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Abstract

We introduce the standard computable-model-theoretic concepts
of a computable group and a computable field, and use them to illus-
trate the sorts of questions about groups and fields which computabil-
ity theorists investigate. This article is intended for group theorists
with some background in algorithmic questions, such as the undecid-
ability of the word problem and the conjugacy problem for finitely
presented groups.

1 Introduction

The undecidability of the word problem for finitely presented groups is widely
known among group theorists. This result, established independently by
Boone and by Novikov in the 1950’s (see [1] and [16]), answers a natural
computability-theoretic question about groups, and is frequently cited (by
computability theorists, as evidence of the relevance of their field of study)
and used (by group theorists, especially recently, as interest in the use of
groups to construct cryptosystems has increased). Related problems have
also been shown to be undecidable, notably the conjugacy problem and the
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isomorphism problem for finitely presented groups. On the other hand, cer-
tain more specific instances of the word problem have been proven decidable.
Decidability questions continue to be of significant interest for many group
theorists.

Computable model theory represents a more general framework for such
questions. It is the hybridization of two of the principal branches of mathe-
matical logic: model theory, which studies the relationship between semantics
(actual mathematic structures) and syntax (the formulas we write down to
describe those structures), and computability theory, also known as recursion
theory, which studies our ability to compute various functions on the natural
numbers N and ranks such functions according to the difficulty of comput-
ing them. Therefore, computable model theory investigates the feasibility
of deciding facts or computing functions on mathematical structures. This
article, aimed at group theorists having interest in issues of decidability, is
written to introduce the basic definitions used in computable model theory,
and to give a sample of the sort of results which follow from these concepts.
Instead of applying computability to model theory in general, however, we
will restrict ourselves to computable groups and computable fields, the latter
being the principal area of expertise of the author. By the end of the article,
we will even be able to present a few new results and explain how they follow
from work in the recent paper [13].

2 Basic Definitions

Model theorists normally discuss groups in the context of a language with
an equality symbol and a single binary operation -, and fields in the context
of a language with equality and two distinct such operations - and 4. In
each case, we can express the relevant axioms (for groups, or for fields) in
this language, using variables and the standard logical connectives (and, or,
and negation, say), along with quantifiers 3 and V over the elements of the
group or the field. A structure in the language of groups just consists of a
set S and a binary function from S x S to S, and a group is then defined
as a structure in this language which satisfies those group axioms when the
binary function is interpreted as the - operation. The same applies to fields,
with two binary functions on the underlying set S. Statements (or formulas)
about groups and fields can likewise be built from these languages, and one
can ask whether a specific group satisfies a specific formula, or whether all



groups satisfy that formula, and so on.

In computable model theory, we assume that the binary operation(s) of
our group or field are given by computable functions (as defined below in
Section 3). Definition 2.1 makes this precise.

Definition 2.1 A computable group G consists of a set {ag, ai,as, ...}, in-
dexed by elements of N or by elements of a finite subset of N, with a binary
operation - on these elements such that:

e {ag,ay,as,...} forms a group under this operation, and

e there exists a computable function f : N x N — N such that for all
elements a; and a;,

@i - Aj = Afij)-

A computable field consists of a set {xg, z1, %9, ...}, indexed likewise, which
forms a field under two operations + and - which are similarly given by two
computable functions g and h:

Ty +Tj = Tg(ig) T~ Tj = Th(ij)-

To help keep groups and fields distinct in the reader’s mind, we will maintain
here a convention (otherwise unknown) of using a; for elements of computable
groups and z; for elements of computable fields. Of course, it is quite possible
to use N itself as the underlying set, rather than naming elements a; or z;,
but it creates havoc, since the element xy need not be the additive identity
element (usually denoted by 0) of a computable field. Indeed, we will some-
times want to refer to other elements of a computable field, such as 5, and
this will mean the rational prime 5 in the field, i.e. the sum (1+1+14+1+1)
of the multiplicative identity with itself five times.

It is quickly seen from Definition 2.1 that the other basic operations on
these structures are also computable. One can find the identity element
in a computable group by computing f(0,0), f(1,1),..., since the identity
element a; has the unique index ¢ satisfying f(7,7) = i. With this, one can
also then compute the inversion function (that is, the function v such that
a,' = ay(n)), just by computing f(n,0), f(n,1),... until the unique m with
f(n,m) =i is found. Likewise, in a field, one can compute both inversion
functions (checking, before searching for the reciprocal, to make sure that
the input is not the element 0), and therefore can also compute subtraction

and division.



Definition 2.1 requires that we index elements of the group or field using
N, and thus rules out any uncountable groups or fields. (Allowing finite sub-
sets of N is our way of allowing finite groups and fields into the picture.) This
is mostly inevitable, since the standard notion of computability — whether
given using Turing machines as in Section 3, or using register machines, re-
cursive functions, or what you will — only applies to functions on the natural
numbers N. This notion is rigorously defined in many texts; the canonical
computability text for graduate study is [19]. We will say that a set S C N
is computable, or decidable, when its characteristic function ygs : N — N is
computable. The terms computable and decidable are mostly interchangeable
in this context. To the extent that there is a convention, functions are called
computable (or else noncomputable) and sets are called decidable (or else
undecidable).

Examples of some computable groups and fields will be given in Section
4. Having omitted so far to give any specifics about computable functions,
we will first introduce a few computability-theoretic preliminaries. Much of
this information (some in expanded form) can also be found in the expository
works [12] and [14], both of which go into further detail about computable
fields. Other notable articles about computable fields, more at the research
level, include [3], [4], [5], [11], [17], and [20].

3 Computability Background

One of the attractions of the standard Turing model computation on N is that
so many distinct definitions, all reasonable in various intuitive respects, give
rise to the exact same class of functions: the so-called computable functions.
Rigorous definitions can be found in any standard text on computability, in-
cluding [9], [18], and [19]. For our purposes, a Turing machine is an ordinary
computer, operating according to a finite program, which accepts a natural
number as input and runs its program in discrete steps on that input. A
function f : N — N is said to be computable if there is a Turing machine
which computes f. Specifically, when running on each input n € N, the
program should halt within finitely many steps and give output f(n). There
is no bound on the amount of memory used, except that only one bit can be
accessed or written over at each single step.

More generally, we consider partial functions ¢ : N — N, for which
(despite the similarity of notation) the domain is allowed to be any subset of



N. The possibility that a program never halts makes the partial functions the
natural class for our definitions, since every Turing machine computes some
partial function, namely that ¢ whose domain is the set of inputs on which the
machine eventually halts, with ¢(n) being the output of the machine for each
such input n. We write ¢(n) |, and say that ¢(n) converges, if n € dom(yp);
otherwise p(n) diverges, written p(n) 1. Since the program for a Turing
machine is required to be finite, we have only countably many programs in
all. Hence only countable many partial functions are computable, with the
remaining (uncountably many) ones being noncomputable. It is not hard to
define a noncomputable function: just imitate Cantor’s diagonal proof that
R is uncountable.

The concept of computable enumerability is essential to computability
theory. A set S C Nis computably enumerable, abbreviated c.e., if it is empty
or is the range of some computable function f with domain N. Intuitively,
this says that there is a mechanical way to list out the elements of S: just
compute f(0), then f(1), etc., and write each one on our list. Computably
enumerable sets are “semi-decidable,” in the following sense.

Fact 3.1 A subset S C N is decidable (i.e. xs is computable) iff both S and
its complement S are computably enumerable.

Fact 3.2 For any set S C N, the following are equivalent:
e S is computably enumerable.
e S is the range of an injective partial computable function.
e There is a decidable set R C N x N with S = {x: Jy (z,y) € R}.

e S is the domain of a partial computable function.

For the R in this fact, we need to consider subsets of Cartesian products

N* as well. For this we use the function
1
Ba(w,y) = (& + ¢ + 2 + 2wy + 3y),

which is a bijection from N? onto N. (In checking this, bear in mind that
for us 0 is a natural number.) To justify our view of 5 as a computable
function, notice that if 7; and 7, are projections, then both functions ;0 3;*
are computable, and so, for any given z and y, we can search through all



possible outputs n € N until we find one for which 7,(8;*(n)) = z and
7By (n)) = y. So we may use this bijection £, to treat N? as though it
were just N, and then define B3(x,y, z) = Ba(x, 52(y, 2)) and so on. Indeed,
the bijection S defined by

5(%, . ,l‘k) = 52(]?7 5k+1($07 . 7$k))

maps the set N* of all finite sequences of natural numbers bijectively onto N.
(For a computable field F', this gives us a way of allowing polynomials from
F[X] to be the inputs to a computable function.)

Now that we know how to handle tuples from N as inputs, we can see
that there is a universal Turing machine. The set of all possible programs
is not only countable, but can be coded bijectively into the natural numbers
in such a way that a Turing machine can accept an input e € N, decode e
to figure out the program it coded, and run that program. The universal
Turing machine accepts a pair (e, x) as input, decodes e into a program, and
runs that program on the input x. It defines a partial computable function
¢ : N2 = N which can imitate every partial computable function : just
fix the correct e, and we have 1(x) = p(e,x) for every x € N (and with
¥(x) T iff p(e,x) T, moreover). This enables us to give a computable list
of all partial computable functions, which we usually write as ¢, ¢1, .. .,
with p.(z) = (e, z) for a fixed universal partial computable function ¢. In
contrast, there is no computable list of all the total computable functions
(i.e. those with domain N); if there were, one could use it to diagonalize and
get a new total computable function not on the list!

Likewise, using Fact 3.2, this yields a computable list of all computably
enumerable sets Wy, Wy, ..., with W, = dom(p.). We can view them as the
rows of the universal c.e. set W = dom(p) = {(e, ) : p.(x)]} C N2 On the
other hand, there is no such computable listing of all decidable sets.

The principal remaining fact we will need is simply stated.

Fact 3.3 There exists a c.e. set which is not decidable.
A simple definition of one such is
K= {6 . @e(e)iz O}

The idea is that ¢, cannot equal xg, because e € K iff p.(e) = 0 iff ¢,
guesses that e is not in K. Of course, if ¢.(e) never converges, we never add



e to K, and again we see that yx # @, simply because e € dom(xg). For
reasons explained in Section 6, we often denote this set K by (.

Many similar sets can be defined; the famous one is the domain of the
function ¢ computed by the universal Turing machine. This set is usually
called the halting problem, since it tells you exactly which programs converge
on exactly which inputs. If it were decidable, then we could use it to compute
X, which is impossible. Indeed, if dom(y) were decidable, then every c.e.
set would be decidable. Since one can readily produce a computable (total)
bijection from N onto N mapping the halting problem onto (), the set () itself
is sometimes also called the halting problem.

4 Computable Groups and Fields

As a first example for groups, we use the free (nonabelian) group FG,
on countably many generators. To build a computable group G of this
isomorphism type, with domain {ag, a1, as,...}, we will use the bijection
£ : N* — N defined in the previous section, and also a bijection v : N — Z
with y(k) = (—1)*-|5:L]. The idea is that, if we call the generators z, 21, . . .,

and ((ko, ..., k,) =i, then the group element a; represents the word
(=Dko - (=1)kn
ko)l T k)|
So the generators are really ag), ag2), agw), - - -, With agem+1) = agém). The

group multiplication on G is given by concatenation

a/ﬁ(jOv---vjm) ' aﬁ(ko,...,kn) = aﬁ(j07---7jm7k07---,kn)7

except that if kg = j,, + (—1)’, then the two middle elements cancel each
other and disappear, and then similarly for the next two. A moment’s
thought should convince the reader that this multiplication is a computable
function f on the indices, so that this G really is a computable group, iso-
morphic to the free group on the generators ag ), age), @), - - -, exactly as
claimed. The point is not really that the particular group FG, has a free pre-
sentation, of course, but rather that this is a straightforward way of turning
FG,, into a computable group: the process is best imagined as programming
a computer to use natural numbers as codes for words in the generators and
to multiply such words (i.e. their codes) together. We sometimes refer to



this group G as a computable presentation of FG,,, or a computable copy of
FG,; this simply means a computable group isomorphic to FG,,.

Likewise, there is a computable field F' isomorphic to the field Q of ratio-
nal numbers. For this we wish to think of each z; as a fraction with integer nu-
merator and natural-number denominator, without letting our domain repeat
any fractions. Since we have the computable bijection £, from Section 3, we
can define h(0) = 2 = (35(0,1) and h(n+1) to be the least k& > h(n) for which
m1(By 1 (k)) is relatively prime to my (35 '(k)). This allows us to define com-
putable functions num(2n) = 71 (35 (h(n))) and denom(2n) = m5(3; ' (h(n)))
for all n € N, giving the numerators and denominators of the field elements
Xo, T, Xyq,.... We treat x,,.11 as the negative of x5,.5, and define addition
and multiplication on the domain {x, 21, x9,...} by doing arithmetic on
fractions.

The reader is invited to attempt to build computable fields of isomor-
phism types such as Q(X), Q(v/2), Q(X1, Xs,...), and other well-known
countable fields and groups. The p"-element field F,» also has a computable
presentation, of course, as does every finite group. Moreover, every finitely
generated field extension of any computable field also has a computable pre-
sentation. (We will see below that for groups, the analogous statement is
false!)

Noncomputable groups and fields, in the naive sense, are easy to come by.
First, of course, any group with a different underlying set than {ag, ay, ...} is
technically not a computable group. But even groups with this domain can
easily fail to be computable. We now prove the existence of noncomputable
groups with domain {ag, ay, ...} which are isomorphic to FG,,. Let p be any
bijection from N onto N, and notice that then {ag,aq,...} forms a group
isomorphic to FG,, under the following multiplication:

Qi+ Aj = Ap=1(f(p(3),p(5))

where f was the function in the computable presentation G of FG, given
above. This can be thought of as “pulling G back via p~1.” It is possible
that this pullback might still be a computable group, even if p is not a
computable bijection. However, there are continuum many such bijections p,
each of which pulls back G to a group distinct from all the others (though
isomorphic to them all). Since only countably many of these continuum many
distinct groups could possibly be computable, we see that there must exist

many noncomputable presentations of FG,, on the domain {ay, a1, ...}.



For a more concrete example of a noncomputable group H, take the
computable presentation of FG,, above, and change the definitions to make
the generators agp) and age,) commute with each other iff n lies in the
halting problem ('. Of course, this group H would no longer be isomorphic
to FG,, but the point is that it would also not be computable, since, if ¢ is
the function on indices defined by its multiplication, then

(VneN)neld < g¢(0,2n) = g(2n,0)],

so that the ability to compute g would allow us to decide membership in /),
which is impossible.

However, this group H is isomorphic to a computable group. We can
think of it as a free group which is nonabelian except that one particular
generator commutes with half of the other generators (but not with the
other half of them). By now the reader should be able to imagine how to
create a computable presentation of that group. Our next project, therefore,
for which we turn to fields, is to create a countable field F' such that no
computable field can be isomorphic to F'.

Consider again the noncomputable c.e. set (/' from Fact 3.3. Write p,, for
the n-th prime number (so py = 2, ps = 11, etc.), and let Fj; be the following

field extension of Q:
Fp=Qlpn : n ¢ 0.

Now the set of primes is computable, and so in any field of characteristic
0, it is easy to list out the prime numbers pg,p1, ..., just by adding 1 to
itself. (Specifically, the function v with p, = ay) is computable.) If F
were a computable field isomorphic to Fg, then the following process would
contradict the noncomputability of (/. Each time a field element appears in
F whose square equals p,, for any n, enumerate that n into a set . By the
definition of F, this W would equal the complement (Y, and we would have
a computable enumeration of this complement, which is impossible, by Fact
3.1.

In light of this, it may seem surprising that the field Fiy = Q[\/p, : n €
('] is computably presentable. Yet it is: we will build a computable presen-
tation of Fj. To “build” a field usually means that we give finitely much of
it at a time, first defining the addition and multiplication functions only on
the domain {xo,...,z;}, then extending them to {zo,...,z;41}, and so on.
We do this according to an algorithm, and if we wish later to compute the
field addition or multiplication, we simply run this same algorithm until it

9



defines the sum or product we seek. (Of course, our algorithm must decide
within finitely much time which zy, is to be the sum z; + x;; and once it has
decided, it may not change its mind!)

So we start building a computable presentation of QQ, similar to the one
given above, and simultaneously start enumerating ('. (Think of a timeshar-
ing procedure, allowing us to do both these processes at once.) Whenever a
new element n appears in (', we continue building our field until the element
pn has appeared in it, then stop for long enough to define the multiplication
so that the next new element is the square root of p,. Then we continue
building the field, always treating this new element as the square root of p,
when defining the addition and multiplication. Since every n € (/' eventually
appears in our enumeration, this builds a computable field isomorphic to Fj .

The key here is that the statement “p,, has a square root” is an existential
formula, with free variable n:

(Fr)z-z=1+14+---+1) (p, times)].

The statement within the square brackets defines a computable set of ele-
ments x. Therefore, in a computable field, the set of numbers n satisfying
this existential formula is a computably enumerable set, by Fact 3.2. @ it-
self is c.e., so having this set equal () (as in F) is not a problem. Indeed,
we could build a similar field Fy, for any c.e. set W. However, since the
complement @ is not c.e., the field Fg is not computably presentable.
There are similar ways of constructing a countable group with no com-
putable presentation. However, considering our audience, we will instead
appeal to a known result: the existence of a finitely presented group G with
undecidable word problem. Fix any such group G, and suppose that H were
a group isomorphic to G, but with domain {ag, ai,...}. Then H would have
a finite set of generators a,,, .. ., a,,, the images of the generators of G under
the isomorphism. Also, we may fix the 7 such that a; is the identity element
of H. Now, for any word in the generators of GG, we could take the corre-
sponding word in the generators of H and use the multiplication function
h in H to check whether this word is the identity. (For instance, for the
word a,,Gn,an,, just check whether h(ng, h(nz,ny)) = i.) If the multiplica-
tion function were computable, this would decide the word problem for G,
which is impossible; so there can be no computable presentation of G. The
important point here is that the generating set for G was finite, which allowed
us to conclude, without even knowing what the indices ny, ..., n; actually

10



were, that the map taking the j-th generator of G to a,; was computable:
after all, every finite function is computable. Then, since the definition of
computable group immediately implies that we can decide whether any two
group elements (named by their indices) are equal, we were able to decide
whether an arbitrary word equals the identity. With computable groups, we
took the equality relation to be decidable, by definition, which is a different
approach than the notion of computation on groups which gave rise to the
word problem.

The word problem can be expressed in the context of computable groups,
however. If a finitely presented group G has k generators and has relators
Ry,..., R, then G is isomorphic to the quotient of the free group H on k
generators by the subgroup J of H generated by the relators (viewed as words
in the appropriate generators of H). H can readily be given a computable
presentation, and J is also isomorphic to a computable group. Moreover, the
subgroup J is computably enumerable within H: to list out the elements of
J, just list the relators, their inverses, and all finite products thereof. Again,
since there are only finitely many relators, this is a computable process.
However, the subset J is not necessarily decidable; indeed membership in J
is precisely the word problem for the original group G, which is isomorphic
to the quotient group H/J. The content of the Boone-Novikov Theorem is
the statement that a finitely generated subgroup of a computable, finitely
generated free group need not be decidable.

We remark here (without proof) that, in contrast to the word problem,
the conjugacy problem can be undecidable for a computable group. It is
expressed by an existential formula

(z,y) € (Conjugacy Problem) <= (3z2€G) zaz =y

and therefore the set of such pairs (z,y) is always a computably enumerable
set, but nothing about computable groups forces this c.e. set to be decidable.

5 Bases for Computable Groups and Fields

We will now investigate the concept of a basis, both for groups G (a maximal
independent subset of GG) and for fields (a transcendence basis). This subject
will illustrate the ways in which computability theorists discuss the relative
difficulty of deciding membership in two different sets. Of course, if the two
sets are both undecidable, then in some sense they are “equally” difficult

11



(namely, impossible) to decide. However, there is a stronger sense in which
a set A C N and its complement A in N are equally difficult: any decision
procedure for A clearly would give us a decision procedure for A as well, and
vice versa. Of course, if A is undecidable, then no such decision procedure
exists, but there is still a strong intuition that A and A are equally difficult to
decide, in a way in which two randomly chosen subsets of N almost certainly
would not be. This is formalized in the notion of oracle Turing computation,
which we discuss below.

Moving to concrete topics, we first ask, for a computable group GG and an
arbitrary finite tuple (an,, ..., an,) of elements of G, how difficult it is to de-
cide which m € N have the property that a,, lies in the span of (a,,, ..., ax,,)
within G. Of course, the difficulty may depend on the tuple: if (ay,, ..., an,)
happen to generate G, then it is extremely easy to decide this question,
whereas we saw above (discussing the Word Problem) that for some com-
putable groups, the same problem can be undecidable. What one would
really like, of course, would be a single procedure which accepts both m and
(ng, . ..,nk) (for any length k) as inputs, and gives the correct answer. If this
happened, we would say that the span problem is uniformly decidable for G.
Similar notions apply to computable fields, asking about membership in the
subfield of F' generated by a finite subset of F', and it is worth noting that in
contrast to groups, every finitely generated computable field has uniformly
decidable span problem. (This result goes back essentially to Kronecker, in
the paper [8] from 1882.)

For both groups and fields, the span problem is often adjusted to ask
about independence results. In field theory, the notion of algebraicity is
paramount: x is algebraic over a subfield £ C F iff  is a root of some
nonzero polynomial in E[X]|. (If E is generated by ey, ..., e, then we will
speak of = being algebraic over ey, ..., e.) Likewise, a group element a € G
is dependent on a subgroup H C G if there is some nontrivial word in a and
finitely many elements of H which equals the identity a;. (Here nontrivial
means roughly that it is not just the elements of H which make the relation
equal to a;.) For instance, for an element b of a free group, not only are b2, b3,
and b~! dependent on (the subgroup generated by) b, but also every a with
a”™ = b™ for some n > 0 and m € 7Z is dependent on b. Torsion elements of a
group are always dependent, even on the identity subgroup, and likewise any
field element algebraic over the prime subfield (for instance, a square root of
2, should the field have one) is algebraic over every subfield.

A first question about a computable group or computable field, therefore,

12



is whether the set of torsion elements (resp. algebraic elements) is decidable.
In general, the answer is negative. These sets are always computably enu-
merable: in a field F' of characteristic 0, for example, one can enumerate
the prime subfield @ of F' (which is just a copy of the rationals), enumerate
all polynomials ¢(X) € Q[X], and start plugging various field elements x
systematically into each, multiplying and adding to find the value ¢(x) and
checking whether it equals 0. Any time ¢(z) (for any ¢ and z) does equal 0,
we enumerate x onto our list of algebraic elements, and this process lists out
all elements of F' algebraic over ). (Alternatively, notice that the definition
of algebraicity can be expressed with an existential quantifier, and apply Fact
3.2.) However, there may be no analogous way of listing out the elements
of F' transcendental (i.e. not algebraic) over @), and thus, by Fact 3.1, the
algebraic elements may form an undecidable set.

From here, one proceeds naturally to questions about transcendence bases
for fields F, i.e. subsets of F' which are maximal with the property that no
nontrivial polynomial relation (over the prime subfield) holds on any finite
subset. Since computable fields are always countable, we can think of a
transcendence basis B = {by, b1, ...} as a set with the property that no b, is
algebraic over {by, ..., b, } and that F' is algebraic over the subfield generated
by B. Of course, a field generally has many distinct transcendence bases,
and some may have very high complexity. However, it is well known that
a computable field must have a transcendence basis satisfying the following
definition.

Definition 5.1 A set S C N is limit-computable if it satisfies any of the
following equivalent conditions:

1. There exists a computable binary function g with domain N x N, such
that for every x € N,

lim g(z,s) = xs(z).

S5—00

2. S is definable both by a Y, formula and by a Ily formula. That is,
there exist decidable subsets T and U of N3 for which, for all = € N,

reS — WzT(r,y,2) <= Yodw U(z,v,w).

3. xs can be computed by a Turing machine which has access to an oracle
for the halting problem (.

13



Of course, (1) is the reason for the term “limit-computable.” (Here the values
of the computable function g are natural numbers, and so the equality means
that g(x,s) = xs(z) for all but finitely many s.) In (2), the term X, refers
to a formula of the first form, with quantifiers 9V in that order, followed
by a decidable predicate; and Il refers to the second type of formula, with
quantifiers V3 before the decidable predicate. (The 2 denotes the number
of quantifiers, and ¥ and II reflect whether the first one is 3 or V. So IIj
formulas are of the form Yy, JyoVys Iy, Vys R(x, y1, . . ., ys), for example.)

In (3) we meet the important notion of Turing reducibility: a set A is
Turing-reducible to B, written A <; B, when there is a Turing machine
which can compute y 4 under the assumption that it knows the answers to
all questions of the form “is n € B?” We usually think of such a program as
having an oracle for B, which it consults to answer these questions, and we
view such a program as a demonstration that A is no more difficult to decide
than B, because any method of deciding B could be plugged into this oracle
Turing machine and used to decide A as well. (So (3), expressed simply as
“S <p (' says that S is no harder to decide than the halting problem.)
When we mentioned earlier in this section that A and A are equally difficult
to decide, we had Turing reducibility in mind. The reader should see quickly
that ya can be computed with access to an A-oracle and vice versa, so that
A<r Aand A <y A. We call A and A Turing-equivalent for this reason,
writing A =¢ A, and we view A and A as having the same computational
complexity.

The easiest way to see that a computable field F' must have a limit-
computable basis is to use condition (3). Given elements z,,, and @y, . . ., Tp,
of a computable field, one can readily write a program which searches for a
polynomial showing x,, to be algebraic over z,,,...,2,,. Indeed, a single
program can do this uniformly in the inputs m and ng,...,ns;. Therefore,
with access to a ()/-oracle, one can ask whether that program would halt on
those inputs, thus determining whether z,, is algebraic over z,,,...,z,, or
not. So the (/-oracle allows us to decide membership in one particular tran-
scendence basis B, where z,, € B iff z,, is transcendental over xg, ..., x,_1.

A similar argument shows that every computable group has a limit-
computable maximal independent set. However, both for torsion-free groups
and for fields of characteristic 0, we can actually do a bit better: from any
limit-computable independent set B, we can get an independent set B with
the same span as B, such that B is definable by a II; formula. Recall, using
the definition above, that a formula is II; if it has a single universal quantifier.
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In this case its negation is a »; formula, which must define a computably
enumerable set, by Fact 3.2. Therefore, sets defined by II; formulas are often
called co-c.e., being the complements of computably enumerable sets.

A co-c.e. set C' is a set which begins life containing all natural numbers,
and from which we then remove elements as they enter its complement. The
actual elements of C' are those which never get removed (that is, never enter
the complement). Now let B be a limit-computable basis for a computable
field F, so xp(z,) is given as the limit of some computable function g(n, s)
as s — oo. If we find an s > n for which g(n,s) = 0, then we remove z,
from the IT;-basis B we wish to build. If later on g(z,,s') = 1 for some
s’ > s, of course we cannot restore x, to B, since we wish B to be co-c.e.
However, we can enumerate the elements 1,2,3,... of ' until we find an m
for which z, + m has not yet been removed from B. (After all, at most
s'-many elements have been removed by stage s'.) Then we shift =, +m
into the role previously held by z,, and keep it in B until a subsequent stage
s" (if any) at which g(z,,s”) = 0 again. Since the function g only shifts
back and forth between 0 and 1 finitely many times as s — oo, it is clear
that if z, € B, then eventually some z, + m will be kept in B forever,
whereas if z,, ¢ B, then eventually g(z,,s) stabilizes at 0 and no further
elements x,, + m are placed into the role of x,. Thus, if z4,, xk,, ... are the
actual elements of B, then the elements of B will be Tk + Moy They + M1,y ..y
for some elements mg, mq,... each of which is just a natural number in F'.
Clearly this B is also algebraically independent and has the same span as B,
hence is a transcendence basis for F', and by construction B is co-c.e., hence
I1;-definable.

For computable groups, the exact same idea works, replacing each a,
with (a,)™ in the construction of the II; maximal independent set. The only
difference is in terminology: for fields, a (transcendence) basis is simply a
maximal algebraically independent set, whereas for groups, the analogous
object is just called a maximal independent set, with the term basis usually
reserved for a maximal independent set which actually generates the entire
group. If a group has a basis (under this definition), then the group is just
the free group on the elements of that basis. Thus, not all groups have bases.
The analogue for fields is sometimes called a pure transcendence basis: a
transcendence basis (over some given subfield, often the prime subfield) which
generates the entire field over that subfield. A field extension F' which has a
pure transcendence basis B over a subfield £ must be a purely transcendental
extension of E: that is, ' = E(B) is just the set of all F-rational functions,
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with elements of B as the variables. As with bases for groups, not all field
extensions have pure transcendence bases.

This close analogy between groups and fields leads one to ask whether the
same holds when we consider a basis for a group and a pure transcendence
basis for a field (over its prime subfield). At this point, some disparity
occurs between the two. Indeed, there is a disparity just within groups,
if we compare free groups to free abelian groups. The following result should
be challenging but not impossible, for a group theorist who has read this far.

Theorem 5.2 FEvery computable free abelian group has a Il; basis.

In contrast, results for computable free (non-abelian) groups have recently
been derived by a large team of researchers at Notre Dame.

Proposition 5.3 (see [2]) Every computable free group has a Iy basis.

Theorem 5.4 (McCoy & Wallbaum, [10]) There is a computable free
group with no ¥y basis.

Since every limit-computable set is both II; and Y5, this shows that Theorem
5.2 fails when the free group is not abelian. Of course, such a group does
still have a II; maximal independent subset, by the results discussed above,
but in the computable group built by McCoy and Wallbaum, no II; maximal
independent subset generates the entire group; indeed, no ¥, such set does.
(Every Il set is trivially 3, just by adding a vacuous 3 quantifier at the
start of the defining formula.)

The analogous question for fields is the subject of current study: must a
computable field F', purely transcendental over the rationals, have a II; tran-
scendence basis which generates all of F'7 One can pose the same question
for purely transcendental field extensions more generally. For example, if F
is purely transcendental over a computable subfield E, must F' be generated
over E by some II; transcendence basis (for F' over F)? And likewise, if the
subfield E is only computably enumerable, not necessarily computable, must
F be generated by some II; (or even by some IIy) transcendence basis over
that E?7 The research group involved in this project does expect to have
answers soon, but as of this writing, these questions remain open.
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6 Galois groups

In this section we focus entirely on fields, asking to what extent we can use
computability theory to examine the automorphism group of a field, or of a
field extension over a fixed ground field. This subject was omitted from the
talk which was the genesis of this paper, but was the subject of a question
afterwards from Miasnikov, for which the author is grateful. Most of the
questions considered here can also be asked about automorphisms of groups,
but we leave that study for another time.

When a computable field F' has infinite transcendence degree, its auto-
morphisms can be extremely difficult to compute. Determining transcen-
dence of a single element (over the prime subfield of F: either Q or F,, de-
pending on characteristic) requires a ()'-oracle, and we have discussed above
some of the issues about finding a transcendence basis for F. Moreover,
things get worse: a bijection from one transcendence basis to another need
not extend to an automorphism of F', and determining whether or not it does
so extend often requires much stronger oracles. (As a contrast, consider the
case of computable vector spaces over QQ: for these structures, if any one basis
B is computable, then each automorphism f is Turing-equivalent to the basis
f(B), and this gives a bijection between automorphisms and bases.) We will
restrict ourselves to the far-more-accessible situation of automorphisms of a
computable algebraic field F', by which we mean that F'is a computable field
which is algebraic over its prime subfield.

When we consider the automorphisms of F' as a group, rather than in-
dividually, another difficulty arises: this group may be uncountable! The
algebraic closure Q of Q, for example, is isomorphic to a computable field,
yet its automorphism group is readily seen to have size continuum. So there
is no hope for a theorem that the Galois group of a computable algebraic
field must be isomorphic to a computable group. Moreover, when elements
f € Aut(Q) are viewed as bijections on N (with z, — zf(,), on some com-
putable presentation of Q), they can have arbitrarily large Turing degrees, so
it is also not reasonable to hope to consider all automorphisms individually.

To consider automorphisms en masse, we must use a different method.
We define the full Galois action Arp of F to be essentially the relation of
being in the same orbit under automorphisms:

Ap = {{{yo, -, yn), (20, ..., 20)) € (F*)?: (3o € Aut(F))(Vi)o(y;) = 2}
Recall that F* denotes the set of all finite ordered tuples of elements of
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F. Since F' is algebraic, we can use an effective version of the Theorem of
the Primitive Element to dispense with the tuples, by showing that Ag is
Turing-equivalent to the simpler set

Br = {{a,b) € F? : (30 € Aut(F))o(a) = b},

which we call the Galois action of F. These sets are discussed (and the results
mentioned are proven) by Miller and Shlapentokh in [15], in relation to the
question of computable categoricity for algebraic fields. They constitute a
reasonable way to describe the Galois group, in the sense that if (a,b) € Ap,
then with an Ap-oracle, one can build some o € Aut(F') with o(a) = b. To
do this, enumerate F' as {a,xq, 1, xs,...} and, given o | {a,zo,...,Tp 1},
search for an x € F with ((a,zo,...,z,), (b,0(x0),...,0(xpn_1),2)) € Ap.
By induction (and the definition of Ag), such an x must exist, and when it
appears, define o(x,) = x. So this method imparts some ability to discuss
individual automorphisms as well: of course, not every single automorphism
will be Ap-computable, but Ar gives enough power to extend arbitrary finite
partial automorphisms to full automorphisms (or to determine that the finite
partial automorphism cannot be so extended). From a group-theoretic point
of view, one can see this as a process applicable to profinite groups in general,
and it would likely be of interest to investigate Turing computability along
these lines.

Now we consider the complexity of Br (or equivalently Ag), for an arbi-
trary computable algebraic field F' with prime subfield Q). It is well-known
for such fields (and a proof is given in [15]) that a pair (a,b) lies in Bp iff
a and b are conjugate over @ and, for every polynomial p(X,Y) € Q[X,Y],
the polynomial p(a,Y’) has a root in F iff p(b,Y") does. Writing this out, one
sees that Bp is a Iy set (that is, definable by some II, formula). We propose
to show here, in moderate detail, that this is the best one can do, in terms
of the complexity of formulas: Br need not be ¥,.

Yo sets are normally seen as being defined by a property which says that
something is finite. Although the actual definition of a Y, formula says
nothing of the sort, one can show that for every set S defined by any ¥,
formula, there exists a computable function f with domain N for which

VzeN)z € S < Wy, is finite].

Conversely, every set S which has such a function f is Xy, since the finite-
ness of Wy, is expressible as a 3, formula about x. For a proof, see [19,
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Theorem IV.3.2]. So we may treat the statement “z € S” as equivalent to
the statement that when we enumerate the c.e. set Wy(,), only finitely many
elements will ever appear in this set.

Therefore, in order to build a computable algebraic field F' with Br not
Y9, we need only ensure that for every partial computable function ., there
exists a pair (a,b) which lies in By iff Wi, ((44) is infinite. This will show
that . cannot serve as the function f which reduces Bp to the finiteness
condition given above. If we can do this for every partial computable function
e, then there will be no computable function which can play the role of f,
and thus Bp will not be ¥y. (Of course, we really only need to do so for
every computable function whose domain is all of N, but it is not possible to
distinguish these from the other partial computable functions effectively. So
we simply do it for every ..)

In fact, a field ' with all these properties is already available to us. In [13,
Theorem 4.1], the author constructed two isomorphic computable algebraic
fields F and F which had the property that no limit-computable function
could be an isomorphism from F onto F. (This yielded a result about @'-
computable categoricity, giving a further example of the relation between
categoricity issues and complexity of the Galois action.) In that field F, for
every e, the e-th rational prime p. has two square roots, denoted by == /pe.
In order to ensure that lim, ¢.(x, s) is not an isomorphism from F onto F,
the construction made sure that if ¢.(y/pe,s) was one of the two square
roots of the e-th prime . in F, then some polynomial ¢(X,Y) € Q[X,Y]
existed for which ¢(,/pe,Y) had no root in F, yet q(pc(y/Pe,s),Y) had a
root in F. (To keep F and F isomorphic, q(—+/Pe,Y) had a root in F,
and g(—@e(y/Pe,s),Y) had no root in F. So an isomorphism existed, but it
mapped /De t0 —@e(1/De, 5), N0t to @e(y/Pes 5).)

If, for some t > 5, @.(,/pe,t) turned out to equal the other square root
of . in F, then roots of q(\/Pe,Y) and q(—¢e(\/Pe, 5),Y) were added to F
and F, and a new polynomial was selected in place of ¢ to make ©e(y/Pest)
the wrong choice. So, if lim, ¢.(y/Pe, s) actually did converge to a limit,
then that limit was the wrong square root of p. in F, and thus the limit-
computable function limg ¢.(x, s) could not be an isomorphism. (This was
done simultaneously for every e, using a different prime p, for each.)

For our purposes here, the useful part of this construction is that the pair
(v/Pe> —/Pe) turned out to lie in By iff, as s — oo, the value of ¢.(,/pe, 5)
went back and forth infinitely often between the two square roots of p, in F.
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If the limit stabilized, or if @.(,/pe, s) was simply undefined for some s, then
the construction made no more changes to F' and F' after the stabilization
occurred, or after the stage s for which @ (/pe,s) was undefined. With no
more changes made, there remained a polynomial ¢ for which ¢(y/pe,Y’) had
a root in F'iff ¢(—,/pe,Y’) did not.

So we see that for every e € N, (\/pe, —/Pe) € Bp iff there exist infinitely
many stages s in the construction of F' at which:

® ¥e(y/Pe;$) = VPe, and

° 906(\/]7_5,5 +1) = —v/De-

That is to say, limg @ (y/Pe, s) did indeed switch back and forth between £+/p,
infinitely often. Thus, in this F', we see that for each e € N, ({/pe, —y/Pe) €
Br iff something happens infinitely often, suggesting that Bp cannot be
defined by a ¥, formula saying that something happens only finitely often.
We do not propose to give here all of the details necessary for understanding
the rest of this argument; they can be found in [19, Chapter IV]. Briefly, the
set T" of those e for which this switching happened infinitely often is readily
shown to be a Ily-complete set. But then Bp is Ils-complete, hence cannot
be ¥5. So we have completed a proof of the following.

Theorem 6.1 There exists a computable algebraic field F' whose Galois ac-
tion B is not Yo (and therefore not limit-computable). Indeed, Bp is 13-
complete. [ ]

We mention here, without giving a proof, that it is not difficult to adapt
the proof of [13, Theorem 4.1] to yield a single computable algebraic field F’
such that Aut(F') has continuum many automorphisms, among which none
except the identity is limit-computable. That proof can readily be adjusted
to have F' be the same field as F, and the requirement that lim, ©e(x, ) not
be an automorphism is broken into infinitely many requirements of the form:

Rej: If (y < j)lim pe(y, s) # y|, then lim p.(x, s) is not an isomorphism.

So one simply follows the strategy of [13, Theorem 4.1] for R. ; whenever it
appears that a j exists for which the limit-computable function in question
is not the identity on {0,...,j — 1}. The rest of the details are left to the
reader.
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We promised above that, although these results show that nontrivial au-
tomorphisms of a computable algebraic field F' need not be limit-computable,
there must be some which are close to being so. To make this precise, we
relativize the construction of the halting problem. Recall that in Section
3, we built the set (/, the halting problem, by asking whether a given par-
tial computable function ever halts on a given input. Now we repeat the
same process relative to an oracle set A, asking whether a given partial A-
computable function ®2 ever halts on the input e. This problem, denoted
by A’, is Turing-equivalent to the halting problem relative to A:

A ={e € N: d%(e) halts} =1 {(e,z) € N> : &2 (z) halts}.

This explains the notation () used above: the halting problem relative to
a computable oracle, such as (), is just the original halting problem. It is
readily seen that, for all sets A C N, we have A" £ A, by the exact same
argument as before. (On the other hand, A <p A’.) The set A’ is known
as the jump of A, usually pronounced “A-jump.” The jump of a function is
defined to be the jump of its graph, viewed as a subset of N under the usual
pairing function. The jump operation respects Turing equivalence, and so it
is also reasonable to speak of the jump d’' of a Turing degree d.

However, the jump operation fails to respect Turing nonequivalence. It
has long been known that there are noncomputable sets A for which A’ =7 V'.
Such sets are said to be low, since they are very close to being computable:
they have the same jump (up to Turing equivalence) as a computable set.
Likewise, there exist sets B <p (/ with B’ =1 ()", the second iterate of the
jump on @); such a set B is called high, and is thought of as being very close
to ()" in Turing computability, since the two have the same jump. (One would
also then say that (' is low relative to B, since () <r B'.)

The famous Low Basis Theorem of Jockusch and Soare then gives the
result we promised: that if a computable algebraic field F' has nontrivial
automorphisms, then it has an automorphism of degree “not much more
than” (. In particular, it has an automorphism f with jump f’ <7 0, so
that f itself is low relative to ('. We sketch a quick proof. Consider the
automorphism tree Irp for F', as defined in [13, Section 5]. Since F' has
a nontrivial automorphism g, fix the least y with g(y) # y, and define the
computable subtree T' containing all nodes ¢ € Ipp with o(y) # y. The
path g through T shows that this subtree is infinite. Clearly T is still finite-
branching, and (/' can compute the size of each level of T, so by the Low
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Basis Theorem relativized to (', there is a path f through T which is low
relative to (). For the original proof of the Low Basis Theorem, see [7].

It is natural to ask whether similar results apply to automorphisms of
groups: if G is a computable group, perhaps with certain specific proper-
ties, then what can be said about the automorphisms of G?7 Most likely,
investigations of this question would diverge from the results given in this
section. We have focused here on algebraic fields, and have used heavily
the facts that in such fields we can identify each element very accurately by
finding its minimal polynomial p(X) over the prime subfield. This accuracy
is not absolutely exact, since p(X) may have other roots in the field. How-
ever, there is a finite bound (just the degree of p(X)) for the number of such
roots, and the existence of this bound facilitates the use of the Low Basis
Theorem. It is not clear whether there is any property for groups, analogous
to algebraicity, which would allow us to apply the Low Basis Theorem to the
class of computable groups with that property. The most obvious analogue
of an algebraic field is a torsion group, but such groups do not have the
relevant property of algebraic fields: under automorphisms of an algebraic
field, each orbit is finite, whereas for torsion groups infinite orbits are pos-
sible. Of course, it would still be natural to begin these investigations with
better-known classes of groups: torsion groups and/or abelian groups, for
example, perhaps of finite rank. We leave such questions for future study,
and we encourage group theorists to go through the literature on computable
groups, to consider these issues, and to offer new questions of interest from
the standpoint of group theory.
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