stage $s \leq t$, the non-blank cells contain the reals $\left\langle f_{0, s}(\boldsymbol{y}), \ldots, f_{n_{s}, s}(\boldsymbol{y})\right\rangle$. Each $f_{i, s}$ is a rational function in $Q(\boldsymbol{Y})$, uniquely determined, since \boldsymbol{y} is algebraically independent over Q. Let $F=\left\{f_{i, s}(\boldsymbol{Y}): s \leq t \& i \leq n_{s} \& f_{i, s} \notin Q\right\}$ be the finite set of nonconstant rational functions used in the computation. For each $f_{i, s} \in F$, the preimage $f_{i, s}^{-1}(0)$ is closed in \mathbb{R}^{m+1}, and therefore so is the finite union U of all these $f_{i, s}^{-1}(0)$. By algebraic independence, $\boldsymbol{y} \notin U$, so there exists an $\epsilon>0$ with $B_{\epsilon}(\boldsymbol{y}) \cap U=\emptyset$. Indeed, for all $f_{i, s} \in F$ and all $\boldsymbol{x} \in B_{\epsilon}(\boldsymbol{y}), f_{i, s}(\boldsymbol{x})$ and $f_{i, s}(\boldsymbol{y})$ must have the same sign. Therefore, for any $\boldsymbol{x} \in B_{\epsilon}(\boldsymbol{y})$, it is clear that in the run of M on input \boldsymbol{x}, at each stage $s \leq t$, the cells will contain precisely $\left\langle f_{0, s}(\boldsymbol{x}), \ldots, f_{n_{s}, s}(\boldsymbol{x})\right\rangle$ and the machine will be in the same state in which it was at stage s on input \boldsymbol{y}. Therefore, at stage t, the run of M on input \boldsymbol{x} must also have halted, with $\left\langle f_{0, t}(\boldsymbol{x}), \ldots, f_{n_{t}, t}(\boldsymbol{x})\right\rangle$ in its cells as the output.

Lemma 1 provides quick proofs of several known results, including the undecidability of every proper subfield $F \subset \mathbb{R}$.

Corollary 1 No BSS-decidable set $S \subseteq \mathbb{R}^{n}$ is both dense and co-dense in \mathbb{R}^{n}.
Proof. If the characteristic function χ_{S} were computed by some BSS machine M with parameters \boldsymbol{z}, then by Lemma 1, it would be constant in some neighborhood of every $\boldsymbol{y} \in \mathbb{R}^{n}$ algebraically independent over \boldsymbol{z}.

Corollary 2 Define the boundary of a subset $S \subseteq \mathbb{R}^{n}$ to be the intersection of the closure of S with the closure of its complement. If S is BSS-decidable, then there is a finite tuple \boldsymbol{z} such that every point on the boundary of S has coordinates algebraically dependent over \boldsymbol{z}.

Of course, Corollaries 1 and 2 follow from other results that have been established long since, in particular from the Path Decomposition Theorem described in [1]. We include them here because of the simplicity of these proofs, and because they introduce the method to be used in the following section.

3 Application to Algebraic Numbers

Here we modify the method of Lemma 1 to answer Question 1.
Theorem 1 For all $d>0, \mathbb{A}_{d} \not \leq_{B S S} \mathbb{A}_{d-1}$.
Proof. Suppose that M is an oracle BSS machine with real parameters \boldsymbol{z}, such that $M^{\mathbb{A}_{d-1}}$ computes the characteristic function of \mathbb{A}_{d}. Fix any $y \in \mathbb{R}$ which is transcendental over the field $Q=\mathbb{Q}(\boldsymbol{z})$, and run $M^{\mathbb{A}_{d-1}}$ on input y. As in the proof of Lemma 1, we set F to be the finite set of all nonconstant rational functions $f \in Q(Y)$ such that $f(y)$ appears in some cell during this computation. Again, there is an $\epsilon>0$ such that all x within ϵ of y satisfy $f(x) \cdot f(y)>0$ for all $f \in F$. However, when $M^{\mathbb{A}_{d-1}}$ runs on an arbitrary input $x \in B_{\epsilon}(y) \cap \mathbb{A}_{d}$, it may have a different computation path, because such an x might lie in \mathbb{A}_{d-1}, or might have $f(x) \in \mathbb{A}_{d-1}$ for some $f \in F$, and in this case the computation on input x might ask its oracle whether $f(x) \in \mathbb{A}_{d-1}$ and would then branch differently from the computation on input y. (Of course, for all $f \in F, f(y) \notin \mathbb{A}_{d-1}$, since $f(y)$ must be transcendental over \mathbb{Q} for nonconstant f.) So we must establish the existence of some $x \in B_{\epsilon}(y) \cap \mathbb{A}_{d}$ with $f(x) \notin \mathbb{A}_{d-1}$ for all $f \in F$. Of course, we do not need to give any effective procedure which produces this x; its existence is sufficient.

We will need the following lemma from calculus. The lemma uses complex numbers, but only for mathematical results about \mathbb{R}; no complex number is ever an input to M.

Lemma 2. If ζ is a primitive k-th root of unity and $f \in \mathbb{R}(Y)$ and there are positive real values of v arbitrarily close to 0 for which at least one of $f(b+\zeta v), f\left(b+\zeta^{2} v\right), \ldots, f\left(b+\zeta^{k-1} v\right)$ has the same value as $f(b+v)$, then $f^{\prime}(b)=0$.

Fix ζ to be a primitive d-th root of unity. We choose $b \in \mathbb{Q}$ such that $|y-b|<\frac{\epsilon}{2}$ and such that b lies in the domain of every $f \in F$, with all $f^{\prime}(b) \neq 0$. Such a b must exist, since all $f \in F$ are differentiable and nonconstant. Now Lemma 2 yields a $\delta>0$, such that every $v \in \mathbb{R}$ with $0<v<\delta$ satisfies $f(b+v) \neq f\left(b+\zeta^{m} v\right)$ for every $f \in F$ and every m with $0<m<d$. So fix $x=b+\sqrt[d]{u}$ for some $u \in \mathbb{Q}$ with $0<\sqrt[d]{u}<\min \left(\delta, \frac{\epsilon}{2}\right)$, for which $\left(X^{d}-u\right)$ is irreducible in $Q[X]$. (This ensures $\sqrt[d]{u} \notin Q$, of course. If there were no such u, then Q could not be finitely generated over \mathbb{Q}; this follows from the criterion for irreducibility of $\left(X^{d}-u\right)$ in [4, Thm. 9.1, p. 331], along with [6, Thm. 3.1.4, p. 82].) Thus $|x-y|<\epsilon$ and all $f \in F$ satisfy $f(b+\sqrt[d]{u}) \neq f\left(b+\zeta^{m} \sqrt[d]{u}\right)$ for all $0<m<d$.

Suppose that $f(x)=a \in \mathbb{A}_{d-1}$. Then $Q \subseteq Q(a) \subseteq Q(x)$, and a has degree $<d$ over Q (since $\left.\mathbb{Q} \subseteq Q\right)$, while $[Q(x): Q]=d$, so $Q(a)$ is a proper subfield of $Q(x)$. Indeed $[Q(x): Q(a)] \cdot[Q(a): Q]=[Q(x): Q]=d$, so the degree of a over Q is some proper divisor of d. Now let $p(X)$ be the minimal polynomial of x over the field $Q(a)$. Of course $p(X)$ may fail to lie in $\mathbb{Q}[X]$, but $p(X)$ must divide the minimal polynomial of x in $\mathbb{Q}[X]$, and so the roots of $p(X)$ are x and some of the \mathbb{Q}-conjugates $\left(b+\zeta^{m} \sqrt[d]{u}\right)$ of x. At least one $\left(b+\zeta^{m} \sqrt[d]{u}\right)$ with $0<m<d$ must be a root of $p(X)$, since $\operatorname{deg}(p(X))=[Q(x): Q(a)]>1$. We fix this m and let $\bar{x}=b+\zeta^{m} \sqrt[d]{u}$, and also fix $k=\operatorname{deg}(p(X))$.

Now we apply the division algorithm to write

$$
f(X)=\frac{g(X)}{h(X)}=\frac{q_{g}(X) \cdot p(X)+r_{g}(X)}{q_{h}(X) \cdot p(X)+r_{h}(X)}
$$

with $r_{g}(X)$ and $r_{h}(X)$ both in $Q(a)[X]$ of degree $<k$. We write $r_{g}(X)=g_{k-1} X^{k-1}+\cdots+g_{1} X+g_{0}$ and $r_{h}(X)=h_{k-1} X^{k-1}+\cdots+h_{1} X+h_{0}$, with all coefficients in $Q(a)$. Then $r_{g}(x)=g(x)=a h(x)=a r_{h}(x)$, since $p(x)=p(\bar{x})=0$. The equation $0=r_{g}(x)-a r_{h}(x)$ can then be expanded in powers of $\sqrt[d]{u}$:

$$
\begin{aligned}
0= & \sum_{j<k}\left(g_{j} \cdot(b+\sqrt[d]{u})^{j}-a h_{j} \cdot(b+\sqrt[d]{u})^{j}\right) \\
= & {\left[\left(g_{k-1} b^{k-1}+g_{k-2} b^{k-2}+\cdots+g_{1} b+g_{0}\right)\right.} \\
& \left.-a\left(h_{k-1} b^{k-1}+h_{k-2} b^{k-1}+\cdots+h_{1} b+h_{0}\right)\right] \\
& +\sqrt[d]{u} \cdot\left[\left(\binom{k-1}{1} g_{k-1} b^{k-2}+\binom{k-2}{1} g_{k-2} b^{k-3}+\cdots+\binom{1}{1} g_{1} b^{0}\right)\right. \\
& \left.-a\left(\binom{k-1}{1} h_{k-1} b^{k-2}+\binom{k-2}{1} h_{k-2} b^{k-3}+\cdots+\binom{1}{1} h_{1} b^{0}\right)\right] \\
& +(\sqrt[d]{u})^{k-2}\left[\left(\binom{k-1}{k-2} g_{k-1} b+g_{k-2}\right)-a\left(\binom{k-1}{k-2} h_{k-1} b+h_{k-2}\right)\right] \\
& +(\sqrt[d]{u})^{k-1}\left[g_{k-1}-a h_{k-1}\right]
\end{aligned}
$$

Here all bracketed expressions lie in $Q(a)$. However, $x=b+\sqrt[d]{u}$ has degree k over $Q(a)$, and therefore so does $\sqrt[d]{u}$. It follows that $\left\{1, \sqrt[d]{u},(\sqrt[d]{u})^{2}, \ldots,(\sqrt[d]{u})^{k-1}\right\}$ forms a basis for $Q(x)$ as a vector space over $Q(a)$, and hence, in the equation above, all bracketed expressions must equal 0 . One then proceeds inductively: the final bracket shows that $g_{k-1}=a h_{k-1}$, and plugging this into the second-to-last bracket shows that $g_{k-2}=a h_{k-2}$, and so on up. Thus $r_{g}(X)=a r_{h}(X)$, and so

$$
f(x)=\frac{r_{g}(x)}{r_{h}(x)}=a=\frac{r_{g}(\bar{x})}{r_{h}(\bar{x})}=f(\bar{x})
$$

contradicting the choice of δ above. This contradiction shows that $f(x) \notin \mathbb{A}_{d-1}$, for every $f \in F$, and as in Lemma 1 , it follows immediately that the computations by the machine M with oracle \mathbb{A}_{d-1} on inputs x and y proceed along the same path and result in the same output. Since $x \in \mathbb{A}_{d}$ and $y \notin \mathbb{A}_{d}$, this proves the theorem.

4 Further Results

We state here a few further results we have recently proven. For these we extend the notation: given any subset $S \subseteq \mathbb{N}$, write $\mathbb{A}_{S}=\cup_{d \in S} \mathbb{A}_{=d}$.

Theorem 2 For sets $S, T \subseteq \mathbb{N}$, if $\mathbb{A}_{S} \leq_{B S S} \mathbb{A}_{T}$, then there exists $M \in \mathbb{N}$ such that all $p \in S$ satisfy $\{p, 2 p, 3 p, \ldots, M p\} \cap T \neq \emptyset$. As a near-converse, if $(S-T)$ is finite and $(\forall p \in S-T)(\exists q>0)[p q \in T]$, then $\mathbb{A}_{S} \leq_{B S S} \mathbb{A}_{T}$.

Corollary 3 There exists a subset \mathcal{L} of the BSS-semidecidable degrees such that $\left(\mathcal{L}, \leq_{B S S}\right) \cong(\mathcal{P}(\mathbb{N}), \subseteq)$.
Proof. We may replace the power set $\mathcal{P}(\mathbb{N})$ by the power set \mathcal{P} ($\{$ primes $\})$. The latter maps into the BSSsemidecidable degrees via $S \mapsto \mathbb{A}_{S}$, and Theorem 2 shows this to be an embedding of partial orders. (The same map on all of $\mathcal{P}(\mathbb{N})$ is not an embedding.) In particular, if S and T are sets of primes and $n \in S-T$, then no multiple of n can lie in T; thus, by the theorem, $S \nsubseteq T$ implies $\mathbb{A}_{S} \not \mathbb{Z}_{B S S} \mathbb{A}_{T}$. The converse is immediate (for subsets of \mathbb{N} in general, not just for prime numbers): if $S \subseteq T$, then ask whether an input x lies in the oracle set \mathbb{A}_{T}. If not, then $x \notin \mathbb{A}_{S}$; if so, find the minimal polynomial of x over \mathbb{Q} and check whether its degree lies in S. (This program requires one parameter, to code the set S.)

Theorem 3 If $C \subseteq \mathbb{R}^{\infty}$ is a set to which the Halting Problem for BSS machines is BSS-reducible, then $|C|=2^{\omega}$. Indeed, \mathbb{R} has finite transcendence degree over the field K generated by (the coordinates of the tuples in) C.

For the definition of the Halting Problem, see [1, pp. 79-81]. Since a program is allowed finitely many real parameters, it must be coded by a tuple of real numbers, not merely by a natural number. Theorem 3 is a specific case of a larger result on cardinalities, which is a rigorous version of the vague intuition that a set of small cardinality cannot contain enough information to compute a set of larger cardinality.

Definition 4 A set $S \subseteq \mathbb{R}$ is locally of bicardinality $\leq \kappa$ if there exist two open subsets U and V of \mathbb{R} with $|\mathbb{R}-(U \cup V)| \leq \kappa$ and and $|U \cap S| \leq \kappa$ and $|V \cap \bar{S}| \leq \kappa$. (Here $\bar{S}=\mathbb{R}-S$.)

This definition roughly says that up to sets of size κ, each of S and \bar{S} is equal to an open subset of \mathbb{R}. For example, the BSS-computable set $S=\left\{x \in \mathbb{R}:(\exists m \in \mathbb{N}) 2^{-(2 m+1)} \leq x \leq 2^{-(2 m)}\right\}$, containing those x which have a binary expansion beginning with an even number of zeroes, is locally of bicardinality ω. The property of local bicardinality $\leq \kappa$ does not appear to us to be equivalent to any more easily stated property, but it is exactly the condition needed in our general theorem on cardinalities.

Theorem 5 If $C \subseteq \mathbb{R}^{\infty}$ is an oracle set of infinite cardinality $\kappa<2^{\omega}$, and $S \subseteq \mathbb{R}$ is a set with $S \leq_{B S S} C$, then S must be locally of bicardinality $\leq \kappa$. The same holds for oracles C of infinite co-cardinality $\kappa<2^{\omega}$.

References

1. L. Blum, F. Cucker, M. Shub, and S. Smale; Complexity and real computation (Berlin: Springer-Verlag, 1997).
2. L. Blum, M. Shub, and S. Smale; On a theory of computation and complexity over the real numbers, Bulletin of the A.M.S. (New Series) 21 (1989), 1-46.
3. C. Gassner; A hierarchy below the halting problem for additive machines, Theory of Computing Systems 43 (2008) 3-4, 464-470.
4. S. Lang; Algebra (second edition) (Menlo Park, CA: Addison-wesley Publishing Co., Inc., 1984).
5. K. Meer \& M. Ziegler; An explicit solution to Post's Problem over the reals, Journal of Complexity 24 (2008) 3-15.
6. M. Nagata; Theory of Commutative Fields, English trans. (American Mathematical Society, 1993).
7. Y. Yonezawa; The Turing degrees for some computation model with the real parameter, J. Math. Soc. Japan 60 2 (2008), 311-324.

[^0]: * The corresponding author was supported by Grants \# 90927-08 08 from the Queens College Research Enhancement Program, \# 61467-00 39 and \# 62632-00 40 from the PSC-CUNY Research Award Program, and (along with the first author) \# 13397 from the Templeton Foundation.

