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Abstract

Slaman and Wehner have constructed structures which distinguish
the computable Turing degree 0 from the noncomputable degrees, in
the sense that the spectrum of each structure consists precisely of the
noncomputable degrees. Downey has asked if this can be done for an
ordinary type of structure such as a linear order. We show that there
exists a linear order whose spectrum includes every noncomputable
AY degree, but not 0. Since our argument requires the technique of
permitting below a AY set, we include a detailed explanation of the
mechanics and intuition behind this type of permitting.

1 Introduction

Definition 1.1 The spectrum Spec(A) of a structure A is the class of Turing
degrees of presentations of A,

Spec(A) = {deg(B) : B = A}.

(Here the degree of a structure B is the supremum of the degree of its universe
and the degree of its open diagram. For our purposes, the universe will
generally be w.)

*This article is the first chapter of a Ph.D. thesis at the University of Chicago under
the supervision of Robert I. Soare. It was published in The Journal of Symbolic Logic 66
(2001), pp. 470-486. A summary of these results was presented at the AMS conference in
Gainesville, FL, in March 1999. Many thanks go to Soare, and also to Carl G. Jockusch,
Jr. for useful conversations.



Slaman [14] and Wehner [17] have recently each constructed a countable
first-order structure A such that Spec(A) = D — {0}, where D is the class of
all Turing degrees and 0 is the degree of the computable sets. This answers a
question in [3] from Lempp, who had asked whether it was possible to distin-
guish the noncomputable degrees from the degree 0 in such a way. Slaman
remarks that the open diagram of each of these models contains information
which is common to all noncomputable real numbers, yet which is not itself
computable. (In contrast, a single subset of w with no algebraic structure
cannot contain such information; the existence of a minimal pair of Turing
degrees ensures that any set which is computable in every noncomputable
real must itself be computable.)

The structures constructed by Slaman and Wehner were built specifically
for this purpose and are not readily recognizable to most mathematicians.
Downey [3] has asked whether one could do the same for better-known types
of mathematical objects, particularly for linear orders. Indeed, he posed a
series of questions:

Question 1.2 (Downey) Is there a linear order whose spectrum contains
every computably enumerable Turing degree except 07

Question 1.3 (Downey) Is there a linear order whose spectrum contains
every AY degree except 07

Question 1.4 (Downey) Is there a linear order whose spectrum contains
every degree except 07

We can rephrase these questions using the following terminology.

Definition 1.5 If C is a class of Turing degrees, the C-spectrum of A, writ-
ten Spec®(A), is the intersection of C with Spec(.A).

We will consider X{ and AJ as classes of degrees, not classes of sets.
Thus, Question 1.2 asks whether the ¥%-spectrum of a linear order A can be
precisely the noncomputable X{ degrees, and Questions 1.3 and 1.4 are the
corresponding questions for SpecAg (A) and Spec(A).

For certain common mathematical structures, the answers to such ques-
tions are negative. For instance, Downey and Jockusch have shown in [5] that
any Boolean algebra B of low degree is isomorphic to a computable Boolean

algebra,
Spec(B) MLy #0 = 0 € Spec(B).



Hence the X{-spectrum of a Boolean algebra cannot contain every non-
computable computably enumerable (c.e.) degree without also containing 0.
(This result was extended to the lowy degrees by Thurber [16] and then as far
as the low, degrees by Knight and Stob [10], who proved that any Boolean
algebra of low, degree is isomorphic to a computable Boolean algebra.)

However, it is known that for every noncomputable Turing degree, there
exists a linear order of that degree which is not isomorphic to any computable
linear order. Jockusch and Soare [§] proved this statement for noncomputable
c.e. degrees, by creating a linear order which could be “separated” into count-
ably many components, which are used to diagonalize against all possible
computable linear orders. Later, Downey and Seetapun (both unpublished)
independently extended this result to the noncomputable A9 degrees. Fi-
nally, Knight proved the result for an arbitrary noncomputable Turing degree
(see [3], p. 179), suggesting that a positive answer to Downey’s most general
question might be possible.

The argument by Jockusch and Soare is uniform in the given noncom-
putable c.e. set C' in whose degree we wish to build a linear order with no
computable copy. It does give different results, namely non-isomorphic lin-
ear orders, for different sets C'. The same is true of Downey and Seetapun’s
results, which use the same basic module. Therefore these results do not
answer any of Downey’s questions.

In this paper we modify the Jockusch-Soare basic module so that for any
two noncomputable c.e. sets (' and D, it produces isomorphic copies of the
same linear order. Also, we modify and develop the method of Aj-permitting
so that the basic module can handle any noncomputable A§ set C', while still
producing isomorphic linear orders regardless of the choice of C'. We use this
new basic module in Section 4 to prove:

Theorem 4.1 There exists a linear order A which has a copy in every non-
computable AY degree, but no computable copy,

Spec® (A) = AY — {0}.
Furthermore, this order may be taken to be of the form
A= Z(Sz + A;),
1EW
where each 8; 2 1 +v +1+ v+ 1 and each A; is either w or of the form

¢ +w* 4+ w for some ¢; € w.



(Here v represents the countable dense linear order with end points.)

This answers Downey’s Questions 1.2 and 1.3. Question 1.4 is still open,
and is discussed in the final section.

Although the method of AS-permitting has been occasionally used in
computability theory, the literature on it is far less complete than that on
Y9 permitting. Perhaps the most useful reference for A-permitting has been
the twenty-year-old paper of Posner [11]. Therefore, we devote Section 2 to
a revision, updating, and expansion of Posner’s presentation. This includes
an explanation of the intuition behind the method, with examples, and a
general lemma, omitted from Posner’s paper, explaining why one must receive
permission infinitely often.

The rest of the paper serves the dual purpose of answering Downey’s
question and providing a full example of AY-permitting. In Section 3 we give
the basic module for the construction, with AS-permitting prominently used
and explained, and in Section 4 we present the complete construction.

We use the notation of Soare [15] regarding Turing degrees and com-
putability, and that of Rosenstein [13] for linear orders. (Thus w* represents
the reverse order of w, i.e. the order type of the negative integers.) When
{C : s € w} is a computable approximation for a set €', we will usually just
write {Cs} to stand for the entire approximation. Also, we use the symbol
ST« to denote ST (x + 1), the restriction of the subset S C w (viewed as a
function) to the elements 0,1,... .



2 A} Permitting

AY permitting is not as transparent as c.e. permitting. Posner [11] has suc-
cinctly outlined the differences, as well as the tree approach we use to over-
come them. In the c.e. case, we can be sure at least that every element that
has entered the permitting set €' will stay there; for a A§ set (', there is no
such guarantee for any element. Let {C;} e, be a computable approxima-
tion of the permitting set, and suppose A is the C-computable set we wish
to build. The permitting condition is actually the same for both the c.e. case
and the AJ case, and suffices to ensure that A <p C:

Requirement 2.1 (Permitting Condition) If Ci[m = Ci;[m and m <
min(s,t), then A;fm = A m.

However, for a c.e. permitting set C', we know that permission, once given,
will never be withdrawn. That is, if Cs[ m # Csiq] m, then we must also
have Cs[m # Ci] m for every t > s, and therefore we never again have to
worry about making A;[ m equal to A, m. In the AY case, on the other
hand, it is perfectly possible to have Cs[m # Csy1[m and Cs[m = Cif m for
some t > s+ 1. If so, we must undo everything we have done to A[m since
stage s and ensure that A;Jm = A;[m.

The easiest way to visualize our solution to this difficulty is by use of a
tree, called the approximation-tree for C', which we define below after setting
up some machinery. For s > 0, let:

s =max{z: (I < s)[x <t & Csla = Cyfxl},

ts=min{t : x, <t < s & Csla, = Cyl s}

Thus x; is the greatest length of agreement of Cs with any preceding stage,
and ¢, is that preceding stage (or the first such stage, if there is more than
one). Notice that we always have x; < t,. (The requirement < ¢ in the
definition of x4 averts the possibility of x5 being infinite, if there should be a
stage t < s such that ¢}, = C5.)

The approzimation-tree T({C,}) for C' is a computable tree with an inte-
ger at each node. The top node of this tree is 0, and each integer s is added
to the tree as an immediate successor of t,. The precise definition of the
approximation-tree is as follows.

TH{C)) = {0 € w™ : 0(0) = 0 & (¥n < (Ih(o) = 1)) [0(n) = tomen)}.
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(Clearly this depends on the choice of approximation {C;}, not just on C.)

For instance, suppose that the approximations up to stage 8 are given as
follows. (It is convenient to write a dash in place of the 0 or 1 for each C(y)
with y > s, since this makes it clear when the requirement x, < ¢, comes
into play. If desired, we could easily ensure that Cs(y) = 0 for all y > s and
still have {Cs} be a computable approximation of C'.)

We draw the corresponding approximation-tree (restricted to the

given above):
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stages

Lemma 2.2 [f the node t precedes the node s on the approximation-tree,

then x; < xs and Cylx; = Cyl xy.

Proof. We induct on the number of levels between s and ¢. If ¢ immediately
precedes s, then t = t,, so CiJx;, = C]x,. Now we must have z; < x,, since



otherwise (5 would agree up to xs with a stage preceding ¢, contradicting
the definition of ¢,. Hence Cy| x; = Cs[ x4.

For the inductive step, we simply note that C;] s = C} [ x, and apply
the inductive hypothesis to ;. (Once again we have @, > x;, > 24.) ]

We now introduce the notion of a true stage for the approximation {C;}.
A true stage for this approximation is a stage s such that the length of
agreement of Cs with (' is greater than the corresponding length of agreement
for every preceding stage,

(Jx <s) [Csla=Cla& (M) [e<t<s = CiJae#Cla]].

(For our purposes, the “length of agreement” is bounded by the stage number.
Thus, we need not worry about stages ¢ with ¢ < x.)

For c.e. sets, the true stages are precisely the nondeficiency stages, as
defined by Dekker [2], namely those such that an element a enters the set at
that stage and no element less than a ever enters at any subsequent stage.

Clearly, if s is a true stage, then ¢, is precisely the previous true stage. The
true stages form an infinite path through the tree, indeed the only infinite
path. If this path were computable, then we could compute C. (Notice,
however, that the tree need not be computably bounded, so one cannot
automatically compute the unique infinite path.)

Ultimately, we only need to know A; for the true stages s. After all,
there are infinitely many true stages, and the Permitting Condition (and the
convergence of lim; Cy) forces limg As to converge, so any infinite increasing
subsequence {A;, : 1 € w} of approximations must converge to A as well.
Moreover, if s is a true stage, we know that Az, = Al z,.

The difficulty, of course, is that it is impossible to compute the sequence
of true stages, given that C' is noncomputable. Our general strategy for
AY-permitting is to assume at each stage s that the node s lies on the unique
infinite path through the tree, i.e. that s is a true stage. We ensure that
Al xs = Ay | x4, thereby satisfying the Permitting Condition for s and all
stages preceding it. If it turns out that s is not a true stage, then at some
subsequent true stage we will have the opportunity to undo the injury done
at stage s to the preceding true stages.

For a c.e. permitting set C', one characteristically uses the noncomputabil-
ity of C' to prove that there will be infinitely many stages at which C' “gives
permission” to make a change to A. The analogous result for a A§ set ' is
as follows.



Lemma 2.3 (AY Permission) Let so = 0,51, 59,... be the true stages of a
computable approzimation {Cs}se,, of C, with s; < s;11 for alli. Let {ng}se.
be a non-decreasing unbounded computable sequence. If {q : ng )y > x(s,)} is

finite, then C s computable.

(Notice that we conclude that permission is given at infinitely many true
stages, not merely at infinitely many stages. Again, the true stages are the
stages which we care about for purposes of computing A from a C-oracle.)

Proof. Suppose that there were a number £’ such that for all true stages
s, > k', we have x, > n, . Since lim,n, = oo, we can compute for each
stage s the least stage ¢ such that n; > s. Define g(s) to be this stage t, so
the function g is computable and total and n,) > s for every s.

Let s, > k' be a true stage. Then s, = Csigsn) > Ts(gen) ) (since
Sq+1 = K'). But ny) > s, by definition of g, so ny,) > M) - Since {n;}
is a nondecreasing sequence, we see that ¢g(s,) > s,11. This holds as long as

> N

s, > K, but in fact we could redefine ¢ at the finitely many true stages below
K, to yield the following:

Sublemma 2.4 Under the hypotheses of Lemma 2.3, there exists a com-
putable function g such that for every true stage s, we have s,41 < g(s,). m

We remark that this function ¢ does not provide a computable bound on
the approximation-tree T'({C,}). It is possible that there is a stage s with
an immediate successor ¢ such that ¢ > ¢(s). Sublemma 2.4 simply asserts
that in this case t cannot be a true stage.

However, this information suffices for us to compute the path of true
stages in T'({Cs}). 0 is always a true stage, of course, and knowing the true
stage s,, we find all immediate successors of s, which are less than g(s,). Say
that these are tg,%;1,...1,. One of these must be the next true stage s,41,
and all the others have only finitely many nodes below them (by Konig’s
Lemma). To determine which one is the next true stage, we simultaneously
find all successors of each t; which are less than ¢(¢;), and eliminate each
t; which has no such immediate successors. Then we find all immediate
successors of those immediate successors, within the bounds provided by g,
and eliminate those which have no immediate successors within the bounds.
Continuing in this manner, we will eventually eliminate every ¢; with only
finitely many successors, and once we have only one remaining ¢;, we will
know that that ¢; is the next true stage s,1;.



(Equivalently, let
T'={ceT:(¥Yn<(lh(c)—1)) [o(n+1) < g(a(n))] }.

Then T" is a computable subtree of T" and contains the path of true stages.
But since T” is computably bounded by ¢, its unique infinite path must be
computable.)

Thus the path of true stages is computable, and we use this to show that
C' is computable. Notice that on the path of true stages, we always have
Tsiggry) > Lsgs and thus z,, > ¢q. Also, for all p > g we have C [z, = C, [ zs,.
To compute whether ¢ € C, therefore, we need only compute the (¢ 4 1)-st
true stage s.;; and evaluate Cs(cH) (¢), since ¢ < Tseqn) - ]



3 Basic Module for the Construction

Choose an arbitrary noncomputable A set €' with computable approxima-
tion €' = limy; C5. We give the basic module for constructing a linear order
A = (A, <4) of degree <y C which is not isomorphic to the linear order B;
(if any) computed by the i-th partial computable function ;. To achieve
this, we choose an element b of the universe of B; and ensure that no element
of A has the same number of predecessors under <4 that b does in B;. This
is the same result achieved by the Jockusch-Soare basic module in [8], except
that the result of our construction is independent of C'.

Proposition 3.1 The basic module described below yields the following out-
comes, regardless of the choice of the noncomputable A set C' or the com-
putable approrximation to C'.

1. ]f[; has exactly ¢ predecessors in B, (07“ more accurately, if there are
exactly ¢ elements x such that ¢;({(x,b)) = 1), then the basic module
constructs a linear order A of type ¢ + w*.

2. ]fl; has infinitely many predecessors in B, then the basic module con-
structs a linear order A of type w.

(Notice that each outcome ensures that A 2 B;, since no element of
¢ + w* has exactly ¢ predecessors and no element of w has infinitely many
predecessors.)

The universe A of this order will be J, A, with each A; = {a¢, a1, ... as}.
In fact we could just take a; = ¢ for all 7, but this way is clearer, since we
can more readily identify the elements of A. On each set A; we will define a
linear order <, with the final linear order on A being the limit over s of the
orders <.

Ap is the set {ao}, and <g is the trivial order on it. At stage s > 0 we
define

¢ = e < st pialla,b)) 4= 1}1.

Thus ¢, is the number of predecessors of b that have appeared within s
steps, and the sequence {¢;}se, is computable and non-decreasing. This is
the sequence we will use to determine when C' “gives permission” to make
changes to A. Also, we define z; as the greatest length of agreement of C;
with any preceding stage, and ts as that preceding stage (or the first such
stage, if there is more than one), exactly as in Section 2:

10



s =max{z: (I < s)[x <t & Csla = Cyfxl},
ts=min{t : x, <t < s & Csla, = Cyl s}

We let Ay = A;_; U {as} and define the order <, on Aj, considering two
cases:

Case A: ¢, > x,. We start by ordering ao, a1, ... a.,—1) according to the
order <;.. (This is fully defined, since x; < t;.) Preserving the order <;,
on these elements is necessary in order to obey the permitting condition.
Since all the remaining elements have subscripts > x,, we have permission
to move them wherever we like. We place them above aq, ... a(,—1), in order
by subscript,

Aoy~ Ape—1) <s U(z,) <5 Qz41) <5 """ <5 Us.
N—_— ——
in <4 -order

The idea is that, if we find ourselves in Case A at infinitely many stages,
we will build a copy of w. No new elements will ever be placed to the left of
a(z,) at any stage which lies below s on the approximation-tree, so if s is a true
stage, then each of ag, ay, ... a(y,—1) will have only finitely many predecessors.
We perform this operation when ¢, appears to be getting bigger (namely
¢s > &), since this suggests that b will have infinitely many predecessors,
and thus cannot map to any of ag,as,...ax,—1) under any isomorphism of
linear orders.

Case B: ¢; < x5. We preserve the <, -order on its domain of definition,
namely {a; : 7 < t;}, thereby satisfying the permitting condition. Then we
insert all new elements, in reverse order of subscript, between the c¢,-th and
(¢s + 1)-st elements of <;,. (Notice that ¢; < x; forces ¢; < t,.) Thus, if we
define the subscripts o, ...17¢,) so that the < -order is given on ag, a, ... a,
by

CLZ'O <ts Clz'l <ts c <ts Cli(cS_l) <ts Cli( <ts c <ts a; .

cs)

then the new elements are inserted between Qoo _y)

Ay <5 <y ai(cs_1)<s As <5 g1 <50 < A(t.41) <s Cli(cS) g v a;

first ¢, elements new elements final elements
from <, from <,

11



This is the case where it does not appear that b has acquired any new
predecessors, so we proceed with the process of building a copy of ¢; +w*, by
inserting new elements immediately after the c¢s;-th existing element. Each
of the first ¢; elements under <, has fewer than ¢; predecessors, and by
building the w*-order above them, we attempt to force every other element
of A to have infinitely many predecessors. Our guess at this stage is that b
has exactly ¢s; predecessors, and if this guess turns out to be correct, then
once again, no isomorphism of linear orders will be able to map b to any
element of A.

This completes the construction.

Lemma 3.2 (Permitting Condition) If max(z,7) < m < min(s,t) and
Cslm = Cy[m, then
a; <5 a; <~ a; <; aj.

Proof. Assume t < s and induct on s. Since Cs [ m = Cy | m, we know that
m < z,. By our construction, ¢; <, «a; if and only if a; <;, «a;, and by
induction, a; <4, a; if and only if a; <, a;. [

Lemma 3.3 The orders <, converge to a linear order <, = lim, <; on
A=, As(=w). Moreover, <4 is Turing-computable in C.

Proof. Given a; and aj, find (using a C-oracle) a stage s > max(i, j) such
that Csmax(7,j) = Cmax(z,j). (Recall that the symbol S| « denotes
ST (x+1).) Now there exists a stage to > s such that for all t > ¢,
Cif max(i, 7) = C' max(z, ). But then, by the Permitting Condition,

a; <5 a; (\V/t > to)[ai <4 Cl]‘] — a; <4 a;.

Since each <, is a linear order on A;, <4 must obey all the axioms for a
linear order on A. Moreover, the stage s was computable in C. ]

Notice that the stage s need not be a modulus of convergence (in contrast
to the case of c.e. degrees), since there may be a stage s’ > s such that
Cs | max(j, k) # C, [l max(j, k). We simply know that < gives a correct
evaluation of the order of a; and a; in A.

Proof of Proposition 3.1. We now consider the two statements asserted in
Proposition 3.1. First, suppose that b has exactly ¢ predecessors in B;. Let
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{50, 81,...} be a (noncomputable) enumeration of the true stages in ascending
order, and choose k so large that ¢;, = ¢ and z,, > ¢. We write s = s;; to
avoid an overabundance of subscripts. Choose subscripts ig,11,...75 such
that the order <, is given by

Ay <5 gy <500 <s Gy,

Now Case A will never again apply at any true stage of the approximation,
so this order will be preserved at all subsequent true stages. Therefore, at
each true stage s; with j > k, the elements a,,_ 41,...a,, are inserted in
reverse order of subscript immediately above a;,_,,, as dictated by Case B,
with <, ,_,, being preserved on ao, a1, ...as,_, . Thus, if we look only at the
true stages, we see the order ¢+ w* being built. But there are infinitely many
true stages, so the orders <,, must converge to <4, and thus A = ¢+ w*.

In the other case, when b has infinitely many predecessors we claim that

A= w:

Claim 3.4 ]f[; has infinitely many predecessors in B;, then every element
a; of A has only finitely many predecessors in A.

Proof of Claim. As before, let sg, s1,2,... be the true stages in ascending
order, and fix x. Since C' is not computable, Lemma 2.3 of Section 2 yields
a k so large that x,, > x and ¢;, > x,,. Once again, let s = s;. Let f be the
permutation of {0,1,...z, — 1} such that

Apoy <s gy <s - <s Af(g,—1)-

Pick y such that f(y) = x, so a, has exactly y predecessors under <j.

We claim that for every j > k, the predecessors of a, in A, are pre-
cisely ay(o), af(1), - - asy—1). For j =k we have the ordering < as above on
ag, ... 0y 1. Since ¢g > x4, we are in Case A of the construction, and all
remaining elements are placed above ay(,,_1), so the only <,-predecessors of
dy are dag(o), df(1),---asy—1), as desired. Now assume inductively that these
are the only predecessors of a, under <, _,, for j > k. Then <, _, 1is
preserved on ag, ary, .. Uz, ~1), SO by induction, the <, -predecessors of a,
among these elements are precisely ayq), a sy, ... app—1). If we are in Case
A of the construction at stage s;, then the remaining elements (those with
subscripts > ;) are placed above these, yielding no new predecessors to a,.
If we are in Case B, the remaining elements are inserted after the first ¢, of
these. But ¢;; > ¢, since 7 > k, and ¢; > x; > y, so the new elements are all

inserted above a,, proving the claim. [ ]
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From Claim 3.4 it is clear that A = w, independent of the choice of (', as
stated in Part 2 of Proposition 3.1. ]

We remark that the Jockusch-Soare basic module in [8] also builds A = w
whenever b has infinitely many predecessors. However, if b has exactly ¢ pre-
decessors, it builds A = d 4+ w*, for some d < ¢, and d varies with the choice
of the permitting set €. We avoid that difficulty in Case B of our construc-
tion, by placing the new elements between the ¢,-th and (¢; + 1)-st elements
of A;,. The Jockusch-Soare construction (in their terminology) would place
them immediately above the “attached” elements, and the location of the
greatest attached element depends on the last permission received, hence

depends on C and {C}.
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4 Full Construction of the Linear Order

Having seen how this basic module works, we now run it simultaneously for
each computable linear ordering 5;. To accomplish this we use the method
of separators developed by Jockusch and Soare in [8].

Theorem 4.1 There exists a linear order A which has a copy in every non-
computable AY degree, but no computable copy. Furthermore, this order may
be taken to be of the form

A=) (Si+ A, (4.1)

1EW

where each S; 2 1+ v+ 1+ v+ 1 and the order type of each A; is either w
or ¢; + w* +w for some ¢; € w.

(Again v represents the countable dense linear order with end points.)

We will construct A by stringing together linear orders A;, for each i € w.
The order A; is intended to refute the possibility of A being isomorphic to
the linear order B; (if any) computed by the i-th computable partial function
;. To keep the orders A; separate, we insert the computable linear orders
S, as separators between them. For this we use the notation C(Ag, Ay, ...),

A:C(A07A17)280+A0+81—|—A1—|— (42)

Since no A; will have an interval isomorphic to v, this will enable us to
recognize the beginnings and ends of the different S;’s, and thus to isolate
each A;.

However, the S§;’s cannot be recognized by any computable process. To
pick out the first and last points of an S;, we follow [8] and define II9 predi-
cates R;(e,x1,...2,46) each of which holds just if, in the linear order (if any)
determined by ., the points in the separator S; =1+ v 4+ ¢+ v 4+ 1 which
are not in the interior of either copy of v are xy,...x;46. Then the predicate

Si(T1y e Tige, Yy - Yigr) = Rl 2y, .o 2ige) A Riga (0,91, -+ Yigr)

is also I19 and asserts that if ¢; defines a linear order of the form C(By, By, . . .),
then xy,... 2,46 determine the separator S; and yy, . .. y;17 determine the sep-
arator S;y1. Since the set Inf is [I9-complete, there is a computable function
?»; whose range is the set w112 such that for each : and each o € w*+13,
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Si(a) holds if and only if there are infinitely many s € w such that a = ;(s).
Moreover, we may choose these functions ; uniformly in 7. (In the termi-
nology of [8], ¢ assigns chips to the (21 + 13)-tuples «a, and S;(«) holds just
if o gets infinitely many chips from ;.)

It will be useful for us to assume that the range of 1; is all of wW?*+'2. If
this does not hold for the original v;, we can simply replace it by ©; & i,
where y; is a computable bijection from w to w**13. The relevant property
of v¥;, namely that S;(a) holds precisely for those a with 17! (a) infinite, is
clearly preserved under this substitution.

Let () be the (i + 6)-th element of the (2¢ + 13)-tuple o, and u(«) its
(147)-th element. Then o predicts that, if B; is of the form C(Rq, R4, . ..), the
elements of R; will be those & such that x lies between [(a) and u(«) in the
ordering determined by ¢;, i.e. such that ¢;({{(a),2)) =1 = p;((z,u(a))) |.

In our construction we will define elements Z;Z in the interval ({(«), u(a))
of B; (where 2i + 13 = [h(«)), which approximate the element b from the
basic module. (Note that Z;Z may be undefined for certain s and «.) Also, if
Z;Z is defined, we will let

¢, =z < s pisl(la),2) b= 1 = pil{z,B2)) 1},

Thus ¢ is the number of predecessors of Z;Z in the interval between [(«) and
u(a), under the order B;, which have appeared by stage s.

For a given noncomputable A9 set ', we now fix ¢ and construct the in-
dividual order A4; as follows (uniformly in ¢). For each j let a; = (2i + 1, j).
(The row w!?1 is reserved to form the computable separator S;, built uni-
formly in ¢ by a straightforward construction.) The universe A; of A; will
be W+ namely {a; : j € w}. Thus A; is computable and infinite. A;
will be the union of sets A2, with a ranging over w?*!% and s € w, and we
will write A? for [ J{A? : @ € w13}, Each A? is a bin into which we place
the elements which we manipulate (at stage s) to try to defeat any possible
isomorphism between A; and B;, based on the assumption that 5;(«) holds.
(Each element of A; is used in only one such strategy at stage s, so the
different bins at stage s are disjoint: A% N A3 =0 for a # 3.)

We now fix 7 and order the elements a of w**+1? in order type w. (Specif-
ically, pick a computable bijection f; : w**'3 — w, uniformly in ¢, and define
a < fif and only if fi(a) < fi(8).) An a-strategy can only be injured by a
[-strategy with 5 < «, and then only at a stage s such that ¢;(s) = 8. The
strategy which succeeds will be the strategy for that o for which S;(«) holds,
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namely the least o such that a = ¢;(s) for infinitely many s. This strategy
will be injured only finitely often by the G-strategies for those § < «, and
will not be injured at all by the y-strategies with o < .

The ordering <, which we define on the elements of A} at stage s will
respect the ordering <, in that for a; € A3 and a; € A, with § < «, we will
have a; <, ax. Also, if 1;j(s 4+ 1) = a, the elements from each bin A2 with
v >+ «a will be taken out of this bin and dumped (all together) into the bin
AL at stage s+ 1. This constitutes an injury to the y-strategy, which must
then start its work anew. We write A, for the set of elements which reach
the a-th bin at some point and stay there forever after,

A, =) AL

s t2>s

For all o € w?*+12 let A° be the empty set, and let l;g and ¢? be undefined.
At each stage s > 0, we let o = ().

Step 1. We let
A? = (U Ai_1> U {as}.

vZo

Also, for each 7 > a, set A2 =), and for each § < a, set A% = Ag_l.

Step 2. Let IA)i be undefined for every v > «, and let bs, = 132_1 for every
3 < a. If b=t is defined, let b = b>~'. Otherwise set n = | Us<o A3l and
check whether there are (at least) n + 1 distinct elements above [(«) and
below u(e) in the ordering given by ;. If so, take Z;Z to be the (n + 1)-st
of these, in the ordering given by ¢; ;, so that ¢ = n; if not, then Z;Z is
undefined.

Step 3. We now define the ordering on A7, by ordering each Aj with
= a and respecting the order of the bins. As in Section 2, we let

s =max{z: (I < s)[x <t & Csla = Cyfxl},

ts=min{t : x, <t < s & Csla, = Cyl s}

We will need to preserve the order <; on {a; € A?:j < a5} in order to
obey the permitting condition. Therefore we prove, by induction, that <;,
respects the order of the bins Aj. In fact, <; respects the order of the bins
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Atﬁ for every t > t;. The inductive step follows from Step 1, for all j, k, ¢, 3,
B, v, and +/,
la; e AN AT L are AANAT & B=9] = B <4

As in the basic module (see page 11), we now ask, for each § < «, whether
cg > x,.

Case A. ¢y > xs, or ¢ is undefined.

In this case we preserve the order <; on {a; € A% :j < x,}. (This will
satisfy the permitting condition given below.) Above these elements, but
below all elements of U,.5A%, we then place all remaining elements of A%,
ordered in increasing order of subscript.

Case B. cy < @

In this case we preserve the <, order on its entire domain of definition,
namely {a; € Ay : j < t;}. Above these elements we place the elements
of {a; € Ay 1 j > t, & ¥i(j) = B}, in increasing order of subscript. We
then put the elements of {a; € A} : j > t; & ¢i(j) = B} in reverse order
of subscript and place them consecutively so that the leftmost of them is
the (cg + 1)-st element of Uﬁ,jﬁ Ag,. (If there are fewer than ¢} elements in
Upr<Ajs already ordered by <, then we simply put these new elements at
the right end of A}, again in reverse order of subscript.) This completes the
construction.

The ordering A which is the goal of this paper will be precisely

C(Ao,Al,...):So+A0+81+A1+...

Notice that since the entire construction was uniform in ¢, we can string the
S;’s and A;’s together computably. We show below that deg(A;) <p C for
each i, so A will be Turing-reducible to C'. (The orders S; are all computable,
uniformly in ¢.) Indeed, the S; and A; were constructed so that the union
of all their universes is precisely w. The ordering <4 respects the rows of w,
and within each row w!?! or w1 it is given by the ordering on S; or A;,
respectively.

The proofs of the following two lemmas are identical to those of Lemmas
3.2 and 3.3 in the basic module.

Lemma 4.2 (Permitting Condition) If Cs[m = C;Im and aj,ar, € A;
with j, k < m < min(s,t), then

a; <, ap if and only if a; <; ay.
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Lemma 4.3 For each i, the orders <; converge to a linear order <4, on
A; =, A (= WP, Moreover, < 4, is Turing-computable in C, uniformly
in . ]

Lemma 4.4 For any two noncomputable A sets C' and C', any computable
approximations {Cs} and {CL}, and any i, the linear orders A; and A, built
by the above construction are isomorphic.

Proof. We will show that each order A; built by the construction is inde-
pendent of C'. Notice that the only time C' is used in the construction is in
Step 3, and there it rearranges the order of certain elements but never moves
elements from one A7 to another Aj. The movement of elements from one
A, to another A} depends only on the function ¢;. Therefore, for each «
and s, the set A? is independent of C', although the ordering of the elements
of the set may depend on . Also, the definitions of the elements Z;Z in
Step 2 depend only on ¢;, ¥;, and the sizes of the sets A%, all of which are
independent of C'.

Fix i, and let a € w?'% be minimal such that ;7 '(a) is infinite. (If
() is finite for all a, then every A, is finite, so A; & w, independent of
choice of C.) Let sg,s1,... be the true stages in the approximation {C;} of
(', in increasing order.

We deal first with the case in which lim, Z;Z diverges. Pick the least true
stage s, such that ¢;(s) = o for all s > s,. By Step 2 of the construction,
we know that if s > s, and Z;Z is defined, then @3"’1 is defined and equals

Z;Z Therefore, Z;Z must be undefined for every s > s,. But then every
corresponding ¢ is undefined, so in Step 3 after stage s,, we always are
in Case A, which instructs us simply to place the elements with subscripts
> x5 at the right end of A?, in increasing order of subscript. Finitely many
elements lie in Ugs,Ag, and any other element a; must wind up in A,.
(Initially a; may go into some Al with v > «, but it will be dumped into
Al

o'

at the next ¢’ with ¢,;(t') = «.) Eventually we will reach a true stage
sp with a; € AY and j < z,,, and at all true stages thereafter, no more
elements will be placed below a;. Since the orders <, converge and the true
stages form an infinite subsequence, this means that a; can have only finitely
many predecessors in <4,. So the order A; is isomorphic to w, independent
of choice of C'.

Now suppose that the elements Z;Z converge to some element b, of B;.
Then the sequence {¢? } is defined for cofinitely many s and either converges
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to some ¢, € w (if b, has exactly ¢, predecessors in the interval (l(a),u(a))
of B;) or goes to infinity (if b, has infinitely many predecessors there).

In the case with only finitely many predecessors, we choose a true stage
s = 8, so large that ¢, = ¢, and z; > ¢, and ¢¥;(f) = o for all t > s.
Then for each true stage s, with p > ¢, we have e =c, < x, < T,
we are in Case B of Step 3 of the construction. Therefore, at each such s,
we preserve <, _, on its domain of definition, Aj(p_l). Define the numbers

igy 01,15 € {0,1,...5} so that

SO

Ay <5 gy <500 <s Gy,
Since t,, = s(,_1), induction on p yields

Uiy s, Uiy <gp 0 <, Uiy

P

Moreover, since we are in Case B at every such true stage, no element is ever
inserted to the left of the c,-th element Qigep_y)- Thus the order which we
build will have initial segment ¢,,.

We claim that the rest of the order has type w*+w, so that the entire order
has type ¢, + w* + w. The w*-chain is built of those elements a; with 7 > s
and ¢;(j) = a. There are infinitely many such elements still to be added
to A;, and each of them, once added, will be inserted (possibly along with
other elements) immediately after a; , at the next true stage, building the
w*-chain above Qigep_y)-

The w-chain is built of those elements a; with j > s and ¥;(j) > o.
(There are infinitely many such, since the range of ¢; is all of wW?*13.) For
such an element, let ¢ be the first stage such that «; € A’ and let s, be
the first true stage > ¢. If there is no true stage between stage j and stage
t, then a; will be placed (possibly along with other elements) at the right
end of A, by Case B of Step 3. If there was a true stage between j and
t, then a; will be placed at the right end of A (possibly along with other
elements) by the preservation of the order <spoy) at stage s,. In either case,
lsiper) = Sp = J, and since we are in Case B at every true stage after s, the
order <, is preserved (on its domain of definition) at every subsequent true
stage. New elements a; will be added at subsequent true stages only to the
right of a; (if ¢i(k) = «) or immediately after a; _, (if (k) = a). Since
the true stages form an infinite subsequence, this allows us to deduce the
type of the order A;: it will be of the form ¢, + w* + w. Thus the order type
of A; is independent of C' in this case.

(ca—1
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In the case where the interval (l(oz),?)a) of B; is infinite, we claim that

A = w.

Claim 4.5 Iflim, ¢} = oo, then each a; € A, has only finitely many prede-
cessors in Aj;.

Proof. Fix 7. There will be a true stage s = s, for which x;, > j and
(Vt > s)i;(t) = o, and by Lemma 2.3, we may also assume that ¢’ > x,.
Therefore, at stage s we will be in Case A of Step 3, so all elements a; of
A2 with & > z, will be placed above the elements of {a,, € A7 : m < z,},
and hence above a;. Thus a; has fewer than x, predecessors under <,, and
all of those predecessors have subscripts < x; and therefore will precede «;
at every subsequent true stage s,.

We now induct on the true stages s, with p > ¢, to see that the predeces-
sors of a; under each <, are precisely the predecessors of a; under <, _, .
Let s, be a true stage with p > ¢. If we are in Case B of Step 3 at stage

sp, then the ordering <, _, is not injured, and all new elements are placed

1
either after the ¢.?-th elem()ent, hence to the right of a; (since cr > cl > T
and by induction j has fewer than x, predecessors under <5(p_1)), or else at
the right end of A, Thus a; receives no new predecessors at such a stage. If
we are in Case A of Step 3 at stage s,, then all elements with subscripts > =z,
are moved to the right end of A, and all other elements, including a; and
all its predecessors, are left alone. Therefore, for each p > ¢, the predecessors
of a; under <, are precisely the predecessors of a; under <. Since the true
stages form an infinite subsequence of w, we see that indeed «; has only those

(finitely many) predecessors under < 4,, just as we had claimed. [ ]

This holds for every a; € A,, while each Az (8 < «a) is finite and each A,
(v = «) is empty, so clearly A; = w, independent of the choice of C'. (Notice
that we did use the noncomputability of C' in applying Lemma 2.3.) This
completes the proof of Lemma 4.4. [ ]

Corollary 4.6 For each i, the linear order A = C( Ao, Ay, ...) has a unique
interval isomorphic to S;.

(Here C is the operator defined in Equation (4.2), so A is precisely the order
given in (4.1).)
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Proof. From the proof of Lemma 4.4, we see that the only possible outcomes
of the construction of each A; are w and n+w*+w, where n is finite. None of
these has an interval isomorphic to v, the countable dense linear order with
end points, but every one is infinite, so the only copy of 1 + v +i4+ v+ 1 in
A is S; itself. [

Corollary 4.7 A is not isomorphic to any of the computable linear orders

B;.

Proof. We note first, using the preceding corollary, that if A = B; for some
1, then B; has unique intervals isomorphic to &; and S;y;. Hence there is a
unique a € w?*12 for which S;(a) holds, so ¥ '(a) is infinite, but ¥:'(3)
is finite for all 3 # a. Since A = B;, A; must be isomorphic to the interval
(l(a),u(a)) of B;.

If the sequence <l;3> diverges, then Z;Z is undefined for cofinitely many s,
as noted in the proof of Lemma 4.4. By Step 2 of the construction, this can
only happen if the interval ({(a), u(a)) contains at most |{J,,,, Ag| elements,
But A; =2 w, so B; # A.

It Z;Z converges to an element b, with only ¢,-many elements between [(«)
and l;a, then A; & ¢, + w* +w. Thus every element of A; has either fewer
than ¢, predecessors or infinitely many in A;, so no isomorphism could take
l;a to any element of A;.

Finally, if Z;Z converges to an element b, with infinitely many elements
between [(«) and b, then A; = w, so again there can be no isomorphism
taking b, to any element of A;. ]

Thus A is a linear order with no computable copy. However, for every
noncomputable A9 set ', we have seen (in Lemma 4.3) that there is a copy of
A computable in C. We discuss Julia Knight’s full theorem (from [9]) in the
next section, as Theorem 5.2, but an easy consequence of it, cited in [8] and
[3], implies that for each such C| there is a copy of A whose Turing degree
is exactly the degree of C'. This is precisely the property we had promised
would hold for A.
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5 Further Questions

The obvious generalization of Theorem 4.1 would be a positive answer to
Downey’s third question:

Question 1.4 (Downey) Is there a linear order whose spectrum contains
every degree except 07

This question remains open, however. It is known that for every noncom-
putable degree C there is a linear order whose spectrum includes C but not
0. However, Knight’s proof of this result (see [3]) is highly nonuniform: one
uses the Downey-Seetapun result for A degrees, a coding construction for
non-low, degrees, and a combination of these two techniques for the remain-
ing degrees. Therefore, it would be far harder to make Knight’s construction
yield the same result independent of the choice of C, as we managed to do
for the Jockusch-Soare construction.

A more general question, also posed by Downey [3], is simply to ask what
spectra are possible for a linear order.

Question 5.1 (Downey) What can be said about Spec(L) for a given linear
order L?

There are two main results so far. One we have already used in proving The-
orem 4.1, namely Knight’s result that the spectrum must be closed upwards
under Turing reducibility. This follows from a stronger theorem of Knight

[9].

Theorem 5.2 (Knight) If A is any structure, then exactly one of the fol-
lowing two statements holds:

(5.1) For all Turing degrees C <t D, if there is an isomorphic copy of A of
degree C, then there is an isomorphic copy of A of degree D;

(5.2) There exists a finite subset S in the universe A of A such that any
permutation of A fizing S is an automorphism of A.

For any infinite linear order £, (5.2) clearly fails, so the upward-closure
property (5.1) holds. (If £ is finite, then (5.2) holds, and indeed in this case
every copy of L is computable.)

The second main result about the spectrum of a linear order is due to

Richter [12]:
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Theorem 5.3 (Richter) Ifthe spectrum of a linear order has a least degree,
then that degree is 0.

The least degree of the spectrum of a structure is often simply called the
degree of the isomorphism type of that structure. Thus, Richter’s result says
that 0 is the only possible degree for the isomorphism type of a linear order;
a linear order with no computable copy cannot have any least degree in its
spectrum. This can be viewed as a result on the difficulty of coding sets into
linear orders. If we wish to code a noncomputable set S into a linear order,
so that S would be computable from every copy of the order, then that order
cannot have a copy computable from 5. (Otherwise, deg(5) would be the
least degree of the spectrum of the linear order.)

These two results rule out many possible spectra for linear orders. On the
other hand, Theorem 4.1 is an example of a positive response to Question 5.1:
the spectrum can contain all AY degrees except 0. We can also use Knight’s
result on noncomputable degrees to show that it is possible to separate any
two degrees C <t D via the spectrum of a linear order. That is:

Corollary 5.4 If C <t D, then there exists a linear order L such that
D € Spec(L) and C ¢ Spec(L).

Proof. Simply take Knight’s proof for the case C = 0 and relativize it to the
degree C. |

We might ask if it is possible to separate any two Turing degrees in this way,
even if they are incomparable. Also, we can ask if it is possible to separate
collections of degrees:

Question 5.5 If P and N are collections of Turing degrees such that no
degree in P is reducible to any degree in N, is there a linear order L whose
spectrum contains all of P butl does not intersect N ¥

This question is intended to be asked for specific choices of P and N, par-
ticularly classes of c.e. sets (or A sets) whose indices cannot be computably
separated. We have seen in the preceding sections that linear orders can
contain more information than subsets of integers. There is no set which is
computable in every nonzero A§ degree but not in 0, whereas there is a linear
order which is computable in every AY degree except 0. What else can linear
orders do? For instance, could a linear order contain enough information to
separate the high AY sets from the low ones?
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Clearly the answer to Question 5.5 is not always positive, for otherwise
we could contradict Richter’s result by taking P to be the upper cone above
a noncomputable set (/, including the degree of C' itself, and N to be the
complement of P. Thus no linear order characterizes the ability to compute
C', whereas the set C itself does. Here, then, is an example in which a
set contains information which a linear order cannot contain. Knight’s and
Richter’s results both clearly restrict the amount of information encoded in
a linear order. Perhaps there are other common mathematical structures
which escape Richter’s restriction, which would entail failing her “Recursive
Enumerability Condition” (see [12]). Knight’s restriction appears inevitable,
since under (5.2) in Theorem 5.2, the information contained by the structure
is essentially encoded in a single finite set.
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