
Direct Construction of Scott Ideals

Russell Miller1,2(B)

1 Queens College, 65-30 Kissena Blvd., Queens, NY 11367, U.S.A.
Russell.Miller@qc.cuny.edu

2 C.U.N.Y. Graduate Center, 365 Fifth Avenue, New York, NY 10016, U.S.A.

Abstract. A Scott ideal is an ideal I in the Turing degrees, closed
downwards and under join, such that for every degree d in I, there is
another degree in I that is a PA-degree relative to d. It is known that,
for every Turing degree d, there is a Scott ideal containing d in which
every degree is low relative to d (with jump Turing-reducible to d′). We
give a construction of such an ideal Id , uniform in a given set D ∈ d,
using the Uniform Low Basis Theorem of Brattka, de Brecht, and Pauly.
The primary contribution of this article may be the questions posed at
the end about the monotonicity of this construction.

Keywords: computability theory · PA-degree · Π0
1 -class · Scott ideal ·

Turing degree · Turing reducibility · Uniform Low Basis Theorem

1 Introduction

Finite-branching trees are ubiquitous in mathematical logic. They arise as soon
as one begins to consider the completions of a consistent theory. For a consistent,
decidable axiom set, such as the axioms PA for Peano arithmetic, the complete
consistent extensions of the axiom set correspond bijectively to the (infinite)
paths through a decidable subtree of the complete binary tree 2<ω.

From the Incompleteness Theorem of Gödel, we immediately realize that
the subtree above, despite all its decidability, has no computable path. Kreisel
remarked that the Halting Problem ∅′ must be able to compute some path
through each such tree. Shoenfield went further in [8], proving that every such
tree contains a path whose Turing degree lies strictly below the degree 0′ of ∅′.
But it was Jockusch and Soare who claimed the sharpest result, as their Low
Basis Theorem in [3] established that every such tree has an infinite path of low
Turing degree d, i.e., with jump d′ = 0′. Such a path is “almost” computable, in
the sense that its relativization of the Halting Problem is no more complicated
than the actual Halting Problem.

The paths through the tree described above for the axiom set PA came to be
called the PA-degrees, the Turing degrees of complete consistent extensions of

R. Miller—The author was partially supported by Grant #581896 from the Simons
Foundation and by the City University of New York PSC-CUNY Research Award
Program. The composition of this article was aided by useful conversations with Emma
Dinowitz.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Della Vedova et al. (Eds.): CiE 2023, LNCS 13967, pp. 23–34, 2023.
https://doi.org/10.1007/978-3-031-36978-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36978-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-36978-0_3


24 R. Miller

PA. It turns out that these are precisely the degrees capable of computing some
path through every decidable infinite subtree of 2<ω. In turn, the term “PA
degree” was relativized: for an arbitrary degree a, a degree d is PA relative
to a if d computes a path through every a-computable infinite subtree of 2<ω.
(Equivalently, d computes a path through every a-computable infinite finite-
branching tree whose branching function is a-computable.) The results of [3]
relativize to show that for every Turing degree a, there is a degree d that is
both PA relative to a and low relative to a, that is, with a′ = d′. (Necessarily
a < d for every d that is PA relative to a. Here the relations < and ≤ on degrees
always denote Turing reducibility.)

More recently, in 2012, Brattka, de Brecht, and Pauly gave a uniform version
of the Low Basis Theorem, constructing a Turing functional Γ such that, for
every A ⊆ ω, ΓA(n, s) computes a function on ω2 whose limit, as s → ∞, is the
characteristic function of the jump of a set D of PA-degree relative to A. Thus
D itself must be low relative to A, as A′ allows one to compute D′.

Our purpose in this abstract is to apply the Uniform Low Basis Theorem
(Theorem 2 below) to give a uniform construction of Scott ideals, a well-known
concept in reverse mathematics that we introduce in Sect. 3. As we will explain
in Sect. 4, however, our ultimate goal is not related to reverse math, but rather to
the absolute Galois group of the rational numbers. In light of this goal, two open
questions naturally arise, to be described (but not answered) in that section. We
view these questions as important and challenging. Quite possibly the questions
themselves are the most important items in this abstract. The technical con-
structions preceding them require attention but follow a predictable path and
lead to results that will not seem foreign or unusual.

2 Constructing PA Degrees Uniformly

For the degree 0, the tree described above, whose paths are the complete exten-
sions of PA, has the property that the degrees of paths through that tree are
precisely the PA degrees relative to 0. The first result here, which is well-known,
relativizes this statement to an arbitrary degree a and says that such a tree can
be created uniformly in a set A ∈ a.

Theorem 1. There is a computable relation R ⊆ ω × 2<ω × 2ω such that, for
every A ∈ 2ω, the set

{σ ∈ 2<ω : (∀m,n ≤ |σ|)R(n, σ�m,A)}

forms an A-computable subtree TA ⊆ 2<ω such that, for every degree c,

c is PA relative to A ⇐⇒ c computes a path through TA.

Moreover, since TA is computable uniformly from A, there is a computable total
injective function h : ω → ω such that, for every A, h is a 1-reduction from the
jump (TA)′ to the jump A′.



Direct Construction of Scott Ideals 25

TA is built so that its paths are the consistent completions of the axiom set
PA augmented by axioms saying f = χA, in the language of PA with a unary
function symbol f adjoined. If Υ is the Turing functional such that TA = ΥA,
then the function h, on input e, outputs the code number of the Turing functional
Φh(e) such that

ΦC
h(e)(x) = ΦΥC

e (e).

Thus, for arbitrary sets A,

h(e) ∈ A′ ⇐⇒ ΦA
h(e)(h(e))↓ ⇐⇒ ΦΥA

e (e)↓ ⇐⇒ ΦTA
e (e)↓ ⇐⇒ e ∈ (TA)′.

Theorem 2 (Uniform Low Basis Theorem: Thm. 8.3 in [1]). There exists
a Turing functional Γ such that, for every set A ⊆ ω, ΓA is total and there exists
a set PA, of PA degree relative to A, such that

(∀n) lim
s

ΓA(n, s) = χ(PA)′(n),

The set PA may be viewed as a path through the universal A-computable subtree
TA of 2<ω. This path is low relative to T , meaning that (PA)′ ≤T A′, as its jump
(PA)′ is the limit of an A-computable function. The original Low Basis Theorem
of Jockusch and Soare [3], relativized to A, proved the existence of such a path.
Brattka, de Brecht, and Pauly showed that the jump of PA can be approximated
uniformly using a A-oracle.

With this, for an arbitrary set A, we will define an infinite sequence A =
A0 <T A1 <T A2 <T · · · of subsets of ω such that:

– For every n ∈ ω, deg An+1 is a PA degree relative to An; and
– There exists an A-computable function M , which we will call a master func-
tion, such that

(∀n)(∀x) lim
s→∞ M(n, x, s) =

{
1, if x ∈ A′

n

0, if x /∈ A′
n.

The first condition automatically implies An+1 �≤T An. The second condition
yields a uniform-limit result for the sets An themselves, using the following easy
lemma.

Lemma 1. There is a computable total function f such that, for every C ⊆ ω,
f is a 1-reduction from C to C ′.

Proof. Define f(n) to be the index e of the functional Φe given by

ΦB
e (x) =

{
0, if n ∈ B;
↑, if not. ��

Thus, uniformly for all n and x, An(x) = lims M(n, f(x), s). However, the uni-
form computation of the jumps A′

n is substantially stronger than this. One might
say that the sets An are uniformly low, as their jumps are uniformly limit-
computable in A (or equivalently, uniformly A′-computable).



26 R. Miller

Our sequence is readily defined. It begins with A0 = A. Next, given An, we
define Tn to be the tree TAn

as given in Theorem 1, which shows that Tn may
be computed uniformly from An. Then Theorem 2 yields a path Pn+1 = PTn

through this tree Tn. By Theorem 1, the Turing degree of Pn+1 is a PA degree
relative to An, and we define An+1 = Pn+1.

The sequence {An}n∈ω will instantiate the following Proposition.

Proposition 1. For arbitrary A ⊆ ω, there exists a strictly ascending sequence
{An}n∈ω of subsets of ω, all low relative to A, with A0 = A and such that every
An+1 has PA degree relative to An, and an A′-computable master function M
such that M(n, x) = χA′

n
(x) for all n and x.

Proof. We use the sets An defined above. Since An+1 is a PA degree relative
to An, we immediately have An <T An+1. (The reduction An ≤T An+1 follows
by considering a single fixed index e such that ΦB

e defines the subtree of 2<ω

whose nodes are just the initial segments of B. The path Pn+1 computes a path
through the tree ΦA

e , hence computes An; and since the same index e works for
every n, this reduction is uniform in n.)

Next we show how to compute the required master function M(n, x). Of
course, since A0 = A, we begin with M(0, x) = χA′(x). Assuming by induction
on n that, with the A′-oracle, we have computed M(n, x) = χA′

n
(x) for all x,

we now address (An+1)′ = (Pn+1)′. Recall from Theorem 1 that for the tree
Tn = TAn

, there is a computable 1-reduction h from (Tn)′ to (An)′. Moreover,
by Theorem 2, the jump (Pn+1)′ = (PTn

)′ is given by lims ΓTn(x, s). Therefore

x ∈ (An+1)′ ⇐⇒ lim
s

ΓTn(x, s) = 1.

We search for a number s0 such that (∀s ≥ s0)ΓTn(x, s) = ΓTn(x, s0). For each
s0, this is a question about the membership in (Tn)′ of a particular index g(s0)
(computable from s0 uniformly in x and n). The function h allows us to convert
this question into the question of membership of h(g(s0)) in (An)′, which we
can compute with our oracle, by inductive hypothesis. Moreover, lims ΓTn(x, s)
exists, so eventually we find such an s0, and when we do, we define M(n, x) =
ΓTn(x, s0). Thus M(n + 1, x) = χ(An+1)′(x) as desired. ��

3 Defining Scott Ideals

Proposition 1 allows us to build Scott ideals uniformly. We recall the relevant
definition. (Certain applications of it will be discussed briefly in Sect. 4.)

Definition 1. A nonempty set I of Turing degrees is a Turing ideal if it is closed
downward under Turing reducibility ≤ and also under the finite join operation.
A Turing ideal I is a Scott ideal if it has the additional property that, for every
a ∈ I, I also contains a PA-degree relative to a.

The most common Turing ideals are the principal ideals {d : d ≤ c} defined
by any single degree c. These are not Scott ideals, however, as they contain c



Direct Construction of Scott Ideals 27

but no degree > c and consequently no degree PA relative to c. The natural
strategy for building a Scott ideal I (especially if one wants I to be countable) is
to start with a degree a and close under the condition of Definition 1, adjoining
to I some degree a1 PA relative to a, then another degree a2 PA relative to
a1, and so on. (Of course, when adjoining an, we also adjoin all degrees ≤ an.)
Proposition 1 shows exactly how to do this effectively, while keeping each an as
small in the Turing hierarchy as possible. Indeed, since each an+1 is low relative
to an, we have a′

n+1 ≤ a′
n ≤ · · · ≤ a′

1 ≤ a′, so the entire ideal stays very close
to the starting point a.

The point of the upcoming Theorem 4 is to give a cleaner definition of the
Scott ideal than the foregoing. The concept of an exact pair of Turing degrees
appears in Theorem 3 in Spector’s article [12], which in turn cites the article [4]
by Kleene and Post. Rephrased in the language of the textbook [11], it states that
every strictly ascending sequence of Turing degrees (under Turing reducibility
≤) has an exact pair.

Theorem 3 (Kleene-Post-Spector; see Theorem VI.4.2 in [11]). For
every sequence {an}n∈ω of Turing degrees with an < an+1 for all n, there exist
upper bounds b and c (called an exact pair for the sequence) such that

(∀d) [[d ≤ b & d ≤ c] ⇐⇒ [∃n d ≤ an]].

We wish to apply Theorem 3 to the sequence of degrees an of the sets An

produced by Proposition 1 above, taking advantage of the specific properties of
that sequence. Recall that every degree an from that sequence is low relative to
the given set A of degree a, with a′

n = a′. Moreover, we have a single uniform
computable approximation of their jumps. In Proposition 1, the master function
was given as an A′-computable function M(n, x). Here we use the equivalent
formulation of an A-computable master function M(n, x, s), with χ(An)′(x) =
lims→∞ M(n, x, s) for all n and x. (This is better adapted to our construction
in Theorem 4 below, whereas the A′-computable version simplified the proof of
Proposition 1.) On the other hand, every An+1 computes a path through the
universal strongly-An-computable subtree Tn of 2<ω, and so An+1 �≤T An. We
noted earlier that An ≤T An+1 uniformly in n, so the sequence of degrees {an}
is indeed strictly ascending, allowing us to apply the following theorem to it.

Theorem 4 (Low exact pairs for uniform low ascending sequences).
For every strictly ascending sequence {An}n∈ω of subsets of ω such that the
reductions An ≤T An+1 are computable uniformly in n, and for every master
function M with lims→∞ M(n, x, s) = χA′

n
(x) for all n and x, there exist subsets

B and C of ω that form an exact pair for the sequence {An} and whose join is
low relative to M (i.e., (B ⊕ C)′ ≤T M ′).

Proof. We give the proof under the assumption that A0 and M are computable.
Relativizing to an arbitrary A0 and an A0-computable M is trivial. In our con-
struction, S =∗ T denotes that the symmetric difference of the sets S and T is
finite, while S[n] = {m ∈ ω : 〈n,m〉 ∈ S} is the n-th “column” of the set S,



28 R. Miller

when the subset S of ω is viewed as a two-dimensional array using a computable
bijection 〈·, ·〉 from ω2 onto ω. This and other standard notation comes from
[11], in which Theorem VI.4.2 is a non-effective version of the proof given here.
We use requirements similar to those there, for all i, j, and n, along with our
lowness requirements for all e:

T B
n : B[n] =∗ An.

T C
n : C [n] =∗ An.

Le : if (∃∞s) Φβs⊕γs
e,s (e)↓ , then ΦB⊕C

e (e)↓ .

R〈i,j〉 : if ΦB
i = ΦC

j and both are total, then (∃n) ΦB
i ≤T An.

In the last of these, βs and γs are the s-th finite strings in the computable
approximations {βs}s∈ω and {γs}s∈ω that we will build, with B = lims βs and
C = lims γs. It is well known that, if all of these L-requirements are satisfied,
then (B ⊕ C) will indeed be a low set. The R-requirements will establish that
every set computable both from B and from C will be computable from some An,
while the T -requirements yield the converse, that every An is both B-computable
and C-computable. Each T B

n is given priority over T C
n , which has priority over

Ln, which has priority over Rn, and all of these have priority over T B
n+1.

(The original result of Spector, Theorem 3 in [12], is somewhat effective,
noting that both B and C lie strictly below the jump (⊕nAn)′ of the infinite
join of the sets An. This also holds of the construction in [11], although it goes
unmentioned there. The construction of [11] is somewhat easier to imitate, so
we adapt it here. The new result here in Theorem 4 is the lowness of (B ⊕ C),
which will follow from the new assumption of uniform lowness of the sets An.)

As is common, each requirement Le may impose a restraint l(e, s) at each
stage s ≥ e. This will mean that only requirements of higher priority than Le

may move elements < l(e, s) into or out of (βs ⊕ γs) at stage s + 1. Likewise,
a requirement Rk = R〈i,j〉 may impose a restraint r(k, s) at that stage, which
must be similarly respected by all lower-priority requirements. The restraint
l(e, s) will help ensure that ΦB⊕C

e (e)↓, once convergence has occurred at a finite
stage. The restraint r(k, s) will help preserve computations ΦB

i (x) ↓�= ΦC
j (x) ↓,

once they have been seen to occur at a finite stage.
At stage 0, all restraints are set with l(e, 0) = r(k, 0) = 0, and β0 and γ0

are both the empty string. It is convenient to consider every requirement to
be initialized at this stage. (Each time a requirement is injured, it will be re-
initialized.)

At each stage s+1 of the construction, we first consider the L-requirements.
For each e ≤ s, we check whether the computation Φβs⊕γs

e,s (e) halts. If it does
halt, let u be the use of this computation (i.e., the greatest cell on the oracle tape
that is read by the machine during the computation), and set l(e, s+1) = �u+1

2 �.
This will cause our procedure to protect the first u bits of βs ⊕ γs, with priority
e. We do this independently for every e ≤ s; newly chosen restraints are not
considered to have injured lower-priority requirements, so no requirements are
initialized at this point.



Direct Construction of Scott Ideals 29

Next we check which R-requirements need attention. To determine whether
Rk needs attention at stage s + 1, with k = 〈i, j〉, let eks be the code number
of a program which uses an An-oracle to search for strings σ and τ in 2<ω and
t, y ∈ ω such that all of the following hold.

1. For all k′ ≤ k and all 〈k′,m〉 with r(k′, s) ≤ 〈k′,m〉 < |σ|, σ(〈k′,m〉) =
Ak′(m). (Notice that checking this requires an Ak-oracle, along with the uni-
form reductions Ak′ ≤T Ak for all k′ < k.)

2. For all k′ ≤ k and all 〈k′,m〉 with r(k′, s) ≤ 〈k′,m〉 < |τ |, τ(〈k′,m〉) =
Ak′(m). (Again this requires an Ak-oracle.)

3. (∀e ≤ k)(∀x < l(e, s + 1)) [σ(x) = βs(x) & τ(x) = γs(x)].
4. (∀k′ < k)(∀x < r(k′, s)) [σ(x) = βs(x) & τ(x) = γs(x)].
5. Φ σ

i,t(y)↓ �= Φ τ
j,t(y)↓.

The first of these says that setting βs+1 = σ would not injure the higher-priority
TB requirements, and the next one says that setting γs+1 = τ would not injure
the higher-priority TC requirements. Items (3) and (4) say that doing this would
not injure any higher-priority L- or R-requirements, and the last item says that
doing it would satisfy Rk (provided βs+1 ⊕ γs+1 is preserved thereafter).

If M(n, eks, s) = 0, then our master function currently guesses that there
are no such σ and τ , and so Rk does not need attention at stage s + 1. Also,
if Rk has received attention at a previous stage and has not been injured since
that stage, then it does not need attention now. (In this case, taking σ = βs

and τ = γs satisfies all these conditions!) Otherwise, with M(n, eks, s) = 1,
we search either until we find (σ, τ, y, t) satisfying all of these conditions, or
until we reach a stage s′ > s at which M(n, eks, s

′) = 0. If we first find such
a stage s′, then the master function’s current guess is later superseded and Rk

does not need attention at stage s + 1; but if we first find the tuple (σ, τ, y, t),
then it does need attention. (Notice that one or the other of these must occur,
because if lims′ M(n, eks, s

′) = 1, then eks ∈ (An)′, meaning that the search
must terminate with the discovery of a tuple (σ, τ, y, t).)

If there is no k ≤ s for which Rk needs attention at this stage, then for the
pair 〈n,m〉 = |βs|, we define βs+1 = βŝ (An(m)), extending βs by a single bit
which is either 1 or 0 according to whether m ∈ An or not. Thus this last bit
agrees with the requirement TB

n . Likewise, for 〈n′,m′〉 = |γs|, we define γs+1 =
γŝ (An′(m′)), as demanded by TC

n′ . In this case all restraints are preserved: l(e, s+
1) = l(e, s) and r(k, s + 1) = r(k, s).

If there exists a k = 〈i, j〉 ≤ s such that Rk needs attention at stage s + 1,
then for the least such k, we find the (least) tuple (σ, τ, y, t) that satisfies all five
conditions and define

βs+1(x) =

⎧⎨
⎩

σ(x), if x < |σ|;
βs(x), if |σ| ≤ x < |βs|;
An(m), if |σ| ≤ |βs| = x = 〈n,m〉

and

γs+1(x) =

⎧⎨
⎩

τ(x), if x < |τ |;
γs(x), if |τ | ≤ x < |γs|;
An(m), if |τ | ≤ |γs| = x = 〈n,m〉.



30 R. Miller

Thus σ � βs+1 and τ � γs+1, and we have filled in bits as needed to ensure
|βs+1| > |βs| and |γs+1| > |γs|. For every e > k, both Re and Le are initialized
at this stage, with l(e, s+1) = r(e, s+1) = 0. We keep l(e, s+1) = l(e, s) for all
e ≤ k and r(e, s + 1) = r(e, s) for every e < k. For Rk itself, we define r(k, s +
1)= max(|σ|, |τ |), which is sufficiently long to protect both of the computations
Φ

βs+1
i,t (y) and Φ

γs+1
j,t (y) in Condition (5). Rk is said to have received attention at

this stage.
This completes stage s + 1. We will define B = lims βs and C = lims γs once

we have shown that these limits actually exist. To see that lims βs exists, observe
first that in our construction, |βs+1| > |βs| for all s, and second that the only
situation in the construction that can cause an incompatibility in these strings
(with βs+1 �� βs) is when a requirement Rk receives attention. Fix an arbitrary
x ∈ ω and consider the first stage s0 at which some requirement Rk0 = R〈i,j〉
causes βs0−1(x) �= βs0(x). At this stage, Rk0 becomes satisfied; the only reason
why it might act again is if it is subsequently injured, and the only requirements
that can injure it are higher-priority R-requirements (as no other requirements
can alter βs � r(k, s0) or γs � r(k, s0)). But when a higher-priority requirement
Rk1 acts at a stage s1 > s0, it defines βs1 with length > |βs0 |. Therefore,
after stage s1, only requirements of higher priority than Rk1 can redefine βs(x).
Continuing by induction, we see that βs(x) may be redefined at most k0-many
times after stage s0, so eventually it stabilizes. Thus lims βs(x) always exists, as
does lims γs(x) by the same argument, so B and C are indeed well-defined.

It remains to show that this B and C satisfy our requirements and conse-
quently instantiate the theorem. We argue by induction on the priority of the
requirements, starting with T B

0 and proving that each one is satisfied, that it
only receives attention at finitely many stages, and that any relevant restraints
l(e, s) or r(k, s) stabilize at finite values as s → ∞.

For a requirement T B
n , notice first that whenever βs is extended by one bit

to βs+1 (at stages s+1 at which no R-requirement needs attention), the new bit
is always defined to satisfy the (only) relevant T B-requirement. The only other
way that bits in βs+1 can be redefined or newly defined is if a requirement Rk

receives attention. By inductive hypothesis there is a stage s0 after which no
higher-priority requirement acts again. But if k ≥ n, then Condition (4) ensures
that the relevant string σ must match βs on ω[n] ∩ {0, 1, . . . , r(n, s) − 1}, while
Condition (1) ensures that σ must match An on the rest of the column ω[n]

(up to |σ|). Thus, after stage s0, no further extension of βs will cause any more
disagreements between An and B[n], and no bit in βs�ω[n] will ever be redefined
again once it has entered dom(βs) for some s. Thus T B

n is satisfied. A parallel
argument shows that T C

n is also satisfied.
For the requirement Le, we again fix a stage s0 after which no higher-

priority requirement than Le receives attention. Assume that there are indeed
infinitely many stages s at which Φβs⊕γs

e,s (e) ↓, and fix the first such stage
s1 > s0. The construction therefore sets l(e, s1 + 1) = �u+1

2 �, where u is the

use of the computation Φ
βs1⊕γs1
e,s1 (e). Only R-requirements could possibly cause

βs� l(e, s1) �= βs1 � l(e, s1) at subsequent stages s, and by inductive hypothesis



Direct Construction of Scott Ideals 31

no higher-priority R-requirements ever do so. But whenever an Rk with k ≥ e
redefines βs+1 ⊕ γs+1 to equal some new σ ⊕ τ incompatible with βs ⊕ γs, Con-
dition (3) forces it to choose them so that σ� l(e, s + 1) = βs � l(e, s + 1) and
τ� l(e, s+1) = γs� l(e, s+1). Therefore the computation Φ

βs1⊕γs1
e,s1 (e) is preserved

at all subsequent stages, and so ΦB⊕C
e (e) ↓, satisfying Le. Moreover, Le never

again redefines l(e, s + 1), as the current l(e, s1 + 1) preserves the convergence.
Finally, consider a requirement Rk = R〈i,j〉, and suppose that ΦB

i = ΦC
j = f

is a total function from ω to {0, 1}. We fix a stage s0 after which no higher-
priority requirement acts again, and give a program ΨAk for computing f from
an Ak-oracle. (Here k is in fact the index 〈i, j〉 of the requirement.) ΨAk begins
with finitely much information: the stage s0 and the strings βs0 and γs0 . On
input y, it searches for either a string σ or a string τ that satisfy all of the
Conditions (1)-(4) (as listed on page 7) relevant to itself and such that either
Φσ

i (y) or Φτ
j (y) converges. (For a σ, Condition (2) is irrelevant, as is (1) for a

τ ; also, only half of (3) and (4) is relevant to either.) Whichever of those two
programs halts, ΨAk outputs that value, claiming that it must be the value of
f(y). (Notice that we did need the oracle Ak here, in order to verify satisfaction
of Conditions (1) and (2).)

We remark first that ΨAk does indeed compute a total function. After all,
ΦB

i (y) halts, using some finite initial segment B�u of its oracle B, as does ΦC
j (y)

using some C � u. But every extension of βs0 ⊕ γs0 to a subsequent βs ⊕ γs

in our construction must have satisfied all of Conditions (1)-(4), because no
requirement of lower priority than Rk ever acted again. (One-bit extensions, at
stages when no Rk′ needed attention, also satisfy those conditions.) Therefore, if
it does not find some other σ or τ first, ΨAk will eventually find some βs ⊇ B�u
or some γs ⊇ C � u which satisfy the conditions, and it will output ΦB

i (y) or
ΦC

j (y) accordingly. In this case, those are both the correct value f(y) that we
wanted it to output. It remains to show that, even if it found some other σ or τ
first, ΨAk still outputs the correct value f(y).

So suppose that there is some σ (say) which satisfied all the relevant condi-
tions and had Φσ

i (y)↓, thus producing our value ΨAk(y). If ΨAk(y) �= f(y), then
Φσ

i (y) �= ΦC
j (y). Let C�u be the initial segment used here, and find an s1 > s0

such that γs�u = C�u for all s ≥ s1. We claim now that at all stages s + 1 > s1,
Rk’s need for attention was witnessed by some finite σ1 extending the given σ,
by τ = γs+1, and by the given y and t = s. Indeed Φσ1

i (y)↓�= Φτ
j (y)↓, satisfying

(5), and the satisfaction of all the other conditions follows from their satisfac-
tion by σ and by γs+1. Since this held at all stages > s1, the program ΦAk

eks
halts

on every input, making eks ∈ (An)′. But M(n, eks, t) approximates (Ak)′, so at
a sufficiently large stage t it will have M(n, eks, t) = 1, and at this stage Rk

needed attention. By the choice of s0, no higher-priority Rk′ needed attention at
that stage, so Rk will have received attention at that stage, with βt+1 ⊇ σ1 and
γt+1 ⊇ τ . Since Rk is never injured again, the halting computations Φ

βt+1
i (y)

and Φ
γt+1
j (y) will have been preserved forever after, contradicting the hypothesis

that ΦB
i = ΦC

j . A symmetric argument shows that no τ can have caused ΨAk(y)



32 R. Miller

to output an incorrect value, so indeed f = ΨAk . This shows that f ≤T Ak as
required, and completes the proof. ��

Corollary 1. For each Turing degree a, let a = a0 < a1 < · · · be the sequence
of degrees defined by Proposition 1, and let Ia = {d : (∃n) d ≤ an} be the
corresponding Scott ideal. Then Ia is the intersection of the two lower cones

Ia = {d : d ≤ b & d ≤ c},

with b and c defined as in Theorem 4 (hence with jumps limit-computable in a,
uniformly in the given A ∈ a). ��

4 Applications and Questions

The first use of Scott ideals that will spring to the minds of many readers is the
creation of ω-models of the axiom system WKL0. It is well-known that Scott
ideals yield models for this system: given a Scott ideal I, just take the model
of second-order arithmetic with standard first-order part and containing those
subsets of ω whose Turing degrees lie in I. Theorem 4 offers a uniform method
of producing such models.

However, the existence of such models of WKL0 has long been known (see
[2,9], among other sources, for background), and the present author cannot see
that the uniformity here adds anything significant to our understanding of those
models. The motivation for the work in this article was different. The author’s
original purpose in establishing Theorem4 was to use the sets B and C con-
structed there to define the subgroup

GBC = {f ∈ Aut(Q) : f ≤T B & f ≤T C}

of the absolute Galois group Gal(Q/Q) of the field Q of rational numbers – or
equivalently, the automorphism group Aut(Q) of the algebraic closure Q. Here
we have fixed a computable presentation Q of this algebraic closure. (In fact, Q
is computably categorical, so the specific choice of presentation is irrelevant.) In
some respects this work follows and expands upon that in [5,6,10].

Elements of Aut(Q), expressed as permutations of Q, are readily viewed as
paths through a finite-branching tree T , which can be computably presented and
has computable branching. The subgroup GBC has the further property that,
whenever a computable infinite subtree of T is computed using finitely many
elements f1, . . . , fn of GBC as parameters, that subtree will contain a path that
also lies in GBC . (Recall that the intersection of the lower cones below B and
C has the property that, for every D in this intersection, the intersection also
contains a set E having PA degree relative to D. With D = f1 ⊕ · · · ⊕ fn, the
corresponding E will compute the desired path.)

In forthcoming work [7], the author has shown the following.

Theorem 5. For every Scott ideal I in the Turing degrees, the set

AutI(Q) = {f ∈ Aut(Q) : deg f ∈ I}



Direct Construction of Scott Ideals 33

forms a subgroup of Aut(Q) that is elementary for Σ1 and Π1 formulas and also
for all positive formulas (i.e., prenex formulas in the language of fields that do
not use the negation connective).

This elementarity has been extended to a further class of Σ2 formulas, and
might yet turn out to hold for more complicated formulas (allowing negation) as
well. On the other hand, it is conjectured that the subgroups Autd(Q) = {f ∈
Aut(Q) : deg f ≤ d} defined by principal Turing ideals may not be elementary
to the same extent.

The group Aut(Q) is naturally viewed as a profinite group: an inverse limit
of finite groups, namely the Galois groups of number fields over Q. It is hoped
here that it may turn out to be productive to view Aut(Q) simultaneously as
a direct limit. The subgroups AutI(Q) of the form above, under inclusion, do
form a directed system whose direct limit is Aut(Q). So also do the subgroups
Autd(Q), as d ranges over all Turing degrees, but using subgroups of greater
elementarity appears to be a more promising path. On the other hand, for the
subgroups Autd(Q), the directed system is well-known: it is simply the set of all
degrees under Turing reducibility ≤, as Autc(Q) ⊆ Autd(Q) just if c ≤ d.

For the subgroups given by Scott ideals, it is natural to use the specific Scott
ideals Ia constructed above. Clearly, under inclusion, these too form a directed
system with direct limit Aut(Q). However, the inclusion relation here seems
substantially more complicated. It will be clear, first of all, that distinct degrees
a and ã may yield equal Scott ideals Ia = Iã : just run the procedure from
Theorem 4 on a set A ∈ a, and let Ã be the set A1 produced by that procedure,
so that Iã is defined by the increasing sequence a1 < a2 < · · · .

The surprising aspect of this problem, however, is the question of whether
Theorem 4 is monotonic at all.

Definition 2. An operator F on Turing degrees (mapping each d to a Turing
degree F (d)) is monotonic if

(∀c)(∀d) [c ≤ d =⇒ F (c) ≤ F (d)].

An operator G mapping Turing degrees to ideals (or other sets of degrees) is
monotonic if

(∀c)(∀d) [c ≤ d =⇒ G(c) ⊆ G(d)].

The operator U defined using the functional Γ in the Uniform Low Basis Theo-
rem, mapping each a to some degree PA relative to a, is of the first type here,
while the map a �→ Ia is of the second type. It is an open question (to this
author’s knowledge) whether either of these operators is monotonic in the sense
above. The question may startle many readers, who would have assumed (as the
author did at first!) that constructions such as that in the Uniform Low Basis
Theorem automatically respect Turing reducibility. Recall, however, that for
each a, there are a wide variety of degrees PA relative to a: indeed, even among
those low relative to a, there are pairs of degrees, both PA relative to a, whose
greatest lower bound under ≤ is a itself. Of course, when a ≤ ã, the degree
U(ã), being PA relative to ã, computes a path through every a-computable



34 R. Miller

infinite subtree of 2<ω, hence is PA relative to a as well – but this does not
ensure that U(a) will lie below U(ã). For addressing the possibility of using the
groups AutIa (Q) to form a directed system with recognizable inclusions, there-
fore, it would be highly useful to have answers to the following questions about
monotonicity.

Question 1. Does the Uniform Low Basis Theorem hold monotonically? That
is, does there exist a Turing functional Φ with all of the following properties?

– For every A ⊆ ω, ΦA is total with (∀n) lims ΦA(n, s) = χ(PA)′(n) for the
jump (PA)′ of some set PA that is PA relative to A (as in the Uniform Low
Basis Theorem); and

– When A ≤T B, the sets PA and PB defined as above by Φ satisfy PA ≤T PB

(or equivalently, (PA)′ ≤1 (PB)′).

Question 2. Can we produce low Scott ideals monotonically? That is, do there
exist Turing functionals Θ and Γ with all of the following properties?

– For every A ⊆ ω, ΘA and ΓA are both total with

(∀n) [lim
s

ΘA(n, s) = χ(BA)′(n) & lim
s

ΓA(n, s) = χ(CA)′(n)

for the jumps (BA)′ and (CA)′ of some sets BA and CA such that the set
{d : d ≤ deg BA & d ≤ deg CA} is a Scott ideal containing deg A; and

– When A ≤T Ã, the sets BA, CA, B
˜A, and C

˜A defined by Θ and Γ satisfy

(∀d) [(d ≤ deg BA & d ≤ deg CA) =⇒ (d ≤ deg B
˜A & d ≤ deg C

˜A)].

A positive answer to Question 1 would yield a positive answer to Question
2, by applying the procedure from Theorem 4 to the functional Φ in Question 1.

References

1. Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis
theorem. Ann. Pure Appl. Logic 163(8), 986–1008 (2012)

2. Hirschfeldt, D.R.: Slicing the Truth: On the Computable and Reverse Mathemat-
ics of Combinatorial Principles, Lecture Notes Series, Institute for Mathematical
Sciences, National Univ. of Singapore, vol. 28. World Scientific, Singapore (2014)

3. Jockusch, C.G., Soare, R.I.: Π0
1 -classes and degrees of theories. Trans. Am. Math.

Soc. 173, 33–56 (1972)
4. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvabil-

ity. Ann. Math. 59(3), 379–407 (1954)
5. La Roche, P.: Effective Galois theory. J. Symb. Log. 46(2), 385–392 (1981)
6. Metakides, G., Nerode, A.: Effective content of field theory. Ann. Math. Log. 17,

289–320 (1979)
7. Miller, R.: Computability and the absolute Galois group of Q, to appear
8. Shoenfield, J.R.: Degrees of models. J. Symb. Log. 25, 233–237 (1960)
9. Simpson, S.G.: Subsystems of Second-Order Arithmetic, 2nd edn. Cambridge Uni-

versity Press, Cambridge (2010)
10. Smith, R.L.: Effective aspects of profinite groups. J. Symb. Log. 46(4), 851–863

(1981)
11. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, New York (1987)
12. Spector, C.: On degrees of recursive unsolvability. Ann. Math. 64(3), 581–592

(1956)


	Direct Construction of Scott Ideals
	1 Introduction
	2 Constructing PA Degrees Uniformly
	3 Defining Scott Ideals
	4 Applications and Questions
	References




