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Abstract. We examine the extent to which well orders satisfy the prop-
erties of local computability, which measure how effectively the finite
suborders of the ordinal can be presented. Known results prove that
all computable ordinals are perfectly locally computable, whereas ωCK

1

and larger countable ordinals are not. We show that perfect local com-
putability also fails for uncountable ordinals, and that ordinals α ≥ ωCK

1

are θ-extensionally locally computable for all θ < ωCK
1 , but not when

θ > ωCK
1 , nor when θ = ωCK

1 ≤ α < ωCK
1 · ω.

Keywords: Computability theory, computable model theory, local com-
putability, ordinal, recursion theory.

1 Introduction

Local computability represents an effort to give effective presentations of struc-
tures, such as the fields of real and complex numbers, which admit computation
on their elements by simple algebraic algorithms and therefore, despite their un-
countability, feel as though they ought to have computable presentations. Full
definitions and much more analysis are given in [3–5], and we offer some ba-
sic definitions below. Local computability applies to linear orders as well as to
fields and other structures, and the intention of this work is to investigate local
computability for ordinals, the most ubiquitous linear orders in mathematical
logic. We started with a particular eye on uncountable ordinals, but soon found
large (noncomputable) countable ordinals to be of similar interest. For example,
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can we use the ideas and terminology of local computability to draw distinc-
tions between noncomputable countable ordinals and uncountable ordinals? Or
between limit and successor ordinals? Or between cardinals and noncardinals?
In this paper, we give almost complete negative answers to these questions. All
noncomputable ordinals are α-extentionally locally computable (defined below)
for α < ωCK

1 and are not β-extensionally locally computable for β > ωCK
1 . If

ωCK
1 ≤ γ ≤ ωCK

1 ·ω, then γ is not ωCK
1 -extentionally locally computable, but it

remains open whether there could be a larger ordinal which is ωCK
1 -extentionally

locally computable.
We now give the background definitions. In this context, one typically works

with a fixed class of structures which is closed under taking finitely generated
substructures. For example, one might consider the models of a ∀-axiomatizable
theory T or (as we do here) a nonaxiomatizable class of models such as the
ordinals.

Definition 1. A simple cover of a structure S is a countable collection A of mod-
els {Ai}i∈I of T , each generated by a finite tuple ai, such that every finitely gen-
erated substructure of S is isomorphic to some Ai and every Ai embeds into S.

A simple cover is computable if every Ai ∈ A is a computable structure with
domain an initial segment of ω.

A simple cover is uniformly computable if the sequence {(Ai,ai)}i∈I can be
given uniformly computably, including a strong index for each ai.

Definition 2. A cover of S consists of a simple cover A of S along with sets IA
ij

(for all Ai,Aj ∈ A) of injective homomorphisms f : Ai ↪→ Aj satisfying:

– For all finitely generated substructures B ⊆ C ⊆ S, there exists i, j ∈ ω,
f ∈ IA

ij , and β : Ai
∼= B and γ : Aj

∼= C with β = γ ◦ f .
– For all k and m and g ∈ IA

k,m, there exist finitely generated substrutures
D ⊆ E ⊆ S and isomorphisms δ : Ak

∼= D and ε : Am
∼= E with δ = ε ◦ g.

– The Amalgamation Property: for every i, j, k and all maps f ∈ IA
ij and

g ∈ IA
ik, there exists m and maps h ∈ IA

jm and p ∈ IA
km with p ◦ g = h ◦ f .

We often refer to the elements of A as the objects of the cover and the elements
of the IA

ij as the maps of the cover.
A cover is computable if A is a uniformly computable simple cover of S and

there exists a c.e. set W such that, for all i, j ∈ ω,

IA
ij = {ϕe �Ai : 〈i, j, e〉 ∈W}.

The structure S is locally computable if it has a uniformly computable cover.

In past articles on local computability, the Amalgamation Property has not
always been included in the definition of a cover. Therefore, in the interest of
clarity, we will occasionally remind the reader that we are working in the context
of this property.

Definition 3. Let A be a cover of a structure S. An Ai ∈ A matches a sub-
structure B ⊆ S extensionally if there is an isomorphism β : Ai

∼= B satisfying:
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– For every finitely generated C with B ⊆ C ⊆ S, there exists j ∈ ω, f ∈ IA
ij ,

and γ : Aj
∼= C with β = γ ◦ f .

– For every m ∈ ω and g ∈ IA
i,m, there exists an E ⊆ S and ε : Am

∼= E with
B ⊆ E and β = ε ◦ g.

The map β is termed an extensional match between Ai and B.

Definition 4. Let A be a cover of a structure S. Every isomorphism β : Ai
∼= B,

where B ⊆ S is a finitely generated substructure, is 0-extensional.
For an ordinal θ > 0, an isomorphism β : Ai

∼= B is θ-extensional if:

– For every finitely generated C with B ⊆ C ⊆ S and every ordinal ζ < θ, there
exists j ∈ ω, f ∈ IA

ij , and a ζ-extensional γ : Aj
∼= C with β = γ ◦ f .

– For every m ∈ ω, g ∈ IA
i,m, and ordinal ζ < θ, there exists E ⊆ S and

ζ-extensional ε : Am
∼= E with B ⊆ E and β = ε ◦ g.

A uniformly computable cover A of S is θ-extensional if for every Ai ∈ A there is
a θ-extensional isomorphism β : Ai

∼= B to some finitely generated substructure
B ⊆ S and for every finitely generated substructure E ⊆ S there is a θ-extensional
isomorphism ε : Aj

∼= E from some Aj ∈ A.
If such a uniformly computable cover exists, we say that S is θ-extensionally

locally computable or, more simply, θ-extensional.

Definition 5. Let A be a uniformly computable cover for a structure S. A set M
is a correspondence system for A and S if it satisfies:

– Each element of M is an embedding of an Ai into S.
– For every Ai ∈ A, there exists a β ∈M with domain Ai.
– For every finitely generated substructure B ⊆ S, there exists a β ∈ M with

range B.
– For every Ai ∈ A, every β ∈M with domain Ai, and every finitely generated

substructure C ⊆ S with β(Ai) ⊆ C, there exists Aj ∈ A, γ ∈ M with
domain Aj and image C, and f ∈ IA

ij with β = γ ◦ f .
– For every Ai ∈ A, every β ∈ M with domain Ai, and every Am ∈ A and

every g ∈ IA
i,m, there exists ε ∈M with domain Am with β = ε ◦ g.

If S has a uniformly computable cover A with a correspondence system M ,
then we say S is ∞-extensionally locally computable.

However, the definition applies perfectly well to countable structures, and
Miller proved the following connection between local computability and com-
putable presentability for countable structures (see [5, 4]).

Theorem 1. Let S be a countable structure. S is isomorphic to a computable
structure if and only if S has an ∞-extensional computable cover (with the AP).

This equivalence helped to establish ∞-extensionality as the ultimate goal,
when one desires to prove that a particular structure of arbitrary cardinality is
“nicely presentable.” It also justifies our decision to consider only covers with
the AP.
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2 Failures of Extensionality for Ordinals

We now show that having sufficiently high ordinal levels of extensionality is suffi-
cient for∞-extensional local computability. We work in Lω1,ω allowing countable
conjunctions and disjunctions, and we use the standard notation Σα for α < ω1

to calibrate the complexity of our formulas. (See [1] for additional background
on this logic.)

Lemma 1. Let A be a cover of a structure S. Suppose Ai ∈ A and ψ : Ai → C
is a θ-extensional map onto a substructure C of S, and let h be an automorphism
of S. Then h ◦ ψ is also θ-extensional.

Proof. We induct on θ. For θ = 0, if ψ is 0-extensional, it is an injective homo-
morphism, and therefore so is h ◦ ψ. Thus h ◦ ψ is 0-extensional.

For θ > 0, if f ∈ IA
ij lifts to an inclusion C ⊆ D via ψ and a ζ-extensional

map ϕ (for any ζ < θ), then f also lifts to the inclusion h(C) ⊆ h(D) via h ◦ ψ
and the map h ◦ ϕ. By induction on θ, the map h ◦ ϕ is also ζ-extensional. It
follows that h ◦ ψ is θ-extensional.

Lemma 2. Suppose that A is a computable cover of a structure S, and that a
is an n-tuple from an object Ai ∈ A. If ϕ and ψ are both θ-extensional maps
from Ai into S, then the tuples ϕ(a) and ψ(a) satisfy exactly the same Σθ-
formulas in S.

We will sometimes refer to the set of these Σθ formulas as the Σθ-theory
of ai in A, and will speak of ai satisfying various formulas in A. The lemma
can be seen as saying that this notion is well-defined: in the theory of the cover
A, ai satisfies exactly those Σθ formulas that its image, under an arbitrary θ-
extensional map, satisfies in S. (Alternatively, one can define the Σθ-theory of ai

in A by using ∃-quantifiers to refer to the existence of embeddings f ∈ IA from
Ai into other objects Aj of A, such that (Aj , f(ai)) satisfies the formula inside
the ∃-quantifier. This is natural, and is equivalent to the above definition.)

Proof. For θ = 0, this follows from ϕ and ψ both being 0-extensional, i.e., being
embeddings of Ai into S. For θ > 0, suppose

S |=
∨
k∈ω

(∃y) [Pk(ψ(a), y)]

where each Pk is a Πζk
-formula with ζk < θ. Fix k ∈ ω and y ∈ S such that

S |= Pk(ψ(a), y). The inclusion range(ψ) ⊆ range(ψ)∪ {y} in S must be the lift
of some f in some IA

ij , via ψ and some ζk-extensional ψ′ : Aj → range(ψ)∪ {y}.
But this f must also lift to an inclusion range(ϕ) ⊆ D in S via ϕ and some ζk-
extensional ϕ′. By induction, the Πζk

formula Pk(x, y), being known to hold of
(ψ′(f(a), y) = (ψ(a), y), must also hold of (ϕ′(f(a)), z) = (ϕ(a), z), where z :=
ϕ′(ψ′−1(y)). Thus ϕ(a) also satisfies

∨
k(∃y) [Pk(x, y)]. Finally, by a symmetric

argument, if ϕ(a) satisfies this Σθ formula, then so does ψ(a).
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Several definitions of Scott rank exist in the literature (see [1]). For our pur-
poses, only the following property of the Scott rank (and not the exact definition)
matters: whenever S is a countable structure of Scott rank ζ and x and y are
n-tuples of elements from S (for any n) which satisfy exactly the same Πζ for-
mulas in n variables, there must exist an automorphism of S mapping each xi

to the corresponding yi.

Lemma 3. Fix ordinals θ and ζ with θ > ζ. Let A be a θ-extensional cover of
a countable structure S with Scott rank ζ. Suppose Ai ∈ A and ψ : Ai → S is a
ζ-extensional map. Then ψ is also θ-extensional.

Proof. Since A is a θ-extensional cover, we know that Ai is the domain of some
θ-extensional map ϕ : Ai → S. Let a be a finite tuple generating Ai. Then by
Lemma 2, the tuples ϕ(a) and ψ(a) satisfy exactly the same Πζ-formulas in S.
Since S has Scott rank ζ, there must be an automorphism h of S mapping ϕ(a)
onto ψ(a). But then h ◦ ϕ = ψ since a generates Ai, and so by Lemma 1, the
map ψ is also θ-extensional.

Proposition 1. For a countable structure S, the following are equivalent.

1. The structure S is computably presentable.
2. The structure S is perfectly locally computable (as defined in [5]).
3. The structure S has an ∞-extensional computable cover with the Amalga-

mation Property.
4. There is an ordinal θ strictly greater than the Scott rank of S, such that S

has a θ-extensional computable cover with the Amalgamation Property.

Proof. The equivalence of (1), (2), and (3) is shown in [4, Thm 6.3]; some of it
was originally proven by Miller and Mulcahey in [5]. Since (3) =⇒ (4) is trivial,
we need only show that (4) =⇒ (3). Fix a θ-extensional computable cover A
of S. We claim that the set M of all θ-extensional maps ψ of objects Ai into S
must be a correspondence system. Clearly every Ai is the domain of such a map
and every finitely generated D ⊆ S is the image of such a map. Moreover, for
any ψ ∈M , say with domain Ai, and every f ∈ IA

ij , we can lift f to an inclusion
via ψ and a ζ-extensional ϕ (since ζ < θ), and by Lemma 3, ϕ is also in M .
Likewise, every inclusion of range(ψ) is the lift of some f ∈ IA

ij , for some j, via
some ζ-extensional ϕ, and again, by Lemma 3, this ϕ actually lies in M .

Corollary 1. For every θ > ωCK
1 , the ordinal ωCK

1 is not θ-extensionally locally
computable.

Proof. The Scott rank of the ordinal ωCK
1 (as a linear order) is exactly ωCK

1 .
Hence, as a countable structure with no computable presentation, ωCK

1 cannot
be θ-extensionally locally computable for any θ > ωCK

1 , by Proposition 1.

In Proposition 2 and Theorem 3, we strengthen this corollary to cover some
of the case θ = ωCK

1 . The situation for θ < ωCK
1 will be handled in Theorem 4,

and the rest of the case θ > ωCK
1 in Theorem 2.
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Lemma 4 (Folklore; see e.g. [1]). For each finite sequence of ordinal α0 <
· · · < αk < ωCK

1 , there is a computable infinitary formula λ(x0, . . . , xk) (in the
language of linear orders) such that for every ordinal γ, γ |= λ(β0, . . . , βk) if and
only if βi = αi for each i ≤ k.

Proposition 2. There is no ωCK
1 -extensional computable cover (with AP) of

the ordinal ωCK
1 itself.

Proof. Suppose A were such a cover. By Theorem 1, if there were a correspon-
dence system M for A and ωCK

1 , then there would be a computable copy of ωCK
1 ,

yielding a contradiction. Our goal is to define such a correspondence system M .
For any Ai ∈ A with Ai = a, let ψ and ψ′ be ωCK

1 -extensional maps from Ai

into ωCK
1 . The tuples ψ(a) and ψ′(a) satisfy the same ΠωCK

1
formulas in ωCK

1 .
By Lemma 4, this forces ψ and ψ′ to agree on a, and hence on Ai. Thus, every
Ai ∈ A is the domain of exactly one ωCK

1 -extensional map ψi into ωCK
1 . In fact,

for every Ai, there is a δi < ωCK
1 such that ψi is the unique δi-extensional map

of Ai into ωCK
1 . (We assume δi is least with this property.)

Let M be the collection of all ωCK
1 -extensional maps ψi. We claim M is

a correspondence system. The first three properties of a correspondence system
follow immediately from the fact that A is an ωCK

1 -extensional computable cover.
To verify the fourth property, fix Ai ∈ A and β ∈M with domain Ai. Since

β is ωCK
1 -extensional, β = ψi. Fix a finite C such that ψi(Ai) ⊆ C ⊆ ωCK

1 . By
Lemma 4, let θ < ωCK

1 be such that C is defined by a Σθ formula in ωCK
1 . Using

the fact that A is an ωCK
1 -extensional cover, fix Aj , f ∈ IA

ij and an θ-extensional
map γ such that β = ψi = γ ◦ f . Since C is defined by a Σθ formula, it follows
that δj ≤ θ and hence γ = ψj . Therefore, γ is ωCK

1 -extensional and hence γ ∈M
as required.

The fifth property follows by an similar argument which we leave to the
reader.

Theorem 2. If α > ωCK
1 , then α has no (ωCK

1 + 1)-extensional computable
cover with the Amalgamation Property. Indeed, no computable cover of such an
α can have any object with an (ωCK

1 + 1)-extensional map into α whose image
contains ωCK

1 .

Proof. We show that from such a cover A, we could construct a computable
presentation S of ωCK

1 . Let Ai0 be the object with an (ωCK
1 + 1)-extensional

map ϕ0 such that ϕ0(x0) = ωCK
1 for some x0 ∈ Ai0 (hereafter fixed). The

argument in a nutshell is that we can watch for embeddings g ∈ IA mapping Ai0

into other objects Aj of A. When we find such a g, it must lift to an inclusion in
α via ϕ0 and some ωCK

1 -extensional ϕ1, and so every element y < g(x0) in Aj is
forced to map to some ordinal < ϕ1(g(x0)) = ωCK

1 in α. Since the map is ωCK
1 -

extensional, Lemma 2 shows that in the theory of A, y satisfies some identifying
formula from Lemma 4. We then use the AP to amalgamate Aj together with
the portion of S already built, and either we see that y maps to some element
already in S, or else we add a new element to S to correspond to this y. Since
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every ordinal < ωCK
1 corresponds to some such y in some such Aj , the S built

this way is actually a copy of ωCK
1 .

We start building S by setting B0 = {y ∈ Ai0 : y < x}, letting S0 be the
(possibly empty) linear order {0, 1, . . . , |B0|−1} under <, and defining p0 : S0 →
B0 to be an order-isomorphism.

At stage s + 1, we begin with a finite order Ss and with some sequence of
objects and embeddings from A, given effectively:

Ai0 ↪→ Ai1 ↪→ · · · ↪→ Ais
,

where each embedding ft : Ait ↪→ Ait+1 lies in IA
itit+1

. By induction, we know
an isomorphism ps from Ss onto a suborder Bs of Ais , with every element of
Bs below the element xs = fs−1(xs−1) in Ais , which is the image of x0 under
(fs−1 ◦ · · · ◦ f0).

We now search through IA for the first map g0,s such that:

– g0,s ∈ IA
i0,j0,s

for some j0,s; and
– Aj0,s contains exactly one y < g0,s(x) which is not in range(g0,s); and
– g0,s has not been considered at any previous stage.

Such a g0,s must exist, since there are infinitely many elements of α lying below
ωCK

1 satisfying distinct computable infinitary formulas in α. Once we find the
least one, we fix it and search for amalgamations: first j1,s ∈ ω and g1,s, h0,s ∈ IA,
then j2,s ∈ ω and g2,s, h1,s ∈ IA, etc., as shown here:

Aj0,s

?

g0,s

Ai0

h0,s Aj1,s

-

g1,s

Ai1f0
- Ai2f1 f2

h1,s h2,sAj2,s

g2,s

-

- - - -
? ? ?

· · · ·

· · · ·

fs−1

hs−1,s

-Ais

gs,s

Ajs,s

We define is+1 = js,s and fs = gs,s, thus adding Ajs,s to the sequence
Ai0 ,Ai1 , . . . previously built. If the image of Bs under fs already contains the
element ys+1 = (hs−1,s ◦ hs−2,s ◦ · · · ◦ h0,s)(g0,s((y)), then we set Ss+1 = Ss

and ps+1 = fs ◦ ps. If not, then we extend Ss to a larger order Ss+1 by adding
one new element zs+1 to Ss, with ps+1(zs+1) = ys+1 and ps+1 = fs ◦ ps on
the rest of Ss+1. The order on Ss+1 is defined so that ps+1 remains an order
isomorphism from Ss+1 into the suborder Bs+1 = Bs ∪ {ys+1} of Ais+1 ; clearly
this is compatible with the order on Ss, and it justifies the inductive hypothesis
at the next stage.

This is the entire construction, building the computable linear order S =
∪sSs. We now present the (non-effective) inductive argument that S ∼= ωCK

1 ,
which proceeds through the same stages just described. At stage 0, of course we
have an (ωCK

1 + 1)-extensional map ϕ0 : Ai0 → α, and we define ψ0 = ϕ0 ◦ p0,
embedding S0 isomorphically into ωCK

1 within α (since ϕ0(x0) = ωCK
1 , and p0

maps all elements of S0 to elements below x0 in Ai0).
Now at stage s+ 1 we chose an embedding g0,s : Ai0 ↪→ Aj0,s from IA. Since

ϕ0 is (ωCK
1 + 1)-extensional, this g0,s lifts to an inclusion range(ϕ0) ⊆ C, for

some finite C ⊆ α, via ϕ0 and some ωCK
1 -extensional map ϕ1,s sending Aj0,s
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onto C. By Lemma 4, then, the unique y < g0,s(x) in (Aj0,s−range(g0,s)) must
satisfy (in the theory of the cover A) some computable infinitary formula which
uniquely identifies one computable ordinal. Fix some θs with θs−1 < θs < ωCK

1

large enough that this formula is Σθs .
Now we proceed along the diagram above. Each object Ait is the domain of

some (θs)-extensional map into α, as is each object Ajt,s
, such that these maps

are all compatible with ϕ0. To see this, take (θs + s)-extensional maps with
domains Ai1 and Aj0,s , using (ωCK

1 + 1)-extensionality of ϕ0; then (θs + s− 1)-
extensional maps with domains Ai2 and Aj1,s , etc. Notice that for an Ajt,s with
t > 0, we may have several different such maps, depending on the path one takes
through the diagram. However, every element y from any Bt within Ait

satisfies
a Σθs formula from Lemma 4, and therefore has a unique possible image in α
under these θs-extensional maps: there is only one element in α satisfying that
formula. Moreover, for such a y ∈ Bt, the same holds of the element gt,s(y) of
Ajt,s under all θs-extensional maps from Ajt,s into α. So all of these maps agree
on all elements of Bs and on their images in Ajs,s . Indeed, this remains true
even when we allow s to vary: θs will be larger for larger s, and Ajt,s may be
distinct from Ajt,s+1 , but each element of any Bt within each Ait in the diagram
at stage s+ 1 is mapped to the same element of α by all these maps at this and
all subsequent stages. So, to define ψs(z) for z ∈ Ss, we just map z into Bs using
ps, and then send ps(z) to its image in α under any one of these θs-extensional
maps. This defines ψs unambiguously on Ss, and each ψs is compatible with
ψs+1, because ps+1 restricts to ps and because we noted above that the image
of an element of Bs below the image of x has only one possible image in α under
these (sufficiently extensional) maps. So it is clear that this ψ = ∪sψs is an
embedding of S into ωCK

1 within α. Finally, for each element γ /∈ range(ϕ0) of
the linear order ωCK

1 , there is some j0 and some map g0 : Ai0 → Aj0 which lifts
to the inclusion range(ϕ0) ⊆ range(ϕ0) ∪ {γ}, and at some stage s this j0 and
this g0 will be chosen as j0,s and g0,s. At that stage, γ will become the ψs-image
of some element of Ss, and so the embedding ψ actually maps S onto ωCK

1 . Thus
S is a computable presentation of ωCK

1 , which is impossible.

It remains to decide whether an α ≥ ωCK
1 could have an ωCK

1 -extensional
computable cover. In the initial cases, we can answer this.

Theorem 3. If ωCK
1 ≤ α < ωCK

1 ·ω, then α has no ωCK
1 -extensional computable

cover with AP.

Proof. We sketch the proof, which mixes the techniques used for Proposition 2
and Theorem 2. Now one fixes some i0 for which Ai0 is the domain of an ωCK

1 -
extensional map ϕ0 onto the finite set α∩{ωCK

1 · (n+ 1) : n ∈ ω}. Consider any
j and any g ∈ IA

i0j . Now for every θ < ωCK
1 , every g(x) maps to ϕ0(x) by some

θ-extensional map, and so each g(x) satisfies a Σθ-formula in A stating that in
the Cantor normal form of g(x), every ωζ with ζ < θ has coefficient 0. Since this
holds for all θ < ωCK

1 , each ωCK
1 -extensional map ψ with domain Aj must send

each of these g(x) to a nonzero multiple of ωCK
1 in α. If follows that each element

y ∈ Aj with y < min(range(g)) has ψ(y) < ωCK
1 in α. By Lemma 4, each such y
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satisfies a Σθ formula in A which, in all ordinals, can only be satisfied by ψ(y).
This allows us to run the same construction that we did in Theorem 2, going
systematically through maps g ∈ IA from Ai0 into any Aj in such a way that
min(range(g)) 6= min(Aj) and amalgamating those maps into the construction
to get a computable presentation of ωCK

1 , which is impossible.

3 Extensionality for Ordinals Beyond ωCK
1

Theorem 4. For each computable ordinal θ, every ordinal α has a θ-extensional
computable cover.

The full proof is too long to present in this context, but we can provide a
number of details. We state the key lemmas (in terms of the fixed computable
ordinal θ), present the proof of Theorem 4 assuming these lemmas, and end with
a sketch of the proofs of the lemmas.

Lemma 5. If linear orders S0 and S1 each have θ-extensional computable cov-
ers, then so does their sum S0 + S1.

Lemma 6. Each ordinal multiple of ωθ of the form ωθ · β (with β ≥ ω) has a
θ-extensional computable cover.

To prove Theorem 4, notice that every computable ordinal has a θ-extensional
(even ∞-extensional) computable cover. Therefore, fix a noncomputable ordinal
α and write α = ωθ · β + ρ with ρ < ωθ. Since ρ < ωθ, ρ is computable and
hence has a θ-extensional cover. Since β > ω (because α is not computable),
ωθ · β has a θ-extensional cover by Lemma 6. Therefore, by Lemma 5, α has a
θ-extensional computable cover. So Lemmas 5 and 6 imply Theorem 4.

To prove Lemma 5, fix θ-extensional computable covers A0 and A1 of S0 and
S1 respectively. The objects in the θ-extensional computable cover of S0 + S1

have the form A0
i +A1

j where A0
i ∈ A0 and A1

j ∈ A1, with the caveat that one of
A0

i or A1
j is allowed to be empty. The injective maps from A0

i +A1
j to A0

k +A1
`

are defined in the obvious way, and one checks that this cover is θ-extensional.
The proof of Lemma 6 is notationally cumbersome, but the fundamental

idea is that θ-extensionality cannot distinguish between gaps in a linear order of
length ωθ ·γ for varying nonzero values of γ. Each Ai in our θ-extensional cover A
of ωθ ·β, is a finite linear order of the form 1 < 2 < · · · < n, for some n, together
with an n-tuple 〈ξ0, ξ1, . . . , ξn−1〉, called its label, in which each ξi ∈ ωθ · 2. If
ξi < ωθ, then ξ indicates that the gap between i and i + 1 (or the gap to the
left of 1 if i = 0) in Ai should have length ξi. If ξi = ωθ + ρ, then it indicates
that this gap has length ωθ · γ + ρ for some γ ≥ 1. (Note that the labels are
not formally part of Ai. They are merely a denotation to help us keep track of
which injective maps to include in IA

ij .)
For each n and each label 〈ξ0, . . . , ξn−1〉, we include an object Ai of length

n with this label in A. Let Ai have domain {1, . . . , n} with label 〈ξ0, . . . , ξn−1〉
and Aj have domain {1, . . . ,m} with label 〈η0, . . . , ηm−1〉. We include an order
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preserving map f : {1, . . . , n} → {1, . . . ,m} in IA
ij if and only if the labels

match in the sense that ξ0 = η0 + · · · + ηf(1)−1 and for all 0 < k < n, ξk =
ηf(k) + ηf(k)+1 + · · ·+ ηf(k+1)−1. It is straightforward to check that this process
defines a computable cover of ωθ · β. To check that this cover is θ-extensional
takes longer and will not be presented here. The key fact is the following lemma,
which can be established by induction on ζ. Essentially it says that ζ-extensional
maps cannot distinguish one nonzero multiple of ωζ from another, so that an
object with (say) two elements 1 < 2 and a gap labeled ωζ ·µ+ ρ between them
(where ρ < ωζ) can be used to cover two elements of the ordinal ωθ ·β by a map
ψ, provided that ψ(1) + ωζ · µ+ ρ = ψ(2) for some µ which equals 0 iff µ = 0.

Lemma 7. Fix ζ ≤ θ and let ψ : Ai → ωθ · β be an increasing map. Assume
Ai has domain {1, . . . , n} and label 〈ξ0, . . . , ξn−1〉. Write each ξk = ωζ · µk + ρk

with ρk < ωζ . If there are ordinals µk, with µk = 0 if and only if µk = 0, such
that

ψ(k) = (ωζ · µ0 + ρ0) + (ωζ · µ1 + ρ1) + · · ·+ (ωζ · µk−1 + ρk−1),

then ψ is a ζ-extensional map from Ai into ωθ · β.

This completes the proof sketch for Theorem 4. The full proof is quite tech-
nical and is omitted here. We believe that Theorem 4 ought to be a corollary to
a more general result connecting effectiveness properties of the θ back-and-forth
types of a structure with its being θ-extensionally locally computable. We invite
the interested reader to find the deeper connection that has thus far eluded us.

With Theorem 4, the general question of θ-extensionality of ordinals α is now
settled in almost all cases. When α < ωCK

1 or θ < ωCK
1 , the answer is positive, by

Proposition 1 and Theorem 4. When ωCK
1 ≤ α < ωCK

1 ·ω, the answer is negative
for every θ ≥ ωCK

1 by Proposition 2 and Theorem 3. When α ≥ ωCK
1 · ω, the

answer is negative for every θ > ωCK
1 by Theorem 2. The only case remaining

open is that in which θ = ωCK
1 and α ≥ ωCK

1 · ω.
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