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ABSTRACT. We extend results of Denef, Zahidi, Demeyer and the second author to
show the following.
(1) Every c.e. set of integers has a single-fold Diophantine definition over the ring

of integral functions of any function field of characteristic 0.
(2) Every c.e. set of integers has a single-fold Diophantine definition over a

polynomial ring over an integral domain Z of characteristic 0.
(3) All c.e. subsets of polynomial rings over rings of totally real integers have

finite-fold Diophantine definitions. (These are the first examples of infinite
rings with this property.)

(4) Let K be a one-variable function field over a field of constants k, and let p be
any prime of K. If k is algebraic over Q and for some odd prime p embeddable
into a finite extension of Qp, then the valuation ring of p has a Diophantine
definition over K. If k is embeddable into a real field, then valuation rings are
existentially definable for “almost all” primes.

(5) Let K be a one-variable function field over a number field and let S be a finite
non-empty set of its primes. Then all c.e. subsets of OK,S are Diophantine
over OK,S . (Here OK,S is the ring of S -integers or a ring of integral functions.)

1. INTRODUCTION4

In 1969, building on earlier work by Martin Davis, Hilary Putnam and Julia5

Robinson, Yuri Matiyasevich demonstrated the impossibility of solving Hilbert’s6

Tenth Problem. In doing so, he also completed a proof of the theorem asserting7

that Diophantine (or existentially definable in the language of rings) sets and8

computably enumerable sets of integers were the same. In other words, it was9

proved that for every positive integer n, every computably enumerable subset of10

Zn had a Diophantine definition over Z. We describe the notions of a Diophantine11

definition and a Diophantine set in a more general setting.12

Definition 1.1. Let R be a commutative ring and let n be a positive integer. In13

this case a set A ⊂ Rn is called Diophantine over R if for some m > 0 and some14

polynomial15

f(T1, . . . , Tn, X1, . . . , Xm) ∈ R[T̄ , X̄]

we have that for all (t1, . . . , tn) ∈ Rn it is the case that16

(t1, . . . , tn) ∈ A if and only if ∃x1, . . . , xm ∈ R such that f(t1, . . . , tn, x1, . . . , xm) = 0.
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Enhancement Program, and by several grants from The City University of New York PSC-CUNY
Research Award Program. The second author was partially supported by Grant # DMS – 1161456
from the National Science Foundation.



C.E. Sets over Function Fields
The polynomial f(T̄ , X̄) is called a Diophantine definition of A over R.1

If a set A is Diophantine over R and for every t̄ ∈ A we have that x̄ as above2

is unique, we say that f(T̄ , X̄) is a single-fold definition of A. If for every t̄ ∈ A3

we have that there are only finitely many x̄ as above, we say that f(T̄ , X̄) is a4

finite-fold definition of A.5

Question 1.2. Does every c.e. set of integers have a finite-fold Diophantine6

definition over Z?7

The answer to this question, raised by Yuri Matiyasevich almost immediately8

after his solution to Hilbert’s Tenth Problem, is unknown to this day. The issue9

of finite-fold representation is of more than just esoteric interest because of its10

connection to many other questions. For an extensive survey of these connections11

we refer the reader to a paper of Matiyasevich ([13]). Here we would like to give just12

one example that can be considered a generalization of Hilbert’s Tenth Problem.13

Let N = {0, 1, . . . ,ℵ0} and let M be any nonempty proper subset of N. Let14

P(M) be the set of polynomials P with integer coefficients such that the number15

of solutions to the equation P = 0 is in M. Martin Davis showed in [3] that16

P(M) is undecidable. If we ask whether P(M) is c.e, then the answer is currently17

unknown. At the same time, if we replace polynomials by exponential Diophantine18

equations, then we can answer the question. Craig Smoryńsky in [23] proved19

that E (M) is c.e. if and only if M = {α|α ≥ β} for some finite β. (Here E (M) is a20

collection of exponential Diophantine polynomials with positive integer coefficients21

such that if an exponential Diophantine polynomial E ∈ E (M), then the number22

of solutions to the equation E = 0 is in M.) Smoryńsky’s proof relied on a result23

obtained by Matiyasevich in [14] that every computably enumerable set has a24

single-fold exponential Diophantine definition. One would expect a similar result25

for (non-exponential) Diophantine equations if the finite-fold question is answered26

affirmatively.27

Matiyasevich also proved that to show that all c.e. sets of integers have single-28

fold (or finite-fold) Diophantine definitions it is enough to show that the set of29

pairs {(a, b) ∈ Z2
>0|b = 2a} has a single-fold (finite-fold) Diophantine definition.30

(This will not be surprising to readers familiar with the history of Hilbert’s Tenth31

Problem.)32

Unfortunately, the finite-fold question over Z remains out of reach at the33

moment, as many other Diophantine questions. In Section 3 of this paper, we34

take some first timid steps in the investigation of this issue by considering it in a35

more hospitable environment over function fields of characteristic 0, as described36

in Section 2. We extend the results of the second author from [20] to show that37

over any ring of integral functions (otherwise known as a ring of S -integers) any38

c.e. set of rational integers has a single-fold Diophantine definition (see Theorem39

3.9). We also show that over any polynomial ring over an integral domain Z of40

characteristic 0 it is possible to give a single-fold Diophantine definition for every41

c.e. set of integers (see Theorem 4.9).42

Using these results on single-fold definability of Z and c.e. sets of integers,43

following results of Jan Denef from [6] and Karim Zahidi from [26], we show in44
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C.E. Sets over Function Fields
Section 5 that all computably enumerable subsets of a polynomial ring over a1

ring of integers of a totally real number field are finite-fold existentially definable.2

As far as we know, this is the first example of this kind. (See Theorem 5.2.)3

In Section 7 we generalize results of Jeroen Demeyer from [4] to show that all4

c.e. subsets of rings of integral functions over number fields are Diophantine (see5

Theorem 7.1). In order to do so, we needed to generalize the earlier treatments6

(given in the papers [15] of Laurent Moret-Bailly and [7] of Kirsten Eisentraeger) of7

definability of integrality at a degree 1 valuation over a function field of character-8

istic zero where the constant field is a number field. Both of those papers in turn9

extend results of H. K. Kim and Fred Roush from [10] where the two authors give10

a Diophantine definition of integrality at a valuation of degree 1 over a rational11

function field with a constant field embeddable into a p-adic field. (Such constant12

fields include all number fields.) The papers of Moret-Bailly and Eisentraeger are13

primarily concerned with extending results pertaining to Hilbert’s Tenth Problem14

and so they extend the results of Kim and Roush just enough for their arguments15

to go through, by showing the following for a function field K over a field of16

constants k as described above: if T is a non-constant element of K and the pole17

q of T splits completely into distinct primes in the extension K/k(T ), then there18

exists a Diophantine subset of K such that all rational functions in that subset19

are integral at q.20

In contrast, our proof required a Diophantine definition of the valuation ring21

of a single factor of q in K. In order to obtain such a definition we reworked22

the original construction of Kim and Roush. In this paper we show that the23

valuation ring of “almost” any prime of a function field K of characteristic 0 is24

existentially definable over a function field with a constant field algebraic over25

Q and embeddable into a finite extension of Qp for p 6= 2 or R. The "almost" part26

applies only to the case where we have to use the fact that the constant field27

under consideration is embeddable into R. If the constant field is embeddable into28

a finite extension of Qp, with p 6= 2, then we can give an existential definition (with29

a parameter, of course) of any valuation ring. We also should note here that the30

class of constant fields described above contains an infinite subset of non-finitely31

generated fields. (See Section 6.)32

2. NUMBER FIELDS, FUNCTION FIELDS AND RINGS33

2.1. Discrete Valuations. Let L be a field. A discrete valuation v of a field L is a34

map v : L −→ Z ∪ {∞} satisfying the following conditions:35

(1) v(0) =∞;36

(2) v(xy) = v(x) + v(y);37

(3) v(x+ y) ≥ min(v(x), v(y)).38

The ring Rv = {x ∈ L|v(x) ≥ 0} is called the valuation ring of v. For any element39

x ∈ L∗, either x ∈ Rv or 1
x
∈ Rv. The ring is a local ring, i.e. it has a unique maximal40

ideal containing all the elements of the ring with positive valuation. By a prime p41

of L, we will mean the maximal ideal of the valuation ring Rv corresponding to42

one of the valuations v defined on L. Given f ∈ Rv, f 6= 0, we define ordpf to be43
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C.E. Sets over Function Fields

the largest non-negative integer n such that f ∈ pn. If f 6∈ Rv, then
1

f
∈ Rv, and1

we define ordpf = −ordp
1

f
. We define the order of 0 to be infinity. If f ∈ L is such2

that ordpf > 0, we will say that f has a zero at p. If ordpf ≥ 0, then we say that f3

is integral at p. If ordpf < 0, then we say that f has a pole at p.4

Each valuation defines a metric on the field L. The completion of L under this5

metric is denoted by Lp or Lv.6

2.1.1. Extensions of discrete valuations under finite algebraic extensions. If M/L7

is a finite extension of valued fields of characteristic 0, then a valuation v of L can8

have finitely many extensions to M . Let w1, . . . , wr be all extensions of v to M with9

corresponding valuation rings Rwi
and prime ideals pi. For each i we have that10

Rwi
∩ L = Rv and pi ∩ L = p -the maximal ideal of Rv. In this situation we will say11

that pi lies above p in M . We also have that R =
⋂
Rwi

is the integral closure of Rv12

in L (see Theorem 2, Section 4.2 of [18]).13

If M/L is Galois, then all extensions of the same valuation v are conjugate under14

the action of the Galois group. In other words, the Galois group acts transitively15

on rings Rwi
and prime ideals pi (see Theorem 2, Section 4.2 of [18]). Thus, if v16

has a unique extension w to M , then the Galois group will map Rw and its prime17

ideal to themselves.18

In M , the ideal pR =
∏

peii , where ei is called the ramification degree of pi over19

p. We will also refer to each pi as a factor of p in M , and we will refer to the20

product
∏

peii as the factorization of p in M . If ei > 1, we say that the prime pi is21

ramified in the extension M/L or ramified over p. For any i and any x ∈ L, we have22

that ordpix = eiordpx. This relation between the orders allows one to determine23

ramification degree in some extensions.24

Lemma 2.1. Let M/L, p, pi be as above. Suppose there exists x ∈ L such that for25

some i we have that ordpix 6= ordpx. Then ordpix ≡ 0 mod ordpx, the ramification26

degree of pi over p denoted by e(pi/p) is equal to ordpix

ordpx
> 1, and p is ramified in this27

extension.28

Corollary 2.2. Suppose M = L(γ), γ2 = c ∈ L, and ordpc is odd. Then there exists a29

factor q of p in M such that e(q/p) ≡ 0 mod 2.30

Proof. Let q be a factor of p in M . Then ordqc = 2ordqγ ≡ 0 mod 2. At the same time31

we have that ordqc = e(q/p)ordpc. Thus e(q/p) ≡ 0 mod 2. �32

The field Rv/pRv is called the residue field of v. If wi is an extension of v to33

M , as above, then Rwi
/piRwi

is a finite extension of Rv/pRv and f(pi/p) = [Rwi
/pi :34

Rv/pRv] is called the relative degree of pi over p. The following formula relates the35

ramification and relative degrees to the degree of the extension.36

(2.1)
∑
i

eifi = [M : L].

Here ei = e(pi/p), fi = f(pi/p) (see Theorem 3, Section 6.2 of [18]).37
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C.E. Sets over Function Fields
We also have the following relation between valuations and norms. Using the1

same notation as above, we have that2

(2.2) ordpNM/L(y) =
∑
i

fiordpiy.

Proof. Chapter 4, §5, Corollary 2 (of Theorem 6) of [1]. �3

2.1.2. Discriminant. Let U be a finite extension of a characteristic 0 field H4

endowed with a discrete valuation pH. Let pU lie above pH in U . Let Ω =5

{ω1, . . . , ωn} ⊂ RpU be a basis of U over H. Then the discriminant of the basis6

Ω is
∏

i 6=j(ωi − ωj)2 ∈ RpH . We can use the discriminant of a basis to determine7

whether some primes are not ramified in the extension U/H.8

Proposition 2.3. Let U,H,Ω, pH be as above. If the discriminant of Ω is prime to9

the ideal pH , then e(pU/pH)=1.10

Proof. Theorem 7.3, §7, Chapter 1 of [9]. �11

2.1.3. Completions. First we consider a relationship between a field and its com-12

pletion.13

Proposition 2.4. Suppose F is a field endowed with a discrete valuation v. Let Fv14

be the completion of F under a metric corresponding to v. Then v can be extended15

to Fv so that the following statements are true.16

(1) v(F ) ∼= v(Fv). In particular, Fv is also a discrete valuation field.17

(2) If R̃v is the valuation ring of v extended to Fv, then its maximal ideal pv = pR̃v.18

(3) Rv/p ∼= R̃/pvR̃.19

Proof. See Proposition M, Section 2.2 of [18]. �20

Next we address some properties of extensions of complete fields.21

Proposition 2.5. A finite extension of a discrete valuation field is a discrete22

valuation field.23

Proof. See Proposition G, Section 4.1 of [18]. �24

As we pointed out above, Qp is the completion of Q under a discrete valuation25

corresponding to a prime p. It follows that any finite extension of Qp will also be a26

discrete valuation field.27

Using notation above, we consider the extension of completions Mpi/Lp. In this28

case we have the formula for the local degree in terms of the ramification and29

relative degrees.30

Proposition 2.6. [Mpi : Lp] = e(pi/p)f(pi/p).31

Proof. See Proposition 3.8, §4, Chapter II of [9]. �32
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C.E. Sets over Function Fields
2.1.4. Integral closure. Let K be a field. Let v1, . . . , be a collection of discrete1

valuations on K. Let Rvi be the valuation ring of vi. Let R =
⋂∞
i=1Rvi. Note that2

R is necessarily non-empty, since 0, 1 ∈ R and R is a ring. Let M/K be a finite3

separable extension. For each vi let wi,1, . . . , wi,si be all of the extensions of vi to M .4

Let R̂ be the integral closure of R in M , i.e. the set of all elements of M satisfying5

monic polynomials over R.6

Proposition 2.7. Let x ∈M be such that wi,j(x) ≥ 0. Then x ∈ R̂.7

Proof. First assume M/K is Galois. Since the Galois group acts transitively on8

the set of extensions of each vi, we have that if wi,j(x) ≥ 0 for all i, j and x̂ is a9

conjugate of x over K, then wi,j(x̂) ≥ 0 for all i, j. Therefore the coefficients of the10

monic irreducible polynomial of x over K have non-negative valuations at all wi,j.11

At the same time, if a ∈ R and wi,j(a) ≥ 0 for some j, then vi(a) ≥ 0. Therefore, the12

coefficients of the monic irreducible polynomial of x over K are in R.13

If M/K is not Galois and x ∈M , then when we consider x in the Galois closure14

M̂ of M over K, the element will have non-negative valuations at all extensions of15

vi’s to M̂ . Thus, by the argument above, the monic irreducible polynomial of x16

over K will have all of its coefficients in R. �17

Corollary 2.8. Let M/K be a finite separable extension. Let S be a collection of18

valuations of K and let19

OK,S = {x ∈ K|v(x) ≥ 0 for all valuations v 6∈ S }.

Let W be the set of all extensions of valuations in S to M . Then the integral closure20

of OK,S is OM,W .21

Proof. To apply the proposition we just need to note that OK,S =
⋂
v 6∈S Rv and22

OM,W =
⋂
w 6∈W Rw. �23

2.2. Number Fields. A number field H is a finite extension of Q. All discrete24

valuations of Q correspond to the prime ideals of Z. The integral closure OH of Z25

in H is called the ring of integers of H. All discrete valuations of H correspond to26

prime ideals of OH. Let vH be a discrete valuation on H. Let RvH be its valuation27

ring and let pH be the maximal ideal. Then OH ∩ pH is a maximal ideal of OH and28

every maximal ideal of OH arises this way.29

Next we have two corollaries of Proposition 2.3 having to do with ramification of30

dyadic primes in extensions of degree 2.31

Corollary 2.9. Let H be a number field and let a ∈ OH be such that a ≡ 1 mod 4.32

Then no dyadic prime ramifies in the extension H(
√
a)/H). (A dyadic prime is a33

prime corresponding to a valuation extending the 2-adic valuation on Q.)34

Proof. If a ≡ 1 mod 4 then
√
a−1
2

is an algebraic integer. Now consider a basis35

{1,
√
a−1
2
} for our quadratic extension. The discriminant of this extension is a and36

therefore not divisible by any dyadic prime. Hence by Proposition 2.3, no dyadic37

prime ramifies. �38
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C.E. Sets over Function Fields
Corollary 2.10. Let H be a number field such that for any dyadic prime q of H we1

have that Hq contains a root of the polynomial x2 + 1. Then no prime ramifies in the2

extension [H(i) : H].3

Proof. If we choose a basis Ω = {1, i} of H(i) over H, then the discriminant of4

Ω is 4. Hence, by Proposition 2.3, the only primes that can possibly ramify in5

this extension are dyadic primes. At the same time, if q is a dyadic prime of H,6

and t is a prime of H(i) restricting to q on H, then [H(i)t : Hq] = 1. Therefore, by7

Proposition 2.6, we have that e(t/q)f(t/q) = 1 and e(t/q) = f(t/q) = 1. Thus, no8

dyadic prime ramifies in the extension H(i)/H, and therefore no prime ramifies in9

this extension. �10

We end this section noting one of the differences between discrete valuations of11

number fields and function fields of characteristic 0: in the case of number fields,12

the residue fields of primes are always finite.13

2.3. Function Fields. Throughout this paper, by a function field K we will mean14

a finite extension of a rational function field k(t), where t is transcendental over a15

field k of characteristic 0. By the constant field of K we will mean the algebraic16

closure of k in K. (In our case we will often have a situation where the algebraic17

closure of k in K is equal to k by construction.)18

All discrete valuations v of function fields that we will consider in this paper will19

be trivial on the field of constants, that is we will assume that for any non-zero20

constant c ∈ k we have that v(c) = 0. All discrete valuations of a rational function21

field k(t), trivial on k, correspond to irreducible polynomials in k[t] or to the degree22

valuation. The residue field Rv/p is isomorphic to a finite extension of the constant23

field of K. The degree of this extension is referred to as “the degree of the prime24

p”.25

From the formula (2.1) we derive the following corollary.26

Corollary 2.11. Let M/k(T ) be a function field extension, where k(T ) is a rational27

function field in T over a constant field k. Suppose in M we have that T has a pole28

at one prime q∞ only. Let Q∞ be the infinite valuation of k(T ). Then q∞ is the only29

prime of M lying above Q∞, and e(q∞/Q∞) = ordq∞T .30

Proof. Suppose t 6= q∞ is another prime of M lying above Q∞. Then ordtT < 0 in31

M , contradicting assumptions on T . Further, ordq∞T = e(q∞/Q∞)ordQ∞T . �32

Function field valuations can help us distinguish constant and non-constant33

elements of the function field. Each non-constant element of the field must have34

a pole at some valuation and a zero at some valuation. An element of the field35

without any zeros or poles must be a constant.36

For the field of constants we will most often select some algebraic extension37

of Q. One can also consider all possible embeddings of k into Q̃, the algebraic38

closure of Q inside C. If all the embeddings are contained in R, then the field is39

called totally real. If a field is algebraic over Q and has an embedding into R, then40

we will call it formally real.41
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C.E. Sets over Function Fields
2.4. Function Field Primes vs. Number Field Primes. Throughout the paper1

it will be important to keep in mind the distinction between the number field2

and function field primes. For example, consider K = Q(t). The prime ideal (3)3

corresponds to a valuation of Q, but not of Q(t). The valuation ring R3 consists of4

all rational numbers with denominators not divisible by 3.5

The ideal generated by t in Q[t] corresponds to a valuation of K. Its valuation6

ring Rt consists of all rational functions with denominators not divisible by t.7

Further, all rational numbers are also included in Rt.8

3. SINGLE-FOLD DIOPHANTINE REPRESENTATIONS OF C.E. SETS OF INTEGERS9

OVER RINGS OF S -INTEGERS OF FUNCTION FIELDS OF CHARACTERISTIC 010

In this section we describe a finite-fold Diophantine definition of c.e. sets of11

integers over rings of integral functions. Before we do that, we have to recon-12

sider certain old methods of defining sets to make sure they produce single-fold13

definitions. We start with the issue of intersection of Diophantine sets.14

3.1. Single-Fold and Finite-Fold Definition of “And”. As long as we consider15

rings whose fraction fields are not algebraically closed, we can continue to use the16

“old” method of combining several equations into a single one without introducing17

extra solutions, as in Lemma 1.2.3 of [20]. More specifically we have the following18

proposition.19

Proposition 3.1. Let R be an integral domain such that its fraction field is not20

algebraically closed. Let ` ∈ Z>0 and A,B,C ⊂ R` be Diophantine subsets of R` such21

that the sets B and C have single (finite) fold definitions, and A = B ∩ C. Then A22

has a single (finite) fold definition.23

More specifically, if we let h(T ) = a0 + a1T + . . .+ T n be a polynomial without roots24

in the fraction field of R, let x̄ = (x1, . . . , x`), z̄ = (z1, . . . , zm), let f(x̄, z̄) be a single25

(finite) fold definition of B, and let g(x̄, z̄) be a single (finite) fold definition of C, then26

ĥ(x̄, z̄) = a0f(x̄, z̄)n + a1f(x̄, z̄)n−1g(x̄, z̄) + . . .+ g(x̄, z̄)n

is a single (finite) fold definition of A.27

The proof of this proposition is the same as for Lemma 1.2.3 of [20].28

3.2. Pell Equations over Rings of Functions of Characteristic 0. Next we take29

a look at the old workhorse of Diophantine definitions: the Pell equation. It turns30

out that in the context of defining integers over rings of functions this equation31

produces “naturally” single-fold definitions.32

Lemma 3.2. (Essentially Lemma 2.1 of [5], or Lemma 2.2 of [21] ) Let Z be an33

integral domain of characteristic not equal to 2. Let v ∈ Z[x], v, x transcendental34

over Z. Let fn(v), gn(v) ∈ Z[x] be such that fn(v)− (v2 − 1)1/2gn(v) = (v − (v2 − 1)1/2)n.35

(In [21] there is a typographical error in this equation: the “square” is misplaced on36

the right-hand side.) In this case37

(1) deg(fn) = n · deg(v),deg(gn) = (n− 1) · deg(v),38

(2) ` dividing n is equivalent to g` dividing gn,39
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C.E. Sets over Function Fields
(3) The pairs (±fn,±gn) with n ∈ Z are all the solutions to f 2 − (v2 − 1)g2 = 1 in1

Z[x].2

Below we use the following notation.3

Notation 3.3.4

• Let K denote a function field of characteristic 0 over the constant field k.5

• Let S = {p1, . . . , ps} be a finite non-empty set of primes (or valuations) of K.6

• Let OK,S = {x ∈ K | (∀p 6∈ S ) ordpx ≥ 0} be the ring of S -integers of K.7

• For D ∈ OK,S such that D is not a square in K, let8

HK,D,S = {u−D1/2v | u, v ∈ OK,S & u2 −Dv2 = 1}.

The lemma below explains the nature of invertible elements of OK,S .9

Lemma 3.4. Let z ∈ OK,S be a unit of the ring. Then for any q 6∈ S we have that10

ordqz = 0.11

Proof. Suppose z is a unit of OK,S . Then 1
z
∈ OK,S . Let q be a prime of K such that12

ordpz > 0. Then ordp
1
z
< 0. Consequently, q ∈ S . �13

The next proposition explains how to choose a parameter a so that the solutions14

to the Pell equation satisfy certain conditions.15

Proposition 3.5. There exists a ∈ OK,S satisfying the following conditions.16

(1) ordp1a < −2r, where r is a positive integer.17

(2) ordpi(a− 1) > 0 and ordpi(a− 1) is odd for i = 2, . . . , s.18

(3) a− 1 is not a unit of OK,S .19

(4) In K(
√
a2 − 1), the K-prime p1 factors as a product of two primes of K(

√
a2 − 1)20

denoted by q∞ and q. In other words, in K(
√
a2 − 1) we have that p1 = q∞q.21

(5) The element T = a−
√
a2 − 1 of K(

√
a2 − 1) has a zero at q, a pole at q∞, and22

no other zeros or poles.23

(6) For D = a2 − 1, we have that HK,D,S modulo ±1 is a cyclic group generated24

by a−D1/2.25

(7) For any non-zero integer b we have that a −
√
a2 − 1 − b is not a unit of26

OK,S [
√
a2 − 1].27

(8) Let fn, gn be as in Lemma 3.2. Then g−n = −gn, f−n = fn, and28

gn ≡ n mod (a− 1)

in the ring Z[a]. (Note that fn, gn ∈ Z[a].)29

Proof. The proof of this proposition is contained in [22], but we reproduce some30

parts of it here for the convenience of the reader.31

Let t be a prime of K not in S . Let T = S ∪ {t}. By Lemma 3.2 of [22], there32

exists a w ∈ OK,S such that ordp1w = −2s for some positive integer r and ordaw = 133

for all a ∈ T \ {p1}. Now let a = w + 1 and observe that ordp1a = ordp1w = −2s, and34

orda(a− 1) = 1 for all a ∈ T \ {p1}. Further, a− 1 is not a unit of OK,S , by Lemma35

6.13, since a− 1 has a zero at a prime not in S . Thus (1) –(3) are satisfied.36

Observe also, that, since ordaD = orda(a
2 − 1) = orda(a − 1) = 1 for primes a in37

T \ {p1}, these primes ramify in the extension K(D1/2)/K with ramification degree38

9



C.E. Sets over Function Fields
at least 2 by Corollary 2.2, and therefore there is only one prime in the extended1

field lying above each prime of S \ {p1} by (2.1).2

Let A be a prime of K(D1/2) such that ordA(x−D1/2y) > 0. Then ordA(x+D1/2y) < 0,3

and ordA2x < 0. Since x ∈ OK,S , we must conclude that A lies above a prime in S .4

Further, we note that ε−1 is the conjugate of ε over K. Therefore, ordAε > 0 implies5

ordĀε
−1 > 0, where Ā is a conjugate ideal of A over K. The conjugate ideal Ā must6

also be lying above the same K-prime a ∈ S . If a is ramified in the extension7

K(D1/2)/K, as we have discussed above, there is only one ideal above a in the8

extended field. Hence Ā = A, and we have a contradiction due to our assumption9

that ordAε > 0. The case of the negative order leads to a similar contradiction.10

Thus we conclude that for all a ∈ S \ {p1} we have that ordAε = 0 for the prime A11

lying above a in the extension.12

Since HK,D,S does contain a non-constant element, e.g. a−D1/2, we deduce that13

a−D1/2 must have a zero and a pole at valuations lying above p1. So the prime14

p1 factors in K(D1/2), i.e. it has at least two factors in the extended field. In the15

extension of degree 2, a prime of a smaller field can have at most two distinct16

factors in the bigger field by (2.1). Therefore, p1 has exactly two distinct factors17

q∞ and q. Thus (4) is satisfied.18

Without loss of generality we can assume that ordq∞(a−D1/2) < 0 and ordq(a−19

D1/2) > 0. As we noted above, the element (a −D1/2) can have zeros or poles at20

primes lying above primes of S only. So, (a−D1/2) has no other zeros or poles21

and (5) is satisfied.22

We now consider a group homomorphism from HK,D,S to Z sending an element23

ε ∈ HK,D,S to its order at q∞. We claim the kernel of this map contains ±1 only.24

Indeed, suppose ordq∞ε = 0. If ε is not a constant, it must have a positive order at25

some valuation and a negative order at a different valuation. But, again by the26

discussion above, there is only one valuation left as a candidate for a zero and a27

pole of ε. This valuation is q. But it cannot be a zero and a pole of ε. Thus, ε is a28

constant.29

Next we observe that by Lemma 2.2 of [22], the only constants in HK,D,S are ±1.30

So modulo ±1 it is the case that HK,D,S is isomorphic to a subgroup of Z. Thus,31

HK,D,S modulo ±1 is cyclic. The fact that HK,D,S is generated by a−D1/2 modulo32

±1 follows from Lemma 2.5 of [22]. Thus (6) is satisfied.33

To show that a −
√
a2 − 1 − b is not a unit of OK,S [

√
a2 − 1] for any non-zero34

integer b, we first rewrite a −
√
a2 − 1 − b as a −

√
a2 − 1 − 1 + c, where c is an35

integer not equal to 1. Next let A be a prime of K(D1/2) lying above some prime in36

a ∈ T \ {p1}. Then ordA(a−
√
a2 − 1− 1) = 1, since orda(a− 1) = 1 by construction37

and ordA(a− 1) = e(A/a)orda(a− 1) = 2 because e(A/a), the ramification degree of A38

over a, is equal to 2. At the same time, orda(a+1) = orda(a−1+2) = 0 implying that39

orda(a
2−1) = 1, and taking the ramification into account, as above, we deduce that40

ordA

√
a2 − 1 = 1. Hence ordA(a−

√
a2 − 1− 1) = min(ordA(a− 1),ordA(

√
a2 − 1)) = 1.41

Note also that ordq∞(a −
√
a2 − 1 − 1) < 0, and ordq(a −

√
a2 − 1 − 1) = 0, since42

ordq(a−
√
a2 − 1) > 0.43

Now let δ = a −
√
a2 − 1 − 1 + c. If δ is a unit of OK,S [

√
a2 − 1], then either δ44

is a constant or all zeros and poles of δ are among K(D1/2)-primes lying above45

10



C.E. Sets over Function Fields
K-primes in S . First we note that ordq∞δ < 0, and hence δ is not a constant. Next1

we consider the case of c = 0. Let T be the K(D1/2)-prime lying above the K-prime2

t ∈ T \S . As we have discussed above, if c = 0, then ordTδ = 1, and δ is not a3

unit.4

Suppose now that c 6= 0, 1 and δ is a unit. Given our assumptions on c, we5

know that ordAδ = 0 for all A lying above a K-prime a ∈ S \ {p1}. Further,6

ordq∞δ < 0. Therefore the only prime that can possibly be a zero of δ is q. But7

ordq(a −
√
a2 − 1) > 0, and therefore ordq(a −

√
a2 − 1) − 1 + c, where −1 + c is a8

non-zero constant, must be 0. Hence there is no valuation that can be a zero of δ,9

and we arrive at a contradiction with our assumption that δ is a non-constant10

unit. Hence, (7) is satisfied.11

Finally, (8) follows from Lemma 2.3 of [22].12

�13

Remark 3.6. Let u,w ∈ OK,S , let a be as in Proposition 3.5. Finally assume14

u2 − (a2 − 1)w2 = 1. Then what can we say about u−
√
a2 − 1w? By Proposition 3.5,15

there exists n ∈ Z such that u = ±fn, w = ±gn, where16

(a−
√
a2 − 1)n = εn = fn −

√
a2 − 1gn.

Thus, we have four possibilities:17

u−
√
a2 − 1w = fn −

√
a2 − 1gn = εn, n ∈ Z≥0,

18

u−
√
a2 − 1w = fn +

√
a2 − 1gn = εn, n ∈ Z≤0,19

u−
√
a2 − 1w = −fn −

√
a2 − 1gn = −εn, n ∈ Z≤0,20

u−
√
a2 − 1w = −fn +

√
a2 − 1gn = −εn, n ∈ Z≥0.

Alternatively,21

u−
√
a2 − 1w = ±εn, n ∈ Z.

Lemma 3.7. (Essentially Lemma 3.4 of [22].) Let R be any subring of OK,S con-22

taining a local subring of Q. (In particular, R can be equal to OK,S .) Then there23

exists a subset C of R that contains only constants, includes Z, and is single-fold24

Diophantine over R.25

Proof. We remind the reader that the set S contains s primes. Let π be the26

product of all non-invertible rational primes (or 1, if R contains Q), and let C ⊂ R27

be the set of all elements x ∈ R such that the following equations over R have28

solutions in unknowns j1, . . . , js+1:29

(3.3)

 j1(πx2 + π + 1) = 1,
. . .

js+1(πx2 + (s+ 1)π + 1) = 1

We claim that System (3.3) has solutions in R only if x is a constant, while30

conversely, if x ∈ Z, these equations have solutions in R. Indeed, if x is not a31

constant, neither are πx2 + π + 1, . . . , πx2 + (s + 1)π + 1. Therefore, since these32

elements are invertible in OK,S , they all must have zeros at valuations of S33

only by Lemma 3.4. However, these s+ 1 elements do not share any zeros since34

their differences are constants, while there are only s valuations in S , the set of35

11



C.E. Sets over Function Fields
potential zeros for these elements. Thus, we have a contradiction stemming from1

our assumption that x is not a constant.2

The converse is obvious: if x ∈ Z, then πx2 + πr + 1 is invertible for each r ∈ Z.3

Please note that given x ∈ OK,S , if System (3.3) has solutions, then these solutions4

are unique. �5

Notation 3.8. Let J(x) denote the system of equations (3.3).6

We will use this system to give a single-fold Diophantine definition of Z over7

OK,S .8

Theorem 3.9. Z has a single-fold Diophantine definition over OK,S .9

Proof. There are several ways to state this proof. We choose the way that we will10

later use to produce a single-fold definition of exponentiation for Z. Let a ∈ OK,S11

be as in Proposition 3.5 and consider the following equations and conditions:12

(3.4) u2 − (a2 − 1)w2 = 1;

(3.5) c ≡ w mod (a− 1) in OK,S ;

(3.6) J(c).

Supposed now that Equations (3.4)–(3.6) are satisfied with variables ranging over13

OK,S . Then, by Proposition 3.5 and Lemma 3.2, w = wn ≡ n mod (a− 1) for some14

n ∈ Z. Thus, c ≡ n mod (a− 1) in OK,S . Since a− 1 is not a unit of OK,S , we have15

that c− n is a constant with a zero at some valuation of K. Hence c = n.16

Conversely, given c = n ∈ Z, set w = wn and observe that all the equations are17

satisfied. Note also, that this is the only solution to the equations. �18

Notation 3.10. Let U(c, u, w) denote the system of equations (3.4)–(3.6).19

We now give a single-fold Diophantine definition of exponentiation.20

Theorem 3.11. The following set has a single-fold Diophantine definition over
OK,S :

{(b, c, d) | b, c, d ∈ Z 6=0, d > 0, c = bd}.

Proof. Consider the following system of equations:21

(3.7) b 6= 0, b 6= ±1,
22

(3.8) U(c, uc, wc).
23

(3.9) U(b, ub, wb),
24

(3.10) U(d, ud, wd),
25

(3.11)

∃n ∈ Z, x, y ∈ OK,S [
√
a2 − 1] : (εn 6= ±1)∧ (±εn− c = (ε− b)x)∧ (d− ±ε

n − 1

ε− 1
= y(ε− 1)).

12
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First of all, from Equations (3.7)– (3.10) we deduce that b, c, d are integers and1

b 6= ±1, 0. Next we note that (3.11) implies that n 6= 0 and (ε− 1) divides ±εn − 1 in2

OK,S . Note that by Proposition 3.5, we also have that ε− 1 is not a unit of OK,S .3

If we choose the “minus” option in (3.11), then we have that ε− 1 divides εn + 1.4

Since ε− 1 divides εn − 1 and εn + 1 and εn ± 1 6= 0, it follows that ε− 1 divides 2,5

and thus is a unit of OK,S . Hence the “minus” option cannot occur. Consequently,6

(3.11) can be rewritten as:7

(3.12)

∃n ∈ Z, x, y ∈ OK,S [
√
a2 − 1] : (εn 6= ±1) ∧ (εn − c = (ε− b)x) ∧ (d− εn − 1

ε− 1
= y(ε− 1)).

From (3.12) we deduce that εn − c ≡ 0 mod (ε − b) in OK,S . At the same time8

εn ≡ bn mod (ε − b) in OK,S . Therefore, c ≡ bn mod (ε − b). By Proposition 3.5 we9

conclude that (ε− b) is not a unit, and therefore bn − c has a zero at a valuation10

of K. Since b, c are constants, we must infer that bn = c. Since b ∈ Z6=0,±1, c ∈ Z,11

we also must have that n > 0. At the same time, also from (3.12), we have that12

d ≡ n mod (ε − 1) in OK,S . By the same argument as above we conclude that13

d = n > 0.14

Conversely, assuming b, c, d ∈ Z, b 6= 0,±1, d > 0, c = bd, it is easy to see that (3.11)15

can be satisfied with only one choice for the sign in front of εn.16

The last equation (3.11) above has coefficients in OK,S [
√
a2 − 1], and variables17

x, y ranging over the extended ring also. So to complete the proof we need to18

rewrite this equation so that the coefficents are in OK,S and the variables take19

values in this ring also. Below we rewrite (3.11) as a system of equations over20

OK,S with all variables ranging in OK,S . To make it easier to connect (3.11) with21

(3.13) we indicate in parenthesis the corresponding entry in (3.11).22

(3.13)
u2 − (a2 − 1)w2 = 1 (in other words, ± εn = u−

√
a2 − 1w),

u−
√
a2 − 1w − c = (a−

√
a2 − 1− b)(x1 − x2

√
a2 − 1),

(in other words, ± εn − c = (ε− b)x),

d(a−
√
a2 − 1− 1)− (u−

√
a2 − 1w − 1) = (y1 −

√
a2 − 1y2)(a−

√
a2 − 1− 1)2,

(in other words, d(ε− 1)− (±εn − 1) = y(ε− 1)2).

Thus System (3.13), with all the variables ranging over OK,S , is equivalent to23

Conjunction (3.11). This concludes the proof of Theorem 3.11. �24

Notation 3.12. For future reference we will denote the equations (3.7)–(3.10)25

together with (3.13) by26

G(a, b, c, d, u, w, x1, x2, y1, y2).

Corollary 3.13 (Single-fold definition of positive integers over OK,S ). Let a be as27

in Proposition 3.5, and let28

Plus = {d ∈ OK,S |∃c, u, w, x1, x2, y1, y2 ∈ OK,S : G(a, 2, c, d, u, w, x1, x2, y1, y2)}.
Then Plus= Z>0, and this Diophantine definition is single-fold.29

Proof. Given Theorem 3.11, the only point that needs a proof is the single-fold30

property of the definition. Given a d > 0, to satisfy the system, we must have that31

c = 2d, u = fd, w = gd, (in other words u−
√
a2 − 1w = εd),

13
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x1 − x2

√
a2 − 1 =

u−
√
a2 − 1w − 2d

a−
√
a2 − 1− 2

, (in other words εd − 2d ≡ 0 mod (ε− 2)),

1

(y1 −
√
a2 − 1y2)(a−

√
a2 − 1− 1)2 = d(a−

√
a2 − 1− 1)− (u−

√
a2 − 1w − 1),

2

( in other words d ≡ εd − 1

ε− 1
mod (ε− 1)).

Thus the values of all variables are uniquely determined by d.3

�4

We also have another corollary to be used in Section 7.5

Corollary 3.14. The set {(s, us, ws)|s ∈ Z>0} is single-fold Diophantine over OK,S .6

Proof. Consider the set7

{(s, u, w) ∈ O3
K,S |∃c, x1, x2, y1, y2 ∈ OK,S : G(a, 2, c, s, u, w, x1, x2, y1, y2)}.

By the same argument as in the proof of Corollary 3.13, the set consists of all the8

triples in the required form, and given such a triple, the values of all the other9

variables are determined uniquely. �10

Combining Theorem 3.9, Theorem 3.11, Corollary 3.13 with a result of Matiya-11

sevich from [14] we now have the following theorem.12

Theorem 3.15. Every c.e. set of integers has a single-fold Diophantine definition13

over OK,S .14

Proof. The result of Matiyasevich discussed in the introduction shows that every15

c.e. set of integers has a single-fold definition using polynomial equations and16

equations of the form y = 2x for x, y ∈ Z>0. In other words, if A is a c.e. subset17

of Zr, then (a1, . . . , ar) ∈ A if and only if the following system of equations and18

conditions can be satisfied over Z with a unique set of values for all variables with19

each fi being a polynomial with integer coefficients.20

fi(ā, zi,1, . . . , zi,ri , xi,1, yi,1, . . . , xi,mi
, yi,mi

) = 0, i = 1, . . . , s,
yi,j > 0, xi,j > 0, i = 1, . . . , s, j = 1, . . . ,mi,
yi,j = 2xi,j , i = 1, . . . , s, j = 1, . . . ,mi.

By Theorem 3.9, Theorem 3.11 and Corollary 3.13 we can add equations of the21

form g(Y,X1, . . . Xr) = 0 having solutions in OK,S if and only if Y ∈ Z, and for every22

Y ∈ Z there will be only one choice of values for X1, . . . , Xr in OK,S . Further, we23

can add equations of the form h(U, V, Y1, . . . , Yk) having solutions in OK,S if and24

only if U, V ∈ Z>0, U = 2V and with a unique set of values for Y1, . . . , YK ∈ OK,S .25

Thus, we can construct a single-fold definition of the set A over OK,S . �26

14
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4. SINGLE-FOLD DIOPHANTINE REPRESENTATIONS OF C.E. SETS OF RATIONAL1

INTEGERS OVER POLYNOMIAL RINGS OF CHARACTERISTIC 0.2

In this section we prove the analogue of Theorem 3.15, but for polynomial rings3

over arbitrary commutative integral domains with unity of characteristic 0. If the4

ring of constants contains Q, then we can set K to be the fraction field of the5

polynomial ring, let p1 be the prime ideal of the valuation ring corresponding to6

the degree valuation and apply Theorem 3.15. So the only case that we need to7

consider is the situation where the ring of constants does not contain Q. If the8

constant ring does not contain Q, it can contain infinitely many non-invertible9

primes, and therefore we cannot use the definition of a constant set containing10

all integers from Lemma 3.7. For exactly the same reason, we cannot use multi-11

plicative inverses to define the set of non-zero elements. Thus, we will have to12

modify some parts of the proof of Theorem 3.15.13

14

First we need the following basic fact.15

Lemma 4.1. If a, b are non-zero relatively prime integers, then 1
b
∈ Z[a

b
].16

Proof. Since (a, b) = 1 we have that for some x1, x2 ∈ Z it is the case that ax1+bx2 = 1.17

Thus
1

b
=
ax1 + bx2

b
= x1

a

b
+ x2 ∈ Z[

a

b
].18

�19

Next we deal with the question of saying that an element is not 0.20

Lemma 4.2. Let R be a ring of characteristic 0 and p a rational prime that does not21

have an inverse in the ring. In this case, there exists a set A = Ap such that 0 6∈ A,22

pZ + 1 ⊂ A, and if px+ 1 ∈ A ∩ Z, then x ∈ Z.23

Proof. Let A = {px + 1 | x ∈ R} ⊂ R. Then 0 6∈ A. Indeed, if 0 ∈ A then 1
p
∈ R, and24

we have a contradiction. Suppose now that for some x ∈ R we have that px+ 1 ∈ Z.25

We claim that x ∈ Z. Observe that if px + 1 ∈ Z then px = z ∈ Z and z
p

= x ∈ R. If26

x 6∈ Z, then (p, z) = 1, and p has an inverse in R by Lemma 4.1, in contradiction of27

our assumptions. Finally, clearly pZ + 1 ⊂ Ap. �28

Theorem 4.3. (Similar to Theorem 5.1 of [21]) If Z is an integral domain of char-29

acteristic 0 and x is transcendental over Z, then Z is single-fold Diophantine over30

R = Z[x].31

Proof. As we explained above, without loss of generality, we can assume that32

Q 6⊂ R, and therefore, by Lemma 4.1, R contains at least one non-inverted prime.33

Consider the following set of equations,34

(4.14) (fi −
√

(a2x2 − 1)gi) = (ax−
√

(a2x2 − 1))i, i = 2, 3
35

(4.15) f 2 − (a2x2 − 1)g2 = 1,
36

(4.16) f −
√
a2x2 − 1g − 1 = (f3

√
a2x2 − 1g3 − 1)(z1 −

√
a2x2 − 1z2)

37

(4.17) t|g3g2,

15
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1

(4.18) t ≡ g mod g2
3,

2

(4.19) ax|f,
3

(4.20) a = t/g3,

We show that these equations can be satisfied with some values of variables4

a 6= 0, f, g, f2, g2, f3, g3, t, z1, z2 ∈ Z[x]

only if we choose a to be an odd integer.5

Let Q be the fraction field of Z. First, we would like to consider the polynomial6

ring Q(x) as a ring of S -integers, where S contains only one element: the prime7

corresponding to the degree valuation. We do this so that we can utilize some8

conclusions from Proposition 3.5. If we consider the Pell equation f 2 −Dg2 = 1,9

where D = A2 − 1 is not a square, in Q[x] and A ∈ Q[x] \Q, then, since S contains10

only one prime, we can conclude that by Proposition 3.5, all solutions of the11

equation will correspond to powers of A −
√
A2 − 1. So unlike the case of OK,S ,12

where S had more than one element, we do not need any extra assumptions on13

A.14

Further, for any non-constant A, there exists a prime t of Q(x) corresponding15

to some irreducible polynomial and distinct from the degree valuation, such16

that A − 1 has a zero at t. The factor T of this prime in Q(x,
√
A2 − 1) will divide17

ε−1 = A−
√
A2 − 1−1 as in the general case. Further, as in the general case, if δ is18

a unit of Q[x,
√
A2 − 1], then it has a non-zero valuation at primes of Q(x,

√
A2 − 1)19

extending the degree valuation only. Thus, ε − 1 is not a unit no matter what20

non-constant A we choose. Finally, if we choose A ∈ Z[x], all solutions to the Pell21

equation will be contained in Z[x].22

Next we note that for any choice of a ∈ Z[x] \ {0}, we have that a2x2 − 1 6∈ Z.23

Indeed, if a ∈ Z[x] and a 6= 0, then deg(a) as a polynomial in x is bigger or equal24

to 0. Therefore, the degree of a2x2 − 1 is bigger or equal to 2. Thus, as discussed25

above, by Lemma 3.2 we have from (4.15) that f = ±fn, g = ±gn for some n ∈ Z≥0.26

Alternatively, g = gm,m ∈ Z. Let ε = ax−
√
a2x2 − 1. Then f −

√
a2x2 − 1g = ±εm for27

some m ∈ Z. (See Remark 3.6 for the discussion of signs.) Next, since ε − 1 is28

not a unit, we deduce that ε3 − 1 is not a unit. So, from (4.16), as in the proof of29

Theorem 3.11, we conclude that f −
√
a2x2 − 1g = εm, m = 3r, r ∈ Z6=0. Further, from30

(5.33) we obtain that f1|fm, implying that m is odd. (From the binomial expansion,31

it is easy to see that f1 divides fm in the polynomial ring only if m is odd.) Hence,32

r is odd. From Lemma 3.2 we also have that33

(f3r−
√

(a2x2 − 1)g3r) = (ax−
√

(a2x2 − 1))3r = (f3−
√

(a2x2 − 1)g3)r = (f3±
√

(a2x2 − 1)g3)|r|.
34

g3r = ±
∑

|r|−i odd

(
|r|
i

)
f i3((ax)2 − 1)(|r|−i−1)/2g

|r|−i
3 ,

where “−” corresponds to r < 0. Thus g3r ≡ rf
|r|−1
3 g3 mod g2

3. Additionally, we have35

that f 2
3 ≡ 1 mod g2

3. Since |r| − 1 is even, we now deduce g3r ≡ rg3 mod g2
3. Thus, we36

16
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conclude using (4.18) that t ≡ rg3 mod g2

3 or equivalently1

(4.21) g2
3|(t− rg3).

From (4.17) we have t|g3g2 so that deg(t) < 2deg(g3), and deg(t − rg3) < deg(g2
3).2

Therefore (4.21) implies that t− rg3 = 0, a = t/g3 = r, that is, a is an odd integer.3

Conversely, suppose r is an odd integer and let a = r. Then t = ag3 = rg3. To4

satisfy (4.15) and (4.16) we need to set (f, g) = (fm(ax), gm(ax)), where m 6= 0,m ∈ Z.5

Further, (4.16) requires that m ≡ 0 mod 3. To satisfy (4.18), we need to arrange6

for t ≡ g mod g2
3, or in other words, we need ag3 − gm ≡ 0 mod g2

3 to be satisfied. As7

before, (5.33) implies m is an odd number. So we have to set m = 3r′, where r′ is8

odd. Thus, again as above we have that gm ≡ r′g3 mod g2
3. Therefore, we have to9

choose r′ ≡ r mod g3. But since both r′, r ∈ Z, and g3 6∈ Z, the only way to satisfy10

the equivalence is to set r′ = r. Now (4.14)–(4.16), (4.18) and (5.33) are satisfied.11

Since g2(rx) = 2rx, and we set t = rg3(rx), we can conclude that t
∣∣∣g3(rx)g2(rx), and12

(4.17) and (4.20) are satisfied. Observe, that given an odd integer a, the remaining13

variables have to take the values described above.14

We now show how to state the assumption that a 6= 0. Let p be a rational15

prime without a multiplicative inverse in R. We replace the condition a 6= 0 by16

a = 2ps+ 1, s ∈ R. By Lemma 4.2, the added equation will imply that a 6= 0.17

Now, if Equations (4.14)–(4.20) together with the new equation a = 2ps+ 1 are18

satisfied, by Lemma 4.2, we conclude that a = 2ps + 1 is an odd integer, i. e.19

a = 2u+ 1 for some u ∈ Z. Therefore 2ps+ 1 = 2u+ 1 or sp = u ∈ Z. Since ps ∈ Z, the20

only prime that can divide the denominator of s is p. But by Lemma 4.1, we have21

that p cannot appear in a reduced denominator of an element in R. Therefore,22

we conclude that s ∈ Z. Hence, Equations (4.14)–(4.20) together with the new23

equation a = 2ps+ 1 are satisfiable over R if and only if s ∈ Z.24

�25

Notation 4.4. We denote Equations (4.14) – (4.20), together with the equation26

a = 2ps+ 1 by F (a, x, f, g, f2, g2, f3, g3, t, p, s). Thus,27

Z = {s ∈ Z[x] | F (a, x, f, g, f2, g2, f3, g3, t, p, s)}.
In this formula p is a fixed parameter corresponding to a prime not inverted in R.28

In this section, as in the section concerning rings of S -integers, we will need29

to know that for any a ∈ R, b ∈ Z6=0 we have that εn − b = (ax −
√
a2x2 − 1)n − b is30

not a unit of R[
√
a2x2 − 1]. There is a similar statement in Proposition 3.5. The31

difference between that statement and the statement below is that over OK,S we32

fixed a, while here a ranges over R.33

Lemma 4.5. Let a ∈ Z[x], b, n ∈ Z, abn 6= 0. Then we have that εn − b is not a unit in34

Z[x,
√
a2x2 − 1].35

Proof. Let K be the fraction field of R. Let fn(ax) −
√
a2x2 − 1gn(ax) = εn(ax) = εn.36

The minimal polynomial of εn over Z[x] is of the form X2 − 2fnX + 1. Therefore, for37

any b ∈ Z, we have that NK(
√
a2x2−1)/K(b− εn) = b2 − 2fnb+ 1. Here we note that the38

only units of Z[x] are some elements of Z. So, if b2− 2fnb+ 1 6∈ Z, then we conclude39

17
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that b2 − 2fnb+ 1 is not a unit. Since fn 6∈ Z, b 6= 0, we conclude that b2 − 2fnb+ 1 is1

not a unit in Z[x], and, therefore, ε− b is not a unit in Z[x,
√
a2x2 − 1].2

�3

Now that we have a single-fold Diophantine definition of integers, we can4

produce a single-fold definition of non-zero integers, and then positive integers5

and exponentiation.6

Lemma 4.6. If Z is an integral domain of characteristic 0 and x is transcendental7

over Z, then Z6=0 is single-fold Diophantine over R = Z[x].8

Proof. As above, without loss of generality, we can assume that there exists a9

prime p ∈ Z, not invertible in R. Let s ∈ R be given and consider the following10

sequence of equations:11

(4.22) F (a, x, f, g, f2, g2, f3, g3, t, p, s),
12

(4.23) F (â, x, f̂ , ĝ, f̂2, ĝ2, f̂3, ĝ3, t̂, p, ŝ),
13

(4.24) u2 − (x2 − 1)w2 = 1,
14

(4.25) u− (x2 − 1)1/2w − ŝ ≡ 0 mod (x− (x2 − 1)1/2 − p),
15

(4.26) ŝ ≡ 0 mod p

(4.27) s− u− w
√
x2 − 1− 1

x−
√
x2 − 1− 1

= (z1 − z2

√
x2 − 1)(x−

√
x2 − 1− 1).

From (4.22) via Notation 4.4, we conclude that s, ŝ ∈ Z. If we set ε = ε(x) =16

(x −
√
x2 − 1), then by Lemma 3.2 and Remark 3.6 we deduce from (4.24) that17

u −
√
x2 − 1w = ±εm,m ∈ Z. By Lemma 4.5 we also know that ε − p is not a unit18

of R. Suppose m = 0. Then ±εm = ±1 and consequently ŝ ≡ ∓1 to satisfy (4.25).19

In this case however, we get a contradiction with (4.26). Thus, m 6= 0, and s = m,20

while ŝ = pm.21

To see that this definition is single-fold, let s ∈ R. Then by Theorem 4.3, there22

is a unique set of values that can be taken by variables23

a, f, g, f2, g2, f3, g3, t, â, f̂ , ĝ, f̂2, ĝ2, f̂3, ĝ3, t̂ ∈ R
for any given value of s and ŝ. Finally, given s ∈ Z6=0, Equation (4.24) forces24

u− w
√
x2 − 1 = (x−

√
x2 − 1)s, ŝ = ps. Thus, u,w are also determined uniquely. �25

The next theorem will show existence of single-fold definitions for all c.e. subsets26

of rational integers in polynomial rings. The proofs will proceed via Diophantine27

definitions of exponentiation with arguments similar to the ones used in the proof28

of Theorem 3.11.29

Notation 4.7. Let Û(s, . . .) denote Equations (4.22)-(4.27). So that over R30

Z6=0 = {s|∃....Û(s, . . .)},
and this definition is single-fold.31

18
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Theorem 4.8. Let Z be an integral domain of characteristic 0, and assume x is1

transcendental over the fraction field of Z and Q 6⊂ R := Z[x]. Then every c.e. set of2

rational integers has a single-fold Diophantine definition over R.3

Proof. We can now proceed as in the case of the rings of integral functions.4

Consider the following system of equations:5

(4.28) Û(c, . . .).
6

(4.29) Û(b, . . .),
7

(4.30) Û(d, . . .),
8

(4.31) ∃n ∈ Z, x, y ∈ R[
√
a2 − 1] : (±εn − c = (ε− b)x) & (d− ±ε

n − 1

ε− 1
= y(ε− 1)).

By the same argument, as in the case of integral functions, this system gives a9

single-fold definition of the set10

Ĝ = {(b, c, d) ∈ Z3
6=0, d > 0, c = bd}.

Finally, if we set b = 2, we get the set Ĝ = {(2, c, d) ∈ Z3
>0|c = 2d}. Using Matiya-11

sevich’s result, we now conclude that the assertion of the theorem holds by the12

same argument as in the proof of Theorem 3.15. �13

Finally, putting the result above together with our observation about the case14

when Q ⊂ R, we obtain the following result.15

Theorem 4.9. Let Z be an integral domain of characteristic 0, and assume x is16

transcendental over the fraction field of Z. Then every c.e. set of rational integers17

has a single-fold Diophantine definition over R = Z[x].18

5. FINITE-FOLD DIOPHANTINE DEFINITION OF C.E. SETS OF POLYNOMIAL RINGS19

OVER TOTALLY REAL FIELDS OF CONSTANTS20

So far we have produced single-fold definitions of certain c.e. subsets of a ring.21

We now construct our first examples of rings where all c.e. sets have finite-fold22

definitions. To do this we combine the arguments above with the proof of Zahidi23

from [26] showing that over a polynomial ring with coefficients in a ring of integers24

of a totally real number field, all c.e. sets were Diophantine. Zahidi’s result was25

in turn an extension of a result of Denef from [6] in which the coefficients of the26

polynomial ring came from Z.27

Any discussion of c.e. sets of a polynomial ring and a ring of integral functions28

to be discussed later, must of course involve some discussion of indexing of the29

ring. In other words we will need a bijection from a ring into the positive integers30

such that given a “usual” presentation of a polynomial (or an integral function31

in the future) we can effectively compute the image of this polynomial (or this32

integral function), and conversely, given a positive integer, we can determine what33

polynomial (or integral function) was mapped to it. For a discussion of an effective34

indexing map in the case of a rational function field we refer the reader to the35

paper of Zahidi. A discussion of indexing for function fields can be found in [20].36

19
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In this paper we will assume that such an indexing is given and, following Zahidi,1

will denote it by θ going from positive integers to polynomials. Below we describe2

the rest of our notation and assumptions.3

Notation and Assumptions 5.1.4

• Let k be a totally real number field.5

• Let Ok be the ring of integers of k.6

• Let α1, . . . , αr be an integral basis of Ok over Z.7

• Let θ : Z>0 −→ Ok[X] be the effective bijection discussed above.8

• Define Pn(X) := θ(n).9

• For each n ∈ Z define Un(X) and Wn(X) in Ok[X] (uniquely) to satisfy10

Un(X)− (X2 − 1)1/2Wn(X) = (X − (X2 − 1)1/2)n.

As we indicated before, our intention is to follow the plan laid out by Zahidi11

and Denef, just making sure that all the definitions in that plan are finite-fold.12

This plan entails showing (a) that all c.e. subsets of Z are (finite-fold) Diophantine13

over the polynomial ring in question and (b) that the indexing is (finite-fold)14

Diophantine or, in other words, the set15

{(n, Pn(X))|n ∈ Z>0}

is (finite-fold) Diophantine over Ok[X]. Zahidi provides a brief argument in his16

paper that we apply to our situation, given that we have a finite-fold way of17

combining equations, to see that (a) and (b) imply the following theorem.18

Theorem 5.2. Let Z be the ring of integers in a totally real number field k. Let θ19

be an effective indexing of Z[X]; then every θ-computably enumerable relation over20

Z[X] is a finite-fold Diophantine relation over Z[X].21

Thus we concentrate on proving the following proposition.22

Proposition 5.3. The set23

{(n, Pn(X))|n ∈ Z>0}
is finite-fold Diophantine over Ok[X].24

The lemmas below constitute a proof of the proposition. Like the earlier authors,25

we will make use of a theorem of Y. Pourchet representing positive-definite26

polynomials as sums of five squares. We start with an auxiliary lemma.27

Lemma 5.4. Fix a positive integer n and n+1 algebraic integers {a0, a1, . . . , an} ⊂ Ok.28

Then there is exacly one polynomial G(X) ∈ Ok[X] of degree at most n such that29

G(i) = ai, i = 0, . . . , n.30

Proof. Let G(X) = b0 + b1X + . . . + bnX
n and observe that our requirement on31

the values of G(X) implies that the coefficients of G must be the solutions of a32

linear system Ab̄ = ā, where A = (ci,j), ci,j = ij, i, j = 0, . . . , n, (b̄)t = (b0, . . . , bn), (ā)t =33

(a0, . . . , an). (Here “t” denotes transposition.) Note that det(A) is a van der Monde34

determinant, and therefore not equal to 0. Thus, the system has a unique35

solution. �36
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Corollary 5.5. Let h be a fixed positive integer, let F (X) ∈ Ok[X], let Ω be the set of1

all embeddings σ of k into its algebraic closure, let2

Bh = {G(X) ∈ Ok[X]|(deg(G) ≤ deg(F ))∧(∀σ ∈ Ω,∀i = 0, . . . ,deg(F )−1 : |σ(G(i))| ≤ h)}.

Then Bh is finite.3

Proof. Let V be the set of elements v of Ok such that for any σ ∈ Ω we have that4

|σ(v)| < h. Let m = [k : Q], and let v ∈ V . Then any coefficient of the monic5

irreducible polynomial of v over Q must be an integer of absolute value less than6

or equal to max(mh,mhm). Thus V is a finite set.7

Now let G(X) ∈ Bh. Then deg(G) ≤ deg(F ) = n. Next we note that G(i) ∈ V8

for i = 0, . . . , n − 1. Thus, (G(0), . . . , G(n − 1)) ∈ V n. So that the set of possible9

n-tuples of values {(G(0), . . . , G(n− 1))} is finite. By Lemma 5.4, for each n-tuple10

(a0, . . . , an), there exists only one polynomial of degree less than or equal to n such11

that G(i) = ai. Thus we now conclude that the number of polynomials G in Bh is12

finite. �13

Definition 5.6. • If F is a polynomial in Ok[X], then F is positive-definite on14

k (denoted by Pos(F )) if and only if σ(F (a)) ≥ 0 for all a ∈ k and for all real15

embeddings σ of k into its algebraic closure.16

• If F is a polynomial in Ok[X], then F is strictly positive-definite on k if and17

only if σ(F (t)) > 0 for all t ∈ k and for all real embeddings σ of k into its18

algebraic closure.19

• Let Pos2(g, F ) ⊂ Z×Ok[X], contain pairs (g, F ) such that g2F = F 2
1 + . . .+ F 2

520

for some F1, . . . , F5 ∈ Ok[X].21

Lemma 5.7. For any F ∈ Ok[X] we have that Pos(F ) if and only if there exists g ∈ Z22

such that Pos2(g, F ).23

Proof. Suppose there exists g ∈ Z such that g2F = F 2
1 + . . .+F 2

5 for some F1, . . . , F5 ∈24

Ok[X]. Then, clearly Pos(F ) is true. Conversely, suppose Pos(F ) is true. Then25

by a theorem of Pourchet (see [16]), we have that F = G2
1 + . . . + G2

5, for some26

G1, . . . , G5 ∈ k[X]. Let g ∈ Z be such that for any coefficient a of G1, . . . , G5, we have27

that ga ∈ Ok. Then Pos2(g, F ). �28

Lemma 5.8. The relation Pos2 is finite-fold Diophantine over Ok[X].29

Proof. By definition of Pos2 we have that Pos2(g, F ) if and only if there exist30

F1, . . . , F5 ∈ Ok[X] such that31

(5.32) g2F = F 2
1 + . . .+ F 2

5 .

We now show that for a given g and F , there can be only finitely many solutions32

to (5.32). First of all, the degrees of F1, . . . , F5 are bounded by the degree of33

F . Secondly, observe that for i = 0, . . . ,deg(F ) − 1, j = 1, . . . , 5 we have that34

|σ(Fj(i))|2 ≤ g2|σ(F (i))| for all embeddings σ ∈ Ω. (See Corollary 5.5 for definition35

of Ω.) Let h = max{g
√
|σ(F (i))|}, where max is taken over i = 0, . . . ,deg(F )− 1 and36

all σ ∈ Ω. Then if (5.32) holds, we have that F1, . . . , F5 ∈ Bh. By Corollary 5.5, we37

have that Bh is finite. �38

21
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Definition 5.9. The relation Par(n, b, c, d, g, v1, . . . , vr) on the rational integers is1

defined to be the conjunction of the following conditions:2

(1) n ∈ Z≥1, (θ(n) = Pn ∈ Ok[T ]);3

(2) b, c, d, g ∈ Z≥0, v1, . . . , vr ∈ Z;4

(3) d = deg(Pn);5

(4) c is the smallest possible non-negative integer such that that W 2
d+2+c−P 2

n−16

is strictly positive;7

(5) g is the smallest possible positive integer such that Pos2(g,W 2
d+2 + c−P 2

n −1).8

(6) ∀x ∈ Z : if 0 ≤ x ≤ d then Wd+2(x) ≤ b;9

(7) Pn(2b+ 2c+ d) = v1α1 + . . .+ vrαr.10

Lemma 5.10. Par is a recursive relation on integers.11

Proof. Given our assumption that θ(n) is effective, that is we can effectively12

determine the degree and coefficients of Pn, the first three conditions can be13

checked algorithmically over Z. So, we may start with describing an algorithm for14

computing c and g.15

We start by calculating c. For every σ : k → R we will determine the smallest16

non-negative integer cσ such that σ(W 2
d+2 − P 2

n − 1) + cσ > 0 for all values of the17

variable. Then we will set c = max σ{cσ}.18

We compute cid first. The degree of Pn is d, and the degree of Wd+2 is d + 1 by19

Lemma 3.2. (We can compute Wd+2 algorithmically, since (Ud+2 −
√
x2 − 1Wd+2) =20

(x −
√
x2 − 1)d+2). Thus the polynomial W 2

d+2 − P 2
n − 1 is of degree 2(d + 1) with a21

leading coefficient equal to the square of an element of k ⊂ R, and therefore has an22

absolute minimum. By Corollary 8.4, there is an algorithm to verify whether this23

minimum is positive. If the answer is “yes”, then we set cid = 0. If the answer is24

“no”, then we consider W 2
d+2−P 2

n−1+1 = W 2
d+2−P 2

n and check whether W 2
d+2−P 2

n is25

strictly positive for all values of the variable. If the answer is “yes”, we set cid = 1.26

If the answer is “no”, we consider W 2
d+2−P 2

n + 1, etc. If µ < 0 is the minimum value27

of W 2
d+2 − P 2

n − 1, then the process will terminate in at most [µ] + 1 steps.28

We now calculate cσ for some σ 6= id. We note that since the leading coefficient29

of W 2
d+2 − P 2

n − 1 is a square, the leading coefficient of σ(W 2
d+2 − P 2

n − 1) is positive.30

Thus, we can proceed as in the case of σ = id.31

We can now determine g. By a result of Pourchet cited above, we can write the32

polynomial33

(5.33) W 2
d+2 − P 2

n + c− 1 = G2
1 + . . .+G2

5,

where Gi ∈ k[T ] and deg(Gi) ≤ d+1
2

. Since k is a finite extension of Q and we34

can assume without loss of generality that we are given the minimal irreducible35

polynomial of the generator over Q, we can construct a computable presentation36

of the field k. Therefore, we can also produce an effective listing of all polynomials37

over k of degree less or equal to d+1
2

. Since we have a computable presentation of k,38

given a quintuple of polynomials G1, . . . , G5 we can effectively determine whether39

(5.33) holds. Hence we have an effective way of searching for polynomials over k40

of degree less than or equal to d+1
2

to satisfy (5.33).41

22
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By examining coefficients of these polynomials, we can determine an integer1

gmax such that gmaxGi ∈ Ok[T ]. The value gmax is an upper bound on the set of g’s2

we have to search to find gmin. The number gmin will satisfy the following equation3

for some F1, . . . , F5 ∈ Ok[x]:4

g2
min(W 2

d+2 − P 2
n + c− 1) = F 2

1 + . . .+ F 2
5 .

Then deg(Fs) ≤ 1
2
deg(W 2

d+2 − P 2
n + c− 1), and for i = 0, . . . , d+ 1 and all embeddings5

σ of k into R, we have that6

|σ(Fs(i))| ≤ g2
min(W 2

d+2(i)− σ(P 2
n(i)) + c− 1) ≤ g2

max(W 2
d+2(i)− σ(P 2

n(i)) + c− 1),

where s = 1, . . . , 5. By Corollary 5.5, there are only finitely many polynomials F7

satisfying these inequalities, and we can determine them all. Once we determine8

all possible F1, . . . , F5, starting with g = 1 and continuing through gmax, we can9

check if any quintuple of possible polynomials works with any particular g, and10

thus determine gmin.11

We now consider Condition (6). By checking all values of Wd+2(x) for x ∈12

Z, x ∈ {1, . . . , d}, we can determine the maximum value of the set. Finally, to13

determine v1, . . . , vr, we can start running through all linear combinations with14

integer coefficents of the basis vectors until we hit Pn(2b+ 2c+ d).15

�16

The final piece of proof comes from the lemma below, taken almost verbatim17

from Zahidi’s paper.18

Lemma 5.11. For any n ∈ Z>0 we have that F ∈ Ok[x] ∧ F = Pn if and only if19

∃b, c, d, g, v1, . . . , vr ∈ Ok[x] :20

(1) Par(n, b, c, d, g, v1, . . . , vr);21

(2) Pos2(g, (W 2
d+2 + c− F 2 − 1));22

(3) F (2b+ 2c+ d) = v1α1 + . . .+ vrαr.23

Proof. Suppose F = Pn for some natural number n. Then one can easily find24

natural numbers b, c, d, g and rational integers v1, . . . , vr such that the relation (1)25

is satisfied. Part (2) of the lemma can be satisfied because deg(Pn) < deg(Wd+2).26

Further, (3) will be satisfied by satisfying Par(n, b, c, d, g, v1, . . . , vr), because F = Pn.27

Conversely suppose Conditions (1)-(3) are satisfied for some natural numbers28

c, d, n, b, g and integers v1, . . . , vr. In this case we have to prove that F = Pn. From29

conditions (1) and (3) it follows that30

(F − Pn)(2b+ 2c+ d) = 0.

Thus, if F 6= Pn, there is some S ∈ Ok[x] 6= 0 such that31

F − Pn = (x− 2b− 2c− d)S.

Now by Condition (2), it is the case that F has degree at most d+ 1, while Pn has32

degree d (by Condition (1)), and hence, S has degree at most d. So for some integer33

u with 0 ≤ u ≤ d, we have S(u) 6= 0. Now for at least one real embedding σ we have34

|σ((F − Pn)(u))| = |(2b+ 2c+ d− u)||σ(S(u))| ≥ 2b+ 2c,

23
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(since u ≤ d and the fact that given an algebraic integer a in a totally real number1

field, a 6= 0, there is at least one real embedding such that |σ(a)| ≥ 1). At the same2

time, again by Condition (2) of the lemma and by Part (6) of the definition of the3

relation Par, for any real embedding σ we have, for all integers x with 0 ≤ x ≤ d :4

|σ(F (x))| ≤ |σ(F (x)2 + 1)| ≤ W 2
d+2(x) + c < b+ c,

and5

|σ(Pn(x))| ≤ |σ(P 2
n(x) + 1)| ≤ W 2

d+2(x) + c < b+ c,

and hence6

|σ((F − Pn)(x))| < 2b+ 2c,

leading to a contradiction. �7

The last lemma completes the proof of Proposition 5.3 and Theorem 5.2.8

9

One reason for our emphasis on finite-fold Diophantine definitions is that they
allow us to determine the difficulty of deciding whether a polynomial has infinitely
many solutions in a given ring S, an infinite version of Hilbert’s Tenth Problem:

HTP∞(S) =
⋃
n

{f ∈ S[X1, . . . , Xn] : (∃∞(x1, . . . , xn) ∈ Sn) f(x1, . . . , xn) = 0}.

The following corollary is a good example of the connection between these topics:10

Theorem 5.2 actually proves that for the rings involved, HTP∞ has the greatest11

complexity possible.12

Corollary 5.12. Let R be the ring of integers in a totally real number field k. Assume
R[T ] has an effective indexing θ with domain N for which θ−1(0) is decidable. Then,
for some fixed n ∈ N, the set of polynomials in n variables over R[T ] with infinitely
many solutions there,

HTP∞n (R[T ]) = {f ∈ R[T ][X1, . . . , Xn] : (∃∞(x1, . . . , xn) ∈ (R[T ])n) f(x1, . . . , xn) = 0},

is Π0
2-complete, and thus computably isomorphic to ∅′′, the complement of the Turing13

jump of the Halting Problem.14

Proof. The assumption that θ−1(0) is decidable allows us to build an effective15

injective index, so assume that θ itself is injective. By Theorem 5.2, there is a16

polynomial g(E, Y, Z1, . . . , Zm) over R[T ] such that, for all (e, y) ∈ N2, if ϕe(y) fails17

to halt, then g(e, θ(y), ~Z) has no solution in R[T ]; whereas if ϕe(y) does halt, then18

g(e, θ(y), ~Z) has at least one solution in R[T ], but only finitely many. It follows19

that, for each fixed e, g(e, Y, ~Z) has infinitely many solutions in R[T ] if dom(ϕe) is20

infinite, but only finitely many if dom(ϕe) is finite. It is well known that the set Inf21

of indices e for which ϕe has infinite domain is a Π0
2-complete set ([24], Theorem22

IV.3.2), computably isomorphic to ∅′′, and we have just described a 1-reduction23

from Inf to HTP∞n (R[T ]), by e 7→ g(e, Y, ~Z). On the other hand, HTP∞n (R[T ]) itself24

is Π0
2, hence 1-reducible to Inf, so by Myhill’s Theorem (see [24, I.5.4]), the two25

are computably isomorphic. �26

24
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The computability-theoretic notation used here is standard; e.g. see [24]. Com-1

putable isomorphism is the strongest equivalence in general use in computability,2

so the corollary gives a very precise measurement of the complexity of HTP∞n (R[T ]).3

The value of n is simply one greater than the least number m of variables required4

for a polynomial g giving a finite-fold Diophantine definition of the Halting Problem5

in R[T ]. Notice that we not only have proven the Π0
2-completeness of HTP∞(R[T ]),6

the general question of whether a polynomial has infinitely many solutions in7

R[T ], but in fact have established Π0
2-completeness for its restriction HTP∞n (R[T ])8

to polynomials with at most n variables.9

6. DEFINING VALUATION RINGS OVER FUNCTION FIELDS OF CHARACTERISTIC 010

In this section we give an existential definition of valuation rings for function11

fields of characteristic 0 over some classes of fields of constants including all12

number fields. More specifically, we will assume the constant field k to be a field13

algebraic over Q with an embedding into a finite extension M of Qp for some odd14

rational prime p or into R (making k formally real). Note that number fields satisfy15

these assumptions on k.16

The method we use below is extendible to a much larger class of fields of char-17

acteristic 0 and to higher transcendence degree fields of positive characteristic.18

We intend to describe these extensions in future papers.19

20

We now state the two main theorems of the section.21

Theorem 6.1. Let k be a field algebraic over Q and such that k has an embedding22

into a field M , a finite extension of Qp for some odd prime p. Let K be a function field23

over k, and let u be a (function field) prime of K. Then the set {f ∈ K : orduf ≥ 0} is24

Diophantine over K.25

Theorem 6.2. Let k be a field algebraic over Q and such that k has an embedding26

into R. Let K be a function field over k, and let u be a prime of K such that its27

residue field is embeddable into R. (For example, u can be a prime of odd degree.)28

Then the set {f ∈ K : orduf ≥ 0} is Diophantine over K.29

6.1. Replacing a given field by its finite extension. For technical reasons that30

will become clear below it is often convenient to work in a finite extension of31

the given field. The following lemmas explain why replacing a field by its finite32

extension does not materially change the nature of definable sets. That is, if a33

certain kind of a set is definable in a finite extension, then this type of sets is34

definable over the original field. The first lemma describes a general property of35

Diophantine definitions under finite extensions.36

Lemma 6.3. Let F2/F1 be a finite field extension. Let A ⊂ F2 and assume A is37

Diophantine over F2. Then A ∩ F1 is Diophantine over F1.38

Proof. The proof follows from Lemma 2.1.17 of [20] and the fact that F2 ≤Dioph F1.39

(See Definition 2.1.5 of [20]). �40

The next lemma describes a relation between the order of an element of a41

function field at a prime and the order of this element at a factor of the prime42

25
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in a finite extension. (We remind the reader that prime factorization in finite1

extensions and ramification degree are discussed in Section 2.)2

Lemma 6.4. Let K̂ be a finite extension of a function field K, let q̂ be a prime of K̂3

above a prime q of K, and let A be the set of all elements of K̂ with non-negative4

order at q̂. Assume further that A is Diophantine over K̂. Then A∩K is Diophantine5

over K and consists of all elements of K with non-negative order at q.6

Proof. Let f ∈ K. Then ordq̂f =
1

e
ordqf , where e = e(q̂/q) is the ramification degree7

of q̂ over q. Therefore, ordq̂f ≥ 0 if and only if ordqf ≥ 0. Thus, f ∈ A ∩K if and8

only if ordqf ≥ 0. Finally, by Lemma 6.3, we have that A ∩K is Diophantine over9

K. �10

Remark 6.5. If the constant field k has an embedding into a finite extension of11

Qp, the same is true of any finite extension of k.12

In view of Lemma 6.4 and Remark 6.5, we can assume that if k has an em-13

bedding into a finite extension of Qp, p > 2, then k has no real embeddings. (For14

example, we can adjoin i to the original field.)15

16

6.2. Using quadratic forms to pick out elements of K of even order at a17

degree 1 prime. The next lemma will be a key to distinguishing elements with18

an even order at a given prime T of the function field K from elements with an19

odd order at T. The prime T in question will be assumed to be of degree 1, so that20

its residue field is isomorphic to the field of constants k of our function field K.21

The degree 1 assumption also implies that for every x ∈ K with ordTx ≥ 0 there22

exists a constant c ∈ k such that ordT(x− c) > 0. The quadratic form that will do23

the job will have its coefficients in the constant field and will be anisotropic over24

the constant field. An anisotropic form does not have any non-trivial zeros.25

Proposition 6.6. Let k be any field of characteristic 0 such that the following form:26

(6.1) X2 − aY 2 − bZ2 + abW 2

is anisotropic over k for some values a, b ∈ k. If K is a function field over k, T is a27

prime (or a valuation) of K of degree 1 and h ∈ K is such that ordTh is odd, then the28

equation29

(6.2) X2 − aY 2 − bZ2 + abW 2 = h

has no solution (X, Y, Z,W ) in K.30

Proof. Assume the opposite and observe that due to the fact that function field31

valuations are non-archimedean and ordTh is odd,32

2 min(ordTX,ordTY,ordTZ,ordTW ) < ordTh.

Next let U ∈ {X, Y, Z,W} be such that ordTU = min{ordTX,ordTY,ordTZ,ordTW}33

and divide every variable in (6.2) by U234

(6.3)
(
X

U

)2

− a
(
Y

U

)2

− b
(
Z

U

)2

+ ab

(
W

U

)2

=
h

U2
.

26
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Observe that
h

U2
has a zero at T, while at least one of

{
X

U
,
Y

U
,
Z

U
,
W

U

}
is equal1

to 1. Thus considering (6.3) mod T, taking into account that T is a degree 12

prime, we conclude that the form (6.1) is isotropic over k in contradiction of our3

assumption. �4

6.2.1. Replacing the field M by the completion of k under the p-adic valuation.5

Since k is embeddable into a finite extension M of Qp, we can identify k with a6

subfield of M . Since M is a finite extension of Qp, there is a unique extension of7

the p-adic valuation to M and M is complete under this extended valuation. Let v8

be the extension of the p-adic valuation to M . Let Rv be the valuation ring of v.9

Let p be the prime ideal of Rv containing all M-elements with positive valuation.10

Let Fp
∼= Rv/pRv be the residue field of p. Since M is complete under v, we must11

have Qp ⊆ kp = kv ⊆ M , where kp = kv is the completion of k in the p-adic or,12

alternatively, v-adic metric. Thus, we can assume, without loss of generality, that13

M = kp.14

6.3. Constructing a form anisotropic over k. First of all, we note that if our15

quadratic form is anisotropic over kp, then it is anisotropic over k. We also know16

that a form (6.1) is anisotropic over kp precisely when ordpa = 0, a is not a square17

in kp, and ordpb is odd or ordpb = 0, b is not a square in kp, and ordpa is odd. This18

will be shown in Lemmas 6.11 and 6.12. So our first task is to show that such a19

pair (a, b) exists in k2.20

Since we don’t know much about k besides the fact that it is algebraic over21

Q and [kp : Qp] is finite, it would help us in the future, if we could find a pair22

(a, b) ∈ H2, where H is a specific number field contained in k. Obviously, any23

number field containing H will work too.24

First, we note that we can find a number field inside k such that its completion25

under the restriction of v to this number field is as large as possible.26

Lemma 6.7. As above, let v be the extension of the p-adic valuation on Qp to k, Rv27

the valuation ring of v and p the maximal ideal of the valuation ring. Then there28

exist a number field H ⊂ k such that the completion of H under pH = p ∩H is equal29

to kp.30

Proof. First we note that for any number field H ⊂ k, we have that Qp ⊆ HpH ⊆ kp,31

and the assumption that [kp : Qp] <∞ implies that [kp : HpH ] <∞.32

We now proceed in two steps. First, we will show that there exists a number33

field Uf ⊂ k such that f(p/pUf
) = 1, where pUf

= p ∩ Uf . Next we will show that34

there exists a number field Ue such that e(p/pUe) = 1, where pUe = p ∩ Ue. Finally,35

we will set H to be any number field containing UfUe.36

Let U be a field contained in k. Then Rv ∩U is the valuation ring of the valuation37

vU corresponding to the restriction of v to U . Similarly, if p is the maximal ideal of38

Rv, then pU = U ∩ p is the maximal ideal of RvU . Finally, the residue field Fp of p is39

an extension of FpU , the residue field of pU .40

Let Fpkp
be the residue field of the extension of v to kp. By assumption, [kp : Qp] <41

∞. So, by Proposition 2.6 the degree [Fpkp
: Fp], where Fp is a field of p elements, is42
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finite, and thus Fpkp

is a finite field also. Since kp is the completion of k under the1

metric induced by v, we have that Fpkp
∼= Fp, by Proposition 2.4. Hence Fp is also2

finite. Thus, [Fp : FpU ] <∞.3

Suppose now that U is a number field contained in k. By the arguments above4

Fp/FpU is a finite field extension of a finite degree. Thus, it is simple. Let α generate5

Fp over FpU . Since α ∈ Fp, there exists x ∈ k such that the residue class of x is α.6

We can now set Uf = U(x).7

Since [kp : Qp] < ∞, by Proposition 2.6, we have that e(p/p) is finite. Further,8

kp is a discrete valuation field and therefore contains an element β with v(β) = 1.9

Since kp is a completion of k under v, there exists an element γ ∈ k such that10

ordpkp
(γ − β) > 1. Then11

ordpkp
(γ) = ordpkp

(γ − β + β) = min(ordpkp
(γ − β),ordpkp

(β)) = ordpkp
β = 1.

Let Ue = Qp(γ) and let H = Uf (γ). We claim that kp is not ramified over HpH . Indeed,12

we have that13

1 = ordpγ = e(p/pH)ordpH (γ).

Thus, e(p/pH) = 1. Also, by construction Fp
∼= FpH . Thus, f(p/pH) = 1. By14

Proposition 2.6, we can now conclude that [kp : kpH ] = 1. �15

Next we show that the elements a, b needed to construct an anisotropic quadratic16

form can be found in the number field H discussed above.17

Lemma 6.8. There exists a number field H ⊆ k containing algebraic integers a, b18

such that a is not a square in kp, ordpa = 0, and ordpb is odd.19

Proof. Let H ⊆ k be a number field such that, using the same notation as above,20

we have HpH
∼= kp. This congruence implies the residue fields of pkp and pH are the21

same and are both finite. Now let γ ∈ H be such that ordp(γ) = 0, and γ is not a22

square modulo p in k. Such an element γ exists in H, because not all elements of23

a finite field Fp
∼= FpH are squares of other elements of the field. By construction,24

the number field H contains an element a such that a ≡ γ mod p. Further, by25

the Strong Approximation Theorem (see page 239 of [8]) any residue class of the26

prime pH contains algebraic integers. Therefore, we can assume a ∈ OH, the ring27

of integers of H.28

To show the existence of b ∈ OH such that ordpb is odd, it is enough to find an29

element in OH such that ordpHb = ordpb = 1. The existence of such an element30

follows from the fact that the pH corresponds to a discrete valauation. �31

Remark 6.9. We note here that once we found a number field H with requisite32

a and b, any extension of H will also work. In the future H will be any number33

field contained in k and containing a, b and the coefficients of a polynomial under34

consideration.35

Remark 6.10. In what follows we will need one more requirement to impose on a.36

We will need a ≡ 1 mod 4. This requirement is compatible with the requirement of37

a not being a square in Fp by the Strong Approximation Theorem (see page 239 of38

[8]).39
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6.3.1. Taking a closer look at the quadratic form X2 − aY 2 − bZ2 + abW 2 over k and1

over K.2

Lemma 6.11. If a is not a square in k, then the form (6.1) is isotropic over k if and3

only if there exists y ∈ k(
√
a) such that Nk(

√
a)/k(y) = b.4

Proof. Suppose we have a non-trivial representation of 0 by the form (6.1). Then5

without loss of generality, we can assume that Z and W are not simultaneously 0.6

Otherwise, we are looking at the equation7

(6.4) X2 − aY 2 = 0,

while a is not a square in k. The only solution to (6.4) is X = Y = 0. So we get a8

trivial representation of 0.9

Assuming that Z and W are not simultaneously 0 and we have a non-trivial10

representation of 0 by the form (6.1), we note that Z2 − aW 2 6= 0, and we can11

rewrite the equation as12

X2 − aY 2

Z2 − aW 2
= b

or13

(6.5) ∃y ∈ k(
√
a) : b = Nk(

√
a)/k(y).

Conversely, suppose (6.5) is true. Then b = U2 − aV 2, where either U 6= 0, or14

V 6= 0. Thus we have that U2 − aV 2 − b = 0. Let X = U, Y = V, Z = 1,W = 0, and we15

have a non-trivial representation of 0 by the form (6.1) over k.16

�17

Lemma 6.12. Let H ⊂ k be a number field. Let a, b ∈ OH be such that ordpa = 0, a18

is not a square in kp and ordpb is odd. (Such a number field H and elements a, b ∈ H19

exist by Lemma 6.8.) Then (6.1) is anisotropic over k and kp.20

Proof. Suppose (6.1) is isotropic. Then by Lemma 6.11, we have that (6.5) is true.21

Since a is not a square in kp, ordpa = 0 and p is not a dyadic prime, we have that22

by Proposition 2.3, the extension kp(
√
a)/kp is an unramified extension of degree 223

of p-adically complete fields. If t is the prime of kp(
√
a) above p, then by Proposition24

2.6, the relative degree f(t/p) of t over p is 2. Thus, by Proposition 2.125

ordpNk(
√
a)/k(y) = f(t/p)ordty ≡ 0 mod 2.

But ordpb is odd. So (6.5) cannot hold, and the form (6.1) is anisotropic. �26

6.4. How to make a quadratic form isotropic. In this section we discuss the27

sufficient conditions for making a quadratic form isotropic over a number field.28

Lemma 6.13. Let H be a number field. Let q be any prime of H (not necessarily29

equal to p, a prime lying above p in H and the prime lying above p in kp). Let a, b ∈ H30

be units at q (ordqa = ordqb = 0). Assume further that a ≡ 1 mod 4. Then in Hq, the31

completion of H under a q-adic metric, the form (6.1) is isotropic.32

Proof. If q is not dyadic, and a is a unit at q, then q is unramified in the extensions33

H(
√
a)/H and Hq(

√
a)/Hq, by Proposition 2.3. If q is a dyadic prime, then given our34

assumption that a ≡ 1 mod 4, we also have that q is unramified in the extensions35

29
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H(
√
a)/H and Hq(

√
a)/Hq by Corollary 2.9. Further, since b is a unit at q also, it is1

a norm in the extension of Hq(
√
a)/Hq, by Proposition 3.11 of [9]. Hence (6.5) can2

be solved in Hq. �3

Next we observe that b does not have to be a unit at q to be an Hq(
√
a) norm. It4

is enough for b to have an even order.5

Corollary 6.14. Let q, a, b,H be as above, but assume a is a unit at q while ordqb is6

even. Then in Hq the form (6.2) is isotropic.7

Proof. Let π be a local uniformizing parameter with respect to q in H (i.e. ordqπ = 1).8

If ordqb is even, then we can replace b in the quadratic form by b̂ = π2sb, where9

s ∈ Z and ordqπ
2s = −ordpb, without changing the status of the form with respect10

to being isotropic or anisotropic. Observe that b̂ is a unit at q, and the corollary11

now follows from Lemma 6.13. �12

To explain how we will make use of the conditions for isotropy described above,13

we prove the following proposition.14

Proposition 6.15. Let H be a number field without any real embeddings. Assume15

that for some a, b ∈ H, a ≡ 1 mod 4 we have that the form (6.1) is anisotropic. Then16

the following statements are true.17

(1) There exist finitely many non-dyadic H-primes a1, . . . , ar such that the form18

is anisotropic over Hai.19

(2) For each ai such that the form is anisotropic over Hai we have that either a is20

not a square in Hai and ordaib is odd, or vice versa.21

(3) Let F be a finite extension of H where each ai ramifies with even ramification22

degree. Then (6.1) is isotropic over F .23

Proof. Since H does not have any real embeddings, if the form (6.1) is isotropic in24

Ht for every prime t of H, then by the Hasse-Minkowski Theorem (Theorem 27.225

of [19]) the form would be isotropic over H.26

Further, for all but finitely many primes a we have that both a and b are units,27

and therefore a is not ramified in the extension H(
√
a)/H by Proposition 2.3 when28

the prime a is not dyadic. If a is dyadic then given that a ≡ 1 mod 4, we have29

that a does not ramify in the extension H(
√
a)/H by Corollary 2.2. Hence b is an30

H(
√
a)-norm by Proposition 3.11 of [9]. Therefore, there are only finitely many31

completions where the form can be anisotropic.32

Let Ai be a prime above a in F . Then ordAi
a is even and ordAi

b is even. So by33

the Corollary 6.14, the form is isotropic over FAi
. Now if B lies above a prime b34

such that the form was isotropic over Hb, then, since FB is an extension of Hb, the35

form is isotropic over FB. Hence, in F the form is isotropic locally at all primes36

and therefore is isotropic over F . �37

6.5. Representing polynomials of even degree by quadratic forms: the p-adic38

case. Before tackling all functions in K of even order at a given function field39

prime T, we learn how to represent polynomials of even degree, where the degree40

valuation is the restriction of the function field valuation associated to T to a41
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rational function field. As we will see later, that will be enough to represent all1

other functions of K of even order at T.2

The key to representing polynomials by quadratic forms is the following propo-3

sition due to Y. Pourchet (see [16], Proposition 3) concerning representation of4

polynomials by quadratic forms over rational function fields.5

Proposition 6.16. Let k be a field of characteristic 6= 2. Let a, b ∈ k, f ∈ k[T ],6

where T is transcendental over k. Then there exist X, Y,W,Z ∈ k[T ] such that7

f = X2 − aY 2 − bZ2 + abW 2 if and only if the following conditions are satisfied8

• For every prime factor p(T ) of f(T ) over k of odd multiplicity, we have that9

the form is isotropic in the residue field of k(T ) modulo p(T ).10

• The form represents the leading coefficient of f(T ) over k.11

Since the form (6.1) is anisotropic over k, it is clear that it will not represent12

all polynomials of even degree. For example, if the polynomial is a product of an13

even number of linear factors, it will not be represented by the form. So, given a14

polynomial of even degree we have to modify it without changing its degree, so15

that the modified polynomial is irreducible and adjoining a root of this polynomial16

to k will generate an even degree extension of k where the quadratic form becomes17

isotropic. Pourchet’s proposition implies the quadratic form will represent every18

such polynomial.19

At the same time, since our modification does not change the degree, the20

modified odd degree polynomial will not be represented by our quadratic form by21

Proposition 6.6. Our first step is to describe a type of polynomial producing the22

extensions we need.23

Lemma 6.17 (Essentially Eisenstein Irreducibility Criteria). Let H, q be as above.24

Let a0, . . . , am ∈ H be such that25

(1) ordqam = 0,26

(2) ordqai ≥ r > 1, for i = 1, . . . ,m− 1,27

(3) ordqa0 = r − 1 > 0 with (m, r − 1) = 1.28

Let29

f(T ) = amT
m + am−1T

m−1 + . . .+ a0 ∈ H[T ]

In this case f(T ) is irreducible over Hq and adjoining a root of f(T ) produces a30

totally ramified extension of Hq.31

Proof. Let α be a root of f(T ) in the algebraic closure of Hq. Let Q be a prime above32

q in Hq(α). If ordQα ≥ 0, then, since ordqam = ordQam = 0, we have that33

ordQα
m = ordQ(−am−1α

m−1 − . . .− a1α− a0).

Let e = e(Q/q) be the ramification degree of Q over q, and note that for i =34

m− 1, . . . , 1 we have that35

ordQ(aiα
i) ≥ e · ordqai ≥ er > e(r − 1) = e · ordqa0.

Thus,36

ordQα
m = ordQ(−am−1α

m−1− . . .−a1α−a0) = min
i=0,...,m−1

(ordQaiα
i) = e ·ordqa0 = e(r−1)
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Since (r − 1,m) = 1, we conclude that e = m, and the polynomial is irreducible.1

Suppose now ordQα < 0. Then for any i = 1, . . . ,m− 1 we have2

ordQ(amα
m) = ordQ(αm) < ordQ(αi) < ordQaiα

i.

Therefore,3

e(r − 1) = ordQa0 = ordQ(−amαm − am−1α
m−1 − . . .− a1α) = m · ordQ(α),

so that once again we have that e = m, and f(T ) is irreducible.4

Finally we also note that the polynomial produces a totally ramified extension5

for q, since the ramification degree of Q over q is equal to the degree of the6

extension.7

�8

6.5.1. Finding a convenient rational subfield. Our next goal is to find a suitable9

rational function field contained in K to make a transition from polynomials of10

even degree to functions of even order at T easier. Essentially we need to decide11

what element T ∈ K will generate a good rational function field k(T ).12

One of the issues to consider is the ramification degree of T over k(T ). If the13

ramification is even, then a polynomial of odd degree in k(T ) can have even order14

at T. Fortunately, such a situation is not difficult to avoid. All we need is an15

element T with an odd degree pole at T. Additionally, to isolate the order at T we16

do not want the degree valuation of k(T ) to have more than one extension to K.17

So what we need is an element T of K such it has an odd degree pole at T and no18

other poles. The next lemma establishes existence of such an element of K.19

Lemma 6.18. For any valuation T of K, for all sufficiently large s > 0, there exists20

T ∈ K such that T is the only valuation where T has a pole, and ordTT = −3s.21

Proof. One can use the same proof as in Lemma 3.6 of [22], except that one should22

replace 2 by 3. �23

Lemma 6.19. Let T and T be as above. Then for any f ∈ k[T ] we have that ordTf24

is even if and only the degree of f is even in k(T ).25

Proof. Observe that the degree valuation in k(T ) is the only valuation where T26

has a pole in k(T ). Thus, if a valuation T is an extension of the degree valuation27

to K, then ordTT < 0 in K. But T has only one pole in K. Therefore, T is28

the only valuation of K extending the degree valuation of k(T ) to K. Further,29

ordTT = e ·deg(T ), where e is the ramification degree of T over the degree valuation.30

By (2.1), we have that e(T/deg)f(T/deg) = 3−s. Since T is of degree 1, its residue31

field is k. The same is true of the degree valuation of k(T ). Hence f(T/deg) = 132

and 3s = e. In particular the ramification degree is odd. Since for any f ∈ k[T ], we33

have that ordTf = 3sdeg(f), the lemma holds.34

�35

We are now ready for the first of the two main technical propositions of this sec-36

tion. First, we recap our notation, since we are going to use it in the propositions.37

Notation 6.20. • p 6= 2 is a prime number38

• k is an algebraic extension of Q.39
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• K is a function field over k.1

• There exists a non-archimedean valuation v of k such that v restricts to2

the p-adic valuation of Q and [kv : Qp] < ∞. We denote by p the maximal3

ideal of the valuation ring Rv.4

• H ⊂ k is a number field, i.e. [H : Q] <∞. We let pH be the maximal ideal of5

RvH = Rv ∩H.6

• a, b ∈ OH, a is not a square mod p, a ≡ 1 mod 4, ordpb is odd.7

• T is a prime of K of degree one.8

• T ∈ K is such that ordTT = −3s, s ∈ Z>0, and T has no other poles in K.9

Remark 6.21. In the proof below, the number field H can be replaced by any10

finite extension of it inside k. We will extend H as needed to make sure the11

coefficients of a polynomial under consideration are in H.12

Proposition 6.22. Let f ∈ K.13

(1) If ordTf < 0 and ordTf is odd, then for any ξ 6= 0, µ ∈ k, the equation14

(6.6) X2 − aY 2 − bZ2 + abW 2 = ξf + µ

has no solution in K.15

(2) If f ∈ H[T ], and ordTf is even (or in other words deg(f) is even), then there16

exist ξ 6= 0, µ ∈ H such that (6.6) has a solution in H(T ) ⊂ K.17

(3) For each f and each choice of ξ 6= 0, µ ∈ H such that (6.6) has a solution in18

H(T ) ⊂ K, there exists a finite set Q of primes of H and a positive constant19

N such that if ξ1, µ1 ∈ H and are such that ordq(ξ − ξ1) > N, ordq(µ− µ1) > N20

for all q ∈ Q, then21

(6.7) X2 − aY 2 − bZ2 + abW 2 = ξ1f + µ1

has a solution (X, Y, Z,W ) ∈ K4.22

Proof. Suppose f ∈ K and ordTf is odd. In this case, for any ξ 6= 0, µ ∈ k we know23

that ordT(ξf + µ) = ordTf < 0 and it is odd. So, by Proposition 6.6 applied to24

h = ξf + µ we conclude that (6.6) has no solutions in K.25

If we consider the form X2 − aY 2 − bZ2 + abW 2 over H, then we note that any26

four dimensional form is universal locally at any non-archimedean prime q, i.e.27

it represents every element of the completion Hq. Without loss of generality,28

by Lemma 6.3 we can assume that k and H have no real embeddings. By the29

Hasse-Minkowski local-global principle, we can then conclude that the form is30

universal over H. (See Corollary 27.5, Chapter V of [19].) Thus, if f ∈ H (and31

therefore ordTf = 0), the equation (6.6) can be satisfied.32

Now assume that f ∈ H[T ] \H, and ordTf is even (or in other words deg(f) is33

even). We now show that for some constants ξ 6= 0, µ ∈ H, the quadratic form34

equation (6.6) has solutions in H(T ).35

We start with examining the isotropic/anisotropic status of (6.1) over H. If the36

form is isotropic in H, then by Proposition 6.16, we are done, since the form37

can represent any constant in H. Suppose the form is anisotropic over H. Then,38

by Proposition 6.15, there is a finite set Q of H-primes such that the form is39

anisotropic over Hq for all q ∈ Q and is isotropic in all other completions of H.40

Further, for each q ∈ Q, either ordqa is odd, or ordqb is odd.41
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We now describe the set of conditions on ξ and µ making sure that1

(1) ξf + µ is irreducible over H(T ), and2

(2) if t is the prime of H(T ) corresponding to ξf + µ, then in the residue field of3

t, the norm (6.1) becomes isotropic.4

Let π ∈ OH be such that ordqπ = 1 for every q ∈ Q . (Such an element exists by5

the Strong Approximation Theorem, (see page 239 of [8]).) Let a0, . . . , an ∈ OH and6

assume7

f(T ) = anT
n + . . .+ a0 = an

(
πrT

πr

)n
+ an−1

(
πrT

πr

)n−1

+ . . .+ a0 =

8

an

(
U

πr

)n
+ an−1

(
U

πr

)n−1

+ . . .+ a0,

where r is a non-negative integer such that ordqπ
r ai
an

> 2 for all q ∈ Q and for any9

coefficient ai, i = 0, . . . , n − 1, and U = πrT . Now set ξ =
πnr

an
and let g(U) = ξf(T ).10

(Observe that ξ 6= 0 as required.) Then11

g(U) = Un + cn−1U
n−1 + . . .+ c0,

where12

ci = ξ
ai
πri

=
πnr

an

ai
πri

= πnr−ri
ai
an

= πnr−ri−r
πrai
an

, i = 0, . . . , n− 1.

Thus,13

∀q ∈ Q : ordqci > 2 + (nr − ri− r) = 2 + r(n− i− 1) ≥ 2

for i = 0, . . . , n− 1.14

Next let µ ∈ OH be such that ∀q ∈ Q : ordqµ = 1 and observe that h(U) = g(U) + µ15

is irreducible by Lemma 6.17, and adjoining a root α of h(U) to H will ramify q16

with even ramification degree. This will make the quadratic form in (6.2) isotropic17

at the factors above q in H(α) by Corollary 6.14.18

19

Now let ξ1, µ1 ∈ H, U = πrT , and let ĝ(U) = ξ1f(T ) = ĉnU
n + ĉn−1U

n−1 + . . . + ĉ0.20

Then ĉi = ξ1
ai
πri . Let q ∈ Q and note that ordq(ci − ĉi) = ordq(ξ − ξ1) + ordq

ai
πri . Let21

N > 0 be large enough so that for all q ∈ Q, j = 0, . . . , n− 122

N + min
i,q

(ordq
ai
πri

) > ordq(ξ
aj
πrj

) = ordqcj.

Pick ξ1 such that ordq(ξ−ξ1) > N and observe that for all q ∈ Q, for all i = 0, . . . , n−123

we now have that ordq(ĉi − ci) > ordqci. Then for all q ∈ Q, for all i, we get that24

ordqĉi = ordq((ĉi − ci) + ci) = ordqci ≥ 2.

Now let µ1 be such that for all q we have that25

ordq(µ− µ1) > 2.

Then ordqµ1 = ordqµ by the same argument as for ξ1. Thus, ordqµ1 = 1. We now26

can apply Lemma 6.17 to the polynomial ĥ = ξ1f(T )+µ1 to conclude that all primes27

in Q ramify in the residue field of the extension generated by ĥ with ramification28
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degree divisible by 2 and then proceed in the same manner as we did for the29

polynomial h. �1

6.6. Representing polynomials by quadratic forms: the real embedding case.2

We now consider the case of k with a real embedding. First we prove the following3

lemma.4

Lemma 6.23. Let H be a number field. Suppose H contains an element α such5

that α2 = −1 + 2r, r ∈ Z>2. Let q be a dyadic prime (i.e a prime dividing 2). Then6

i ∈ Hq and the extension H(i)/H is unramified at all primes of H.7

Proof. Let g(x) = x2 + 1, then g(α) = 2r ≡ 0 mod 2r. At the same time g′(α) =8

2α ≡ 0 mod 2, and g′(α) 6≡ 0 mod 2q. Therefore, ordqg(α) = e(q/2)r > 2e(q/2) =9

e(q/2)ordqg
′(α). Thus, by Hensel’s Lemma (Chapter XII, §7, Proposition 7.6 of [12]),10

g(x) has a root in Hq. Now by Corollary 2.10, we can conclude that no prime11

ramifies in this extension. �12

As before, without loss of generality, by Lemma 6.3, we can assume that
√

7 ∈ k.13

(Adjoining
√

7 will not change the existence of a real embedding.) In what follows,14

we use the same notation as above with the following modifications.15

Notation 6.24. •
√

7 ∈ H ⊂ k16

• k has a real enbedding.17

As above, H is any number field contained in k containing
√

7 and the coeffi-18

cients of the polynomial f under consideration. We now prove an analogue of19

Proposition 6.22 for fields with a real embedding.20

Proposition 6.25. Let f ∈ K.21

(1) If ordTf < 0 and is odd, then for any ξ 6= 0, µ ∈ k, the equation22

(6.8) X2 + Y 2 + Z2 +W 2 = ξf + µ

has no solution in K.23

(2) If f ∈ H[T ] and ordTf is even (or in other words deg(f) is even), then there24

exist ξ 6= 0, µ ∈ k such that (6.8) has a solution (X, Y, Z,W ) ∈ K4.25

(3) If ξ, µ ∈ k are as above, then there exists δ > 0 such that for all ξ1, µ1 with26

|ξ − ξ1| < δ, |µ− µ1| < δ for all archimedean absolute values |...| of k, we have27

that28

(6.9) X2 + Y 2 + Z2 +W 2 = ξ1f + µ1

has a solution (X, Y, Z,W ) ∈ K4.29

Proof. We first note that the quadratic form in 6.8 is anisotropic over R, and30

therefore anisotropic over k. Thus, if ordTf is odd, then the proposition holds by31

the same argument as in Proposition 6.22. The same is true if f ∈ H. (By the32

Strong Approximation Theorem (see page 239 of [8]), we can always pick ξ, µ ∈ H33

so that the image of f under any real embedding is positive.)34

So, assume now that deg(f) is even and f is not a constant. It is enough35

to show that (6.8) can be satisfied in H(T ). We again start by examining36

anisotropic/isotropic status of the form in question over H. As in Lemma 6.3, it is37
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easy to see that the quadratic form in (6.8) is isotropic if and only if −1 is a norm38

in the extension H(i)/H. By Hasse Norm Principle, it is enough to show that −11

is a norm in all completions of H. (See page 103, [2].) Since H contains
√

7, by2

Lemma 6.23, we have that the extension Hq(i)/Hq is unramified for all primes q3

of H, and therefore −1 is a norm at all primes q of H by Proposition 3.11 of [9].4

Thus, the only completions where −1 is not a norm are the real ones.5

We choose ξ so that the leading coefficient of ξf is positive under all real6

embeddings. Such a ξ exists by the Strong Approximation Theorem, once again.7

This step will also make sure that the leading coefficient of ξf + µ is representable8

by the form over H. We also choose µ > 0 large enough so that ξf + µ has no roots9

in R under all real embeddings. Let h(T ) = ξf(T )+µ, and let g(T ) be an irreducible10

factor of h(T ). Then g(T ) has no roots in R under any real embedding of H, and11

therefore must be of even degree. Further, if we adjoin a root α of g(T ) to H, the12

extended field H(α) will have no real embeddings, and the left side of (6.8) will13

become isotropic. Thus we can apply Proposition 6.16 again to reach the desired14

conclusion.15

If ξ1 is sufficiently close to ξ under all archimedean absolute values of k, then16

the leading coefficient of ξ1f is also positive under all real embeddings. Similarly,17

if µ1 is sufficiently close to µ under all archimedean valuations of k, then h1(T ) =18

ξ1f(T ) + µ1 has no real roots under all real embeddings of k. �19

6.7. A subset of k Diophantine over K. We now address the issue of giving a20

Diophantine definition of a set of constants guaranteed to contain constants ξ1, µ121

we used in Propositions 6.22 and 6.25.22

Proposition 6.26. The following statements are true.23

(1) There exists a Diophantine over K set of constants A such that for any24

number field H ⊆ k and any finite collection q1, . . . , qr of primes of H, the25

set {(b, . . . , b) : b ∈ A ∩H} ⊂ Ar is dense in Hq1 × . . .×Hqr under the product26

topology.27

(2) There exists a Diophantine over K set of constants A such that for any28

number field H ⊆ k and all real embeddings σ1, . . . , σr of H, the set {(b, . . . , b) :29

b ∈ A ∩H} ⊂ Ar is dense in σ1(H)× . . .× σr(H) under the product topology.30

Proof. For the p-adic case the proof follows from Theorem 5.5 of [7]. For the31

Archimedean case, we use Lemma 3.6 and Section 3.6 of [17] together with32

Proposition 5.1 of [7]. �33

6.8. Constructing extensions of K so that a given prime has a factor of34

degree 1. So far we have assumed that the prime T of K is a degree 1 prime. If35

T is not of degree 1, in all but one case we can remedy the situation by taking a36

finite extension of k.37

Lemma 6.27. Let q be a prime divisor of K of degree greater than 1. Then there38

exists a finite constant field extension k̂ of k such that in k̂K the divisor q has at39

least one factor of degree 1.40

Proof. Let Rq be the residue field of q. Then Rq is isomorphic to a finite extension41

of k, and we can identify Rq with this extension. Let s(T ) ∈ k[T ] be the monic42
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irreducible polynomial of a generator α of Rq over k. Let qi be a factor of q in K(α).1

Let Ri be the residue field of qi. Since the power basis of α is an integral basis2

with respect to q, we can determine the factorization of q in K(α) by considering3

the factorization of s(T ) over Rq (see [11], Chapter I, Section 8, Proposition 25). By4

assumption on s(T ) we have that over Rq it has at least one factor of degree 1. �5

6.9. The connection between an even order at a prime and being integral at a6

prime. The lemmas below show how to use information about multiplicity of the7

order at a valuation to determine whether a function is integral at the valuation.8

Lemma 6.28. Let K and T be as in Notation 6.20 and let h ∈ K be such that9

ordT(h3s+1
+ T ) is even, Then, ordTh < 0, and ordTh ≡ 0 mod 2. Conversely, if10

ordTh < 0, and ordTh ≡ 0 mod 2, we have that ordT(h3s+1
+ T ) is even.11

Proof. First assume that ordTh ≥ 0. Then ordT(h3s+1
+ T ) = ordTT = −3s, contra-12

dicting our assumptions. Thus ordTh < 0, and since ordTT = −3s we have that13

ordTh
3s+1

< ordTT . Consequently, ordT(h3s+1
+T ) = ordTh

3s+1 ≡ 0 mod 2. Conversely,14

if ordTh < 0, and ordTh ≡ 0 mod 2, we have that ordT(h3s+1
+ T ) = ordTh

3s+1 ≡15

0 mod 2. �16

Lemma 6.29. Let f ∈ K. Then ordT(f 2·3s+1
T + T 2) ≡ 0 mod 2 if and only if ordTf ≥ 0.17

Proof. Suppose ordTf < 0. Since ordTT = −3s, we have that18

ordT(f 2·3s+1

T ) < ordTT
2,

and19

ordT(f 2·3s+1

T + T 2) = ordT(f 2·3s+1

T ) = 2ordT(f 3s+1

)− 3s ≡ 1 mod 2.

Conversely, assume that ordTf ≥ 0. Then ordT(f 2·3s+1
T ) > ordTT

2, and20

ordT(f 2·3s+1

T + T 2) = ordTT
2 = 2 ≡ 0 mod 2.

�21

We now complete the proof of Theorem 6.1.22

6.10. Proof of Theorem 6.1. We again review our notation and assumptions.23

We start with an odd prime p and a field k algebraic over Q. Next we assume the24

existence of a valuation v on k such that v restricts to a p-adic valuation on Q,25

and [kv : Qp] <∞. If necessary, we replace k by its finite extension to make sure k26

does not have any finite embeddings. We now consider a function field K with the27

field of constants equal to k and a function field prime T. If T is not of degree 1,28

then we once again replace k by its finite extension chosen to be isomorphic to29

the residue field of T, and we replace T by a prime above it in the extended field30

of degree 1. Replacing the original field K by its finite extension, and the original31

prime T by a prime above it in this finite extension is justified by Lemmas 6.3,6.432

and 6.27.1
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C.E. Sets over Function Fields
6.10.1. A special element T . For all sufficiently large s ∈ Z>0, by Lemma 6.18, we2

can find a T ∈ K with a pole at T of order 3s, and no other poles. In other words,3

ordTT = −3s and for any other prime a of K, we have that ordaT ≥ 0. We fix such4

an element. Note that, by Proposition 2.1, T is totally ramified over k(T ) with the5

ramification degree 3s. Hence, for any h ∈ k(T ) we have that 3s · deg(h) = −ordTh,6

and deg(h) ≡ 0 mod 2 if and only if ordTh ≡ 0 mod 2. (For a rational function we7

define the degree to be the difference of the degrees of the numerator and the8

denominator.)9

6.10.2. Defining a subset of K containing all polynomials in T of even degree, and
no element of K with an odd degree pole at T. Let h ∈ k[T ]. Then by Proposition
6.22 and Proposition 6.26, Part 1, we have that ordTh ≡ 0 mod 2 or equivalently
deg(h) ≡ 0 mod 2 if and only if there exists ξ, µ,X, Y, Z,W ∈ K such that

X2 − aY 2 − bZ2 + abW 2 = ξh+ µ,(6.10)

ξ ∈ A \ {0}, µ ∈ A.(6.11)

We remind the reader that A ⊂ k is Diophantine over K. At the same time, if h ∈ K10

satisfies (6.10), then ordTh ≡ 0 mod 2.11

6.10.3. Defining a subset of K containing all rational functions in T of even degree12

and no element of K of odd order at T. Please note that for any h ∈ k(T ), we have13

that ordTh ≡ 0 mod 2 if and only if h =
h1

h2

, where h1, h2 ∈ k[T ] \ k, h2(T ) 6= 0 and14

deg(h1) ≡ deg(h2) ≡ 0 mod 2. Indeed, suppose h =
g1

g2

, g2 6= 0, g1, g2 ∈ k[T ] \ k. If15

deg(h) is even, then deg(g1) − deg(g2) is even. Suppose deg(g1) = 2r + 1, r ∈ Z>0.16

Then note that h =
Tg1

Tg2

, where we can set h1 = Tg1, h2 = Tg2 to reach the desired17

conclusion. If either g1 or g2 is a constant, then let h1 = T 2g1, h2 = T 2g2 to reach18

the desired conclusion once again.19

Let h ∈ K be such that r = 1, 2 there exists ξr, µr, Xr, Yr, Zr,Wr ∈ K such that

X2
r − aY 2

r − bZ2
r + abW 2

r = ξr(h
3s+1

r + T ) + µr,(6.12)

ξr ∈ A \ {0}, µr ∈ A.(6.13)

where h2 6= 0 and h =
h1

h2

. By Proposition 6.6, we have that ord(h3s+1

r +T ) is even for20

r = 1, 2. By Lemma 6.28, we then conclude that ordT(hr) is even. Consequently,21

ordTh is even.22

Conversely, if h ∈ k(T ) and deg(h) is even, we can write h as a ratio of two23

polynomials h1, h2 of positive even degrees. If deg(hr) is positive and even, then24

deg(h3s+1

r + T ) is also positive and even, and therefore we can satisfy (6.12) over K25

by Proposition 6.22.26

6.10.4. Defining a subset of K containing all rational functions of T integral at T27

(or of non-positive degree) and no functions of K with a pole at T. Consider now28

the set of f ∈ K satisfying the following equations.1
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f 2·3s+1

T + T 2 =
h1

h2

(6.14)

X2
j,r − aY 2

j,r − bZ2
j,r + abW 2

j,r = ξj,r(h
3s+1

r + T ) + µj,r, for j = 1, 2 and r = 1, 2(6.15)

ξj,r ∈ A \ {0}, µj,r ∈ A.(6.16)

By Proposition 6.6 and Lemma 6.28, we have that ordThr ≡ 0 mod 2. Therefore,2

(6.17) ordT(f 2·3s+1

T + T 2) ≡ 0 mod 2,

and thus ordTf ≥ 0 by Lemma 6.29.3

Conversely, if f ∈ k(T ) and deg(f) is even, then (6.17) holds and we can choose4

h1, h2 ∈ k[T ] of even positive degrees such that (6.14) holds. By Lemma 6.28, we5

also have that h3s+1

r + T will be a polynomial of even degree, and by Proposition6

6.22, we can satisfy (6.14)–(6.16).7

6.10.5. Defining the valuation ring RT of T in K. Let n := [K : k(T )] = 3s. We claim8

that RT can be defined as follows: w ∈ RT if and only if there exist9

ξi,r, µi,r, Ui, hi,r, Xi,r, Yi,r, Zi,r,Wi,r ∈ K
with r ∈ {1, 2}, i ∈ {0, . . . , n− 1} such that10

(6.18) wn + Un−1w
n−1 + . . .+ U0 = 0 &

11

(6.19)
n−1∧
i=0

((TU2·3s+1

i + T 2) =
hi,1
hi,2

) &

12

(6.20)
n−1∧
i=0

2∧
r=1

X2
i,r − aY 2

i,r − bZ2
i,r + abW 2

i,r = ξi,r(h
3s+1

i,r + T ) + µi,r &

13

(6.21) ∀i ∈ {0, . . . , n− 1}, r ∈ {1, 2} (ξi,r ∈ A \ {0} & µi,r ∈ A).

First suppose that Equations (6.18)–(6.21) are satisfied. Then, since A ⊂ k, and14

ξi,r 6= 0, by Proposition 6.2, we have that ordT(h3s+1

i,r + T ) is even, and therefore, by15

Lemma 6.28, ordThi,r is even and so is ordT(TU2·3s+1

i + T 2). Hence, by Lemma 6.29,16

∀i ∈ {0, . . . .n− 1} ordTUi ≥ 0.17

Suppose now that ordTw < 0. In this case,18

ordT(wn + Un−1w
n−1 + . . .+ U0) = n · ordTw < 0,

contradicting the fact that19

ordT(wn + Un−1w
n−1 + . . .+ U0) = ordT0 =∞.

Therefore, if for some w ∈ K we have that Equations (6.18)–(6.21) can be satisfied20

over K, then ordTw ≥ 0.21

Conversely, suppose w ∈ K,ordTw ≥ 0. Then, by Corollary 2.8 we have that w22

is integral over the local subring R1/T of k(T ) containing all functions U ∈ k(T )23

without a pole at the valuation that is the pole of T in k(T ). In other words,24

R1/T consists of all rational functions U ∈ K(T ) with deg(U) ≤ 0, or, equivalently1
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ordTU ≥ 0. Hence, w will be a root of a monic polynomial (6.18) with Ui ∈ R1/T . If2

ordTUi ≥ 0, then, by Lemma 6.29, ordT(T · U2·3s+1

i + T 2) is even, or in other words,3

(T · U2·3s+1

i + T 2) is a rational function in T of even degree. Consequently, we can4

write each Ui =
hi,1
hi,2

, where hi,r are polynomials in T of even degrees. Thus, h3s+1

i,r +T5

is a polynomial in T of even degree, and we can find constants in A so that (6.20)6

can be satisfied over K. This concludes the proof of Theorem 6.1.7

8

We now proceed to prove Theorem 6.2.9

6.11. Proof of Theorem 6.2. In almost every way the proof of Theorem 6.2 is the10

same as the proof of Theorem 6.1. So we confine ourselves to discussing only11

those parts where there are differences. We will consider every part of the proof of12

Theorem 6.1 and indicate what changes, if any, are required.13

We start with examining Subsection 6.10.1. In this part of the proof we consider14

a prime T and determine whether we can assume that T is of degree 1. For15

Theorem 6.2, we consider only primes T with residue fields embeddable into R.16

If T is not of degree 1, then its residue field is isomorphic to a finite extension k̂17

of k. By Lemma 6.27, in the extension k̂K of K the prime T will have a factor of18

degree 1. As in Subsection 6.10.1, we can extend our field of constants k, but the19

extended field must still be embeddable into R. This condition will be satisfied20

for k̂, given our assumptions on T. Thus, as in the proof of Theorem 6.1, we can21

assume that T is of degree 1. We can again produce an element T ∈ K such that22

T is the only pole of T and ordTT = −3s.23

From this point on, the proof of Theorem 6.2 is exactly the same as the proof24

of Theorem 6.1 with (6.10) replaced by (6.8), and the set A defined to satisfy25

the conditions of Proposition 6.25. The existence of such a set A follows from26

Proposition 6.26(4).27

7. DIOPHANTINE DEFINITION OF C.E. SETS OVER RINGS OF INTEGRAL FUNCTIONS28

In this section we extend results of J. Demeyer to show that c.e. sets are defin-29

able over any ring of integral functions, assuming the constant field is a number30

field. Since Demeyer showed that such a result holds over polynomial rings over31

number fields, and since rings of integral functions are finitely generated mod-32

ules over polynomial rings, it is enough to show that we can give a Diophantine33

definition of polynomial rings over the rings of integral functions to achieve the34

desired result. Below we state the main theorem of the section.35

Theorem 7.1. Let K be a function field over a field of constants that is a finite36

extension of Q, and let S be a finite non-empty collection of its valuations. Then37

every c.e. subset of OK,S is Diophantine over OK,S .38

Remark 7.2. We remind the reader that the discussion of c.e. subsets of function39

fields can be found at the beginning of Section 5.1
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7.1. Arbitrary powers of a ring element. In this section we again turn our2

attention to the rings of S -integers of function fields, discussed in Sections 2 and3

3, and consider the case where the field is not necessarily rational. We recall the4

notation and assumptions we used in these sections and add new ones.5

Notation and Assumptions 7.3.6

• Let K, k, S , a, q, q∞, T = a−
√
a2 − 1, be as in Proposition 3.5.7

• Let R = OK,S , R
′ = R[T ], R′′ = R[T ] ∩ OK(T ),{q∞}. Since T satisfies a monic8

polynomial of degree 2 over R, every element of R[T ] is of the form a+ bT ,9

where a, b ∈ R.10

• Let S ′ be the set of primes of K(T ) lying above primes of S .11

• Let Q∞ be the prime below q∞ in Q(T ). In other words Q∞ corresponds to12

the infinite valuation of Q(T ). Observe that q∞ is the only prime above Q∞13

in K(T ).14

• Let d = [K(T ) : Q(T )].15

• Let L be the Galois closure of K(T ) over Q(T ).16

• Let m = [L : Q(T )].17

• Let β ∈ OK(T ),{q∞} generate K(T ) over Q(T ). Since β ∈ K(T ), we have that18

β = aβ + bβT, αβ, bβ ∈ K.19

• Let t1, . . . , ts be all of the factors of q∞ and Q∞ in L.20

• For each positive integer m let ξm be a primitive m-th root of unity.21

• For each positive integer m let Φm be the monic irreducible polynomial of ξm22

over Q. We refer to polynomials of this form as “cyclotomic” polynomials.23

• Let um = deg(Φm) = ϕ(m).24

7.2. Outline of the proof. For the main result of the section we need to construct25

a Diophantine definition of arbitrary powers of a non-constant element of the ring.26

It turns out that it is more convenient to construct this definition for an element27

T of a quadratic extension R′ of the ring R. We will proceed as follows.28

(1) Observe that since T 2 = 2aT − 1, for any positive m we have that29

Tm = am + bmT, am, bm ∈ R.
It also follows that any polynomial P (T ) ∈ R[T ] can be written in the form30

aP + bPT with aP , bP ∈ R.31

(2) We can assume that β ∈ OK(T ),{q∞} generating K(T ) over Q(T ) is in fact in R′′32

and aβ, bβ ∈ R. Let γ ∈ R[T ] generate K(T ) over Q(T ). Such a γ always exists33

since the fraction field of R[T ] is K(T ). Then γ = aγ + bγT , where aγ, bγ ∈ R.34

Let D be a common denominator of the coefficients of the monic irreducible35

polynomial of γ over Q(T ). Then Dγ satisfies a monic irreducible polynomial36

over Q[T ] and therefore is in OK(T ),{q∞}. At the same time Dγ = Daγ +DbγT37

also generates K(T ) over Q(T ). It remains to show that Daγ +DbγT ∈ R[T ].38

Since D ∈ Q[T ], we have that D = aD + bDT , where aD, bD ∈ R and therefore39

D ∈ R[T ]. Since R[T ] is a ring, we have that Daγ +DbγT ∈ R[T ].40

(3) Using Proposition 3.5 we show that the set41

Pow(T ) = {(a, b) ∈ R2|∃m ∈ Z≥0 : a+ bT = Tm}
is Diophantine over R.1
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(4) Next we use the set Pow(T ) to show that the set2

Z(T ) = {(a, b) ∈ R2|a+ bT ∈ Z[T ]}
is Diophantine over R. This is the main technical result of the section.3

(5) At this point, using results of J. Denef, we deduce that for any c.e. set4

A ⊂ Z[T ]r, the set of the form5

B = {(a1, b1, . . . , ar, br)|ai, bi ∈ R, (a1 + b1T, . . . , ar + brT ) ∈ A}
is Diophantine over R. Indeed, using results of Denef we have that every c.e.
subset of Z[T ]r for any positive integer r is Diophantine over Z[T ]. Therefore,
there exists a polynomial P (x1, . . . , xr, z1, . . . , z`) with coefficients in Z[T ] such
that (x1, . . . , xr) ∈ A if and only if ∃z1, . . . , z` ∈ Z[T ] : P (x1, . . . , xr, z1, . . . , z`) = 0.
Rewriting xi = ai+biT with (ai, bi) ∈ Z(T ) and zj = cj +djT with (cj, dj) ∈ Z(T ),
we now have that (a1, b1, . . . , ar, br) ∈ B if and only if

(ai, bi) ∈ Z(T ),

∃(cj, dj) ∈ Z(T ) : P (a1 + b1T, . . . , ar + brT, c1 + d1T, . . . , a` + b`T ) = 0.

We can also rewrite the coefficients of P in the form C +DT , where C,D are6

fixed elements of R. Next, multiplying out all the terms in7

P (a1 + b1T, . . . , ar + brT, c1 + d1T, . . . , a` + b`T ),

using the fact that T 2 = 2aT−1 and that {1, T} are linearly independent over8

R, we can replace the equation P (a1+b1T, . . . , ar+brT, c1+d1T, . . . , a`+b`T ) = 09

first by an equivalent equation10

P1(a1, b1, . . . , ar, br, c1, d1, . . . , c`, d`) + TP2(a1, b1, . . . , ar, br, c1, d1, . . . , c`, d`) = 0,

where P1, P2 are polynomials with coefficients in R, and then by a system11

(7.22)
{
P1(a1, b1, . . . , ar, br, c1, d1, . . . , c`, d`) = 0,
P2(a1, b1, . . . , ar, br, c1, d1, . . . , c`, d`) = 0

Thus (a1, b1, . . . , ar, br) ∈ B if and only if (ai, bi) ∈ Z(T ) and12

∃(c1, d1, . . . , c`, d`) ∈ R2`

such that (cj, dj) ∈ Z(T ) and the system (7.22) is satisfied.13

(6) We now revisit the issue of effective enumeration of the algebraic objects14

under consideration we initiated in Section 5. By assumption we have that15

K is a function field over the field of constants k. Therefore, there exists16

Y ∈ R \ k such that K/k(Y ) is a finite extension. Since by assumption k17

is a number field, we can enumerate k effectively or, in other words, k18

has a computable presentation where k is represented as a set of linear19

combinations of powers of some element δ generating k over Q. Further, Z20

is a computable subset of k under this presentation. Similarly, we have21

computable presentations of Z[Y ], k[Y ] and k(Y ) such that both Z[Y ] and22

k[Y ] are computable subsets of k(Y ). Without loss of generality, we can23

assume that K is generated by an element α ∈ R with an explicitly given24

minimal polynomial over k[Y ]. Hence, we have a computable presentation25

of K such that k(Y ), Z[Y ] and k[Y ] are computable subsets of K. Further,1
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since a is a fixed element of R, we can assume it is given to us by its2

coordinates with respect to the power basis of α. Consequently, T =3

a −
√
a2 − 1 satisfies the monic irreducible polynomial S(t) over K of the4

form t2−2at+1 and the coefficients of this polynomial are given explicitly in5

terms of the power basis of α. Thus, K(T ) has a computable presentation6

such that K, k(Y ), k[Y ],Z[Y ] are computable subsets of K(T ) under this7

presentation.8

We also have a fixed β ∈ R′′ generating K(T ) over Q(T ) and we can9

assume it is given to us via its coordinates with respect to the power basis10

of α. Given an element x ∈ K(T ) we can find a 2d-tuple11

(x0(T ), y0(T ), . . . , xd−1(t), yd−1(T )) ∈ Z[T ]2d

such that x =
d−1∑
i=0

xi(T )

yi(T )
βi simply by effectively listing all such linear com-12

binations of the first d powers of β and looking for equality with the given13

element x. Hence, Z[T ] is a computable subset of K(T ).14

Now observe that the set of 2d-tuples15

AY = (c0(T ), u0(T ), . . . , cd−1(T ), ud−1(T )) ⊂ Z[T ]2d

such that u0(T ) . . . ud−1(T ) 6= 0 and
d−1∑
i=0

ci(T )

ui(T )
βi ∈ Z[Y ] is computable since16

Z[Y ] is computable in K(T ), and therefore AY is c.e. Consequently, AY is17

Diophantine over Z[T ]. Hence by (5), the set18

BY = {(a0, b0, . . . , a2d−1, b2d−1) ∈ R4d, (a0 + b0T, a1 + b1T, . . . , a2d−1 + Tb2d−1) ∈ AY }
is Diophantine over R. We can rewrite BY as19

BY = {(a0, b0, . . . , a2d−1, b2d−1) ∈ R4d, c :=
d∑
i=1

a2i−2 + b2i−2T

a2i−1 + b2i−1T
βi−1 ∈ Z[Y ]}.

Observe that c will take every value in Z[Y ]. We can replace βi by aβ,i + bβ,iT20

with aβ,i, bβ,i ∈ R, since βi ∈ R′′. Further, using the fact that the conjugate21

of T over K is T−1, and T + T−1 = 2a ∈ R, we can rewrite22

a2i−2 + b2i−2T

a2i−1 + b2i−1T
=

(a2i−2 + b2i−2T )(a2i−1 + b2i−1T
−1)

a2
2i−1 + b2

2i−1 + 2aa2i−1b2i−1
23

=
(a2i−2 + b2i−2T )(a2i−1 + b2i−1(2a− T ))

a2
2i−1 + b2

2i−1 + 2aa2i−1b2i−1
24

=
(a2i−2 + b2i−2T )(a2i−1 + 2ab2i−1 − Tb2i−1)

a2
2i−1 + b2

2i−1 + 2aa2i−1b2i−1

=
â2i−2 + b̂2i−2T

â2i−1

,

where25

â2i−2 = a2i−2(a2i−1 + 2ab2i−1) + b2i−2b2i−1,26

b̂2i−1 = b2i−2(a2i−1 + 2ab2i−1)− b2i−1a2i−2 − 2ab2i−2b2i−1 = b2i−2a2i−1 − b2i−1a2i−2,1
â2i−1 = a2

2i−1 + b2
2i−1 + 2aa2i−1b2i−1.
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So we now have that2

d∑
i=1

a2i−2 + b2i−2T

a2i−1 + b2i−1T
βi =

d∑
i=1

â2i−2 + b̂2i−2T

â2i−1

(aβ,i + bβ,iT ) =

3
d∑
i=1

â2i−2aβ,i + b̂2i−2bβ,iT
2 + (â2i−2bβ,i + b̂2i−2aβ,i)T

â2i−1

.

Since T 2 = 2aT − 1 we have that4

d∑
i=1

a2i−2 + b2i−2T

a2i−1 + b2i−1T
βi =

5
d∑
i=1

â2i−2aβ,i − b̂2i−2bβ,i + (2ab̂2i−2bβ,i + â2i−2bβ,i + b̂2i−2aβ,i)T

â2i−1

∈ Z[Y ] ⊂ R.

Hence,6
d∑
i=1

2ab̂2i−2bβ,i + â2i−2bβ,i + b̂2i−2aβ,i
â2i−1

= 0

and7
d∑
i=1

â2i−2aβ,i − b̂2i−2bβ,i
â2i−1

= c ∈ Z[Y ].

Let Â =
∏d

i=1 â2i−1, Âi = Â
â2i−1

. Then8

d∑
i=1

Âi(â2i−2aβ,i − b̂2i−2bβ,i) = Âc.

Thus,9

Z[Y ] = {c ∈ R|∃a0, b0, . . . , a2d−1, b2d−1 ∈ BY :
d∑
i=1

Âi(â2i−2aβ,i − b̂2i−2bβ,i) = Âc},

where Â, Âi, â2i−2, b̂2i−2 are fixed polynomials in a0, b0, . . . , a2d−1, b2d−1. Hence10

Z[Y ] is Diophantine over R. Now using the result of Denef one more time,11

we can assert that all c.e. subsets of R are Diophantine.12

7.3. Defining R′′ over R. To simplify the proof, we will have K(T )-variables range13

not over R′ = R[T ] but over a subring R′′ of R′, where only one valuation q∞ is14

allowed as a pole of non-constant elements of the ring. The following lemma15

shows that this restriction is a Diophantine condition relative to R.16

Lemma 7.4. The set {(a, b) ∈ R2|a+ Tb ∈ R′′} has a Diophantine definition over R.17

Proof. Observe that once we fix an element a ∈ OK,S , the field K(T ) is fixed. The18

constant field of K is a number field. Therefore, by Theorem 6.1, for each t ∈ S ′1
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we have that the valuation ring Rt of t has a Diophantine definition over K(T ).2

Hence, Rt ∩R′ has a Diophantine definition over R′. Thus,3

R′′ =
⋂

t∈S ′\{q∞}

(Rt ∩R′)

is existentially definable over R′. Consequently, there exists a polynomial P (a+4

bT, z1, . . . , zm) with coefficients in R′ such that for any a, b ∈ R the equation P (a +5

bT, z̄) = 0 has solutions z1, . . . , zm ∈ R′ if and only if a + bT ∈ R′′. Using the6

fact that 1 and T are linearly independent over K, and T 2 − 2a + 1 = 0, we can7

replace P (a+ bT, z1, . . . , zm) by a polynomial Q(a, b, v1, . . . , vr) such that for any pair8

(a, b) ∈ R2 the equation Q(a, b, v1, . . . , vr) = 0 has solutions v1, . . . , vr ∈ OK,S if and9

only if a+ bT ∈ R′′. �10

7.4. A Diophantine definition of root-of-unity polynomials. In ([4]), J. Demeyer11

defined a set C of root-of-unity polynomials to be the set of polynomials F ∈ Z[T ]12

satisfying one of the following three equivalent conditions:13

(1) F is a divisor of T u − 1 for some u > 0.14

(2) F or −F is a product of distinct cyclotomic polynomials.15

(3) F (0) = ±1, F is squarefree, and all the zeros of F are roots of unity.16

Observe that the constant polynomials F (T ) = ±1 satisfy the conditions above.17

The polynomials in C have a property that will help us to construct a Diophan-18

tine definition of arbitrary polynomials in T over R′′ using the so-called "weak19

vertical method" (see [20]). This property is described in the proposition below20

taken from J. Demeyer’s paper.21

Proposition 7.5. Let F ∈ Z[T ] with F (0) ∈ {−1, 1}, and let ` ∈ Z>0. In this case22

there exists a polynomial M ∈ C such that F ≡M mod T ` in Z[T ].23

Proof. Proposition 2.7 of [4]. �24

Before we can use polynomials in C to construct a Diophantine definition of25

Z[T ] over R′′, we need to construct a Diophantine definition of C over R′′. The26

construction of this definition is the main result of this section. We start with27

a technical lemma to be used in determining the value of polynomials for some28

values of variables.29

Lemma 7.6. Let γ ∈ R′′ and assume that γ ≡ b mod (T − c) in R′′ with b, c ∈ Z. Then30

NK(T )/Q(T )(γ) = G(T ) ∈ Q[T ], and G(c) = ±bd.31

Proof. First, by Corollary 2.8 we have that R′′ is contained in the integral closure32

of Q[T ] in K(T ). Therefore, all coefficients of the monic irreducible polynomial of33

β over Q(T ) are polynomials in Q[T ]. Hence,34

G(T ) = NK(T )/Q(T )(γ) ∈ Q[T ].

Let RL be the integral closure of R′′ in L (the Galois closure of K(T ) over Q(T )).35

Next consider the congruence γ ≡ b mod (T − c) in RL. Let γ1 = γ, . . . , γm be all of1
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the conjugates of γ over Q(T ). Since T, c, b ∈ Q(T ), we have that γi ≡ b mod (T − c)2

in RL. Thus,3

NL/Q(T )(γ) =
m∏
i=1

γi ≡ bm mod (T − c)

in RL ∩Q(T ) = Q[T ]. Further,4

NL/Q(T )(γ) = (NK(T )/Q(T )(γ))[L:K(T )] = G(T )m/d.

Therefore, G(T )m/d ≡ bm mod (T − c), and G(c)m/d = bm. Consequently, G(c) = ξ · bd,5

where ξ is a root of unity. Since G(c) ∈ Q, we conclude that G(c) = ±bd. �6

The next lemma begins the construction of a Diophantine definition of C over7

R′′.8

Lemma 7.7. Suppose α ∈ R′′, and let m1, . . . ,mr, p1, . . . , pr, c ∈ Z>0 be defined as9

in Lemma 8.2. Let n1, . . . , nr ∈ Z>0 be such that ordpiΦmi
(c) = ni. Suppose there10

exists b ∈ Z be such that ordpib = ni and Equations (1)–(4) below hold with variables11

ranging over R′′.12

(1) α|(T ` − 1) in R′′,13

(2) α ≡ ±1 mod T .14

(3) ordq∞α = ordq∞T
∑r

i=1 umi .15

(4) α ≡ b mod (T − c) in R′′.16

In this case NK(T )/Q(T )(α) =
∏r

i=1 Φmi
(T )d, and α ∈ Q(T ). Conversely, if α =17 ∏r

i=1 Φmi
(T ), then there exists b ∈ Z be such that ordpib = ni and (1) – (4) can18

be satisfied in the remaining variables over R′′.19

Proof. Let Q∞ be the prime below q∞ in Q[T ]. By Corollary 2.11, the prime q∞ is20

the only prime above Q∞ in K(T ), and the ramification degree e of q∞ over Q∞ is21

equal to −ordq∞T . Therefore, by Proposition 2.1, we have that22

f(q∞/Q∞) = −d/ordq∞T,

where f(q∞/Q∞) is the relative degree of q∞ over Q∞. Next observe that since α23

has a pole at q∞ only, α is integral with respect to Q[T ], and therefore NK(T )/Q(T )(α)24

is a polynomial over Q in T . Further, using the assumption that ordq∞α =25

ordq∞T
∑r

i=1 umi and by Proposition 2.1 again, we have that26

deg(NK(T )/Q(T )(α)) = −ordQ∞NK(T )/Q(T )(α) = −f(q∞/Q∞) · ordq∞(α)
27

=
d

ordq∞T
ordq∞(α) =

d

ordq∞T
(ordq∞T )

r∑
i=1

umi
= d

r∑
i=1

umi
.

Second, since α|(T ` − 1) in R′′, we have that NK(T )/Q(T )(α)
∣∣(T ` − 1)d in Q[T ]. The28

polynomial T ` − 1 does not have any multiple roots in Q̄, the algebraic closure29

of Q. Thus, the roots of NK/Q(T )(α) in Q̄ are of multiplicity at most d and are `-th30

roots of unity.31

Let G(T ) := NK(T )/Q(T )(α) ∈ Q[T ]. Then1

G(T ) = u
∏
j|`

Φj(T )aj ,
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where aj ∈ {0, 1, . . . , d} and u ∈ Q. By Lemma 7.6 and Assumption (2), we have2

that G(0) = ±1. By Lemma 8.1 we also have that
∏

j|` Φj(0)aj = ±1. Thus, we3

conclude that u = ±1. We now note that ordpiG(c) =
∑

j|` aj · ordpiΦj(ci) = aini by4

the assumption on c.5

From Assumption (4) and Lemma 7.6, we have that G(c) = ±bd. Consequently,6

for all i = 1, . . . , r, we have that ordpiG(c) = ordpib
d = d · ordpib = nid by assumption7

on b. Hence, ai = d and8

G(T ) = ±
∏

Φmi
(T )d,

since deg(G(T )) = d
∑
umi

= d
∑

deg(Φmi
(T )). Consequently,9

NK(T )/Q(T )

(
α∏r

i=1 Φmi
(T )

)
= ±1,

implying that10

α∏r
i=1 Φmi

(T )

is a unit of R′′. But the only units of this ring are elements of the constant field11

k. Hence α = µ
∏r

i=1 Φmi
(T ) for some µ ∈ k. But by Assumption 2, we have that12

α ≡ ±1 mod T , and thus µ
∏r

i=1 Φmi
(0) = ±1, implying as before that µ = ±1.13

Conversely, suppose that α =
∏r

i=1 Φmi
(T ). We show that conditions (1) – (4) are14

now satisfied. Since ` ≡ 0 mod mi, all roots of α are `-th roots of unity. So (1) is15

satisfied. Next we note (2) is satisfied by Lemma 8.1. The degree of α is
∑r

i=1 umi
.16

Hence, (3) is satisfied. Finally, by the Strong Approximation Theorem (see page17

239 of [8]) we can find b ∈ Z such that ordpib = ni = ordpiΦmi
(c) = ordpiα. �18

We now show that all conditions in Lemma 7.7 are Diophantine over R, and19

therefore the set C has a Diophantine description over R.20

Lemma 7.8. {(a, b) ∈ R|a+ bT ∈ C } is Diophantine over R.21

Proof. We need to convert our assumptions on `,m, c, b and Conditions (1) – (4) of22

Lemma 7.7 into a Diophantine definition of the set C . First consider a recursive23

subset Z of Z4 satisfying the following condition.24

(`, c, b, n) ∈ Z

if and only if25

(1) there exist r,m1, . . . ,mr ∈ Z>1 such that ` = m1 . . .mr, (mi,mj) = 1,26

(2) there exist distinct p1, . . . , pr, where for each i = 1, . . . , r we have that pi is a27

prime number, and pi − 1 ≡ 0 mod `.28

(3) ni := ordpiΦmi
(c) > 0,29

(4) For all i = 1, . . . , r, for all j such that ` ≡ 0 mod j, it is the case that j 6= mi30

implies ordpiΦj(c) = 0.31

(5) n =
∑r

i=1 ni,32

(6) For all i = 1, . . . , r, we have that ordpib = ni.1
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By the MDRP theorem Z is Diophantine over Z and therefore over R. Further,2

as we noted above, the set {(s, us, ws), s ∈ Z>0}, where us −
√
a2 − 1ws = T s, is3

Diophantine over R by Corollary 3.14. Thus Condition (1) is Diophantine. Next4

we note that α ∈ R′′, and we can replace Condition (2) with5

α− 1

T
∈ R′′ ∨ α + 1

T
∈ R′′.

Further, Condition (3) can be replaced with6

ordq∞

α

T n
= 0.

The order condition is Diophantine over R′ as explained in Section 6. We replace7

Condition (4) with the following Diophantine condition: α−b
T−c ∈ R

′′. �8

7.5. A Diophantine definition of Z[T ] over R′′. We will now use Proposition 7.59

to give an existential definition of all polynomials in Z(T ) over R′′ using the “Weak10

Vertical Method”. The idea of this method can be summarized as follows. Let11

R1 ⊂ R2. Suppose x ∈ R2, y ∈ R1, w ∈ R1 and by some measure of ”size”, to be made12

precise below, we have that w is much larger than x. Assume additionally, that13

x ≡ y mod w in R2. Then x ∈ R1.14

7.5.1. A bound on “size”. In our case the “size” of an element X ∈ R′′ is its order15

at q∞. Since q∞ is the only pole allowed for elements of R′′, the order at q∞ is in16

fact the degree of the pole divisor of X or the height of X. We consider elements17

of R′′ in terms of their coordinates with respect to the power basis of β. We want18

to bound the order at Q∞ of the coordinates of an element X ∈ R′′ with respect to19

the power basis of β in terms of the order at q∞ of the element itself. Before we20

start, we make the following observation:21

Lemma 7.9. Let Z ∈ OK(T ),q∞, and let Z = g0 + g1β + . . .+ gd−1β
d−1, gi ∈ Q(T ). Let22

A = (σj(β
i)), j = 1, . . . , d, i = 0, . . . , d− 1.

Then (detA)2gi ∈ Q[T ].23

Proof. We proceed via a “Linear Algebra” proof of the sort described in Chapter 9 of24

[20]. Let L, as above, be the Galois closure of K(T ) over Q(T ). Let T = {t1, . . . , ts}25

be the set of all distinct factors of q∞ in L. Since q∞ is the only factor of the infinite26

prime Q∞ of Q(T ) in K(T ), we have that T also contains all factors of Q∞ in L.27

Let σ1 = id, . . . , σd ∈ Gal(L/Q(T )) be such that the set {σ1(β), . . . , σd(β)} contains all28

distinct conjugates of β over Q(T ).29

Now consider the following system of linear equations.30

Aā = Z̄,

where31

A = (σj(β
i)), j = 1, . . . , d, i = 0, . . . , d− 1,

1

ā = (g0, . . . , gd−1)t, Z̄ = (σ1(Z), . . . , σd(Z))t.
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(Here “t” denotes transpose.) Since σj(β) 6= σr(β) for all j 6= r ∈ {1, . . . , d}, we have2

that det(A) 6= 0 as a Vandermonde determinant. Using Kramer’s Rule, we can3

solve for g0, . . . , gd−1 in terms of det(A), σr(X) with r = 1, . . . , d. We obtain that4

gj =
detAj
detA

,

where Aj is the matrix obtained from A by replacing its j-th column by the5

column (σ1(Z), . . . , σd(Z))t. Since Z, β ∈ R′′, all entries of Aj and A have poles6

at all factors of q∞ in L, and no other poles. (This is so because q∞ and σ(q∞)7

have the same factorization in L. ) Therefore, if we set D = det2(A) ∈ Q[T ], then8

uj = Dgj = detA detAj ∈ Q(T ) ∩OL,{t1,...,ts} = Q[T ], by Corollary 2.8.9

�10

Given X ∈ OK(T ),q∞ written as X =
∑d−1

i=0 ciβ
i, ci ∈ Q(T ), we know ai = det(A)ci ∈11

Q[T ]. What we want now is a bound on the degree of ai in terms of ordq∞X. The12

next proposition gives us this bound.13

Proposition 7.10. Let X ∈ R′′, X 6∈ k, and let X =
∑d−1

i=0 ciβ
i, ci ∈ Q(T ). Let D =14

detA, ai = Dci as above. Then there exist C = C(β) ∈ R>0 dependent on β only, such15

that for all i = 0, . . . , d− 1 we have that16

deg(ai) < C|ordq∞X|.

Proof. We start with a claim concerning the order of conjugates of X over Q(T ) at17

the factors of q∞ in L.18

Claim: For any i = 1, . . . , s and any σ ∈ Gal(L/Q(T )), it is the case that19

ordtiσ(X) = ordt1X.

Proof of the claim: Since t1, . . . , ts are conjugates over K(T ) and Q(T ), the Galois20

group Gal(L/K(T )) acts transitively on the set T , and all elements of Gal(L/Q(T ))21

permute T . So, fix i ∈ {1, . . . , s} and σ ∈ Gal(L/Q(T )). For some r ∈ {1, . . . , s}, we22

have that σ(tr) = ti. Let µ ∈ Gal(L/K(T )) be such that µ(t1) = tr. Then23

ordt1X = ordσµ(t1)σµ(X) = ordtiσ(X).

Similarly, ordt1β = ordtiσ(β) for all i = 1, . . . , s, σ ∈ Gal(L/Q(T )). �24

Since ai ∈ Q[T ], we have that ordt1aj < 0. Let Ai,j be the i, j-th minor of A, as25

above. Then ordt1 detA < 0,ordt1 detAi,j < 0 and these orders depend on β only.26

Let C1 = maxi,j(|ordt1 detA|, |ordt1 detAi,j|).27

We now make the following observation we will use in our calculations below.28

Let Y =
∑

r Yr ∈ L. Assume ordt1Y < 0, and for all r we have that ordt1Yr < 0. Let Y ∗29

be such that ordt1Y
∗ = minr{ordt1Yr}. Then ordt1Y ≥ ordt1Y

∗ by a property of non-30

archimedean valuations, and −ordt1Y ≤ −ordt1Y
∗. Since ordt1Y < 0,ordt1Y

∗ < 0, it31

follows that |ordt1Y | ≤ |ordt1Y
∗|.32

Using co-factors along the j-th column, we see that detAj =
∑d−1

i=0 ±σi+1(X) detAi,j.33

Further, using the observation above and the fact ordt1σj(X) = ordt1X, we also34

conclude that1

|ordt1 detAj| = |ordt1(
d−1∑
i=0

±σi+1(X) detAi,j)| ≤ |ordt1X|+ C1 < 2C1|ordt1X|.
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Thus,2

|ordt1aj| = |ordt1 detA+ ordt1 detAj| < C1 + 2C1|ordt1X| < 3C1|ordt1X| = C|ordt1X|,
where C := 3C1. Therefore,3

deg(aj) = |ordQ∞ai| ≤ |ordq∞ai| < C|ordq∞X|,
where C = C(β) depends on β only. �4

7.5.2. Diophantine generation of Z[T ] over R = OK,S . The main proposition of this5

section is the following one.6

Proposition 7.11. The set {(a, b) ∈ OK,S |a+ bT ∈ Z[T ]} is Diophantine over R.7

Proof. Let z = z(β) be a fixed positive integer such that z(β) > C(β). We start with8

the following claim.9

Claim: Given Y ∈ R′′ \ k, the following system of equations and conditions can10

be satisfied over R′′ if only if Y ∈ Z[T ], and Y (0) = ±1.11

(7.23) M ∈ C ⊂ Z[T ],
12

(7.24) ordq∞

T `

Y z
< 0,

13

(7.25) Y ≡M mod T ` in R′′.

Proof of the claim:14

First we assume that the Equations (7.23)–(7.25) are satisfied. By Lemma 6.3,15

we can write Y =
∑d−1

i=0 ciβ
i, where ci ∈ Q(T ), Dci ∈ Q[T ], D = (detA)2. Further, by16

Proposition 7.10, we know that deg(Dci) < C(β)ordq∞Y , Next, we observe that17

Y −M = (c0 −M) + c1(T )β + . . .+ cd−1(T )βd−1,

and18
Y −M
T `

∈ OK(T ),{q∞},

by Equation 7.25. Further, by Lemma 7.919

Y −M
T `

= f0 + f1β + . . .+ fd−1β
d−1,

where Dfi ∈ Q[T ]. We can represent Y as a linear combination of powers of β20

using fi’s as21

Y = (T `f0 +M) + T `f1β + . . .+ T `fd−1β
d−1.

Since Q(T )-coordinates of elements of K(T ) with respect to the power basis of22

β are unique, we conclude that for i = 1, . . . , d− 1, fi =
ci
T `

, and Dfi =
Dci
T `
∈ Q[T ].23

Thus,24

(7.26) |ordq∞T
`| < |ordq∞Dci| < C(β)|ordq∞Y |,

or ci = 0 for i > 0. If Inequality (7.26) holds, then by Inequality (7.24) we have that1

|ordq∞Y
z| = |zordq∞Y | < |`ordq∞T | < C(β)|ordq∞Y |,
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so that z < C(β). The last inequality contradicts our assumptions on z. Conse-2

quently, we have to conclude that ci = 0 for i = 1, . . . , d− 1, and Y ∈ Q[T ].3

We now return to Inequality (7.24) and use the fact that we now know that4

Y ∈ Q[T ]. We can therefore restate this inequality as saying5

deg(T `) > deg(Y z) > deg(Y ).

Thus from Equation (7.25) we conclude that all coefficients of Y are the same as6

the first deg(Y ) coefficients of M . However, M ∈ Z[T ], and M(0) = ±1. Hence the7

same must be true of Y .8

We now assume that Y ∈ Z[T ] and Y (0) = ±1. Let ` > z·deg(Y ). Then ordq∞
T `

Y z < 0,9

and Inequality (7.24) will be satisfied. By Proposition 7.5, we can find M ∈ C to10

satisfy Equation (7.25). This completes the proof of the Claim.11

12

A few quick observations now complete the proof of the proposition. First, we13

note that if a polynomial R ∈ Z[T ], then there exists c ∈ Z such that Y = R + c14

has its constant term equal to 1. Second, we remind the reader that we have15

a Diophantine definition of elements of Z from Theorem 3.9. We also have a16

definition of non-constant elements of R′′. The non-constant elements must have17

a negative order at q∞. Third, we remind the reader that by Lemma 7.4, the set18

{a, b ∈ R|a + bT ∈ R′′} is Diophantine over R. Finally, we remind the reader that19

the set C is Diophantine over R′′ by Lemma 7.8. �20

From this point on, to complete the proof of Theorem 7.1, we proceed as in the21

proof outline starting with Part 5.22

8. APPENDIX23

This section contains some facts about roots of unity and real roots of polyno-24

mial equations collected here for the convenience of the reader.25

8.1. Roots of Unity. Below, for r ∈ Z>0, the polynomial Φr(X) ∈ Z[X] denotes the26

monic irreducible polynomial of a primitive r-th root of unity ξr.27

Lemma 8.1. For every positive integer t > 1, it is the case that Φt(0) = ±1.28

Proof. Observe that Φt(X)
∣∣∣(1 + X + . . . + X t−1) in Z[X], and therefore for some29

U(X) ∈ Z[X] we have that Φt(X)U(X) = 1 + X + . . . + X t−1. Hence, Φt(0)U(0) = 1,30

where Φt(0), U(0) ∈ Z. So, Φt(0) = ±1. �31

Lemma 8.2. Let r ∈ Z>0. Let ` = m1 . . .mr, where m1, . . . ,mr are pairwise relatively32

prime positive integers. Then there exists a set {p1, . . . , pr} of distinct prime numbers33

satisfying the following conditions:34

(1) For all i = 1, . . . , r we have that pi ≡ 1 mod `.35

(2) For any i, j ∈ Z>0 such that ` ≡ 0 mod j, ` ≡ 0 mod i and j 6= i it is the case36

that (Φj(ξi), pi) = 1 in the ring of algebraic integers of Q(ξ`).37

Further, there exists c ∈ Z>0 such that ordpi(Φmi
(c)) > 0, and for all j|`, j 6= mi we38

have that ordpiΦj(c) = 0.1
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Proof. First of all, we note that the arithmetic sequence (t`+ 1)t∈Z>0 contains infin-2

itely many primes by the Dirichlet Density Theorem (see Chapter VIII, §4 of [11]).3

Therefore, we can pick distinct primes p1, . . . , pr so that all of the primes are odd4

and none of these prime divides NQ(ξi)/Q(Φj(ξi)) for all i 6= j dividing `.5

6

Now consider Fpi, a field of pi elements for some i = 1, . . . , r. The group of units7

of this field is cyclic. Let t be a generator of the unit group. Let s ∈ Z>0 be a divisor8

of `. Then s divides pi − 1. Let r = (pi − 1)/s. Then, tr is an s-th primitive root of9

unity in Fpi and the polynomial10

(8.27) Xs − 1

factors completely in Fpi. By Hensel’s Lemma (Chapter II, §3, Proposition 3.511

of [9]), we have that the polynomial (8.27) factors completely in Qpi- the field of12

pi-adic numbers, or in other words, the s-th primitive root of unity ξs ∈ Qpi for13

all positive integers s dividing `. Let p be a prime of Q(ξs) lying above pi. Then14

(Q(ξs))p ∼= Qpi(ξs)
∼= Qpi.15

Thus, there is an embedding of Q(ξs) into Qpi that maps the ideal generated by16

a factor of pi in the ring of integers of Q(ξs) into the ideal generated by pi in the17

ring of integers of Qpi. If j 6= s for some positive integers j, s dividing `, then by18

assumption Φj(ξs) is not contained in any ideal generated by a factor of pi in the19

ring of integers of Q(ξs). Thus, in Qpi, we have that ordpi(Φj(ξs)) = 0.20

21

For each i = 1, . . . , r we pick ci ∈ Z>0 such that ordpi(ci − ξmi
) > 0, where we22

consider ξmi
as an element of Qpi. Observe that this choice of ci implies that23

ordpiΦmi
(ci) = ordpi(Φmi

(ci)− Φmi
(ξmi

)) ≥ ordpi(ci − ξmi
) > 0.

At the same time, if j is a positive integer dividing ` and j 6= mi, then by assumption24

on pi we have that25

ordpiΦj(ci) = min(ordpi(Φj(ci)− Φj(ξmi
)),ordpi(Φj(ξmi

))) = ordpi(Φj(ξmi
)) = 0.

By the Strong Approximation Theorem (see page 239 of [8]), we can find c ∈ Z26

such that27

ordpi(c− ci) > ordpi(Φmi
(ci)) > 0.

Then ordpiΦmi
(c) = min(ordpi(Φmi

(c) − Φmi
(ci)),ordpi(Φmi

(ci))) = ordpi(Φmi
(ci)). Fi-28

nally, if j divides ` and j 6= mi, then we have29

ordpi(Φj(c)) = min(ordpi(Φj(c)− Φj(ci)),ordpi(Φj(ci))) = ordpi(Φj(ci)) = 0.

�30

8.2. Real Roots.31

Proposition 8.3. Let f(t) ∈ Q[t] be a polynomial of degree d irreducible over Q such32

that all of its roots are real. Let α1 < . . . < αd be all of the roots of f(t) in R. Let33

Pr(t) ∈ Q(αr)[t]. Then there is an algorithm to determine whether Pr(t) has any real34

roots for any r ∈ {1, . . . , d}.1
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Proof. We can write Pr(t) =

∑deg(Pr(t))−1
i=0 Ar,it

i, where Ar,i ∈ Q(αr). Since Ar,i =2 ∑d−1
i=0 ar,i,jα

j
r, where ar,i,j ∈ Q, we can now rewrite3

Pr(t) =

deg(Pr(t))−1∑
i=0

(
d−1∑
j=0

ar,i,jα
j
rt
i

)
= Qr(t, αr) ∈ Q[t, αr].

Fix r ∈ {1, . . . , d} and consider the following system4

(8.28)



f(x1) = 0,
...

f(xd) = 0,
x1 − x2 = u2

1,2 + v2
1,2 + w2

1,2 + z2
1,2,

x2 − x3 = u2
2,3 + v2

2,3 + w2
2,3 + z2

2,3,
...

xd−1 − xd = u2
d−1,d + v2

d−1,d + w2
d−1,d + z2

d−1,d,
w1(x1 − x2) = 1

...
wd(xd − xd−1) = 1
Qr(t, xr) = 0.

We claim that System 8.28 has a solution (β1, . . . , βd, µ) ∈ Rd+1 if and only if5

Pr(t) has a root in R. Indeed, suppose the system has solutions in R. Then6

xi = αi, i = 1, . . . , d, and Qr(t, xr) = Pr(t) has a real root. Conversely, suppose Pr(t)7

has a real root βr. Then we can set xi = αi, and t = βr to obtain a solution for the8

system.9

By a result of A. Tarski ([25]) there is an algorithm to decide whether System10

(8.28) has real solutions. �11

Corollary 8.4. Let f(t) ∈ Q(t), α1, . . . , αd be as in Proposition 8.3. Let Pr(t) ∈ Q(αr).12

Assume further that deg(Pr(t)) is even and the leading coefficient is positive. Then13

there is an algorithm to determine whether there exists γr ∈ R such that Pr(γr) ≤ 0.14

Proof. Since limt→±∞ Pr(t) =∞, if there exists γr ∈ R such that Pr(γr) ≤ 0, then Pr(t)15

has real roots. Conversely, if Pr(t) has real roots, then for some γr ∈ R we have16

that Pr(γr) ≤ 0. �17
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