
Computable Transformations of Structures

Russell Miller?

Queens College – C.U.N.Y., 65-30 Kissena Blvd.
Queens NY 11367 USA

Graduate Center of C.U.N.Y., 365 Fifth Avenue
New York, NY 10016 USA

qcpages.qc.cuny.edu/∼rmiller

Abstract. The isomorphism problem, for a class of structures, is the
set of pairs of structures within that class which are isomorphic to each
other. Isomorphism problems have been well studied for many classes
of computable structures. Here we consider isomorphism problems for
broader classes of countable structures, using Turing functionals and
applying the notions of finitary and countable computable reductions
which have been developed for equivalence relations more generally.

1 Introduction

In much of mathematics, two first-order structures which are isomorphic to each
other are treated as being exactly the same for all purposes: the objects of study
are really the equivalence classes under isomorphism, rather than the structures
themselves. Computable structure theory addresses this situation at a deeper
level. It is well known that two isomorphic structures may have substantially
different algorithmic properties, and therefore, when we consider questions of
computability for first-order structures, isomorphism is far too coarse an equiva-
lence relation to be ignored. The fundamental equivalence relation in this disci-
pline is computable isomorphism: two structures (both countable, with domain
ω) are computably isomorphic if some Turing-computable function on ω is in fact
an isomorphism between them. In this case, essentially all known computability-
theoretic properties transfer from either structure to the other. In theoretical
computer science, complexity theory would go deeper yet, but we will not focus
on those questions here.

Of course, the question of whether two structures are isomorphic remains ex-
tremely important in computable structure theory. Instead of being so low-level
as to be ignored (as in much of model theory), it becomes an object of serious
study. The statement that structures A and B are isomorphic is on its face a Σ1

1

sentence about A and B. (For the rest of this article, all structures are countable
with domain ω.) In specific cases, however, it may be not be a Σ1

1 -complete ques-
tion, but may lie at various levels in the hyperarithmetical hierarchy instead. For
? The author was supported by Grant # DMS – 1362206 from the N.S.F., and by

grants from the PSC-CUNY Research Award Program and the Queens College Re-
search Enhancement Fund.

example, for algebraically closed fields, isomorphism depends solely on the char-
acteristic of the field and its transcendence degree over its prime subfield, both
of which can be expressed with just a few first-order quantifiers. Vector spaces
over Q are quite similar: for both, the question of whether two computable mod-
els of the given theory are isomorphic is a Π0

3 -complete question. The study
of isomorphism problems often turns into a search for invariants, such as the
characterstic and the transcendence degree, which determine isomorphism.

On the other hand, it is known that for computable graphs (which sim-
ply means computable symmetric irreflexive subsets of ω2), the isomorphism
problem is Σ1

1 -complete. In [5], Friedman and Stanley created a framework for
showing other isomorphism problems to be equally difficult. They showed, for
example, that given any two computable graphs G0 and G1, one can produce
computable linear orders L0 and L1 such that

G0
∼= G1 ⇐⇒ L0

∼= L1.

The “production” of these linear orders is a hyperarithmetic procedure – in-
deed, a computable procedure – and therefore the isomorphism problem for
computable linear orders must aso be Σ1

1 -complete.
However, if one knows that the isomorphism problem for computable alge-

braically closed fields is Π0
3 -complete and wishes to show the same for com-

putable rational vector spaces, a hyperarithmetic procedure in general is insuffi-
cient. For classification at these levels, effective procedures are required, and have
been examined in [2–4, 8], by Calvert, Cummins, Knight, S. Miller, and Vanden
Boom, in various combinations. The results in [2, Section 4] yield a computable
function f which accepts as input the indices (e0, e1) of any two computable
algebraically closed fields and computes the indices (i0, i1) = f(e0, e1) of two
computable rational vector spaces which are isomorphic if and only if the origi-
nal two algebraically closed fields were. (By an index e for a computable structure
A, we mean a number such that the e-th partial computable function ϕe is the
characteristic function of the atomic diagram of A, under a fixed coding into ω
of atomic sentences in the language of A with constants from ω.)

The method here works well for computable structures, but the results are
sometimes surprising. For example, the isomorphism problem for computable
algebraic fields of characteristic 0 (that is, subfields of the algebraic closure Q)
turns out to be only Π0

2 -complete. It does reduce to the isomorphism problem
for algebraically closed fields, but not vice versa – which is puzzling, since ACF0

has straightforward invariants determining the isomorphism type, while no such
invariants are known for the class of algebraic fields.

2 Equivalence Relations on Cantor Space

Our purpose here is to bring to this situation methods from the study of Borel
reductions on equivalence relations. We begin by introducing that topic, which
has been well studied in descriptive set theory with a focus on equivalence rela-
tions on Cantor space 2ω, and more recently has been extended by many authors
to the context of equivalence relations on ω itself.

Let E and F be equivalence relations on domains S and T , respectively. A
reduction of E to F is a function g : S → T such that:

(∀x0, x1 ∈ S) [x0 E x1 ⇐⇒ g(x0) F g(x1)].

If this holds, then by computing g and deciding the relation F , one can decide E
as well. Thus E is “no harder to decide” than F , at least modulo the difficulty
of computing g.

The next definition was given in [10].

Definition 1. Let E and F be equivalence relations on subsets C and D of 2ω,
respectively. A computable reduction of E to F is a reduction g : C → D given
by a computable function Φ (that is, an oracle Turing functional) on the reals
involved:

(∀A ∈ C)(∀x ∈ ω) χg(A)(x) = ΦA(x).

If such a reduction exists, then E is computably reducible to F , denoted E ≤0 F .

Descriptive set theorists usually eschew this definition in favor of the more
general concept of a Borel reduction, which is to say, a reduction that happens to
be a Borel function. This is the context in which Friedman and Stanley developed
their work. More recently, computability theorists have taken to considering
computable functions (from ω to ω) as reductions, in the context of equivalence
relations on ω. The term “computable reduction” therefore often refers to that
context, but we will use it here as well for the reductions described in Definition
1, trusting the reader to distinguish the two concepts based on the equivalence
relations in question.

Another refinement of reducibilities on equivalence relations was introduced
by Ng and the author in [11]. Studying equivalence relations on ω, they defined
finitary reducibilities. In the context of Cantor space, it is natural to extend their
notion to all cardinals µ < 2ω (as indeed was suggested in their article), yielding
the following definitions, which also appeared in [10].

Definition 2. For equivalence relations E and F on domains S and T , and for
any cardinal µ < |S|, we say that a function g : Sµ → Tµ is a µ-ary reduction
of E to F if, for every x = (xα)α∈µ ∈ Sµ, we have

(∀α < β < µ) [xα E xβ ⇐⇒ gα(x) F gβ(x)],

where gα : Sµ → T are the component functions of g = (gα)α<µ. For limit
cardinals µ, a related notion applies with <µ in place of µ: a function g : S<µ →
T<µ which restricts to a ν-ary reduction of E to F for every cardinal ν < µ
is called a (<µ)-ary reduction. (For µ = ω, an ω-ary reduction is a countable
reduction, and a (<ω)-ary reduction is a finitary reduction.)

When S ⊆ 2ω and T ⊆ 2ω and the µ-ary reduction g is computable, we
write E ≤µ

0 F , with the natural adaptation E ≤µ
α F for α-jump µ-ary reduc-

tions. Likewise, when a (< µ)-ary reduction g is α-jump computable, we write
E ≤<µ

α F , When α > 0, it is important to note that Φ((x)(α)) is required to equal
g(x); this allows more information in the oracle than it would if we had required
Φ((x

(α)
0 ⊕x

(α)
1 ⊕···) = g(x), with the jumps of the individual inputs taken separately.

In our context for applying these notions, the domains S and T will be subsets
of Cantor space, defined by

S = {A ⊆ ω : A codes the atomic diagram of a structure in C},

for some class C of countable structures with domain ω, with T likewise de-
fined by D. For us the equivalence relation on each of these domains will be
isomorphism on the structures coded. One could explore further, of course, us-
ing elementary equivalence of those structures, or bi-embeddability, or other
equivalence relations on structures.

3 Early Examples

To begin with, we consider the situation described in the introduction. The mod-
els of ACF0 form a particularly simple class of structures, with isomorphism
equivalent to having the same transcendence degree (since we have restricted
here to characteristic 0; similar remarks apply to any other fixed characteristic).
Isomorphism between algebraic fields of characteristic 0 – that is, the subfields
of Q – seems a more challenging problem. However, analysis of computable mod-
els in these classes yields the opposite conclusion: isomorphism of computable
models of ACF0 is Π0

3 -complete, whereas isomorphism of computable algebraic
fields is only Π0

2 (and is complete at this level). The latter remark follows from
a lemma which appears as [13, Corollary 3.9].

Lemma 1. Two algebraic field extensions E and F of Q are isomorphic if and
only if every finitely generated subfield of each one embeds into the other. ut

By the Primitive Element Theorem, the condition here can be expressed by
saying that, for every irreducible polynomial q ∈ Q[X], E possesses a root of
q if and only if F does. For computable fields E and F , this is clearly a Π0

2

condition.
When we broaden our analysis to the classes C of all models of ACF0 with

domain ω and D of all algebraic field extensions of Q with domain ω, we gain a
richer view of the situation. Write ACF and Alg for the sets of atomic diagrams
of elements of C and D, respectively, and ∼=ACF and ∼=Alg for the isomorphism
relations on these sets of reals. First of all, it is clear that ∼=Alg 6≤0

∼=ACF , as
a full computable reduction would require every one of the continuum-many
isomorphism classes in Alg to map to a distinct isomorphism class in ACF ,
and ACF has only countably many isomorphism classes in all. (To see that Alg
has uncountably many, write pn for the n-th prime and notice that for every
A 6= B ⊆ ω, the fields Q[

√
pn : n ∈ A] and Q[

√
pn : n ∈ B] cannot be

isomorphic, as no finite set of square roots of primes generates the square root
of any other prime.)

On the other hand, it is not difficult to give a binary computable reduction
of Alg to ACF . Such a reduction is simply a Turing functional which, given the
atomic diagrams of two algebraic fields F0 and F1, computes the diagrams of

algebraically closed fields K0 and K1 as follows. Fix an enumeration q0, q1, . . . of
all irreducible polynomials in Q[X]. (We use here the fact that Q has a splitting
algorithm, which was proven by Kronecker in [9].) At stage 0 we start with Q as
K0 and Q(t) as K1 (with t transcendental).

Now for each s, compute the greatest number ns ≤ s such that

(∀n ≤ ns)(∀i < deg(qn)) [(∃ roots x0 < . . . < xi ≤ s of qn(X) in F0)
⇐⇒ (∃ roots y0 < . . . < yi ≤ s of qn(X) in F1)].

(Here x0 < . . . < xi ≤ s refers to the order of the xj in ω, not in F0, which is not
an ordered field. Hence this statement is decidable from the atomic diagrams of
F0 and F1.) At stage s + 1, if (∀t ≤ s) nt < ns+1, we adjoin a new element to
each of K0 and K1, independent over all previous elements. If not, we adjoin no
new independent elements. In either case, we also take one more step towards
making K0 and K1 into models of ACF0.

At the end of this process, K0 and K1 will be models of ACF0. If F0
∼= F1,

then new transcendentals were adjoined to each at infinitely many stages, so
both have infinite transcendence degree, yielding K0

∼= K1 as desired. Otherwise,
Lemma 1 yields some (least) n for which qn has more roots in F0 than in F1

(without loss of generality). In this case, once all the roots in F0 have appeared,
ns will never exceed n, and so no further transcendentals will ever again be added
to either field. But at every finite stage, K1 has larger transcendence degree than
K0, since we started that way at stage 0, and so K0 6∼= K1 as desired.

The process above can be converted into a countable reduction, yielding the
next result.

Proposition 1. Alg ≤ω
0 ACF .

We sketch the construction of a countable computable reduction. Let dn be
the degree of the polynomial qn. For each F , define the path pF ∈ ωω by

pF (n) = |{x ∈ F : qn(x) = 0}|.

Each such path is confined to the possible nodes satisfying pF (n) ≤ dn for all
n, which form a finite-branching subtree. We assign numbers to these nodes:
those at level 1 are numbered 0, . . . , d0; those at the next level are numbered
d0 + 1, d0 + 2, . . . , d0 + (d0 + 1)(d1 + 1), and so on. The only important aspect
of this computable numbering is that each node has a label greater than its
predecessor’s label.

Given the atomic diagrams of algebraic fields F0, F1, . . ., we construct models
K0,K1, . . . of ACF0 to satisfy, for each i:

– If there exists j < i such that pFi = pFj , then Ki has the same transcendence
degree (over Q) as Kj .

– Otherwise, there exists some least n such that (∀j < i) pFi�n 6= pFj�n. Let
d be the label of the node pF�n. Then Ki will have transcendence degree d.

Clearly, satisfying these conditions will ensure that we have a countable reduction
from Alg to ACF . To satisfy them, we guess effectively at the path pFi for each
i, at each stage s, with the guesses converging to the actual path pFi

. If our
guesses produce an n as described in the second item, then Ki at this stage has
transcendence degree n; if not, then it is isomorphic to Kj at this stage.

This is not really a generalization of the binary reduction constructed above.
Here we use the fact that transcendentals can be destroyed as well as created
in the construction of a computable field: we build only finitely much of Ki at
any stage, and therefore any element previously considered transcendental in
Ki can consistently be turned into a large rational number at the next stage.
(The 1-type of a transcendental element is a nonprincipal type.) For a given Ki,
once the guesses stabilize on the true value n (if one exists), the transcendentals
in Ki at that stage remain independent forever, and any more transcendentals
subsequently added to Ki are later destroyed this way. On the other hand, if
Fi
∼= Fj for some smaller j, then for the n belonging to the least such j, there

is some stage after which we always have the same guess pFi � n = pFj � n for
both paths. From then on, the independent elements in Ki corresponding to
those in Fj will stay independent forever, and any subsequent ones will later be
destroyed. (Notice that this means that every Ki will have finite transcendence
degree. So we have actually given a countable reduction of Alg to a slightly
smaller class than ACF .)

On the other hand, there is no computable reduction, not even a binary
reduction, from ACF to Alg. This follows from the Π0

3 -completeness of the
isomorphism problem for the set of indices for computable algebraically closed
fields of characteristic 0: any such reduction would show this Π0

3 -complete set to
be Π0

2 , by Lemma 1. Thus the non-reducibility result for computable structures
carries over to the general case.

4 ACF0 and Equivalence Structures

For further insights about ACF0, we consider another class of structures: the
class E of countable equivalence structures with no infinite equivalence classes.
(An equivalence structure consists of a single equivalence relation R on the do-
main, with equality also in the language.) For computable members of E, the
isomorphism problem is Π0

3 -complete, the same level of complexity as for ACF0.
(If we had allowed infinite equivalence classes, the complexity level would be Π0

4

instead.) However, there are 2ω-many nonisomorphic structures in E. Our goal
is to distinguish these two classes using the new notions of this article. First, we
show that the class C of countable models of ACF0 is no harder than E.

Proposition 2. ACF ≤0 Eq, where Eq is the isomorphism relation on the reals
in the class E.

Proof. Given an algebraically closed field K as oracle, our reduction Φ builds
an equivalence relation R, beginning by creating a single R-equivalence class of
size (2n− 1) and infinitely many R-equivalence classes of size 2n for each n > 0.

Then it begins to guess (separately for each n > 0) whether K has transcendence
degree ≥ n.

At each stage s + 1, for each n ≤ s, we find the least n-tuple x ∈ K with all
xi ≤ s such that, for all i ≤ s, qn,i(x) 6= 0 in K. (Here we use a fixed ordering
of ωn and a fixed list {qn,i}i∈ω of Q[X1, . . . , Xn].) If this is the same tuple as at
stage s, we do nothing. If it is a new tuple, then we take the unique equivalence
class of size 2n− 1 currently in R, add one more element to it, and create a new
R-equivalence class of size (2n− 1) to replace it. This is the entire construction.

Now if K has transcendence degree < n, then every R-class of size (2n− 1)
ever created will eventually become a class of size 2n. On the other hand, if K
has transcendence degree ≥ n, then eventually an independent n-tuple will be
found in K, and from that stage on, the unique R-class of size (2n−1) will never
have another element added to it. Thus R has exactly one class of size (2n− 1)
for each n ≤ the transcendence degree of K, along with infinitely many classes of
each even size. Thus we have a computable full reduction from ACF to Eq. ut

The next proposition is also not surprising. In fact, given that isomorphism
on computable models of ACF0 is Π0

3 -complete as a set (and that isomorphism
on computable sturctures in E is Π0

3 , the proposition holds immediately for
computable structures. This is because a computable binary reduction from E
to F (where these are equivalence relations on ω) is in fact simply a many-one
reduction from the set E to the set F . Since we wish to establish it for all of E
and C, rather than just for computable structures, we give the entire proof.

Proposition 3. Eq ≤2
0 ACF . That is, there is a computable binary reduction

from Eq to ACF .

Proof. Given two equivalence relations R0 and R1, we must produce alge-
braically closed fields K0 and K1, isomorphic if and only if R0 and R1 are. To
do so, we wish to test, for each k and n, whether

R0 has ≥ k classes of size exactly n ⇐⇒ R1 has ≥ k classes of size exactly n.

A pair 〈k, n〉 for which this may fail will be assigned a number tn,k. If R0 turns
out to have k classes of size n while R1 does not, then K0 will have transcendence
degree ≥ tk,n and K1 will not. If no such k and n exist, then both fields will
have infinite transcendence degree. To determine what to do, we will search first
for a finite subset Xk,n forming k-many R0-classes of size n, and then for a
corresponding subset Ỹk,n of R1-classes. If the R1-classes appear first, then they
will form Yk,n and we will then search for X̃k,n instead.

At stage 0 we begin with Q as both K0 and K1. At each stage, finitely
many steps are taken so that each field will be algebraically closed at the end
of the construction, but at no stage will Q yet be a subfield of either K0 or K1.
Thus, putative transcendentals can always be “destroyed,” by being turned into
elements algebraic over Q. We write Ri,s for the restriction of Ri to {0, . . . , s}.

At stage s+1 we first address that pair 〈k, n〉 ≤ s for which tk,n,s is smallest;
then that for which tk,n,s is second-smallest, and so on. If none of these steps
ends the stage, we will subsequently address those 〈k, n〉 with tk,n,s undefined.

If tk,n,s is defined, then so is one (but not both) of the finite subsets Xk,n,s

(⊆ R0,s) or Yk,n,s (⊆ R1,s). The instructions are symmetric; we give them here
with Xk,n,s defined, in which case its elements formed k distinct R0-classes of
size n when it was first chosen.

1. If any of these k R0-classes contains more than n elements in R0,s+1, then
Xk,n,s+1 and tk,n,s+1 become undefined, and we destroy enough transcen-
dentals in both K0 and K1 to ensure that both have transcendence degree
tk′,n′,s+1, for that pair 〈k′, n′〉 with the greatest tk′,n′,s+1 < tk,n,s (If there is
no such 〈k′, n′〉, then K0 and K1 both get transcendence degree 0.) The stage
ends here, with all remaining values becoming undefined as well. Otherwise,
Xk,n,s+1 = Xk,n,s and K0 remains the same, and we consider (2)-(5) below.

2. Otherwise, if Ỹk,n,s was undefined, and R1,s+1 contains k distinct classes of
size exactly n, then the elements of the first k of these classes are defined to
form Ỹk,n,s+1, and we add just as many transcendentals to K1 as needed to
make its transcendence degree ≥ tk,n,s.

3. If Ỹk,n,s was undefined, but (2) does not apply, then nothing changes.
4. If Ỹk,n,s was defined, then its elements formed k distinct R1-classes. If all

these classes still have size exactly n in R1,s+1, then nothing changes.
5. Otherwise Ỹk,n,s was defined, but one of its R1-classes now has size > n. In

this case Ỹk,n,s+1 is undefined, and we destroy just enough transcendentals
in K1 to make its transcendence degree < tk,n,s+1 = tk,n,s. (K0 still has
trancendence degree ≥ tk,n,s.)

If either (1), (2), (3), or (5) applies, then the stage ends here. If (4) applies, then
we continue to the pair 〈k, n〉 with the next-smallest tk,n,s. If no more pairs have
tk,n,s defined, then we now go in order through those pairs 〈k, n〉 ≤ s for which
tk,n,s is undefined. For the least pair 〈k, n〉 (if any) among these such that either
R0,s+1 or R1,s+1 contains at least k distinct classes of size exactly n, we define
tk,n,s+1 = s + 1, and either

– let Xk,n,s+1 contain the (kn) elements of R0,s+1 forming those R0-classes,
and add transcendentals to K0 so that it has transcendence degree tk,n,s+1;
or else

– let Yk,n,s+1 contain the (kn) elements of R1,s+1 forming those R1-classes,
and add transcendentals to K1 so that it has transcendence degree tk,n,s+1.

This completes the stage.
If R0 6∼= R1, then fix the least stage s0 at which, for some 〈k, n〉, we have

found k classes truly of size n in R0,s0 (WLOG) and set them to equal Xk,n,s0 ,
and R1 does not possess k classes of this this size, and for all 〈k′, n′〉 with
tk′,n′,s0 < tk,n,s0 , Xk′,n′,s0 and Ỹk′,n′,s0 are defined and have stabilized. Such
an s0 must exist, since some 〈k, n〉 do exist. At this stage, K0 will be given
transcendence degree tk,n,s0 , which will equal tk,n = lims tk,n,s, while K1 will
have lesser transcendence degree at that stage. Moreover, every Ỹk,n,s ever sub-
sequently found will later become undefined, with the transcendence degree of
K1 threrefore dropping back below tk,n infinitely often, and so K1 6∼= K0.

However, if R0
∼= R1, then for every 〈k, n〉 for which tk,n,s stabilizes, both

K0 and K1 will have transcendence degree ≥ lims tk,n,s. Moreover, there will be
infinitely many such pairs 〈k, n〉, since every element of R0 lies in a finite R0-class,
and likewise for R1. Therefore, both K0 and K1 will have infinite transcendence
degree, leaving them isomorphic. ut

Proposition 4. Eq ≤3
0 ACF , but Eq 6≤4

0 ACF . That is, there is a computable
ternary reduction from Eq to ACF , but no 4-ary computable reduction.

The details of the proof are too extensive to present here; they will be described
in the author’s talk at the C.i.E. meeting.

In light of the Π0
3 -completeness of isomorphism for computable algebraic

fields, this proposition seems like a surprise. Section 4.2 of [11] makes it more
plausible. The discussion there centers on the fact that, since isomorphism on
models of ACF0 is given by transcendence degree, it is essentially just a matter
(for a computable model K) of counting the elements in the following Σ0

2 basis
for K:

{x ∈ K : (∀ nonzero h ∈ Z[X0, . . . , Xx]) h(0, 1, . . . , x) 6= 0 in K}.

It is shown in [11] that, if E∅′

card is the relation (on indices e of Σ0
2 sets W ∅′

e) of
having the same cardinality, then E∅′

card is complete under ternary reducibility
among Π0

3 equivalence relations on ω, but not complete among them under 4-
ary reducibility. Since the relation (for indices of computable fields in general)
of having the same transcendence degree over the prime subfield is computably
reducible to E∅′

card, it is not so surprising that isomorphism on ACF in general
loses its power at the same specific finitary level of reduction.

The arguments in [11] do prove the following, using the notion of jump-
reduction from [10], with a functional whose oracle is the jump of the inputs.

Lemma 2. Eq ≤3
1 ACF . That is, there is a Turing functional Γ such that

Γ (E0⊕E1⊕E2)
′
= K0 ⊕K1 ⊕K2 is a ternary reduction from Eq to ACF .

In light of Proposition 4, it is natural to enquire into other theories admitting
similar notions of dimension. Baldwin and Lachlan showed in [1] that, if T is an
ω1-categorical theory that is not ω-categorical (such as ACF0), the countable
models of T form an (ω+1)-sequence under elementary embedding. One suspects,
therefore, that the class of such models might be complete among Π0

α-definable
equivalence relations on 2ω under ternary computable reducibility but not under
4-ary computable reducibility, just as holds for models of ACF0 with α = 3.

5 Transformations and Functors

As a final remark, we note that these computable transformations, as in Def-
inition 1, form part of the larger concept of a computable functor. These were
defined by Poonen, Schoutens, Shlapentokh, and the author in [12], and subse-
quently, in [6, 7], he and Harrison-Trainor, Melnikov, and Montalbán broadened
their applicability. We give their definition here.

Definition 3. Let C and D be categories of structures with domain ω, for which
the morphisms from S to T are maps from the domain ω of S to the domain ω
of T . A computable functor is a functor F : C → D for which there exist Turing
functionals Φ and Φ∗ such that

– for every S ∈ C, the function ΦS computes (the atomic diagram of) the
structure F(S); and

– for every morphism g : S → T in C, we have ΦS⊕g⊕T
∗ = F(g) in D.

It would be natural to examine how close the computable transformations
defined earlier in this article come to being computable as functors. The func-
tional Φ∗ computing the functor on morphisms is likely to require one or more
jumps of S and T as oracle, but if not, then the conclusions in [12] and [6] about
computable functors would all apply here as well.

References

1. J.T. Baldwin & A.H. Lachlan; On strongly minimal sets, Journal of Symbolic Logic
36 1 (1971), 79–96.

2. W. Calvert; The isomorphism problem for classes of computable fields, Archive for
Mathematical Logic 43 (2004), 327–336.

3. W. Calvert, D. Cummins, J.F. Knight, & S. Miller; Comparing classes of finite
structures, Algebra and Logic 43 (2004), 365–373.

4. W. Calvert & J.F. Knight; Classification from a computable viewpoint, Bulletin of
Symbolic Logic 12 (2006), 191–218.

5. H. Friedman & L. Stanley; A Borel reducibility for classes of countable structures.
Journal of Symbolic Logic 54 (1989), 894–914.

6. M. Harrison-Trainor, A. Melnikov, R. Miller, & A. Montalbán; Computable func-
tors and effective interpretability, to appear in the Journal of Symbolic Logic.

7. M. Harrison-Trainor, R. Miller, & A. Montalbán; Borel functors and infinitary
interpretations, submitted for publication.

8. J.F. Knight, S. Miller, & M. Vanden Boom; Turing computable embeddings. Jour-
nal of Symbolic Logic 72 3 (2007), 901–918.

9. L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Größen,
J. f. Math. 92 (1882), 1–122.

10. R. Miller; Computable reducibility for Cantor space, submitted for publication.
11. R. Miller & K.M. Ng; Finitary reducibility on equivalence relations, Journal of

Symbolic Logic 81 (2016) 4, 1225–1254.
12. R. Miller, B. Poonen, H. Schoutens, & A. Shlapentokh; A computable functor from

graphs to fields, submitted for publication.
13. R. Miller & A. Shlapentokh; Computable Categoricity for Algebraic Fields with

Splitting Algorithms, Trans. of the Amer. Math. Soc. 367 6 (2015), 3981–4017.

