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Abstract. Harrington extended the first half of Rabin’s Theorem to
differential fields, proving that every computable differential field can be
viewed as a computably enumerable subfield of a computable presenta-
tion of its differential closure. For fields F , the second half of Rabin’s
Theorem says that this subfield is Turing-equivalent to the set of irre-
ducible polynomials in F [X]. We investigate possible extensions of this
second half, asking both about the degree of the differential field K within
its differential closure and about the degree of the set of constraints for
K, which forms the closest analogue to the set of irreducible polynomials.
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1 Introduction

Rabin’s Theorem is fundamental to the study of computability theory and fields.
Proven in [12] in 1960, it gives an effective construction of the algebraic closure
of a computable field F around the field itself, and describes the exact conditions
necessary for the original field to be computable (as a subfield of the algebraic
closure), namely the decidability of the set of reducible polynomials in F [X]. As
the notion of algebraic closure is essential to modern field theory, the question
it addresses is absolutely natural, and it answers that question convincingly.
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The practice of closing a field algebraically foreshadowed the construction
of the differential closure of a differential field, and the stream of results which
flowed from this notion with the work of Kolchin and many others, beginning in
the mid-twentieth century, emphasized its importance. Moreover, starting later
in that century, differentially closed fields have become the focus of a great
deal of work in model theory. The theory DCF0 of differentially closed fields of
characteristic 0 is in many ways even more interesting to model theorists than
the corresponding theory ACF0 for algebraically closed fields: both are ω-stable,
but ACF0 is strongly minmal, whereas DCF0 has infinite Morley rank. Today
differentially closed fields are widely studied by both algebraists and logicians.

Therefore it is natural to attempt to replicate Rabin’s Theorem in the con-
text of computable differential fields and their differential closures. Harrington
took a significant step in this direction in [5] in 1974, proving that every com-
putable differential field does indeed have a computable differential closure, and
can be enumerated inside that closure, just as Rabin showed can be done for
a computable field inside its algebraic closure. All these results, and the terms
used in them, are defined fully in the next section. However, Harrington’s theo-
rem mirrors only the first half of Rabin’s Theorem: it remains to determine what
conditions would guarantee – or better yet, would be equivalent to – decidability
of the original differential field within its differential closure. With this abstract
we begin these efforts, giving the current state of knowledge in Sections 4 and
5. Sections 2 and 3 sketch most of the necessary background. For further ques-
tions we suggest [14] for general background in computability, [4] for computable
model theory, [2] for field arithmetic, [8, 11, 10] for introductions to computable
fields, and [1, 7] for differential fields in the context of model theory.

2 Computable Differential Fields

Differential fields are a generalization of fields, in which the field elements are
often viewed as functions. The elements are not treated as functions, but the
differential operator(s) on them are modeled on the usual notion of differentiation
of functions.

Definition 1 A differential field is a field K with one or more additional unary
functions δi satisfying the following two axioms for all x, y ∈ K:

δi(x+ y) = δix+ δiy δi(x · y) = (x · δiy) + (y · δix).

The constants of K are those x such that, for all i, δix = 0. They form a
differential subfield CK of K.

So every field can be made into a differential field by adjoining the zero operator
δx = 0. For a more common example, consider the field F (X1, . . . , Xn) of rational
functions over a field F , with the partial derivative operators δi = ∂

∂Xi
. We

will be concerned only with ordinary differential fields, i.e. those with a single
differential operator δ.

The next definitions arise from the standard notion of a computable struc-
ture. To avoid confusion, we use the domain {x0, x1, . . .} in place of ω.
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Definition 2 A computable field F consists of a set {xi : i ∈ I}, where I is an
initial segment of ω, such that these elements form a field with the operations
given by Turing-computable functions f and g:

xi + xj = xf(i,j) xi · xj = xg(i,j).

A computable differential field is a computable field with one or more differential
operators δ as in Definition 1, each of which is likewise given by some Turing-
computable function h with δ(xi) = xh(i).

Fröhlich and Shepherdson were the first to consider computable algebraically
closed fields, in [3]. However, the definitive result on the effectiveness of algebraic
closure is Rabin’s Theorem. To state it, we need the natural notions of the root
set and the splitting set.

Definition 3 Let F be any computable field. The root set RF of F is the set
of all polynomials in F [X] having roots in F , and the splitting set SF is the set
of all polynomials in F [X] which are reducible there. That is,

RF = {p(X) ∈ F [X] : (∃a ∈ F ) p(a) = 0}
SF = {p(X) ∈ F [X] : (∃ nonconstant p0, p1 ∈ F [X]) p = p0 · p1}.

Both these sets are computably enumerable. They are computable whenever F
is isomorphic to a prime field Q or Fp, or to any finitely generated extension
of these. At the other extreme, if F is algebraically closed, then clearly both
RF and SF are computable. However, there are many computable fields F for
which neither RF nor SF is computable; see the expository article [8, Lemma 7]
for a simple example. Fröhlich and Shepherdson showed that RF is computable
iff SF is, and Rabin’s Theorem then related them both to a third natural c.e.
set related to F , namely its image inside its algebraic closure. (Rabin’s work
actually ignored Turing degrees, and focused on SF rather than RF , but the
theorem stated here follows readily from Rabin’s proof.) More recent works [9,
15] have compared these three sets under stronger reducibilities, but here, fol-
lowing Rabin, we consider only Turing reducibility, denoted by ≤T , and Turing
equivalence ≡T .

Theorem 4 (Rabin’s Theorem, in [12]) For every computable field F , there
exist an algebraically closed computable field E and a computable field homomor-
phism g : F → E such that E is algebraic over the image g(F ). Moreover, for ev-
ery embedding g satisfying these conditions, the image g(F ) is Turing-equivalent
to both the root set RF and the splitting set SF of the field F .

We will refer to any embedding g : F → E satisfying the conditions from
Rabin’s Theorem as a Rabin embedding of F . Since this implicitly includes the
presentation of E (which is required by the conditions to be algebraically closed),
a Rabin embedding is essentially a presentation of the algebraic closure of F ,
with F as a specific, but perhaps undecidable, subfield.
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As we shift to consideration of differential fields, we must first consider the
analogy between algebraic closures of fields and differential closures of differential
fields. The theory DCF0 of differentially closed fields K of characteristic 0 is a
complete theory, and was axiomatized by Blum (see e.g. [1]) using the axioms
for differential fields of characteristic 0, along with axioms stating that, for every
pair of nonzero differential polynomials p, q ∈ K{Y } with ord(p) > ord(q), there
exists some y ∈ K with p(y) = 0 6= q(y). (The differential polynomial ring
K{Y } is the ring K[Y, δY, δ2Y, . . .] of all algebraic polynomials in Y and its
derivatives. The order of p ∈ K{Y } is the greatest r ≥ 0 such that δrY appears
nontrivially in p(Y ). By convention the zero polynomial has order −∞, and
all other constant polynomials have order −1. Blum’s axioms therefore include
formulas saying that all nonconstant algebraic polynomials p ∈ K[Y ] have roots
in K̂, by taking q = 1.)

For a differential field K with extensions containing elements x0 and x1, we
will write x0 ∼=K x1 to denote that K〈x0〉 ∼= K〈x1〉 via an isomorphism fixing K
pointwise and sending x0 to x1. This is equivalent to the property that, for all
h ∈ K{Y }, h(x0) = 0 iff h(x1) = 0; a model theorist would say that x0 and x1
realize the same atomic type over K. The same notation x0 ∼=F x1 could apply
to elements of field extensions of a field F , for which the equivalent property
would involve only algebraic polynomials h ∈ K[Y ].

Let K ⊆ L be an extension of differential fields. An element x ∈ L is con-
strained over K if x satisfies some constraint over K, as defined here.

Definition 5 Let K be a differential field. A constraint for K is a pair (p, q) of
monic differential polynomials inK{Y } with the properties that ord(p) > ord(q),
that p is irreducible as a polynomial in K[Y, δY, . . .], and that for all differential
field extensions L0 and L1 of K and all xi ∈ Li such that p(xi) = 0 6= q(xi), we
have x0 ∼=K x1. Such elements x0 and x1 are said to satisfy the constraint (p, q).
We denote the complement by

TK = {(p, q) ∈ (K{Y })2 : (p, q) is not a constraint},

and refer to TK as the constraint set for K. If TK is computable, we say that K
has a constraint algorithm.

The notation TK is intended to parallel the notation RF and SF . (Also,
recall that CK already denotes the constant subfield of K). Definition 5 parallels
the definition of the splitting set SF in function if not in form. For fields F ,
irreducible polynomials p(X) have exactly the same property: if p(x0) = p(x1) =
0 (for x0 and x1 in any algebraic field extensions of F ), then x0 ∼=F x1 (that
is, F (x0) ∼= F (x1) via an F -isomorphism mapping x0 to x1). So TK is indeed
the analogue of SF : both are Σ0

1 sets, given that K and F are both computable,
and both are the negations of the properties we need to produce isomorphic
extensions. To see that TK is Σ0

1 , note that (p, q) ∈ TK iff all x0, x1 ∈ K̂ and all
h ∈ K{Y } satisfy:

[p(x0) = p(x1) = 0 & q(x0) 6= 0 6= q(x1)] =⇒ (h(x0) = 0 ⇐⇒ h(x1) = 0),
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the latter condition (over all h) being equivalent to K〈x0〉 ∼= K〈x1〉.
If x ∈ L is constrained over K by (p, q), then there exists a differential

subfield of L, extending K and containing x, whose transcendence degree as a
field extension of K is finite. Indeed, writing K〈x〉 for the smallest differential
subfield of L containing x and all of K, we see that the transcendence degree of
K〈x〉 over K is the smallest order of any nonzero element of K{Y } with root x.
This will be seen below to be exactly the order of p. The elements of L which
are constrained over K turn out to form a differential field in their own right. If
this subfield is all of L, then L itself is said to be a constrained extension of K.

An algebraic closure F of a field F is an algebraically closed field which
extends F and is algebraic over it. Of course, one soon proves that this field is
unique up to isomorphism over F (that is, up to isomorphisms which restrict to
the identity on the common subfield F ). On the other hand, each F has many
algebraically closed extensions; the algebraic closure is just the smallest of them.
Likewise, each differential field K has many differentially closed field extensions;
a differential closure of K is such an extension which is constrained over K. As
with fields, the differential closure of K turns out to be unique up to isomorphism
over K, although the proof for differential fields is significantly more difficult and
was first accomplished by Shelah in [13] using the notion of ω-stability. On the
other hand, the differential closure K̂ of K is generally not minimal : there exist
differential field embeddings of K̂ into itself over K whose images are proper
differential subfields of K̂. This provides a first contrast between DCF0 and
ACF0, since the corresponding statement about algebraic closures is false.

With this much information in hand, we can now state the parallel to the
first half of Theorem 4.

Theorem 6 (Harrington [5], Corollary 3) For every computable differen-
tial field K, there exists a differentially closed computable differential field L
and a computable differential field homomorphism g : K → L such that L is
constrained over the image g(K).

For the sake of uniform terminology, we continue to refer to a computable func-
tion g as in Theorem 6 as a Rabin embedding for the differential field K.

Harrington actually proves the existence of a computable structure L which
is the prime model of the theory T generated by DCF0 and the atomic diagram
of K. Thus L is a computable structure in the language L′ in which the language
of differential fields is augmented by constants for each element of K. The em-
bedding of K into L is accomplished by finding, for any given x ∈ K, the unique
element y ∈ L that is equal to the constant symbol for x. Clearly this process is
computable, since L is a computable L′-structure, and so we have our embed-
ding of K into L. Since L is the prime model of T , it must be constrained over
K: otherwise it could not embed into the constrained closure, which is another
model of T . So L satisfies the definition of the differential closure of K, modulo
the computable embedding. The same holds in positive characteristic.

The root set and splitting set of a differential field K are still defined, of
course, just as for any other field. However, with the differential operator δ now
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in the language, several other sets can be defined along the same lines and are
of potential use as we attempt to adapt Rabin’s Theorem. The most important
of these is the constraint set, which is analogous in several ways to the splitting
set and will be discussed in the next section.

We will also need a version of the Theorem of the Primitive Element for
differential fields. This was provided long ago by Kolchin.

Theorem 7 (Kolchin; see [6], p. 728) Assume that an ordinary differential
field F contains an element x with δx 6= 0. If E is a differential subfield of
the differential closure F and E is generated (as a differential field over F ) by
finitely many elements, then there is a single element of E which generates all
of E as a differential field over F . ut

Kolchin gave counterexamples in the case where δ is the zero derivation on F ,
and also extended this theorem to partial differential fields with m derivations:
the generalized condition there is the existence of m elements whose Jacobian is
nonzero.

3 Constraints

Proposition 8 Let K be a differential field. Then for each x ∈ K̂, there is
exactly one p ∈ K{Y } such that x satisfies a constraint of the form (p, q) ∈ TK .
Moreover, ord(p) is least among the orders of all nonzero differential polynomials
in the radical differential ideal IK(x) of x within K{Y }:

IK(x) = {p ∈ K{Y } : p(x) = 0},

and deg(p) is the least degree of δord(p)Y in any polynomial in K{Y } of order
ord(p) with root x.

Proof. Since K̂ is constrained over K, each x ∈ K̂ satisfies at least one constraint
(p, q) ∈ TK . Set r = ord(p), and suppose there were a nonzero p̃(Y ) ∈ IK(x)
with ord(p̃) < r. By Blum’s axioms for DCF0, there would exist y ∈ K̂ with
p(y) = 0 6= q(y) · p̃(y), since the product (q · p̃) has order < r. But then y also
satisfies (p, q), yet p̃(y) 6= 0 = p̃(x), so that K〈x〉 6∼= K〈y〉. This would contradict
Definition 5. Hence r is the least order of any nonzero differential polynomial
with root x.

It follows from minimality of r that {x, δx, . . . , δr−1x} is algebraically inde-
pendent over K. The polynomial p(x, δx, . . . , δr−1x, Y ) must then be the mini-
mal polynomial of δrx over the field K(x, . . . , δr−1x), since p(Y, δY, . . . , δrY ) is
irreducible in K[Y, δY, . . . , δrY ]. This implies the claim in Proposition 8 about
deg(p), and also shows that every constraint satisfied by x must have first com-
ponent p. ut

In fact, the irreducibility of p(Y ) is barely necessary in Definition 5. The
condition that K〈x〉 ∼= K〈y〉 for all x, y satisfying the constraint shows that
p(Y ) cannot factor as the product of two distinct differential polynomials. The
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only reason for requiring irreducibility of p is to rule out the possibility that p
is a perfect square, cube, etc. in K{Y }. If these were allowed, the uniqueness in
Proposition 8 would no longer hold.

It is quickly seen that if (p, q) ∈ TK , then also (p, q · h) ∈ TK for every
h ∈ K{Y }. So the constraint satisfied by an x ∈ K̂ is not unique. However,
Proposition 8 does show that the following definition makes sense.

Definition 9 If K ⊆ L is an extension of differential fields, then for each x ∈ L,
we define ordK(x) = ord(p), where (p, q) is the constraint in TK satisfied by x.
If no such constraint exists, then ordK(x) = ∞. Notice that in the constrained
closure of K, every element has finite order over K.

4 Decidability in the Constraint Set

We now present our principal result thus far on constraint sets and Rabin em-
beddings for differential fields. Of course, we hope to establish more results, and
perhaps the converse, in the near future.

Theorem 10 Let K be any computable differential field with a single nonzero
derivation δ, and g : K → K̂ a Rabin embedding of K. Then all of the following
are computable in an oracle for the constraint set TK : the Rabin image g(K), the
set A of finite subsets of K̂ algebraically independent over g(K), and the order
function ordK on K̂.

Proof. First we show that ordK is computable from a TK-oracle. Given any
x ∈ K̂, we use the oracle to find some (p, q) ∈ TK satisfied by x. Since K̂ is the
constrained closure of K, such a constraint must exist, and when we find it, we
know by Proposition 8 that ordK(x) = ord(p).

Next we show that g(K) ≤T TK . Our procedure accepts an arbitrary x ∈
K̂ as input, and searches through TK , using its oracle, for a constraint (p, q)
with pg(x) = 0 6= qg(x). (Here pg represents the polynomial in K̂{Y } whose
coefficients are the images under g of the coefficients of p.) Since K̂ is constrained
over K, it must eventually find such a constraint (p, q), and it concludes that
x ∈ g(K) iff ord(p) = 0 and p(Y ) is linear in Y . Of course, if p(Y ) = Y −b (hence
is of order 0, when viewed as a differential polynomial), then x = g(b) ∈ g(K).
Conversely, if x ∈ g(K), then (Y −g−1(x), 1) is readily seen to lie in TK , since it
is satisfied by no element of K̂ except x. Proposition 8 shows that our algorithm
will find a constraint with first coordinate (Y − g−1(x)), hence will conclude
correctly that x ∈ g(K).

It remains to show that A ≤T TK . Given a finite subset S = {b1, . . . , bk} ⊆
K̂, we decide whether S ∈ A as follows. First, we search for a nonzero h ∈
g(K)[X1, . . . , Xk] with h(b1, . . . , bk) = 0. If we find such an h, we conclude that
s /∈ A. Simultaneously, we search for a constraint (p, q) ∈ TK with r = ord(p) ≥
k, an x ∈ K̂ satisfying (p, q), and elements yk+1, . . . yr of K̂ such that:

– each of x, δx, . . . , δr−1x is algebraic over the field generated over g(K) by
the set S′ = {b1, . . . , bk, yk+1, . . . , yr}; and
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– each element of S′ is algebraic over the subfield g(K)(x, δx, . . . , δr−1x).

Of course, being algebraic over a c.e. subfield of K̂ is itself a Σ0
1 property, so all

of this involves a large search. If we do find all these items, we conclude that
s ∈ B.

Now a polynomial h as described above exists iff S is algebraically dependent
over g(K). We must show that S is algebraically independent iff the second
alternative holds. The backwards direction is quick: if we find all the required
elements, then {x, δx, . . . , δr−1x} is algebraically independent over g(K) (since
x satisfies the constraint (p, q) and ord(p) = r) and algebraic over g(K)(S′), yet
S′ has only r elements itself, hence must be algebraically independent over g(K).
In particular, its subset S is algebraically independent, as required. It remains
to show the forwards direction.

Now S generates a differential subfield F of K̂, and by Theorem 7, since δ
is assumed to be nonzero, F is generated as a differential field over g(K) by a
single element x ∈ F . Let (p, q) be any constraint satisfied by x. If S is indeed
algebraically independent over g(K), then F has finite transcendence degree ≥ k
over g(K), and since {x, δx, . . . , δord(p)−1x} forms a transcendence basis for F
(as a field) over g(K), we know that ord(p) ≥ k. Moreover, S must extend to a
transcendence basis S ∪ {yk+1, . . . , yord(p)} of F over g(K). This yields all the
elements needed for the second alternative to hold. ut

We note that the existence of a nonzero derivation δ was used only in the
proof that A ≤T TK . In particular, the Rabin image g(K) is computable in a
TK-oracle, regardless of the derivation. This means that (g(K) ∩ CK̂) is a TK-
computable subfield of the constant field CK̂ , which in turn is a computable

subfield of K̂. Indeed, the restriction of g to CK is a Rabin embedding of the
computable field CK into its algebraic closure CK̂ , in the sense of Theorem 4,
the original theorem of Rabin for fields.

Therefore, if C is any computable field without a splitting algorithm, we
can set K = C to be a differential field with CK = C (by using the zero
derivation). Theorem 6 gives a Rabin embedding g of this differential field K
into a computable presentation of K̂. Theorem 4 shows that g(K) = g(CK)
is noncomputable within the computable subfield CK̂ , and therefore must be

noncomputable within K̂ itself. Finally, Theorem 10 shows that the constraint
set TK of this differential field K was noncomputable.

So there do exist computable differential fields, even with the simplest pos-
sible derivation, for which the constraint set is noncomputable. In the opposite
direction, it is certainly true that if K itself is already differentially closed, then
its constraint set is computable, since the constraints are exactly those (p, q)
with p(Y ) of order 0 and linear in Y . (Such a pair is satisfied by exactly one
x ∈ K, hence by exactly one x ∈ K̂ = g(K), using the identity function as the
Rabin embedding g. Thus it trivially satisfies Definition 5.) We do not yet know
any examples of computable differential fields which have computable constraint
set, yet are not differentially closed. The decidability of the constraint set is a
significant open problem for computable differential fields in general. So likewise
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is the decidability of constrainability: for which p ∈ K{Y } does there exist a q
with (p, q) ∈ TK? The comments in the proof of Theorem 10 make it clear that
p(Y ) = δY is an example of a differential polynomial which is not constrainable.

5 Decidability in the Rabin Image

Rabin’s Theorem for fields, stated above as Theorem 4, gave the Turing equiva-
lence of the Rabin image g(F ) and the splitting set SF . Our principal analogue of
SF for differential fields K is the set TK , and Theorem 10 makes some headway
in identifying sets, including g(K) but not only that set, whose join is Turing-
equivalent to TK . It is also natural to ask about Rabin’s Theorem from the
other side: what set (or what join of sets) must be Turing-equivalent to g(K)?
We now present one step towards an answer to that question, using the notion
of a linear differential polynomial in K{Y }. Recall that “linear” here is used in
exactly the sense of field theory: the polynomial has a constant term, and every
other term is of the form aδiY , for some a ∈ K and i ∈ ω. If the constant term
is 0, then the polynomial is homogeneous as well, every term having degree 1.
The solutions in K̂ of a homogeneous linear polynomial p(Y ) of order r are well
known to form an r-dimensional vector space over the constant field CK̂ . By

additivity, the solutions in K̂ to any linear polynomial of order r then form the
translation of such a vector space by a single root x of p(Y ). Of course, not all
of the solutions in K̂ need lie in K: the solutions to p(Y ) = 0 in K (if any exist)
form the translation of a vector space over CK of dimension ≤ r

Proposition 11 In a computable differential field K whose field CK of con-
stants is algebraically closed, the full linear root set FRK :

{linear p(Y ) ∈ K{Y } : p(Y ) = 0 has solution space in K of dim ord(p)},

is computable from an oracle for the image g(K) of K in any computable dif-
ferential closure K̂ of K under any Rabin embedding g. Moreover, the Turing
reduction is uniform in indices for K̂ and g.

Proof. To begin with, suppose that x ∈ K̂ is a constant. Now x satisfies some
constraint (p, q) ∈ TK . Since δx = 0, p(Y ) either is the polynomial δY or else
has order 0. In the latter case, x is algebraic over K, and indeed turns out to
be algebraic over the constant subfield CK , hence lies in CK . But we cannot
have p(Y ) = δY : there is no q(Y ) such that (δY, q) ∈ TK . (The infinitely many
elements of CK all are roots of δY , yet all satisfy distinct types over K, so in
order for (δY, q) to lie in TK , all those elements would have to be roots of q(Y ).
However, q must be nonzero with order < 1.) So every constant in K̂ lies in the
image g(CK). It follows that if a linear p(Y ) ∈ K{Y } lies in FRK , then the
entire solution space of p(Y ) = 0 in K̂ is contained within K.

Now, given as input a linear p ∈ K{Y }, say of order r and with constant term
z ∈ K, write p0(Y ) = p(Y )− z, so p0(Y ) is homogeneous. We search through K̂
until we find:



10 Russell Miller and Alexey Ovchinnikov

– an x /∈ g(K) with p(x) = 0; or
– an x ∈ g(K) with p(x) = 0 and ord(p)-many solutions x0, . . . , xr−1 in g(K)

to the homogeneous equation p0(Y ) = 0, such that {x0, . . . , xr−1} is linearly
independent over CK̂ .

Deciding linear independence over CK̂ is not difficult: one simply checks whether
the Wronskian matrix (δixj)i,j<r has determinant 0.

Recall that CK̂ = CK . In the former case, therefore, K cannot contain a
space of solutions to p(Y ) = 0 of dimension ord(p). In the latter case, K must
have a solution space of dimension ord(p), which is to say, a complete solution
space. ut

It would be of interest to try to extend this result to the case where CK

need not be algebraically closed, and/or to the situation involving the differen-
tial closure of an extension of K by finitely many (or possibly infinitely many)
algebraically independent constants.
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