
The �02-Spe
trum of a Linear OrderRussell Miller�September 1, 2004Abstra
tSlaman and Wehner have 
onstru
ted stru
tures whi
h distinguishthe 
omputable Turing degree 0 from the non
omputable degrees, inthe sense that the spe
trum of ea
h stru
ture 
onsists pre
isely of thenon
omputable degrees. Downey has asked if this 
an be done for anordinary type of stru
ture su
h as a linear order. We show that thereexists a linear order whose spe
trum in
ludes every non
omputable�02 degree, but not 0. Sin
e our argument requires the te
hnique ofpermitting below a �02 set, we in
lude a detailed explanation of theme
hani
s and intuition behind this type of permitting.1 Introdu
tionDe�nition 1.1 The spe
trum Spe
(A) of a stru
ture A is the 
lass of Turingdegrees of presentations of A,Spe
(A) = fdeg(B) : B �= Ag:(Here the degree of a stru
ture B is the supremum of the degree of its universeand the degree of its open diagram. For our purposes, the universe willgenerally be !.)�This arti
le is the �rst 
hapter of a Ph.D. thesis at the University of Chi
ago underthe supervision of Robert I. Soare. It was published in The Journal of Symboli
 Logi
 66(2001), pp. 470-486. A summary of these results was presented at the AMS 
onferen
e inGainesville, FL, in Mar
h 1999. Many thanks go to Soare, and also to Carl G. Jo
kus
h,Jr. for useful 
onversations. 1



Slaman [14℄ and Wehner [17℄ have re
ently ea
h 
onstru
ted a 
ountable�rst-order stru
ture A su
h that Spe
(A) = D�f0g, where D is the 
lass ofall Turing degrees and 0 is the degree of the 
omputable sets. This answers aquestion in [3℄ from Lempp, who had asked whether it was possible to distin-guish the non
omputable degrees from the degree 0 in su
h a way. Slamanremarks that the open diagram of ea
h of these models 
ontains informationwhi
h is 
ommon to all non
omputable real numbers, yet whi
h is not itself
omputable. (In 
ontrast, a single subset of ! with no algebrai
 stru
ture
annot 
ontain su
h information; the existen
e of a minimal pair of Turingdegrees ensures that any set whi
h is 
omputable in every non
omputablereal must itself be 
omputable.)The stru
tures 
onstru
ted by Slaman and Wehner were built spe
i�
allyfor this purpose and are not readily re
ognizable to most mathemati
ians.Downey [3℄ has asked whether one 
ould do the same for better-known typesof mathemati
al obje
ts, parti
ularly for linear orders. Indeed, he posed aseries of questions:Question 1.2 (Downey) Is there a linear order whose spe
trum 
ontainsevery 
omputably enumerable Turing degree ex
ept 0?Question 1.3 (Downey) Is there a linear order whose spe
trum 
ontainsevery �02 degree ex
ept 0?Question 1.4 (Downey) Is there a linear order whose spe
trum 
ontainsevery degree ex
ept 0?We 
an rephrase these questions using the following terminology.De�nition 1.5 If C is a 
lass of Turing degrees, the C-spe
trum of A, writ-ten Spe
C(A), is the interse
tion of C with Spe
(A).We will 
onsider �01 and �02 as 
lasses of degrees, not 
lasses of sets.Thus, Question 1.2 asks whether the �01-spe
trum of a linear order A 
an bepre
isely the non
omputable �01 degrees, and Questions 1.3 and 1.4 are the
orresponding questions for Spe
�02(A) and Spe
(A).For 
ertain 
ommon mathemati
al stru
tures, the answers to su
h ques-tions are negative. For instan
e, Downey and Jo
kus
h have shown in [5℄ thatany Boolean algebra B of low degree is isomorphi
 to a 
omputable Booleanalgebra, Spe
(B) \ L1 6= ; =) 0 2 Spe
(B):2



Hen
e the �01-spe
trum of a Boolean algebra 
annot 
ontain every non-
omputable 
omputably enumerable (
.e.) degree without also 
ontaining 0.(This result was extended to the low2 degrees by Thurber [16℄ and then as faras the low4 degrees by Knight and Stob [10℄, who proved that any Booleanalgebra of low4 degree is isomorphi
 to a 
omputable Boolean algebra.)However, it is known that for every non
omputable Turing degree, thereexists a linear order of that degree whi
h is not isomorphi
 to any 
omputablelinear order. Jo
kus
h and Soare [8℄ proved this statement for non
omputable
.e. degrees, by 
reating a linear order whi
h 
ould be \separated" into 
ount-ably many 
omponents, whi
h are used to diagonalize against all possible
omputable linear orders. Later, Downey and Seetapun (both unpublished)independently extended this result to the non
omputable �02 degrees. Fi-nally, Knight proved the result for an arbitrary non
omputable Turing degree(see [3℄, p. 179), suggesting that a positive answer to Downey's most generalquestion might be possible.The argument by Jo
kus
h and Soare is uniform in the given non
om-putable 
.e. set C in whose degree we wish to build a linear order with no
omputable 
opy. It does give di�erent results, namely non-isomorphi
 lin-ear orders, for di�erent sets C. The same is true of Downey and Seetapun'sresults, whi
h use the same basi
 module. Therefore these results do notanswer any of Downey's questions.In this paper we modify the Jo
kus
h-Soare basi
 module so that for anytwo non
omputable 
.e. sets C and D, it produ
es isomorphi
 
opies of thesame linear order. Also, we modify and develop the method of �02-permittingso that the basi
 module 
an handle any non
omputable �02 set C, while stillprodu
ing isomorphi
 linear orders regardless of the 
hoi
e of C. We use thisnew basi
 module in Se
tion 4 to prove:Theorem 4.1 There exists a linear order A whi
h has a 
opy in every non-
omputable �02 degree, but no 
omputable 
opy,Spe
�02(A) = �02 � f0g:Furthermore, this order may be taken to be of the formA =Xi2! (Si +Ai);where ea
h Si �= 1 + � + i + � + 1 and ea
h Ai is either ! or of the form
i + !� + ! for some 
i 2 !. 3



(Here � represents the 
ountable dense linear order with end points.)This answers Downey's Questions 1.2 and 1.3. Question 1.4 is still open,and is dis
ussed in the �nal se
tion.Although the method of �02-permitting has been o

asionally used in
omputability theory, the literature on it is far less 
omplete than that on�01-permitting. Perhaps the most useful referen
e for �02-permitting has beenthe twenty-year-old paper of Posner [11℄. Therefore, we devote Se
tion 2 toa revision, updating, and expansion of Posner's presentation. This in
ludesan explanation of the intuition behind the method, with examples, and ageneral lemma, omitted from Posner's paper, explaining why one must re
eivepermission in�nitely often.The rest of the paper serves the dual purpose of answering Downey'squestion and providing a full example of �02-permitting. In Se
tion 3 we givethe basi
 module for the 
onstru
tion, with �02-permitting prominently usedand explained, and in Se
tion 4 we present the 
omplete 
onstru
tion.We use the notation of Soare [15℄ regarding Turing degrees and 
om-putability, and that of Rosenstein [13℄ for linear orders. (Thus !� representsthe reverse order of !, i.e. the order type of the negative integers.) WhenfCs : s 2 !g is a 
omputable approximation for a set C, we will usually justwrite fCsg to stand for the entire approximation. Also, we use the symbolS��x to denote S� (x + 1), the restri
tion of the subset S � ! (viewed as afun
tion) to the elements 0; 1; : : : x.
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2 �02 Permitting�02 permitting is not as transparent as 
.e. permitting. Posner [11℄ has su
-
in
tly outlined the di�eren
es, as well as the tree approa
h we use to over-
ome them. In the 
.e. 
ase, we 
an be sure at least that every element thathas entered the permitting set C will stay there; for a �02 set C, there is nosu
h guarantee for any element. Let fCsgs2! be a 
omputable approxima-tion of the permitting set, and suppose A is the C-
omputable set we wishto build. The permitting 
ondition is a
tually the same for both the 
.e. 
aseand the �02 
ase, and suÆ
es to ensure that A �T C:Requirement 2.1 (Permitting Condition) If Cs�m = Ct�m and m �min(s; t), then As�m = At�m.However, for a 
.e. permitting set C, we know that permission, on
e given,will never be withdrawn. That is, if Cs�m 6= Cs+1�m, then we must alsohave Cs�m 6= Ct�m for every t > s, and therefore we never again have toworry about making At� m equal to As�m. In the �02 
ase, on the otherhand, it is perfe
tly possible to have Cs�m 6= Cs+1�m and Cs�m = Ct�m forsome t > s+ 1. If so, we must undo everything we have done to A�m sin
estage s and ensure that At�m = As�m.The easiest way to visualize our solution to this diÆ
ulty is by use of atree, 
alled the approximation-tree for C, whi
h we de�ne below after settingup some ma
hinery. For s > 0, let:xs = maxfx : (9t < s)[x � t & Cs�x = Ct�x℄g;ts = minft : xs � t < s & Cs�xs = Ct�xsg:Thus xs is the greatest length of agreement of Cs with any pre
eding stage,and ts is that pre
eding stage (or the �rst su
h stage, if there is more thanone). Noti
e that we always have xs � ts. (The requirement x � t in thede�nition of xs averts the possibility of xs being in�nite, if there should be astage t < s su
h that Ct = Cs.)The approximation-tree T (fCsg) for C is a 
omputable tree with an inte-ger at ea
h node. The top node of this tree is 0, and ea
h integer s is addedto the tree as an immediate su

essor of ts. The pre
ise de�nition of theapproximation-tree is as follows.T (fCsg) = f� 2 !<! : �(0) = 0 & (8n < (lh(�)� 1)) [�(n) = t�(n+1)℄g:5



(Clearly this depends on the 
hoi
e of approximation fCsg, not just on C.)For instan
e, suppose that the approximations up to stage 8 are given asfollows. (It is 
onvenient to write a dash in pla
e of the 0 or 1 for ea
h Cs(y)with y � s, sin
e this makes it 
lear when the requirement xs � ts 
omesinto play. If desired, we 
ould easily ensure that Cs(y) = 0 for all y � s andstill have fCsg be a 
omputable approximation of C.)s Cs(0) Cs(1) Cs(2) Cs(3) Cs(4) Cs(5) Cs(6) Cs(7) ts xs0 � � � � � � � �1 1 � � � � � � � 0 02 0 1 � � � � � � 0 03 0 1 1 � � � � � 2 24 1 1 1 0 � � � � 1 15 1 0 1 0 0 � � � 1 16 1 0 1 1 0 0 � � 5 37 1 0 1 1 1 0 0 � 6 48 0 0 1 1 1 0 0 0 2 1We draw the 
orresponding approximation-tree (restri
ted to the stagesgiven above):
1

4

2

 7

 6
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0

8 3Lemma 2.2 If the node t pre
edes the node s on the approximation-tree,then xt < xs and Ct�xt = Cs�xt.Proof. We indu
t on the number of levels between s and t. If t immediatelypre
edes s, then t = ts, so Ct�xs = Cs�xs. Now we must have xt < xs, sin
e6



otherwise Cs would agree up to xs with a stage pre
eding t, 
ontradi
tingthe de�nition of ts. Hen
e Ct�xt = Cs�xt.For the indu
tive step, we simply note that Cs� xs = Cts� xs and applythe indu
tive hypothesis to ts. (On
e again we have xs > xts > xt.)We now introdu
e the notion of a true stage for the approximation fCsg.A true stage for this approximation is a stage s su
h that the length ofagreement of Cs with C is greater than the 
orresponding length of agreementfor every pre
eding stage,(9x � s) [Cs�x = C�x & (8t) [x � t < s ) Ct�x 6= C�x ℄℄ :(For our purposes, the \length of agreement" is bounded by the stage number.Thus, we need not worry about stages t with t < x.)For 
.e. sets, the true stages are pre
isely the nonde�
ien
y stages, asde�ned by Dekker [2℄, namely those su
h that an element a enters the set atthat stage and no element less than a ever enters at any subsequent stage.Clearly, if s is a true stage, then ts is pre
isely the previous true stage. Thetrue stages form an in�nite path through the tree, indeed the only in�nitepath. If this path were 
omputable, then we 
ould 
ompute C. (Noti
e,however, that the tree need not be 
omputably bounded, so one 
annotautomati
ally 
ompute the unique in�nite path.)Ultimately, we only need to know As for the true stages s. After all,there are in�nitely many true stages, and the Permitting Condition (and the
onvergen
e of lims Cs) for
es limsAs to 
onverge, so any in�nite in
reasingsubsequen
e fAsi : i 2 !g of approximations must 
onverge to A as well.Moreover, if s is a true stage, we know that As�xs = A�xs.The diÆ
ulty, of 
ourse, is that it is impossible to 
ompute the sequen
eof true stages, given that C is non
omputable. Our general strategy for�02-permitting is to assume at ea
h stage s that the node s lies on the uniquein�nite path through the tree, i.e. that s is a true stage. We ensure thatAs� xs = Ats� xs, thereby satisfying the Permitting Condition for s and allstages pre
eding it. If it turns out that s is not a true stage, then at somesubsequent true stage we will have the opportunity to undo the injury doneat stage s to the pre
eding true stages.For a 
.e. permitting set C, one 
hara
teristi
ally uses the non
omputabil-ity of C to prove that there will be in�nitely many stages at whi
h C \givespermission" to make a 
hange to A. The analogous result for a �02 set C isas follows. 7



Lemma 2.3 (�02 Permission) Let s0 = 0; s1; s2; : : : be the true stages of a
omputable approximation fCsgs2! of C, with si < si+1 for all i. Let fnsgs2!be a non-de
reasing unbounded 
omputable sequen
e. If fq : n(sq) > x(sq)g is�nite, then C is 
omputable.(Noti
e that we 
on
lude that permission is given at in�nitely many truestages, not merely at in�nitely many stages. Again, the true stages are thestages whi
h we 
are about for purposes of 
omputing A from a C-ora
le.)Proof. Suppose that there were a number k0 su
h that for all true stagessq � k0, we have xsq � nsq . Sin
e lims ns = 1, we 
an 
ompute for ea
hstage s the least stage t su
h that nt > s. De�ne g(s) to be this stage t, sothe fun
tion g is 
omputable and total and ng(s) > s for every s.Let sq � k0 be a true stage. Then sq = ts(q+1) � xs(q+1) � ns(q+1) (sin
esq+1 � k0). But ng(sq) > sq by de�nition of g, so ng(sq) > ns(q+1) . Sin
e fnsgis a nonde
reasing sequen
e, we see that g(sq) > sq+1. This holds as long assq � k0, but in fa
t we 
ould rede�ne g at the �nitely many true stages belowk0, to yield the following:Sublemma 2.4 Under the hypotheses of Lemma 2.3, there exists a 
om-putable fun
tion g su
h that for every true stage sq we have sq+1 < g(sq).We remark that this fun
tion g does not provide a 
omputable bound onthe approximation-tree T (fCsg). It is possible that there is a stage s withan immediate su

essor t su
h that t > g(s). Sublemma 2.4 simply assertsthat in this 
ase t 
annot be a true stage.However, this information suÆ
es for us to 
ompute the path of truestages in T (fCsg). 0 is always a true stage, of 
ourse, and knowing the truestage sq, we �nd all immediate su

essors of sq whi
h are less than g(sq). Saythat these are t0; t1; : : : tp. One of these must be the next true stage sq+1,and all the others have only �nitely many nodes below them (by Konig'sLemma). To determine whi
h one is the next true stage, we simultaneously�nd all su

essors of ea
h tj whi
h are less than g(tj), and eliminate ea
htj whi
h has no su
h immediate su

essors. Then we �nd all immediatesu

essors of those immediate su

essors, within the bounds provided by g,and eliminate those whi
h have no immediate su

essors within the bounds.Continuing in this manner, we will eventually eliminate every tj with only�nitely many su

essors, and on
e we have only one remaining tj, we willknow that that tj is the next true stage sq+1.8



(Equivalently, letT 0 = f� 2 T : (8n < (lh(�)� 1)) [�(n+ 1) < g(�(n)) ℄ g:Then T 0 is a 
omputable subtree of T and 
ontains the path of true stages.But sin
e T 0 is 
omputably bounded by g, its unique in�nite path must be
omputable.)Thus the path of true stages is 
omputable, and we use this to show thatC is 
omputable. Noti
e that on the path of true stages, we always havexs(q+1) > xsq , and thus xsq � q. Also, for all p > q we have Csp�xsq = Csq�xsq.To 
ompute whether 
 2 C, therefore, we need only 
ompute the (
 + 1)-sttrue stage s
+1 and evaluate Cs(
+1)(
), sin
e 
 < xs(
+1) .

9



3 Basi
 Module for the Constru
tionChoose an arbitrary non
omputable �02 set C with 
omputable approxima-tion C = lims Cs. We give the basi
 module for 
onstru
ting a linear orderA = (A;<A) of degree �T C whi
h is not isomorphi
 to the linear order Bi(if any) 
omputed by the i-th partial 
omputable fun
tion 'i. To a
hievethis, we 
hoose an element b̂ of the universe of Bi and ensure that no elementof A has the same number of prede
essors under <A that b̂ does in Bi. Thisis the same result a
hieved by the Jo
kus
h-Soare basi
 module in [8℄, ex
eptthat the result of our 
onstru
tion is independent of C.Proposition 3.1 The basi
 module des
ribed below yields the following out-
omes, regardless of the 
hoi
e of the non
omputable �02 set C or the 
om-putable approximation to C.1. If b̂ has exa
tly 
 prede
essors in Bi (or more a

urately, if there areexa
tly 
 elements x su
h that 'i(hx; b̂i) #= 1), then the basi
 module
onstru
ts a linear order A of type 
+ !�.2. If b̂ has in�nitely many prede
essors in Bi, then the basi
 module 
on-stru
ts a linear order A of type !.(Noti
e that ea
h out
ome ensures that A 6�= Bi, sin
e no element of
 + !� has exa
tly 
 prede
essors and no element of ! has in�nitely manyprede
essors.)The universe A of this order will be SsAs, with ea
h As = fa0; a1; : : : asg.In fa
t we 
ould just take ai = i for all i, but this way is 
learer, sin
e we
an more readily identify the elements of A. On ea
h set As we will de�ne alinear order <s, with the �nal linear order on A being the limit over s of theorders <s.A0 is the set fa0g, and <0 is the trivial order on it. At stage s > 0 wede�ne 
s = jfx < s : 'i;s(hx; b̂i) #= 1gj:Thus 
s is the number of prede
essors of b̂ that have appeared within ssteps, and the sequen
e f
sgs2! is 
omputable and non-de
reasing. This isthe sequen
e we will use to determine when C \gives permission" to make
hanges to A. Also, we de�ne xs as the greatest length of agreement of Cswith any pre
eding stage, and ts as that pre
eding stage (or the �rst su
hstage, if there is more than one), exa
tly as in Se
tion 2:10



xs = maxfx : (9t < s)[x � t & Cs�x = Ct�x℄g;ts = minft : xs � t < s & Cs�xs = Ct�xsg:We let As = As�1 [ fasg and de�ne the order <s on As, 
onsidering two
ases:Case A: 
s > xs. We start by ordering a0; a1; : : : a(xs�1) a

ording to theorder <ts. (This is fully de�ned, sin
e xs � ts.) Preserving the order <tson these elements is ne
essary in order to obey the permitting 
ondition.Sin
e all the remaining elements have subs
ripts � xs, we have permissionto move them wherever we like. We pla
e them above a0; : : : a(xs�1), in orderby subs
ript, a0; � � � a(xs�1)| {z }<s a(xs) <s a(xs+1) <s � � � <s as:in <ts-orderThe idea is that, if we �nd ourselves in Case A at in�nitely many stages,we will build a 
opy of !. No new elements will ever be pla
ed to the left ofa(xs) at any stage whi
h lies below s on the approximation-tree, so if s is a truestage, then ea
h of a0; a1; : : : a(xs�1) will have only �nitely many prede
essors.We perform this operation when 
s appears to be getting bigger (namely
s > xs), sin
e this suggests that b̂ will have in�nitely many prede
essors,and thus 
annot map to any of a0; a1; : : : a(xs�1) under any isomorphism oflinear orders.Case B: 
s � xs. We preserve the <ts-order on its domain of de�nition,namely faj : j � tsg, thereby satisfying the permitting 
ondition. Then weinsert all new elements, in reverse order of subs
ript, between the 
s-th and(
s + 1)-st elements of <ts. (Noti
e that 
s � xs for
es 
s � ts.) Thus, if wede�ne the subs
ripts i0; : : : i(ts) so that the <ts-order is given on a0; a1; : : : atsby ai0 <ts ai1 <ts � � � <ts ai(
s�1) <ts ai(
s) <ts � � � <ts ai(ts);then the new elements are inserted between ai(
s�1) and ai(
s),ai0 <s � � � <s ai(
s�1)| {z }<s as <s as�1 <s � � � <s a(ts+1)| {z } <s ai(
s) <s � � � ai(ts)| {z } :�rst 
s elements new elements �nal elementsfrom <ts from <ts11



This is the 
ase where it does not appear that b̂ has a
quired any newprede
essors, so we pro
eed with the pro
ess of building a 
opy of 
s+!�, byinserting new elements immediately after the 
s-th existing element. Ea
hof the �rst 
s elements under <s has fewer than 
s prede
essors, and bybuilding the !�-order above them, we attempt to for
e every other elementof A to have in�nitely many prede
essors. Our guess at this stage is that b̂has exa
tly 
s prede
essors, and if this guess turns out to be 
orre
t, thenon
e again, no isomorphism of linear orders will be able to map b̂ to anyelement of A.This 
ompletes the 
onstru
tion.Lemma 3.2 (Permitting Condition) If max(i; j) < m � min(s; t) andCs�m = Ct�m, then ai <s aj () ai <t aj:Proof. Assume t < s and indu
t on s. Sin
e Cs � m = Ct � m, we know thatm � xs. By our 
onstru
tion, ai <s aj if and only if ai <ts aj, and byindu
tion, ai <ts aj if and only if ai <t aj.Lemma 3.3 The orders <s 
onverge to a linear order <A= lims <s onA = SsAs(= !). Moreover, <A is Turing-
omputable in C.Proof. Given ai and aj, �nd (using a C-ora
le) a stage s > max(i; j) su
hthat Cs��max(i; j) = C��max(i; j). (Re
all that the symbol S �� x denotesS � (x + 1).) Now there exists a stage t0 > s su
h that for all t � t0,Ct��max(i; j) = C��max(i; j). But then, by the Permitting Condition,ai <s aj () (8t � t0)[ai <t aj℄ () ai <A aj:Sin
e ea
h <s is a linear order on As, <A must obey all the axioms for alinear order on A. Moreover, the stage s was 
omputable in C.Noti
e that the stage s need not be a modulus of 
onvergen
e (in 
ontrastto the 
ase of 
.e. degrees), sin
e there may be a stage s0 > s su
h thatCs0 �� max(j; k) 6= Cs �� max(j; k). We simply know that <s gives a 
orre
tevaluation of the order of aj and ak in A.Proof of Proposition 3.1. We now 
onsider the two statements asserted inProposition 3.1. First, suppose that b̂ has exa
tly 
 prede
essors in Bi. Let12



fs0; s1; : : :g be a (non
omputable) enumeration of the true stages in as
endingorder, and 
hoose k so large that 
sk = 
 and xsk > 
. We write s = sk toavoid an overabundan
e of subs
ripts. Choose subs
ripts i0; i1; : : : is su
hthat the order <s is given byai0 <s ai1 <s � � � <s ais:Now Case A will never again apply at any true stage of the approximation,so this order will be preserved at all subsequent true stages. Therefore, atea
h true stage sj with j > k, the elements as(j�1)+1; : : : asj are inserted inreverse order of subs
ript immediately above ai(
�1), as di
tated by Case B,with <s(j�1) being preserved on a0; a1; : : : as(j�1) . Thus, if we look only at thetrue stages, we see the order 
+!� being built. But there are in�nitely manytrue stages, so the orders <sj must 
onverge to <A, and thus A �= 
+ !�.In the other 
ase, when b̂ has in�nitely many prede
essors we 
laim thatA �= !:Claim 3.4 If b̂ has in�nitely many prede
essors in Bi, then every elementax of A has only �nitely many prede
essors in A.Proof of Claim. As before, let s0; s1; s2; : : : be the true stages in as
endingorder, and �x x. Sin
e C is not 
omputable, Lemma 2.3 of Se
tion 2 yieldsa k so large that xsk > x and 
sk > xsk . On
e again, let s = sk. Let f be thepermutation of f0; 1; : : : xs � 1g su
h thataf(0) <s af(1) <s � � � <s af(xs�1):Pi
k y su
h that f(y) = x, so ax has exa
tly y prede
essors under <s.We 
laim that for every j � k, the prede
essors of ax in Asj are pre-
isely af(0); af(1); : : : af(y�1). For j = k we have the ordering <s as above ona0; : : : axs�1. Sin
e 
s > xs, we are in Case A of the 
onstru
tion, and allremaining elements are pla
ed above af(xs�1), so the only <s-prede
essors ofax are af(0); af(1); : : : af(y�1), as desired. Now assume indu
tively that theseare the only prede
essors of ax under <s(j�1) , for j > k. Then <s(j�1) ispreserved on a0; a1; : : : a(xsj�1), so by indu
tion, the <sj -prede
essors of axamong these elements are pre
isely af(0); af(1); : : : af(y�1). If we are in CaseA of the 
onstru
tion at stage sj, then the remaining elements (those withsubs
ripts � xsj ) are pla
ed above these, yielding no new prede
essors to ax.If we are in Case B, the remaining elements are inserted after the �rst 
sj ofthese. But 
sj � 
s sin
e j > k, and 
s > xs > y, so the new elements are allinserted above ax, proving the 
laim.13



From Claim 3.4 it is 
lear that A �= !, independent of the 
hoi
e of C, asstated in Part 2 of Proposition 3.1.We remark that the Jo
kus
h-Soare basi
 module in [8℄ also buildsA �= !whenever b̂ has in�nitely many prede
essors. However, if b̂ has exa
tly 
 pre-de
essors, it builds A �= d+ !�, for some d � 
, and d varies with the 
hoi
eof the permitting set C. We avoid that diÆ
ulty in Case B of our 
onstru
-tion, by pla
ing the new elements between the 
s-th and (
s +1)-st elementsof Ats. The Jo
kus
h-Soare 
onstru
tion (in their terminology) would pla
ethem immediately above the \atta
hed" elements, and the lo
ation of thegreatest atta
hed element depends on the last permission re
eived, hen
edepends on C and fCsg.

14



4 Full Constru
tion of the Linear OrderHaving seen how this basi
 module works, we now run it simultaneously forea
h 
omputable linear ordering Bi. To a

omplish this we use the methodof separators developed by Jo
kus
h and Soare in [8℄.Theorem 4.1 There exists a linear order A whi
h has a 
opy in every non-
omputable �02 degree, but no 
omputable 
opy. Furthermore, this order maybe taken to be of the form A =Xi2! (Si +Ai); (4:1)where ea
h Si �= 1 + � + i+ � + 1 and the order type of ea
h Ai is either !or 
i + !� + ! for some 
i 2 !.(Again � represents the 
ountable dense linear order with end points.)We will 
onstru
t A by stringing together linear orders Ai, for ea
h i 2 !.The order Ai is intended to refute the possibility of A being isomorphi
 tothe linear order Bi (if any) 
omputed by the i-th 
omputable partial fun
tion'i. To keep the orders Ai separate, we insert the 
omputable linear ordersSi as separators between them. For this we use the notation C(A0;A1; : : :),A = C(A0;A1; : : :) = S0 +A0 + S1 +A1 + : : : : (4:2)Sin
e no Ai will have an interval isomorphi
 to �, this will enable us tore
ognize the beginnings and ends of the di�erent Si's, and thus to isolateea
h Ai.However, the Si's 
annot be re
ognized by any 
omputable pro
ess. Topi
k out the �rst and last points of an Si, we follow [8℄ and de�ne �02 predi-
ates Ri(e; x1; : : : xi+6) ea
h of whi
h holds just if, in the linear order (if any)determined by 'e, the points in the separator Si = 1 + � + i+ � + 1 whi
hare not in the interior of either 
opy of � are x1; : : : xi+6. Then the predi
ateSi(x1; : : : xi+6; y1; : : : yi+7) = Ri(i; x1; : : : xi+6) ^Ri+1(i; y1; : : : yi+7)is also �02 and asserts that if 'i de�nes a linear order of the form C(B0;B1; : : :),then x1; : : : xi+6 determine the separator Si and y1; : : : yi+7 determine the sep-arator Si+1. Sin
e the set Inf is �02-
omplete, there is a 
omputable fun
tion i whose range is the set !2i+13, su
h that for ea
h i and ea
h � 2 !2i+13,15



Si(�) holds if and only if there are in�nitely many s 2 ! su
h that � =  i(s).Moreover, we may 
hoose these fun
tions  i uniformly in i. (In the termi-nology of [8℄,  i assigns 
hips to the (2i+13)-tuples �, and Si(�) holds justif � gets in�nitely many 
hips from  i.)It will be useful for us to assume that the range of  i is all of !2i+13. Ifthis does not hold for the original  i, we 
an simply repla
e it by  i � �i,where �i is a 
omputable bije
tion from ! to !2i+13. The relevant propertyof  i, namely that Si(�) holds pre
isely for those � with  �1i (�) in�nite, is
learly preserved under this substitution.Let l(�) be the (i + 6)-th element of the (2i + 13)-tuple �, and u(�) its(i+7)-th element. Then � predi
ts that, if Bi is of the form C(R0;R1; : : :), theelements of Ri will be those x su
h that x lies between l(�) and u(�) in theordering determined by 'i, i.e. su
h that 'i(hl(�); xi) #= 1 = 'i(hx; u(�)i) #.In our 
onstru
tion we will de�ne elements b̂s� in the interval (l(�); u(�))of Bi (where 2i + 13 = lh(�)), whi
h approximate the element b̂ from thebasi
 module. (Note that b̂s� may be unde�ned for 
ertain s and �.) Also, ifb̂s� is de�ned, we will let
s� = jfx � s : 'i;s(hl(�); xi) #= 1 = 'i;s(hx; b̂s�i) #gj:Thus 
s� is the number of prede
essors of b̂s� in the interval between l(�) andu(�), under the order Bi, whi
h have appeared by stage s.For a given non
omputable �02 set C, we now �x i and 
onstru
t the in-dividual order Ai as follows (uniformly in i). For ea
h j let aj = h2i + 1; ji.(The row ![2i℄ is reserved to form the 
omputable separator Si, built uni-formly in i by a straightforward 
onstru
tion.) The universe Ai of Ai willbe ![2i+1℄, namely faj : j 2 !g. Thus Ai is 
omputable and in�nite. Aiwill be the union of sets As�, with � ranging over !2i+13 and s 2 !, and wewill write Asi for SfAs� : � 2 !2i+13g. Ea
h As� is a bin into whi
h we pla
ethe elements whi
h we manipulate (at stage s) to try to defeat any possibleisomorphism between Ai and Bi, based on the assumption that Si(�) holds.(Ea
h element of Ai is used in only one su
h strategy at stage s, so thedi�erent bins at stage s are disjoint: As� \As� = ; for � 6= �.)We now �x i and order the elements � of !2i+13 in order type !. (Spe
if-i
ally, pi
k a 
omputable bije
tion fi : !2i+13 ! !, uniformly in i, and de�ne� � � if and only if fi(�) < fi(�).) An �-strategy 
an only be injured by a�-strategy with � � �, and then only at a stage s su
h that  i(s) = �. Thestrategy whi
h su

eeds will be the strategy for that � for whi
h Si(�) holds,16



namely the least � su
h that � =  i(s) for in�nitely many s. This strategywill be injured only �nitely often by the �-strategies for those � � �, andwill not be injured at all by the 
-strategies with � � 
.The ordering <s whi
h we de�ne on the elements of Asi at stage s willrespe
t the ordering �, in that for aj 2 As� and ak 2 As� with � � �, we willhave aj <s ak. Also, if  i(s + 1) = �, the elements from ea
h bin As
 with
 � � will be taken out of this bin and dumped (all together) into the binAs+1� at stage s+1. This 
onstitutes an injury to the 
-strategy, whi
h mustthen start its work anew. We write A� for the set of elements whi
h rea
hthe �-th bin at some point and stay there forever after,A� =[s \t�sAt�:For all � 2 !2i+13, letA0� be the empty set, and let b̂0� and 
0� be unde�ned.At ea
h stage s > 0, we let � =  i(s).Step 1. We let As� =  [
��As�1
 ! [ fasg:Also, for ea
h 
 � �, set As
 = ;, and for ea
h � � �, set As� = As�1� .Step 2. Let b̂s
 be unde�ned for every 
 � �, and let b̂s� = b̂s�1� for every� � �. If b̂s�1� is de�ned, let b̂s� = b̂s�1� . Otherwise set n = jS���As�j, and
he
k whether there are (at least) n + 1 distin
t elements above l(�) andbelow u(�) in the ordering given by 'i;s. If so, take b̂s� to be the (n + 1)-stof these, in the ordering given by 'i;s, so that 
s� = n; if not, then b̂s� isunde�ned.Step 3. We now de�ne the ordering on Asi , by ordering ea
h As� with� � � and respe
ting the order of the bins. As in Se
tion 2, we letxs = maxfx : (9t < s)[x � t & Cs�x = Ct�x℄g;ts = minft : xs � t < s & Cs�xs = Ct�xsg:We will need to preserve the order <ts on faj 2 Asi : j < xsg in order toobey the permitting 
ondition. Therefore we prove, by indu
tion, that <tsrespe
ts the order of the bins As�. In fa
t, <ts respe
ts the order of the bins17



At� for every t > ts. The indu
tive step follows from Step 1, for all j, k, t, �,�0, 
, and 
0,[aj 2 At� \At+1�0 & ak 2 At
 \At+1
0 & � � 
℄ =) �0 � 
0:As in the basi
 module (see page 11), we now ask, for ea
h � � �, whether
s� > xs.Case A. 
s� > xs, or 
s� is unde�ned.In this 
ase we preserve the order <ts on faj 2 As� : j < xsg. (This willsatisfy the permitting 
ondition given below.) Above these elements, butbelow all elements of [
��As
, we then pla
e all remaining elements of As�,ordered in in
reasing order of subs
ript.Case B. 
s� � xs.In this 
ase we preserve the <ts order on its entire domain of de�nition,namely faj 2 As� : j � tsg. Above these elements we pla
e the elementsof faj 2 As� : j > ts &  i(j) � �g, in in
reasing order of subs
ript. Wethen put the elements of faj 2 As� : j > ts &  i(j) = �g in reverse orderof subs
ript and pla
e them 
onse
utively so that the leftmost of them isthe (
s� + 1)-st element of S�0�� As�0. (If there are fewer than 
s� elements in[�0��As�0 already ordered by <s, then we simply put these new elements atthe right end of As�, again in reverse order of subs
ript.) This 
ompletes the
onstru
tion.The ordering A whi
h is the goal of this paper will be pre
iselyC(A0;A1; : : :) = S0 +A0 + S1 +A1 + : : : :Noti
e that sin
e the entire 
onstru
tion was uniform in i, we 
an string theSi's and Ai's together 
omputably. We show below that deg(Ai) �T C forea
h i, so A will be Turing-redu
ible to C. (The orders Si are all 
omputable,uniformly in i.) Indeed, the Si and Ai were 
onstru
ted so that the unionof all their universes is pre
isely !. The ordering <A respe
ts the rows of !,and within ea
h row ![2i℄ or ![2i+1℄ it is given by the ordering on Si or Ai,respe
tively.The proofs of the following two lemmas are identi
al to those of Lemmas3.2 and 3.3 in the basi
 module.Lemma 4.2 (Permitting Condition) If Cs�m = Ct�m and aj; ak 2 Aiwith j; k < m � min(s; t), thenaj <s ak if and only if aj <t ak:18



Lemma 4.3 For ea
h i, the orders <s 
onverge to a linear order <Ai onAi = SsAsi (= ![2i+1℄). Moreover, <Ai is Turing-
omputable in C, uniformlyin i.Lemma 4.4 For any two non
omputable �02 sets C and C 0, any 
omputableapproximations fCsg and fC 0sg, and any i, the linear orders Ai and A0i builtby the above 
onstru
tion are isomorphi
.Proof. We will show that ea
h order Ai built by the 
onstru
tion is inde-pendent of C. Noti
e that the only time C is used in the 
onstru
tion is inStep 3, and there it rearranges the order of 
ertain elements but never moveselements from one As� to another As�. The movement of elements from oneAs� to another As� depends only on the fun
tion  i. Therefore, for ea
h �and s, the set As� is independent of C, although the ordering of the elementsof the set may depend on C. Also, the de�nitions of the elements b̂s� inStep 2 depend only on 'i,  i, and the sizes of the sets As�, all of whi
h areindependent of C.Fix i, and let � 2 !2i+13 be minimal su
h that  �1i (�) is in�nite. (If �1i (�) is �nite for all �, then every A� is �nite, so Ai �= !, independent of
hoi
e of C.) Let s0; s1; : : : be the true stages in the approximation fCsg ofC, in in
reasing order.We deal �rst with the 
ase in whi
h lims b̂s� diverges. Pi
k the least truestage sq su
h that  i(s) � � for all s � sq. By Step 2 of the 
onstru
tion,we know that if s � sq and b̂s� is de�ned, then b̂s+1� is de�ned and equalsb̂s�. Therefore, b̂s� must be unde�ned for every s � sq. But then every
orresponding 
s� is unde�ned, so in Step 3 after stage sq, we always arein Case A, whi
h instru
ts us simply to pla
e the elements with subs
ripts� xs at the right end of As�, in in
reasing order of subs
ript. Finitely manyelements lie in [���A�, and any other element aj must wind up in A�.(Initially aj may go into some At
 with 
 � �, but it will be dumped intoAt0�, at the next t0 with  i(t0) = �.) Eventually we will rea
h a true stagesp with aj 2 Asp� and j < xsp, and at all true stages thereafter, no moreelements will be pla
ed below aj. Sin
e the orders <s 
onverge and the truestages form an in�nite subsequen
e, this means that aj 
an have only �nitelymany prede
essors in <Ai. So the order Ai is isomorphi
 to !, independentof 
hoi
e of C.Now suppose that the elements b̂s� 
onverge to some element b̂� of Bi.Then the sequen
e f
s�g is de�ned for 
o�nitely many s and either 
onverges19



to some 
� 2 ! (if b̂� has exa
tly 
� prede
essors in the interval (l(�); u(�))of Bi) or goes to in�nity (if b̂� has in�nitely many prede
essors there).In the 
ase with only �nitely many prede
essors, we 
hoose a true stages = sq so large that 
s� = 
� and xs > 
� and  i(t) � � for all t � s.Then for ea
h true stage sp with p > q, we have 
sp� = 
� < xs � xsp sowe are in Case B of Step 3 of the 
onstru
tion. Therefore, at ea
h su
h sp,we preserve <s(p�1) on its domain of de�nition, As(p�1)i . De�ne the numbersi0; i1; : : : is 2 f0; 1; : : : sg so thatai0 <s ai1 <s � � � <s ais:Sin
e tsp = s(p�1), indu
tion on p yieldsai0 <sp ai1 <sp � � � <sp ais:Moreover, sin
e we are in Case B at every su
h true stage, no element is everinserted to the left of the 
�-th element ai(
��1). Thus the order whi
h webuild will have initial segment 
�.We 
laim that the rest of the order has type !�+!, so that the entire orderhas type 
� + !� + !. The !�-
hain is built of those elements aj with j > sand  i(j) = �. There are in�nitely many su
h elements still to be addedto Ai, and ea
h of them, on
e added, will be inserted (possibly along withother elements) immediately after ai(
��1) at the next true stage, building the!�-
hain above ai(
��1).The !-
hain is built of those elements aj with j > s and  i(j) � �.(There are in�nitely many su
h, sin
e the range of  i is all of !2i+13.) Forsu
h an element, let t be the �rst stage su
h that aj 2 At�, and let sp bethe �rst true stage � t. If there is no true stage between stage j and staget, then aj will be pla
ed (possibly along with other elements) at the rightend of Asp� , by Case B of Step 3. If there was a true stage between j andt, then aj will be pla
ed at the right end of Asp� (possibly along with otherelements) by the preservation of the order <s(p�1) at stage sp. In either 
ase,ts(p+1) = sp � j, and sin
e we are in Case B at every true stage after s, theorder <sp is preserved (on its domain of de�nition) at every subsequent truestage. New elements ak will be added at subsequent true stages only to theright of aj (if  i(k) � �) or immediately after ai(
��1) (if  i(k) = �). Sin
ethe true stages form an in�nite subsequen
e, this allows us to dedu
e thetype of the order Ai: it will be of the form 
�+ !�+ !. Thus the order typeof Ai is independent of C in this 
ase.20



In the 
ase where the interval (l(�); b̂�) of Bi is in�nite, we 
laim thatAi �= !.Claim 4.5 If lims 
s� =1, then ea
h aj 2 A� has only �nitely many prede-
essors in Ai.Proof. Fix j. There will be a true stage s = sq for whi
h xs > j and(8t � s) i(t) � �, and by Lemma 2.3, we may also assume that 
s� > xs.Therefore, at stage s we will be in Case A of Step 3, so all elements ak ofAs� with k � xs will be pla
ed above the elements of fam 2 Asi : m < xsg,and hen
e above aj. Thus aj has fewer than xs prede
essors under <s, andall of those prede
essors have subs
ripts < xs and therefore will pre
ede ajat every subsequent true stage sp.We now indu
t on the true stages sp with p > q, to see that the prede
es-sors of aj under ea
h <sp are pre
isely the prede
essors of aj under <s(p�1).Let sp be a true stage with p > q. If we are in Case B of Step 3 at stagesp, then the ordering <s(p�1) is not injured, and all new elements are pla
edeither after the 
sp� -th element, hen
e to the right of aj (sin
e 
sp� � 
s� > xsand by indu
tion j has fewer than xs prede
essors under <s(p�1)), or else atthe right end of Asp� . Thus aj re
eives no new prede
essors at su
h a stage. Ifwe are in Case A of Step 3 at stage sp, then all elements with subs
ripts � xspare moved to the right end of Asp� , and all other elements, in
luding aj andall its prede
essors, are left alone. Therefore, for ea
h p > q, the prede
essorsof aj under <sp are pre
isely the prede
essors of aj under <s. Sin
e the truestages form an in�nite subsequen
e of !, we see that indeed aj has only those(�nitely many) prede
essors under <Ai, just as we had 
laimed.This holds for every aj 2 A�, while ea
h A� (� � �) is �nite and ea
h A
(
 � �) is empty, so 
learly Ai �= !, independent of the 
hoi
e of C. (Noti
ethat we did use the non
omputability of C in applying Lemma 2.3.) This
ompletes the proof of Lemma 4.4.Corollary 4.6 For ea
h i, the linear order A = C(A0;A1; : : :) has a uniqueinterval isomorphi
 to Si.(Here C is the operator de�ned in Equation (4.2), so A is pre
isely the ordergiven in (4.1).) 21



Proof. From the proof of Lemma 4.4, we see that the only possible out
omesof the 
onstru
tion of ea
h Ai are ! and n+!�+!, where n is �nite. None ofthese has an interval isomorphi
 to �, the 
ountable dense linear order withend points, but every one is in�nite, so the only 
opy of 1 + � + i+ � + 1 inA is Si itself.Corollary 4.7 A is not isomorphi
 to any of the 
omputable linear ordersBi.Proof. We note �rst, using the pre
eding 
orollary, that if A �= Bi for somei, then Bi has unique intervals isomorphi
 to Si and Si+1. Hen
e there is aunique � 2 !2i+13 for whi
h Si(�) holds, so  �1i (�) is in�nite, but  �1i (�)is �nite for all � 6= �. Sin
e A �= Bi, Ai must be isomorphi
 to the interval(l(�); u(�)) of Bi.If the sequen
e hb̂s�i diverges, then b̂s� is unde�ned for 
o�nitely many s,as noted in the proof of Lemma 4.4. By Step 2 of the 
onstru
tion, this 
anonly happen if the interval (l(�); u(�)) 
ontains at most jS���A�j elements,But Ai �= !, so Bi 6�= A.If b̂s� 
onverges to an element b̂� with only 
�-many elements between l(�)and b̂�, then Ai �= 
� + !� + !. Thus every element of Ai has either fewerthan 
� prede
essors or in�nitely many in Ai, so no isomorphism 
ould takeb̂� to any element of Ai.Finally, if b̂s� 
onverges to an element b̂� with in�nitely many elementsbetween l(�) and b̂�, then Ai �= !, so again there 
an be no isomorphismtaking b̂� to any element of Ai.Thus A is a linear order with no 
omputable 
opy. However, for everynon
omputable �02 set C, we have seen (in Lemma 4.3) that there is a 
opy ofA 
omputable in C. We dis
uss Julia Knight's full theorem (from [9℄) in thenext se
tion, as Theorem 5.2, but an easy 
onsequen
e of it, 
ited in [8℄ and[3℄, implies that for ea
h su
h C, there is a 
opy of A whose Turing degreeis exa
tly the degree of C. This is pre
isely the property we had promisedwould hold for A. 22



5 Further QuestionsThe obvious generalization of Theorem 4.1 would be a positive answer toDowney's third question:Question 1.4 (Downey) Is there a linear order whose spe
trum 
ontainsevery degree ex
ept 0?This question remains open, however. It is known that for every non
om-putable degree C there is a linear order whose spe
trum in
ludes C but not0. However, Knight's proof of this result (see [3℄) is highly nonuniform: oneuses the Downey-Seetapun result for �02 degrees, a 
oding 
onstru
tion fornon-low2 degrees, and a 
ombination of these two te
hniques for the remain-ing degrees. Therefore, it would be far harder to make Knight's 
onstru
tionyield the same result independent of the 
hoi
e of C, as we managed to dofor the Jo
kus
h-Soare 
onstru
tion.A more general question, also posed by Downey [3℄, is simply to ask whatspe
tra are possible for a linear order.Question 5.1 (Downey) What 
an be said about Spe
(L) for a given linearorder L?There are two main results so far. One we have already used in proving The-orem 4.1, namely Knight's result that the spe
trum must be 
losed upwardsunder Turing redu
ibility. This follows from a stronger theorem of Knight[9℄.Theorem 5.2 (Knight) If A is any stru
ture, then exa
tly one of the fol-lowing two statements holds:(5.1) For all Turing degrees C <T D, if there is an isomorphi
 
opy of A ofdegree C, then there is an isomorphi
 
opy of A of degree D;(5.2) There exists a �nite subset S in the universe A of A su
h that anypermutation of A �xing S is an automorphism of A.For any in�nite linear order L, (5.2) 
learly fails, so the upward-
losureproperty (5.1) holds. (If L is �nite, then (5.2) holds, and indeed in this 
aseevery 
opy of L is 
omputable.)The se
ond main result about the spe
trum of a linear order is due toRi
hter [12℄: 23



Theorem 5.3 (Ri
hter) If the spe
trum of a linear order has a least degree,then that degree is 0.The least degree of the spe
trum of a stru
ture is often simply 
alled thedegree of the isomorphism type of that stru
ture. Thus, Ri
hter's result saysthat 0 is the only possible degree for the isomorphism type of a linear order;a linear order with no 
omputable 
opy 
annot have any least degree in itsspe
trum. This 
an be viewed as a result on the diÆ
ulty of 
oding sets intolinear orders. If we wish to 
ode a non
omputable set S into a linear order,so that S would be 
omputable from every 
opy of the order, then that order
annot have a 
opy 
omputable from S. (Otherwise, deg(S) would be theleast degree of the spe
trum of the linear order.)These two results rule out many possible spe
tra for linear orders. On theother hand, Theorem 4.1 is an example of a positive response to Question 5.1:the spe
trum 
an 
ontain all �02 degrees ex
ept 0. We 
an also use Knight'sresult on non
omputable degrees to show that it is possible to separate anytwo degrees C <T D via the spe
trum of a linear order. That is:Corollary 5.4 If C <T D, then there exists a linear order L su
h thatD 2 Spe
(L) and C =2 Spe
(L).Proof. Simply take Knight's proof for the 
ase C = 0 and relativize it to thedegree C.We might ask if it is possible to separate any two Turing degrees in this way,even if they are in
omparable. Also, we 
an ask if it is possible to separate
olle
tions of degrees:Question 5.5 If P and N are 
olle
tions of Turing degrees su
h that nodegree in P is redu
ible to any degree in N, is there a linear order L whosespe
trum 
ontains all of P but does not interse
t N?This question is intended to be asked for spe
i�
 
hoi
es of P and N, par-ti
ularly 
lasses of 
.e. sets (or �02 sets) whose indi
es 
annot be 
omputablyseparated. We have seen in the pre
eding se
tions that linear orders 
an
ontain more information than subsets of integers. There is no set whi
h is
omputable in every nonzero �02 degree but not in 0, whereas there is a linearorder whi
h is 
omputable in every �02 degree ex
ept 0. What else 
an linearorders do? For instan
e, 
ould a linear order 
ontain enough information toseparate the high �02 sets from the low ones?24



Clearly the answer to Question 5.5 is not always positive, for otherwisewe 
ould 
ontradi
t Ri
hter's result by taking P to be the upper 
one abovea non
omputable set C, in
luding the degree of C itself, and N to be the
omplement of P. Thus no linear order 
hara
terizes the ability to 
omputeC, whereas the set C itself does. Here, then, is an example in whi
h aset 
ontains information whi
h a linear order 
annot 
ontain. Knight's andRi
hter's results both 
learly restri
t the amount of information en
oded ina linear order. Perhaps there are other 
ommon mathemati
al stru
tureswhi
h es
ape Ri
hter's restri
tion, whi
h would entail failing her \Re
ursiveEnumerability Condition" (see [12℄). Knight's restri
tion appears inevitable,sin
e under (5.2) in Theorem 5.2, the information 
ontained by the stru
tureis essentially en
oded in a single �nite set.
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