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Abstract

We introduce the notion of finitary computable reducibility on equiv-
alence relations on the domain ω. This is a weakening of the usual notion
of computable reducibility, and we show it to be distinct in several ways.
In particular, whereas no equivalence relation can be Π0

n+2-complete un-
der computable reducibility, we show that, for every n, there does exist
a natural equivalence relation which is Π0

n+2-complete under finitary re-
ducibility. We also show that our hierarchy of finitary reducibilities does
not collapse, and illustrate how it sharpens certain known results. Along
the way, we present several new results which use computable reducibil-
ity to establish the complexity of various naturally defined equivalence
relations in the arithmetical hierarchy. We also refute a possible general-
ization of Myhill’s Theorem.

1 Introduction to Computable Reducibility

Computable reducibility provides a natural way of measuring and comparing
the complexity of equivalence relations on the natural numbers. Like most no-
tions of reducibility on sets of natural numbers, it relies on the concept of Turing
computability to rank objects according to their complexity, even when those
objects themselves may be far from computable. It has found particular useful-
ness in computable model theory, as a measurement of the classical property of
being isomorphic: if one can computably reduce the isomorphism problem for
computable models of a theory T0 to the isomorphism problem for computable
models of another theory T1, then it is reasonable to say that isomorphism on
models of T0 is no more difficult than on models of T1. The related notion of
Borel reducibility was famously applied this way by Friedman and Stanley in
[10], to study the isomorphism problem on all countable models of a theory.
Yet computable reducibility has also become the subject of study in pure com-
putability theory, as a way of ranking various well-known equivalence relations
arising there.

The purpose of this article is twofold. First, we present several new results
which use computable reducibility to establish the complexity of various nat-
urally defined equivalence relations in the arithmetical hierarchy. In doing so,
we continue the program of work already set in motion in [6, 2, 11, 5, 1, 12]
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and augment their results. However, as part of our efforts, we came to consider
certain reducibilities weaker than computable reducibility, and we use this ar-
ticle as an opportunity to introduce these new, finitary notions of reducibility
on equivalence relations, and to explain some of their uses. We believe that
researchers familiar with computable reducibility will find finitary reducibility
to be a natural and appropriate measure of complexity, not to supplant com-
putable reducibility but to enhance it and provide a finer analysis of situations
in which computable reducibility fails to hold.

Computable reducibility is readily defined. It has gone by many different
names in the literature, having been called m-reducibility in [2, 11, 1] and FF-
reducibility in [7, 9, 8], in addition to a version on first-order theories which was
called Turing-computable reducibility (see [3, 4]).

Definition 1.1 Let E and F be equivalence relations on ω. A reduction from
E to F is a function g : ω → ω such that

∀x, y ∈ ω [x E y ⇐⇒ g(x) F g(y)]. (1)

We say that E is computably reducible to F , written E ≤c F , if there exists
a reduction from E to F which is Turing-computable. More generally, for any
Turing degree d, E is d-computably reducible to F if there exists a reduction
from E to F which is d-computable.

There is a close analogy between this definition and that of Borel reducibility :
in the latter, one considers equivalence relations E and F on the set 2ω of
real numbers, and requires that the reduction g be a Borel function on 2ω.
In another variant, one requires g to be a continuous function on reals (i.e.,
given by a Turing functional ΦZ with an arbitrary real oracle Z), thus defining
continuous reducibility on equivalence relations on 2ω.

So a reduction from E to F maps every element in the field of the relation
E to some element in the field of F , respecting these equivalence relations. Our
new notions begin with binary computable reducibility. In some situations, while
it is not possible to give a computable reduction from E to F , there does exist
a computable function which takes each pair 〈x0, x1〉 of elements from the field
of E and outputs a pair of elements 〈y0, y1〉 from that of F such that y0Fy1 if
and only if x0Ex1. Likewise, an n-ary computable reduction accepts n-tuples ~x
from the field of E and outputs n-tuples ~y from F with (xiExj ⇐⇒ yiFyj) for
all i < j < n, and a finitary computable reduction does the same for all finite
tuples. Intuitively, a computable reduction (as in Definition 1.1) does this not
just for finite tuples, but for all elements from the field of E simultaneously.
A computable reduction clearly gives us a computable finitary reduction, and
hence a computable n-reduction for every n. (For n = 2, the reader may have
noticed that binary computable reducibility is equivalent to m-reducibility from
the set E to the set F .)

At first we did not expect much from this new notion, but we found it to be
of increasing interest as we continued to examine it. This paper proceeds much
as our investigations proceeded. First, in Section 2, we present the equivalence
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relations on ω which we set out to study. We derive a number of results about
them, and by the time we reach Proposition 2.7, it should seem clear to the
reader how the notion of finitary reducibility arose for us, and why it seems
natural in this context. The exact definitions of n-ary and finitary reducibility
appear as Definition 3.1. In Sections 3 and 4, we study finitary reducibility
in its own right. We produce natural Π0

n+2 equivalence relations defined by
equality among Σ0

n sets, which are complete under finitary reducibility among
all Π0

n+2 equivalence relations, a result of particular interest since it is known
that, precisely when m ≥ 2, no equivalence relation can be Π0

m-complete under
computable reducibility. Subsequently we show that the hierarchy of n-ary re-
ducibilities does not collapse, and indeed exhibit a standard equivalence relation
which is Π0

2-complete under 3-ary reducibility but not under 4-ary reducibility.
Finally, in Section 5, we establish some further results on computable reducibil-
ity, including a proof that Myhill’s Theorem does not apply to the relation of
computable reducibility, even in a very simple context.

2 Natural Equivalence Relations on ω

The following definition introduces several natural equivalence relations which
we will consider in this section. Here, for a set A ⊆ ω, we write A[n] = {x :
〈x, n〉 ∈ A} for the n-th column of A when ω is viewed as the two-dimensional
array ω2 under the standard computable pairing function 〈·, ·〉 from ω2 onto ω.

Definition 2.1 First we define several equivalence relations on 2ω.

• Eperm = {〈A,B〉 | (∃ a permutation p : ω → ω)(∀n)A[n] = B[p(n)]}.

• ECof = {〈A,B〉 | For every n, A[n] is cofinite iff B[n] is cofinite}.

• EFin = {〈A,B〉 | For every n, A[n] is finite iff B[n] is finite}.

Each of these relations induces an equivalence relation on ω, by restricting to
the c.e. subsets of ω and then allowing the index e to represent the set We, under
the standard indexing of c.e. sets. The superscript “ce” denotes this, so that,
for instance,

Ece
perm = {〈i, j〉 | (∃ a permutation p : ω → ω)(∀n)W

[n]
i = W

[p(n)]
j }.

Similarly we define Ece
Cof and Ece

Fin, and also the following two equivalence rela-

tions on ω (where the superscripts denote oracle sets, so that WD
i = dom(ΦD

i )):

• En
= = {(i, j) |W ∅

(n)

i = W ∅
(n)

j }, for each n ∈ ω.

• En
max = {(i, j) | maxW ∅

(n)

i = maxW ∅
(n)

j }, for each n ∈ ω.

In En
max, for any two infinite sets W ∅

(n)

i and W ∅
(n)

j , this defines 〈i, j〉 ∈ En
max,

since we consider both sets to have the same maximum +∞.
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2.1 Π0
4 equivalence relations

Here we will clarify the relationship between several equivalence relations oc-
curring naturally at the Π0

4 level. Recall the equivalence relations E3, Eset, and
Z0 defined in the Borel theory. Again the analogues of these for c.e. sets are
relations on the natural numbers, defined using the symmetric difference 4:

i Ece
3 j ⇐⇒ ∀n [|(Wi)

[n]4(Wj)
[n]| <∞]

i Ece
set j ⇐⇒ {(Wi)

[n] | n ∈ ω} = {(Wj)
[n] | n ∈ ω}

i Zce
0 j ⇐⇒ lim

n

|(Wi4Wj) � n|
n

= 0

The aim of this section is to show that the situation in the following picture
holds for computable reducibility.

Ece
set ≡c E

ce
perm ≡c E

ce
Cof ≡c E

2
=

Ece
3 ≡c Z

ce
0

Hence all these classes fall into two distinct computable-reducibility degrees,
one strictly below the other. Even though no Π0

4 class is complete under ≤c, we
will show that each of these classes is complete under a more general reduction.

The three classes Ece
3 , E

ce
set and Zce

0 are easily seen to be Π0
4. This is not as

obvious for Ece
perm.

Lemma 2.2 The relation Ece
permis Π0

4, being defined on pairs 〈e, j〉 by:

∀k∀n0 < · · · < nk ∃ distinct m0, . . . ,mk ∀i ≤ k (W [ni]
e = W

[mi]
j ),

in conjunction with the symmetric statement with Wj and We interchanged.

Proof. Since “W
[ni]
e = W

[mi]
j ” is Π0

2, the given statement is Π0
4, as is the inter-

changed version. The statements clearly hold for all 〈e, j〉 ∈ Ece
perm. Conversely,

if the statements hold, then each c.e. set which occurs at least k times as a
column in We must also occur at least k times as a column in Wj , and vice
versa. It follows that every c.e. set occurs equally many times as a column in
each, allowing an easy definition of the permutation p to show 〈e, j〉 ∈ Ece

perm.

Theorem 2.3 Ece
perm and Ece

set are computably bireducible. (We write Ece
perm ≡c

Ece
set to denote this.)

Proof. For the easier direction Ece
set≤c E

ce
perm, given a c.e. set A, define uniformly

the c.e. set Â by setting (for each e, i, x) x ∈ Â[〈e,i〉] iff x ∈ A[e]. That is,

we repeat each column of A infinitely many times in Â. Then A Eset B iff

4



Â Eperm B̂. (Since the definition is uniform, there is a computable function

g which maps each i with Wi = A to g(i) with Wg(i) = Â. This g is the
computable reduction required by the theorem, with i Ece

set j iff g(i) Ece
perm g(j)

for all i, j.)
We now turn to Ece

perm ≤c E
ce
set. Fix a c.e. set A. We describe a uniform

procedure to build Â from A. For each x let F (x) be the number of columns
y ≤ x such that A[x] = A[y]. There is a natural computable guessing function
Fs(x) such that for every s, Fs(x) ≤ x and F (x) = lim sups Fs(x).

Associated with x are the c.e. sets C[x, n] for each n > 0 and D[x, i, j] for
each i > 0, j ∈ ω, defined as follows. D[x, i, j] is the set D such that

D[k] =


A[x], if k = 0,

{0, 1, · · · , j − 1}, if k = i,

∅, otherwise.

and C[x, n] is the set C such that

C [k] =


A[x], if k = 0,

{0, 1, · · · ,max{s : Fs(x) ≥ n}}, if k = n, and ∀∞s(Fs(x) < n),

ω, if k = n, and ∃∞s(Fs(x) ≥ n),

∅, otherwise.

Now let Â be obtained by copying all the sets C[x, n] and D[x, i, j] into the

columns. That is, let Â[2〈x,n〉] = C[x, n] and Â[2〈x,i,j〉+1] = D[x, i, j]. Now

suppose that A EpermB. We verify that Â EsetB̂, writing C[A, x, n], C[B, x, n],

D[A, x, i, j], and D[B, x, i, j] to distinguish between the columns of Â and B̂.
Fix x and consider D[A, x, i, j]. Since there is some y such that A[x] = B[y]

it follows that D[A, x, i, j] = D[B, y, i, j] for every i, j. Now we may pick y such
that F (A, x) = F (B, y). It then follows that C[A, x, n] = C[B, y, n] for every
n ≤ F (A, x), and for n > F (A, x) we have C[A, x, n] = D[B, y, n, j] for some

appropriate j. Hence every column of Â appears as a column of B̂. A symmetric
argument works to show that every column of B̂ is a column of Â.

Now suppose that Â Eset B̂. We argue that A Eperm B. Fix x and n such
that there are exactly n many different numbers z ≤ x with A[z] = A[x]. We
claim that there is some y such that A[x] = B[y] and there are at least n many
z ≤ y such that B[z] = B[y].

The column C[A, x, n] of Â is the set C such that C [0] = A[x] and C [n] = ω.
Now C[A, x, n] cannot equal D[B, y, i, j] for any y, i, j since D-sets have every
column finite except possibly for the 0th column. So C[A, x, n] = C[B, y, n]

for some y. It follows that A[x] = (C[B, y, n])
[0]

= B[y], and we must have
lim sups Fs(B, y) ≥ n. So each A[x] corresponds to a column B[y′] of B with
F (B, y′) = F (A, x). Again a symmetric argument follows to show that each
B[y] corresponds to a column A[x] of A with F (A, x) = F (B, y). Hence A and
B agree up to a permutation of columns.
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Theorem 2.4 Ece
Cof ≡c E

ce
set ≡c E

2
=.

Proof. We first show that Ece
set ≤c E

2
=. There is a Σ0

3 predicate R(i, x) which

holds iff ∃n(W
[n]
x = Wi). Let f(x) be a computable function such that R(i, x)

iff i ∈W ∅
′′

f(x). It is then easy to verify that x Ece
set y ⇔ f(x) E2

= f(y).

Next we show E2
= ≤c E

ce
Cof. There is a single Σ0

3 predicate R such that for

every a, x, we have a ∈ W ∅
′′

x ⇔ R(a, x). Since every Σ0
3 set is 1-reducible to

the set Cof = {n : Wn = dom(ϕn) is cofinite}, let g be a computable function
so that a ∈ W ∅′′x ⇔ Wg(a,x) is cofinite. Now for each x we produce the c.e. set

Wf(x) such that for each a ∈ ω we have W
[a]
f(x) = dom(ϕg(a,x)). Hence f is a

computable function witnessing E2
= ≤c E

ce
Cof.

Finally we argue that Ece
Cof ≤c E

ce
set. Given a c.e. set A, and i, n, we let

C(i, n) = [0, i+M +2]−{i+1}, where M is the smallest number ≥ n such that
M 6∈ A[i]. Hence the characteristic function of C(i, n) is a string of i+ 1 many
1’s, followed by a single 0, and followed by M + 1 many 1’s. Since the least
element not in a c.e. set never decreases with time, C(i, n) is uniformly c.e. Note
that if i 6= i′ then C(i, n) 6= C(i′, n′). Now let D(a, b) = [0, a]∪ [a+ 2, a+ b+ 1].

Now let Â be a c.e. set having exactly the columns {C(i, n) | i, n ∈ ω} ∪
{D(a, b) | a, b ∈ ω}. We verify that A ECof B iff Â Eset B̂. Again we write
C(A, i, n), C(B, i, n) to distinguish between the different versions. Suppose that

A ECof B. Since D(a, b) appear as columns in both Â and B̂, it suffices to
check the C columns. Fix C(A, i, n). If this is finite then it must equal D(i, b)

for some b, and so appears as a column of B̂. If C(A, i, n) is infinite then it
is in fact cofinite and so every number larger than n is eventually enumerated
in A[i]. Hence B[i] is cofinite and so C(B, i,m) is cofinite for some m. Hence

C(A, i, n) = C(B, i,m) = ω − {i + 1} appears as a column of B̂. A symmetric

argument works to show that each column of B̂ appears as a column of Â.
Now assume that Â Eset B̂. Fix i such that A[i] is cofinite. Then C(A, i, n) =

ω − {i + 1} for some n. This is a column of B̂. Since each D(a, b) is finite
C(A, i, n) = C(B, j,m) for some j. Clearly i = j, which means that B[i] is
cofinite. By a symmetric argument we can conclude that A ECof B.

Theorem 2.5 Ece
3 ≡c Z

ce
0 .

Proof. Ece
3 ≤c Z

ce
0 was shown in [5, Prop. 3.7]. We now prove Zce

0 ≤c E
ce
3 . Let

Fs(i, j, n) =
|(Wi,s4Wj,s)�n|

n . Note that for each i, j, n, Fs(i, j, n) changes at most
2n times. The triangle inequality holds in this case, that is, for every s, x, y, z, n,
we have Fs(x, z, n) ≤ Fs(x, y, n) + Fs(y, z, n).

Given i, j, n, p where i < j < n and p > 3 we describe how to enumerate the
finite c.e. sets Ci,j,n,p(k) for k ∈ ω. We write C(k) instead of Ci,j,n,p(k). For
each k, C(k) is an initial segment of ω with at most n2(n+ 1) many elements.

If k ≥ n we let C(k) = ∅. We enumerate C(0), · · · , C(n− 1) simultaneously.
Each set starts off being empty, and we assume that F0(i, j, n) < 2−p. At each
stage there will be a number M such that C(i) = [0,M ], and for every k < n,
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C(k) = [0,M ] or [0,M + 1]. At stage s > 0 we act only if Fs(k, k
′, n) has

changed for some k < k′ < n. Assume s is such a stage. Suppose C(i) =
[0,M − 1]. We make every C(k) ⊇ [0,M ]; this is possible as at the previous
stage C(k) = [0,M − 1] or [0,M ]. If Fs(i, j, n) < 2−p then do nothing else. In
this case every C(k) is equal to [0,M ]. Suppose that Fs(i, j, n) ≥ 2−p. Increase
C(j) = [0,M + 1]. For each k 6= i, j we need to decide if C(k) = [0,M ] or
[0,M + 1].

Consider the graph Gi,j,n,p,s with vertices labelled 0, . . . , n − 1. Vertices k

and k′ are adjacent iff Fs(k, k
′, n) < 2−(p+k+k′+1), i.e. if Wk � n and Wk′ � n

are close and have small Hamming distance. Since “closeness” is reflexive and
symmetric but not transitive, so we consider the connected components of G.
If follows easily from the triangle inequality that i and j must lie in different
components. If k is in the same component as j we increase C(k) = [0,M + 1]
and otherwise keep C(k) = [0,M ]. This ends the description of the construction.

It is clear that Ci,j,n,p(k) is an initial segment of ω with at most 2n
(
n
2

)
=

n2(n + 1) many elements. For each k, define the set Ŵk by letting Ŵ
[〈i,j,p〉]
k =

Ci,j,j+1,p(k) ? Ci,j,j+2,p(k) ? Ci,j,j+3,p(k) ? · · · on column 〈i, j, p〉, where i < j
and p > 3. Here Ci,j,j+1,p(k) ? Ci,j,j+2,p(k) denotes the set X where X(z) =
Ci,j,j+1,p(k)(z) if z ≤ (j+1)2(j+2) andX(z+(j+1)2(j+2)+1) = Ci,j,j+2,p(k)(z).
Essentially this concatenates the sets, with Ci,j,j+2,p(k) after the set Ci,j,j+1,p(k).
The iterated ? operation is defined the obvious way (and ? is associative). We

call the copy of Ci,j,n,p(k) in Ŵ
[〈i,j,p〉]
k the nth block of Ŵ

[〈i,j,p〉]
k .

We now check that the reduction works. Suppose Wx Z0 Wy, where x < y.
Hence we have lim supn F (x, y, n) = 0. Fix a column 〈i, j, p〉. We argue that for
almost every n, Ci,j,n,p(x) = Ci,j,n,p(y). There are several cases.

(i) {i, j} = {x, y}. There exists n0 > i, j such that for every n ≥ n0 we have
F (x, y, n) < 2−p. Hence Ci,j,n,p(x) = Ci,j,n,p(y) for all large n.

(ii) |{i, j} ∩ {x, y}| = 1. Assume i = x and j 6= y; the other cases will follow
similarly. There exists n0 > i, j, y such that for every n ≥ n0 we have
F (x, y, n) < 2−(p+x+y+1) and so x, y are adjacent in the graph Gi,j,n,p,s

where s is such that Fs(x, y, n) is stable. Since j cannot be in the same
component as x, we have Ci,j,n,p(x) = Ci,j,n,p(y).

(iii) {i, j} ∩ {x, y} = ∅. Similar to (ii). Since x, y are adjacent in the graph
Gi,j,n,p,s then we must have Ci,j,n,p(x) = Ci,j,n,p(y).

Hence we conclude that Ŵx E3 Ŵy. Now suppose that Ŵx E3 Ŵy for x < y.

Fix p > 2 and we have Ŵ
[〈x,y,p〉]
x =∗ Ŵ

[〈x,y,p〉]
y . So there is n0 > y such that

Cx,y,n,p(x) = Cx,y,n,p(y) for all n ≥ n0. We clearly cannot have F (x, y, n) ≥ 2−p

for any n > n0 and so lim supn F (x, y, n) ≤ 2−p. Hence we have Wx Z0 Wy.

Theorem 2.6 Ece
set 6≤c E

ce
3 .

Proof. Suppose there is a computable function witnessing Ece
set ≤c Ece

3 , and

which maps (the index for) a c.e. set A to (the index for) Â, so that A Eset B
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iff Â E3 B̂. Given (indices for) c.e. sets A and B, define

Fs(A,B) =

{
max{z < x : A(z) 6= B(z)}, if x enters A ∪B at stage s,

max{z < s : A(z) 6= B(z)}, otherwise.

Here we assume that at each stage s at most one new element is enumerated
in A ∪ B at stage s. One readily verifies that Fs(A,B) is a total computable
function in the variables involved, with A =∗ B iff lim infs Fs(A,B) <∞.

We define the c.e. sets A,B and C0, C1, · · · by the following. Let A[0] = ω
and for k > 0 let A[k] = [0, k− 1]. Let B[k] = [0, k] for every k. Finally for each

i define C
[k]
i to equal

[0, j], if k = 2j + 1,

ω, if k = 2j and ∃∞s
(
Fs(B̂

[i], Ĉi

[i]
) = j

)
,[

0,max{s : Fs(B̂
[i], Ĉi

[i]
) = j}

]
, if k = 2j and ∀∞s

(
Fs(B̂

[i], Ĉi

[i]
) 6= j

)
.

By the recursion theorem we have in advance the indices for C0, C1, · · · so

the above definition makes sense. Fix i. If lim infs Fs(B̂
[i], Ĉi

[i]
) = ∞ then

every column of Ci is a finite initial segment of ω and thus we have Ci Eset B.
By assumption we must have Ĉi E3 B̂ and thus the two sets agree (up to

finite difference) on every column. In particular lim infs Fs(B̂
[i]Ĉi

[i]
) < ∞, a

contradiction. Hence we must have lim infs Fs(B̂
[i]Ĉi

[i]
) = j for some j. The

construction of C ensures that Ci Eset A which means that Ĉi E
ce
3 Â and so

Ĉi

[i]
=∗ Â[i]. Since lim infs Fs(B̂

[i], Ĉi

[i]
) < ∞ we in fact have B̂[i] =∗ Ĉi

[i]
=∗

Â[i]. Since this must be true for every i we have B̂ E3 Â and so B Eset A, which
is clearly false since B has no infinite column.

The result of Theorem 2.6 was something of a surprise. We were able to
see how to give a basic module for a computable reduction from Ece

set to Ece
3 ,

in much the same way that Proposition 3.9 in [5] serves as a basic module for
Theorem 3.10 there. In the situation of Theorem 2.6, we were even able to
combine finitely many of these basic modules, but not all ω-many of them. The
following propositions express this and sharpen our result. One the one hand,
Propositions 2.7 and 2.8 and the ultimate Theorem 3.2 show that it really was
necessary to build infinitely many sets to prove Theorem 2.6. On the other
hand, Theorem 2.6 shows that in this case the proposed basic modules cannot
be combined by priority arguments or any other methods.

Proposition 2.7 There exists a binary reduction from Ece
set to Ece

3 . That is,
there exist total computable functions f and g such that, for every x, y ∈ ω,
x Ece

set y iff f(x, y) Ece
3 g(x, y).

Proof. We begin with a uniform computable “chip” function h, such that, for
all i and j, Wi = Wj iff ∃∞s h(s) = 〈i, j〉. Next we show how to define f .
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First, for every k ∈ ω, Wf(x,y) contains all elements of every even-numbered

column ω[2k]. To enumerate the elements of Wg(x,y) from this column, we use
h. At each stage s+ 1 for which there is some c such that h(s) is a chip for the

sets W
[k]
x and W

[c]
y (i.e. the k-th and c-th columns of Wx and Wy, respectively,

identified effectively by some c.e. indices for these sets), we take it as evidence
that these two columns may be equal, and we find the c-th smallest element of

W
[2k]
g(x,y),s and enumerate it into Wg(x,y),s+1.

The result is that, if there exists some c such that W
[k]
x = W

[c]
y , then W

[2k]
g(x,y)

is cofinite, since the c-th smallest element of its complement was added to it in-

finitely often, each time W
[k]
x and W

[c]
y received a chip. (In the language of these

constructions, the c-th marker was moved infinitely many times.) Therefore

W
[2k]
g(x,y) =∗ ω = W

[2k]
f(x,y) in this case. Conversely, if for all c we have W

[k]
x 6= W

[c]
y ,

then W
[2k]
g(x,y) is coinfinite, since for each c, the c-th marker was moved only

finitely many times, and so W
[2k]
g(x,y) 6=

∗ ω = W
[2k]
f(x,y). Thus W

[2k]
g(x,y) =∗ W

[2k]
f(x,y)

iff there exists c with W
[k]
x = W

[c]
y .

Likewise, Wg(x,y) contains all elements of each odd-numbered column ω[2k+1],

and whenever h(s) is a chip for W
[k]
y and W

[c]
x , we adjoin to Wf(x,y),s+1 the c-th

smallest element of the column ω[2k+1] which is not already in Wf(x,y),s. This
process is exactly symmetric to that given above for the even columns, and the

result is that W
[2k]
f(x,y) =∗ W

[2k]
g(x,y) iff there exists c with W

[k]
y = W

[c]
x . So we have

established that
x Ece

set y ⇐⇒ f(x, y) Ece
3 g(x, y)

exactly as required.

Proposition 2.8 There exists a ternary reduction from Ece
set to Ece

3 . That is,
there exist total computable functions f , g, and h such that, for all x, y, z ∈ ω:

x Ece
set y iff f(x, y, z) Ece

3 g(x, y, z),

y Ece
set z iff g(x, y, z) Ece

3 h(x, y, z), and

x Ece
set z iff f(x, y, z) Ece

3 h(x, y, z).

Proof. To simplify matters, we lift the notation “Eset” to a partial order ≤set,
defined on subsets of ω by:

A ≤set B ⇐⇒ every column of A appears as a column in B.

So A Eset B iff A ≤set B and B ≤set A.
Again we describe the construction of individual columns of the setsWf(x,y,z),

Wg(x,y,z), and Wh(x,y,z), using a uniform chip function for equality on columns.
First, for each pair 〈i, j〉, we have a column designated Lx

ij , the column where
we consider x on the left for i and j. This means that we wish to guess, using

the chip function, whether the column W
[i]
x occurs as a column in Wy, and also

whether it occurs as a column in Wz. We make Wf(x,y,z) contain all of this
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column right away. For every c, we move the c-th marker in the column Lx
ij in

both Wg(x,y,z) and Wh(x,y,z) whenever either:

• the c-th column of Wy receives a chip saying that it may equal W
[i]
x ; or

• the c-th column of Wz receives a chip saying that it may equal W
[j]
x .

Therefore, these columns in Wg(x,y,z) and Wh(x,y,z) are automatically equal, and

they are cofinite (i.e. =∗ Wf(x,y,z) on this column) iff either W
[i]
x actually does

equal some column in Wy or W
[j]
x actually does equal some column in Wz.

The result, on the columns Lx
ij for all i and j collectively, is the following.

1. Wg(x,y,z) and Wh(x,y,z) are always equal to each other on these columns.

2. If Wx ≤set Wy, then Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofinite on
each of these columns.

3. If Wx ≤set Wz, then again Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofi-
nite on each of these columns.

4. If there exist i and j such that W
[i]
x does not appear as a column in Wy

and W
[j]
x does not appear as a column in Wz, then on that particular

column Lx
ij , Wg(x,y,z) and Wh(x,y,z) are coinfinite (and equal), hence 6=∗

Wf(x,y,z) = ω.

This explains the name Lx: these columns collectively ask whether eitherWx ≤set

Wy or Wx ≤set Wz. We have similar columns Ly
ij and Lz

ij , for all i and j, doing
the same operations with the roles of x, y, and z permuted.

We also have columnsRz
ij , for all i, j ∈ ω, asking aboutWz on the right – that

is, asking whether either Wx ≤set Wz or Wy ≤set Wz. The procedure here, for a
fixed i and j, sets both Wf(x,y,z) and Wg(x,y,z) to contain the entire column Rx

ij ,
and enumerates elements of this column into Wh(x,y,z) using the chip function.

Whenever the column W
[i]
x receives a chip indicating that it may equal W

[c]
z for

some c, we move the c-th marker in column Rx
ij in Wh(x,y,z). Likewise, whenever

the column W
[j]
y receives a chip indicating that it may equal W

[c]
z for some c,

we move the c-th marker in Rx
ij in Wh(x,y,z). The result of this construction is

that the column Rx
ij in Wh(x,y,z) is cofinite (hence =∗ ω = Wf(x,y,z) = Wg(x,y,z)

on this column) iff at least one of W
[i]
x and W

[j]
y appears as a column in Wz.

Considering the columns Rz
ij for all i and j together, we see that:

1. Wf(x,y,z) and Wg(x,y,z) are always equal to ω on these columns.

2. If Wx ≤set Wz, then Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofinite on
each of these columns.

3. If Wy ≤set Wz, then again Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofi-
nite on each of these columns.
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4. If there exist i and j such that neither W
[i]
x nor W

[j]
y appears as a column

in Wz, then on that particular column Rz
ij , Wh(x,y,z) is coinfinite, hence

6=∗ ω = Wf(x,y,z) = Wg(x,y,z).

Once again, in addition to the columns Rz
ij , we have columns Rx

ij and Ry
ij

for all i and j, on which the same operations take place with the roles of x, y,
and z permuted.

We claim that the sets Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) enumerated by
this construction satisfy the proposition. Consider first the question of whether
every column of Wx appears as a column in Wz. This is addressed by the
columns labeled Lx and those labeled Rz (which are exactly the ones whose
construction we described in detail.) If every column of Wx does indeed appear
in Wz, then the outcomes listed there show that all three of the sets Wf(x,y,z),
Wg(x,y,z), and Wh(x,y,z) are cofinite on every one of these columns.

On the other hand, suppose some columnW
[i]
x fails to appear inWz. Suppose

further that W
[i]
x also fails to appear in Wy. Then the column Lx

ii has the
negative outcome: on this column, we have

Wf(x,y,z) 6=∗ ω = Wg(x,y,z) = Wh(x,y,z).

This shows that 〈f(x, y, z), h(x, y, z)〉 (and also 〈f(x, y, z), g(x, y, z)〉) fail to lie
in Ece

3 , which is appropriate, since 〈x, z〉 (and 〈x, y〉) were not in Ece
set.

The remaining case is that some column W
[i]
x fails to appear in Wz, but does

appear in Wy. In this case, some column W
[j]
y (namely, the copy of W

[i]
x ) fails

to appear in Wz, and so the negative outcome on the column Rz
ij holds:

Wh(x,y,z) 6=∗ ω = Wf(x,y,z) = Wg(x,y,z).

This shows that 〈f(x, y, z), h(x, y, z)〉 (and also 〈g(x, y, z), h(x, y, z)〉) fail to lie
in Ece

3 , which is appropriate once again, since 〈x, z〉 (and 〈y, z〉) were not in
Ece

set.
Thus, the situation Wx 6≤set Wz caused Wf(x,y,z) and Wh(x,y,z) to differ

infinitely on some column, whereas if Wx ≤set Wz, then they were the same on
all of the columns Lx and Rz. Moreover, if they were the same, then Wg(x,y,z)

was also equal to each of them on these columns. If they differed infinitely,
but Wx ≤set Wy, then Wg(x,y,z) was equal to Wf(x,y,z) on all those columns;
whereas if they differed infinitely and Wy ≤set Wz, then Wg(x,y,z) was equal to
Wh(x,y,z) on all those columns.

The same holds for each of the other five situations: for instance, the columns
Ly and Rx collectively give the appropriate outcomes for the question of whether
Wy ≤set Wx, while not causing Wh(x,y,z) to differ infinitely from either Wf(x,y,z)

or Wg(x,y,z) on any of these columns unless (respectively) Wz 6≤set Wx or
Wy ≤set Wz. Therefore, the requirements of the proposition are satisfied by
this construction.
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3 Introducing Finitary Reducibility

Here we formally begin the study of finitary reducibility, building on the con-
cepts introduced in Propositions 2.7 and 2.8. In Theorem 3.2, we will sketch the
proof that this construction can be generalized to any finite arity n. That is, we
will show that Ece

set is n-arily reducible to Ece
3 , under the following definition.

Definition 3.1 An equivalence relation E on ω is n-arily reducible to another
equivalence relation F , written E ≤n

c F , if there exists a computable (n+ 1)-ary
function f : n × ωn → ω (called an n-ary reduction from E to F ) such that,
whenever i < j < n, we have

xi E xj ⇐⇒ f(i, ~x) F f(j, ~x)

for all tuples ~x = (x0, . . . , xn−1) from ωn.
If such functions exist uniformly for all n ∈ ω, then E is finitarily reducible

to F .

Often it is simplest to think of the n-ary reduction f as a function g from ωn

to ωn, writing ~y = g(~x) = (f(0, ~x), . . . , f(n− 1, ~x)), in which case the condition
says

(∀i < n)(∀j < n) [xi E xj ⇐⇒ yi F yj ].

Then a finitary reduction is just a function from ω<ω to ω<ω, mapping n-tuples
~x to n-tuples ~y, with the above property. Whenever E ≤n+1

c F , we also have
E ≤n

c F (by taking g(~x) = (h(~x, x′))�n, for an (n+1)-reduction h and any fixed
x′), and finitary reducibility implies all n-reducibilities.

Unary reducibility is completely trivial, and binary reducibility E ≤2
c F is

exactly the same concept as m-reducibility on sets E ≤m F , with E and F
viewed as subsets of ω via a natural pairing function. For n > 2, however, we
believe n-ary reducibility to be a new concept. To our knowledge, Ece

set and
Ece

3 form the first example of a pair of equivalence relations on ω proven to be
finitarily reducible (or even binarily reducible), but not computably reducible.
A simpler example appears below in Proposition 4.1.

Theorem 3.2 Ece
set is finitarily reducible to Ece

3 (yet Ece
set 6≤c E

ce
3 , by Theorem

2.6).

Proof. Our proof leans heavily on the details from Propositions 2.7 and 2.8,
and we begin by explaining 2.8 so as to make clear our generalization. There
the columns Lx can be viewed as a way of asking whether X has anything
else in its equivalence class. A negative answer, meaning that Wx 6≤set Wy

and Wx 6≤set Wz, clearly implies that neither 〈x, y〉 nor 〈x, z〉 lies in Ece
set. A

positive answer, on the other hand, could fail to imply the ≤set relations, if
Wy ≤set Wx, for instance. In Proposition 2.8, such other cases were handled
by Ly or similar columns. Here we will give a full argument about the possible
equivalence classes into which Eset partitions the n given c.e. sets.

For any fixed n, consider each possible partition P of the c.e. sets A1, . . . , An

(given by (arbitrary) indices m0, . . . ,mn−1, with Ak = mk−1) into equivalence

12



classes. If P is consistent with Eset (that is, if every Eset-class is contained in
some P -class), then for each i, j with 〈Ai, Aj〉 /∈ P , we have two possible rela-
tions: either Ai 6≤set Aj or Aj 6≤set Ai. We consider every possible conjunction
of one of these possibilities for each such pair 〈i, j〉.

We illustrate with an example: suppose n = 5 and P has classes {A1, A2},
{A3, A4}, and {A5}. One possible conjunction explaining this situation is:

A1 6≤set A3 & A1 6≤set A4 & A2 6≤set A3 & A2 6≤set A4 &

A1 6≤set A5 & A2 6≤set A5 & A3 6≤set A5 & A4 6≤set A5.

Another possibility is:

A1 6≥set A3 & A1 6≤set A4 & A2 6≤set A3 & A2 6≥set A4 &

A1 6≥set A5 & A2 6≤set A5 & A3 6≥set A5 & A4 6≥set A5.

For this n and P there are 28 such possibilities in all, since there are 8 pairs
i < j with 〈Ai, Aj〉 /∈ P . If this P is consistent with Eset, then at least one of
these 28 possibilities must hold.

Now, for every partition P of {A1, . . . , An} and for every such possible con-
junction (with k conjuncts, say), we have an infinite set of columns used in

building the sets Â1, . . . , Ân. These columns correspond to elements of ωk. In
the second possible conjunction in the example above, the column for 〈i1, . . . , ik〉
corresponds to the question of whether the following holds.

(∃c A[c]
1 = A

[i1]
3 ) or (∃c A[i2]

1 = A
[c]
4 ) or (∃c A[i3]

2 = A
[c]
3 ) or (∃c A[c]

2 = A
[i4]
4 ) or

(∃c A[c]
1 = A

[i5]
5 ) or (∃c A[i6]

2 = A
[c]
5 ) or (∃c A[c]

3 = A
[i7]
5 ) or (∃c A[c]

4 = A
[i8]
5 ).

As before, a negative answer implies that P is consistent with Eset on these sets.
Conversely, if P is consistent with Eset, then at least one of these 28 disjunctions
(in this example) must fail to hold.

With this framework, the actual construction proceeds exactly as in Proposi-
tion 2.8. A uniform chip function guesses whether any of these eight existential
(really Σ3) statements holds. If any one does hold, then all sets Âi are cofinite in
the column for this P and this conjunction and for 〈i1, . . . , ik〉. If the entire dis-

junction (as stated here) is false, then Âi =∗ Âj on this column iff 〈Ai, Aj〉 ∈ P .

So, if P is consistent with Eset, then we have not caused Âi E3 Âj to fail for

any 〈i, j〉 for which Ai Eset Aj , but we have caused Âi E3 Âj to fail whenever
〈Ai, Aj〉 /∈ P . (Also, if P is inconsistent with Eset, then every disjunction has

a positive answer, so every Âi is cofinite on each of the relevant columns, and
thus they are all =∗ there.)

Of course, one of the finitely many possible equivalence relations P on
{A1, . . . , An} is actually equal to Eset there. This P shows that, whenever

〈Ai, Aj〉 /∈ Eset, we have 〈Âi, Âj〉 /∈ E3; while the argument above shows that
whenever Ai Eset Aj , neither this P nor any other causes any infinite difference

between any of the columns of Âi and Âj , leaving Âi E3 Âj . So we have satisfied
the requirements of finitary reducibility, in a manner entirely independent of n
and of the choice of sets A1, . . . , An.
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A full understanding of this proof reveals that it was essential for each dis-
junction to consider every one of the sets A1, . . . , An. If the disjunction caused
Â1 6=∗ Â2 on a particular column, for example, by making Â2 coinfinite on that
column, then the value of Âp (for p > 2) on that column will be either 6=∗ Â1 or

6=∗ Â2, and this decision cannot be made at random. In fact, one cannot even

just guess from Ap whether or not the relevant column A
[i]
1 which fails to appear

in A2 appears in Ap; in the event that it does not appear, Âp may need to be

not just coinfinite but actually =∗ Â2 on that column. Since Ap is included in
the disjunction (and in the partition P which generated it), we have instructions

for defining Âp: either we choose at the beginning to make it = Â1(= ω) on

this column, or we choose at the beginning to keep it = Â2 there. The partition
P is thus essential as a guide. For a finite number n of sets, there are only
finitely many P to be considered, but on countably many sets A1, A2, . . . (such
as the collection W0,W1, . . . of all c.e. sets), there would be 2ω-many possible
equivalence relations. Even if we restricted to the Π0

4 partitions P (which are
the only ones that could equal Ece

set), we would not know, for a given P , whether

Âp should be kept equal to Â1 or to Â2, since a Π0
4 relation is too complex to

allow effective guessing about whether it contains 〈1, p〉 or 〈2, p〉.
The concept of n-ary reducibility could prove to be a useful measure of how

close two equivalence relations E and F come to being computably reducible.
The higher the n for which n-ary reducibility holds, the closer they are, with
finitary reducibility being the very last step before actual computable reducibil-
ity E ≤c F . The example of Ece

set and Ece
3 is surely quite natural, and shows that

finitary reducibility need not imply computable reducibility. At the lower levels,
we will see in Theorem 4.2 that there can also be specific natural differences
between n-ary and (n+ 1)-ary reducibility, at least in the case n = 3. Another
example at the Π0

2 level will be given in Proposition 4.1. Right now, though,
our first application is to completeness under these reducibilities.

Working with Ianovski and Nies, we showed in [12, Thm. 3.7 & Cor. 3.8] that
no Π0

n+2 equivalence relation can be complete amongst all Π0
n+2 equivalence

relations under computable reducibility. However, we now show that, under
finitary reducibility, there is a complete Π0

n+2 equivalence relation, for every n.
Moreover, the example we give is very naturally defined. We consider, for each

n, the equivalence relation En
= = {(i, j) |W ∅

(n)

i = W ∅
(n)

j }. Clearly En
= is a Π0

n+2

equivalence relation. We single out this relation En
= because equality amongst

c.e. sets (and in general, equality amongst Σ0
n+1 sets) is indisputably a standard

equivalence relation and, as n varies, permits coding of arbitrary arithmetical
information at the Σ0

n+1 level.
We begin with the case n = 0.

Theorem 3.3 The equivalence relation E0
= (also known as =ce) is complete

amongst the Π0
2 equivalence relations with respect to the finitary reducibility.

Proof. Fix a Π0
2 equivalence relation R. We must produce a computable function

f(k, i, ~x) such that f(k,−,−) gives the k-ary reduction from R to En
=. Note
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that the case k = 2 follows trivially from the fact that E0
= is Π0

2-complete as
a set. However the completeness of E0

= under ≤k
c for k > 2 does not follow

trivially from this. Nevertheless we will mention the strategy for k = 2 since it
will serve as the basic module.

k = 2: The strategy for k = 2 is simple. We monitor the stages at which
the pair (m0,m1) gets a new chip in R. Each time we get a new chip we make
Wf(2,0,m0,m1) = [0, s] and Wf(2,1,m0,m1) = [0, s + 1] where s is a fresh number.
Clearly m0Rm1 iff Wf(2,0,m0,m1) = Wf(2,1,m0,m1) = ω. This will serve as the
basic module for the pair (m0,m1).

k = 3: We fix the triple m0,m1,m2. For ease of notation we rename these
as 0, 1, 2 instead. We must build, for i < 3, the c.e. set Ai = Wf(3,i,m0,m1,m2).

Each Ai will have
(
3
2

)
= 3 columns, which we denote as Aa,b

i for 0 ≤ a < b < 3.

That is, A
[0]
i = A0,1

i , A
[1]
i = A1,2

i , A
[2]
i = A0,3

i and A
[j]
i = ∅ for j > 2. We assume

that at each stage, at most one pair (i, i′) gets a new chip.
Each time we get a (0, 1)-chip we must play the (0, 1)-game, i.e. we set

A0,1
0 = [0, s] and A0,1

1 = [0, s + 1] for a new large number s. Of course A0,1
2

must decide what to do on this column; for instance if there are infinitely many
(0, 2)-chips then we must make A0,1

2 = A0,1
0 and if there are infinitely many

(1, 2)-chips then we must make A0,1
2 = A0,1

1 . At the next stage where we get
an (i, 2)-chip we make A0,1

2 = A0,1
i . This can be done by padding the shorter

column with numbers to match the longer column, and if A0,1
0 is made longer

then we need to also make A0,1
1 longer to keep A0,1

0 6= A0,1
1 at every finite stage.

If there are only finitely many (0, 2)-chips and finitely many (1, 2)-chips then
¬0R2 and ¬1R2 and we do not care if A0,1

2 = A0,1
0 or A0,1

2 = A0,1
1 . Of course A2

has to be different from both A0 and A1 but this will be true at the appropriate
columns, i.e. the strategy will ensure that A0,2

2 6= A0,2
0 and A1,2

2 6= A1,2
1 . At

some point when the (i, 2)-chips run out we will stop changing the columns A0,1
0

and A0,1
1 due to having to ensure the correctness of A2. Hence the outcome of

the (0, 1)-game will be correctly reflected in the columns A0,1
0 and A0,1

1 .
If on the other hand there are infinitely many (0, 2)-chips and only finitely

many (1, 2)-chips then we have 0R2 and ¬1R2. We would have ensured that
A0,1

2 = A0,1
0 (which is important as we must make A2 = A0). Again we do not

care if A0,1
2 equals A0,1

1 .
Lastly if there are infinitely many (i, 2)-chips for each i < 2 then the inter-

ference of A2 will force both columns A0,1
0 and A0,1

1 to be ω. This is acceptable,
because 0R1 must hold (unless R is not an equivalence relation) and so the
(0, 1)-game would be played at infinitely many stages anyway.

k = 4: Again we fix the elements 0, 1, 2, 3 and build Aa,b
i for i < 4 and

0 ≤ a < b < 4. There are now
(
4
2

)
= 6 columns in each Ai. The strategy

we used above would seem to suggest in this case that every time we get a
(i, j)-chip we play the (i, j)-game and match columns Aa,b

i and Aa,b
j whenever

{a, b}∩{i, j} = 1. At n = 4 it is clear that this will not be enough. For instance
we could have the equivalence classes {0}, {1}, {2, 3}. It could well be that the
final (0, 2)-chip came after the final (1, 2)-chip, while the final (1, 3)-chip came
after the final (0, 3)-chip. Then A0,1

2 would end up equal to A0,1
0 while A0,1

3
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would end up equal to A0,1
1 . Since A0,1

0 6= A0,1
1 this makes A2 6= A3, which is

not good.
Thus every time (i, j) gets a chip we have to to match columns Aa,b

i and

Aa,b
j for every pair a, b except the pair (i, j). In the above scenario this new rule

would force A0,1
0 and A0,1

1 to increase when a (2, 3)-chip is obtained. The only
way this can happen infinitely often is when 2R3, and either (0R2 and 1R3)
or (1R2 and 0R3). This cycle means that 0R1 must also be true, and so the
(0, 1)-game would be played infinitely often anyway.

Arbitrary k ≥ 2: We now fix k ≥ 2, and fix c.e. sets A0, . . . , Ak−1. We
describe how to build Aa,b

i for i < k and 0 ≤ a < b < k. At every stage every

column Aa,b
i is just a finite initial segment of ω. We assume at each stage, at

most one chip is obtained. At the beginning enumerate 0 into Aa,b
b for every

a < b. At a particular stage in the construction, if no chip is obtained, do
nothing. Otherwise suppose we have an (i, j)-chip. We play the (i, j)-game,
i.e. set Ai,j

i = [0, s] and Ai,j
j = [0, s + 1] for a fresh number s. For each pair

a, b such that (a, b) 6= (i, j) we match the columns Aa,b
i and Aa,b

j . What this
means is to do nothing if they are currently equal, and if they are unequal,
say |Aa,b

i | < |A
a,b
j |, we fill up Aa,b

i with enough numbers to make it equal Aa,b
j .

Furthermore if a = i then Aa,b
b should also be topped up to have one more

element than Aa,b
i . This ends the construction of the columns Aa,b

i and of the
sets Ai.

We now verify that the construction works. It is easy to check that at every
stage of the construction, and for every a < b and i, we have |Aa,b

a |+ 1 = |Aa,b
b |

and |Aa,b
i | ≤ |A

a,b
b |. Now suppose that iRj. Then there are infinitely many

(i, j)-chips obtained during the construction and each time we play the (i, j)-
game and match every other column of Ai and Aj . Hence Ai = Aj . Now

suppose that ¬iRj. We verify that Ai,j
i 6= Ai,j

j . Suppose they are equal, so that
they both have to be ω. Let t0 be the stage where the last (i, j)-chip is issued.
Hence Ai,j

i = [0, s] and Ai,j
j = [0, s+ 1] for some fresh number s, and so we have

|Ai,j
l | ≤ |A

i,j
i | for every l 6= j. Let t1 > t0 be the least stage such that either

Ai,j
i or Ai,j

j is increased.

Claim 3.4 If Ai,j
l is increased to equal Ai,j

j for some l 6= j at some stage t > t0,

then at t some (l, c)-chip or (c, l)-chip is obtained with Ai,j
c = Ai,j

j .

Proof. At t suppose a (i0, j0)-chip was issued. At t we have three different kind
of actions:

(i) The (i0, j0)-game is played, affecting columns Ai0,j0
i0

and Ai0,j0
j0

.

(ii) For each (a, b) 6= (i0, j0), the smaller of the two columns Aa,b
i0

or Aa,b
j0

is
increased to match the other.

(iii) Ai0,b
b is increased in the case a = i0 and Ai0,b

i0
is smaller than Ai0,b

j0
, or Aj0,b

b

is increased in the case a = j0 and Aj0,b
j0

is smaller than Aj0,b
i0

.
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At t the column Ai,j
l is increased due to an action of type (i), (ii) or (iii). (i)

cannot be because otherwise we have i0 = i and j0 = j, but we have assumed
that no more (i, j)-chips were obtained. It is not possible for (iii) because
otherwise l = j. Hence we must have (ii) which holds for some a = i, b = j.
Furthermore l ∈ {i0, j0}, and letting c be the other element of the set {i0, j0}
we have the statement of the claim.

At t1 we cannot have an increase in Ai,j
j without an increase in Ai,j

i , due
to the fact that the two always differ by exactly one element. Hence at t1 we
know that Ai,j

i is increased. It cannot be increased by more than one element
because the (i, j)-game can no longer be played and we have already seen that
|Ai,j

l | ≤ |A
i,j
j | for every l. Hence at t1, Ai,j

i (and also Ai,j
j ) is increased by exactly

one element. Now apply the claim successively to get a sequence of distinct
indices c0 = i, c1, c1, c2, · · · , cN = j such for every x, at least one (cx, cx+1)- or
(cx+1, cx)-chip is obtained in the interval between t0 and t1. Hence we have a
new cycle of chips beginning with i and ending with j.

Note that at t1, Ai,j
i was increased to match Ai,j

c . Thus the construction at

t1 could not have increased the column Ai,j
l for any l 6∈ {i, j}. Hence after the

action at t1 we again have the similar situation at t0, that is, we again have
|Ai,j

l | ≤ |A
i,j
i | for every l 6= j. If t1 < t2 < t3 < · · · are exactly the stages where

Ai,j
i or Ai,j

j is again increased, we can repeat the claim and the argument above
to show that between two such stages we have a new cycle of chips starting with
i and ending with j. Since there are only finitely many possible cycles, there
is a cycle which appears infinitely often, a contradiction to the fact that R is
transitive.

The construction produces a computable function f(k, i, ~x) giving the k-ary
reduction from the Π0

2 relation R to E0
=. Since the construction is uniform in

k, finitary reducibility follows.

Next we relativize this proof to an oracle. This will give Π0
n+2 equivalence

relations which are complete at that level under finitary reducibility, and will
also yield the striking Corollary 3.8 below, which shows that finitary reductions
can exist even when full reductions of arbitrary complexity fail to exist.

Corollary 3.5 For each X ⊆ ω, the equivalence relation EX
= defined by

i EX
= j ⇐⇒ WX

i = WX
j

is complete amongst all ΠX
2 equivalence relations with respect to the finitary

reducibility.

Proof. Essentially, one simply relativizes the entire proof of Theorem 3.3 to the
oracle X. The important point to be made is that the reduction f thus built
is not just X-computable, but actually computable. Since every set WX

e in
question is now X-c.e., the program e = f(i, k, ~x) is allowed to give instructions
saying “look up this information in the oracle,” and thus to use anX-computable
chip function for an arbitrary ΠX

2 relation R, without actually needing to use
X to determine the program code e.
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By setting X = ∅(n), we get Π0
n-complete equivalence relations (under finitary

reducibility) right up through the arithmetical hierarchy.

Corollary 3.6 Each equivalence relation En
= is complete amongst the Π0

n+2

equivalence relations with respect to the finitary reducibility.

This highlights the central role En
= plays amongst the Π0

n+2 equivalence re-
lations; it is complete with respect to the finitary reducibility. A wide variety of
Π0

n+2 equivalence relations arise naturally in mathematics (for instance, isomor-
phism problems for many common classes of computable structures), and all of
these are finitarily reducible to En

=. In particular, every Π0
4 equivalence relation

considered in this section is finitarily reducible to E2
=. Indeed, Ece

3 is complete
amongst Π0

4 equivalence relations with respect to the finitary reducibility, even
though E2

= 6≤c E
ce
3 .

Corollary 3.7 Ece
3 is complete amongst the Π4 equivalence relations with re-

spect to the finitary reducibility.

Proof. By Theorem 2.4, E2
= is computably reducible to Ece

set, which is finitarily
reducible to Ece

3 by Theorem 3.2. The corollary then follows from Corollary 3.6.

Allowing arbitrary oracles in Corollary 3.5 gives a separate result. Recall
from Definition 1.1 the notion of d-computable reducibility.

Corollary 3.8 For every Turing degree d, there exist equivalence relations E
and F on ω such that E is finitarily reducible to F (via a computable function,
of course), but there is no d-computable reduction from E to F .

Proof. We again recall from [12] that there is no Π0
2-complete equivalence rela-

tion under ≤c. The proof there relativizes to any degree d and any set D ∈ d, to
show that no ΠD

2 equivalence relation on ω can be complete among ΠD
2 equiv-

alence relations even under d-computable reducibility. (The authors of [12] use
this relativization to show that there is no Π0

3-complete equivalence relation, for
example, by taking D = ∅′, but their proof really shows that for every Π0

3 equiv-
alence relation, there is another one which is not even 0′-computably reducible
to the first one.)

Therefore, there exists some ΠD
2 equivalence relation E such that E 6≤d ED

= .
However, Corollary 3.5 shows that E does have a finitary reduction f to ED

=

(with f specifically shown to be computable, not just d-computable).

4 Further Results on Finitary Reducibility

4.1 Π0
2 equivalence relations

Recall the Π0
2 equivalence relations Ece

min and Ece
max, which were defined by

i Ece
min j ⇐⇒ min(Wi) = min(Wj) i Ece

max j ⇐⇒ max(Wi) = max(Wj).
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(Here the empty set has minimum +∞ and maximum −∞, by definition,
while all infinite sets have the same maximum +∞.) It was shown in [5] that
Ece

max, E
ce
min are both computably reducible to Ece

= = E0
=, and Ece

max, E
ce
min are

incomparable under ≤c. The proof given there that Ece
max 6≤c Ece

min seemed
significantly simpler than the proof that Ece

min 6≤c E
ce
max, but no quantitative

distinction could be expressed at the time to make this intuition concrete. Now,
however, we can use finitary reducibility to distinguish the two results rigorously.

Proposition 4.1 Ece
max is not binarily reducible to Ece

min. However Ece
min is

finitarily reducible to Ece
max.

Proof. To show Ece
max is not binarily reducible to Ece

min, let f be any computable
total function. We build the c.e. sets Wi,Wj and assume by the recursion
theorem that the indices i, j are given in advance. At each stage, Wi,s and
Wj,s will both be initial segments of ω, with Wi,0 = Wj,0 = ∅. Whenever
max(Wi,s) = max(Wj,s) and min(Wf(0,i,j),s) = min(Wf(1,i,j),s), we add the
least available element to Wi,s+1, making the maxima distinct at stage s + 1.
Whenever max(Wi,s) 6= max(Wj,s) and min(Wf(0,i,j),s) 6= min(Wf(1,i,j),s), we
add the least available element to Wj,s+1, making the maxima the same again.
Since the values of min(Wf(0,i,j),s) and min(Wf(1,i,j),s) can only change finitely
often, there is some s with Wi = Wi,s and Wj = Wj,s, and our construction
shows that these are both finite initial segments of ω, equal to each other iff
min(W(f(0,i,j)) 6= min(Wf(1,i,j)). Thus f was not a binary reduction.

To show that Ece
min is finitarily reducible to Ece

max, we must produce a com-
putable function f(k, i, ~x) such that f(k,−,−) gives the k-ary reduction from
Ece

min to Ece
max. Fixing k ≥ 2 and indices m0, · · · ,mk we describe how to build

Wf(k,i,~m) for each i < k. We denote Ai = Wf(k,i,~m). We begin with Ai = ∅
for all i. Each time at a stage s we find a new element enumerated into some
Wmi

[s] below its current minimum we set Aj = [0, t + minWmj
[s]] for every

j < k, where t is a fresh number.
There are only finitely many mi, so Aj is modified only finitely often. So

there exists t such that for every j < k, Aj = [0, t+minWmj ]. Hence minWmi =
minWmj iff maxAi = maxAj .

This tells us that Ece
min ≤c E

ce
max is a lot closer to being true than Ece

max ≤c E
ce
min.

Surprisingly, we found that the Π0
2 relation Ece

max is complete for the ternary
reducibility but not for 4-ary reducibility.

Theorem 4.2 Ece
max is complete for ternary reducibility ≤3

c among Π0
2 equiva-

lence relations, but not so for 4-ary reducibility ≤4
c.

Proof. By Theorem 3.3, we may use the relation E0
= of equality of c.e. sets (also

known as =ce), needing only to show that E0
= ≤3

c Ece
max and that E0

= 6≤4
c Ece

max.
First we address the former claim, building a computable 3-reduction f(n, i, j, k)
as follows.

For any i, j, k ∈ ω and any stage s, let

mij,s =

{
s, if Wi,s = Wj,s;

min(Wi,s4Wj,s), else.
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Thus Wi 6= Wj iff limsmij,s <∞. We define mik,s and mjk,s similarly for those
pairs of sets, and set f(0, i, j, k), f(1, i, j, k) and f(2, i, j, k) to be c.e. indices of

the three corresponding sets Ŵi, Ŵj , and Ŵk built by the following construction.

At each stage s, Ŵi,s, Ŵj,s, and Ŵk,s will each be a distinct finite initial
segment of ω. Each time the sets Wi and Wj get a chip (i.e. appear to be

equal), we lengthen each of these initial segments to be longer than Ŵk (but

still distinct from each other), so that Ŵi = Ŵj = ω iff Wi = Wj , and otherwise
they have distinct maxima. Similar arguments apply for i and k, and also for j
and k.

Let Ŵi,0 = {0, 1}, Ŵj,0 = {0}, and Ŵk,0 = ∅. At each stage s + 1, set

m̂s = max(Ŵi,s, Ŵj,s, Ŵk,s). We first act on behalf of i and j, checking whether

mij,s+1 6= mij,s. If so, then we make Ŵi = [0, m̂s + 3] and Ŵj = [0, m̂s + 2], so
that both are longer than they were before, and if also either mik,s+1 6= mik,s

or mjk,s+1 6= mjk,s, then we set Ŵk,s+1 = [0, m̂s + 1]. (Otherwise Ŵk stays
unchanged at this stage.)

If mij,s+1 = mij,s, then we check whether mik,s+1 6= mik,s. If so, then we

make Ŵi = [0, m̂s + 3] and Ŵk = [0, m̂s + 2], and if also mjk,s+1 6= mjk,s, then

we set Ŵj,s+1 = [0, m̂s + 1]. (Otherwise Ŵj stays unchanged at this stage.)
Lastly, if mij,s+1 = mij,s and mik,s+1 = mik,s, then we check whether

mjk,s+1 6= mjk,s. If so, then we make Ŵj = [0, m̂s + 3] and Ŵk = [0, m̂s + 2],

with Ŵi staying unchanged. This completes the construction.
Notice first that if Wi = Wj , then Ŵi and Ŵj were both lengthened at

infinitely many stages, so that max(Ŵi) = max(Ŵj) = +∞. The same holds
for Wi and Wk, and also for Wj and Wk, (even though in those cases some of
the lengthening may have come at stages at which we acted on behalf of Wi and
Wj). On the other hand, if Wi 6= Wj , then at least one of these must be distinct

from Wk as well. If Wi 6= Wk, then Ŵi was lengthened at only finitely many
stages; likewise for Ŵj if Wj 6= Wk. So, if two of these sets were equal but the
third was distinct, then the two equal ones gave rise to sets with maximum +∞
and the third corresponded to a finite set. And if all three sets were distinct,
then after some stage s0 none of Ŵi, Ŵj , and Ŵk was ever lengthened again,
in which case they are the three distinct initial segments built at stage s0, with
three distinct (finite) maxima. So we have defined a ternary reduction from E0

=

to Ece
max.

However, no 4-ary relation exists. We prove this by a construction using the
Recursion Theorem, supposing that f were a 4-ary reduction and using indices
i, j, k, and l which “know their own values.” We write Ŵi for Wf(0,i,j,k,l), Ŵj

for Wf(1,i,j,k,l), and so on as usual, having first waited for f to converge on
these four inputs. If it converges on them all at stage s, we set Wi,s+1 = {0},
Wj,s+1 = {0, 2}, Wk,s+1 = {1}, and Wl,s+1 = {1, 3}.

Thereafter, at any stage s + 1 for which Wi,s 6= Wj,s and max(Ŵi,s) 6=
max(Ŵj,s), we add the next available even number to Wi,s+1, leaving Wi,s+1 =

Wj,s+1 = Wj,s. At any stage s + 1 for which Wi,s = Wj,s and max(Ŵi,s) =
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max(Ŵj,s), we add the next available even number to Wj,s+1, leaving Wi,s+1 =
Wi,s ( Wj,s+1. Similarly, at any stage s + 1 for which Wk,s 6= Wl,s and

max(Ŵk,s) 6= max(Ŵl,s), we add the next available odd number to Wk,s+1,
leaving Wk,s+1 = Wl,s+1 = Wl,s. At any stage s + 1 for which Wk,s = Wl,s

and max(Ŵk,s) = max(Ŵl,s), we add the next available odd number to Wl,s+1,
leaving Wk,s+1 = Wl,s (Wl,s+1. This is the entire construction.

Now if f is indeed a 4-ary reduction, then it must keep adding elements to
both Ŵi and Ŵj , since if either of these sets turns out to be finite, then the
construction would have built Wi and Wj to contradict f . So in particular,

Wi = Wj = {0, 2, 4, . . .}, and max(Ŵi) = max(Ŵj) = +∞. Similarly, it must

keep adding elements to both Ŵk and Ŵl, and so Wk = Wl = {1, 3, 5, . . .}, and

max(Ŵk) = max(Ŵl) = +∞. But then Wi 6= Wk, yet max(Ŵi) = max(Ŵk) =
+∞. So in fact f was not a 4-ary reduction.

The preceding proof of the lack of any 4-ary reduction is best understood by
the simple argument that, since Ece

max has exactly one Π0
2-complete equivalence

class (and all its other classes are ∆0
2) while E0

= has infiinitely many Π0
2-complete

classes, the latter cannot reduce to the former. It requires four distinct elements
of the equivalence relation to show this, however, as evidenced by the first half of
the proof. One naturally conjectures that a Π0

2 equivalence relation with exactly
two Π0

2-complete classes might be complete under ≤4
c , but not under ≤5

c . In the
next subsection we examine this question, and find that this intuition was not
correct.

4.2 Distinguishing Finitary Reducibilities

Theorem 4.2 implies that 3-ary and 4-ary reducibility are distinct notions, and it
is natural to attempt to extend this result to other finitary reducibilities. Above
we suggested that one way to do so might be to create Π0

2 equivalence relations in
which only finitely many of the equivalence classes are themselves Π0

2-complete
as sets. (We use the class of Π0

2-equivalence relations simply because it is the
one we found useful in the preceding subsection. The same principle could be
applied at the Π0

p or other levels, for any p.) Theorem 4.8 below will prove this
attempt to be in vain, but the suspicion that n-ary reducibilities are distinct for
distinct n turns out to be well-founded, as we will see in Theorem 4.3.

It is not difficult to create a Π0
2 equivalence relation E on ω having exactly

c distinct Π0
2-complete equivalence classes. Define m E n iff:

(∃i < m)[m ≡ n ≡ i (mod c) & max(Wm−i
c

) = max(Wn−i
c

)].

This essentially just partitions ω into c distinct classes modulo c, and then
partitions each of those classes further using the relation Ece

max. As with Ece
max,

we intend here that max(W ) = max(V ) iff W and V are both infinite or both
empty or else have the same (finite) maximum. For each i < c, the class of those
m ≡ i(mod c) with m−i

c ∈ Inf is Π0
2-complete, while every other class is defined
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by such an i along with a condition of having either a specific finite maximum
(which is a ∆0

1 condition) or being empty (which is Π0
1).

However, this E is not complete among Π0
2 equivalence relations under 4-ary

reducibility. To build an F with F 6≤4
c E, one uses infinitely many nonconflicting

basic modules, one for each e, showing that no ϕe is a 4-ary reduction from F
to E. To do this, assign four specific numbers w = 4e, x = 4e + 1, y = 4e + 2
and x = 4e + 3 to this module. Wait until all four of these computations
converge: ϕe(1, w, x, y, z), ϕe(2, w, x, y, z), ϕe(3, w, x, y, z), and ϕe(4, w, x, y, z).
(If any diverges, then ϕe is not total, and each of the four inputs is an F -
class unto itself.) If the four outputs are all congruent modulo c, then we
use the same process which showed that Ece

max is not 4-arily complete for Π0
2

equivalence relations, since now there is only one Π0
2 complete class to which

ϕe(w) and the rest could belong. On the other hand, if, say, ϕe(1, w, x, y, z) 6≡
ϕe(2, w, x, y, z) (mod c), then these two values lie in distinct E-classes, so we
just make w F x; similarly for the other five possibilities.

Nevertheless, there is a straightforward procedure for building an equivalence
relation which is 4-complete but not 5-complete among Π0

2 equivalence relations,
and it generalizes easily to larger finitary reducibilities as well, showing them
all to be distinct.

Theorem 4.3 For every n > 1, there exists a Π0
2 equivalence relation E which

is Π0
2-complete under ≤n

c , but not under ≤n+1
c .

Corollary 4.4 For every n 6= n′ in ω, n-ary reducibility and n′-ary reducibility
do not coincide.

Proof. Start with a computable listing {(am,0, . . . , am,n−1)}m∈ω of all n-tuples
in ωn, without repetitions. The idea is that E should use the natural numbers
nm, nm+ 1, . . . , nm+ n− 1 to copy =ce from the m-th tuple. For i, j ∈ ω, we
define i E j if and only if

∃m[nm ≤ i < (n+ 1)m & nm ≤ j < (n+ 1)m & am,i−nm =ce am,j−mn].

The last condition just says that Wam,i−nm = Wam,j−mn , which is Π0
2. Of course,

for each i, only m = b inc can possibly satisfy the existential quantifier, so this
E really is a Π0

2 equivalence relation. Moreover, it is immediate that =ce has an
n-reduction f to E: for each n-tuple (x0, . . . , xn−1) ∈ ωn, just find the unique m
with (am,0, . . . , am,n−1) = (x0, . . . , xn−1), and set f(i, x0, . . . , xn−1) = nm + i.
That f is an n-reduction follows directly from the design of E. But every Π0

2

equivalence relation F has an n-reduction to =ce, since =ce is complete under
finitary reducibility, and so our E is complete under ≤n

c among Π0
2 equivalence

relations.
To show that E is not complete under ≤n+1

c , we show that =ce 6≤n+1
c E.

This is surprisingly easy. Fix any e ∈ ω, and define x0, . . . , xn to be the indices of
the following programs, using the Recursion Theorem. The programs wait until
ϕe(i, x0, . . . , xn) has converged for every i ≤ n, say with x̂i = ϕe(i, x0, . . . , xn).
If all of x̂0, . . . , x̂n lie in a single interval [nm, (n + 1)m) for some m, then
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each program xi simply enumerates i into its set. Thus we have xi 6=ce xj
for i < j ≤ n, but some two of x̂0, . . . , x̂n must be equal, by the Pigeonhole
Principle, and hence ϕe was not an (n + 1)-reduction. On the other hand, if
there exist j < k ≤ n for which x̂j and x̂k do not lie in the same interval
[nm, (n + 1)m), then no program xi ever enumerates anything. In this case
we have xj =ce xk, since both are indices of the empty set, yet 〈x̂j , x̂k〉 /∈ E
by the definition of E. Therefore, no ϕe can be an (n + 1)-reduction, and so
=ce 6≤n+1

c E.

This proof of Theorem 4.3 is readily adapted to other levels of the arithmetic
hierarchy. Recall first the following fact.

Proposition 4.5 For every p ≥ 0, there exists a Σ0
p equivalence relation which

is complete under finitary reducibility ≤<ω
c among Σ0

p equivalence relations, and
a Π0

p equivalence relation which is complete under ≤<ω
c among Π0

p equivalence
relations.

Proof. For p = 0, equality on ω is Σ0
0-complete (equivalently, Π0

0-complete).
For p > 0, it is well known that there is an equivalence relation which is Σ0

p-
complete under full computable reducibility: let {Ve : e ∈ ω} be a uniform list
of the Σ0

p sets, and take the closure of {(〈e, i〉, 〈e, j〉) : 〈i, j〉 ∈ Ve} under re-
flexivity, symmetry, and transitivity. A Π0

1-complete equivalence relation under
computable reducibility was constructed in [12], and the equivalence relation

{(i, j) : W ∅
(p−2)

i = W ∅
(p−2)

j } is Π0
p-complete under ≤<ω

c for each p > 1.

Theorem 4.6 For every p ≥ 0 and every n ≥ 2, there exists a Σ0
p equivalence

relation which is complete under n-ary reducibility ≤n
c among Σ0

p equivalence
relations, but fails to be complete among them under ≤n+1

c . Likewise, there ex-
ists a Π0

p equivalence relation which is complete under ≤n
c among Π0

p equivalence
relations, but not under ≤n+1

c .

Proof. The p = 0 case is trivial: every computable equivalence relation with
exactly n equivalence classes clearly satisfies the theorem. Otherwise, the tech-
nique is exactly the same as in the proof of Theorem 4.3. For p > 0, fix the Σ0

p

equivalence relation F which is complete among Σ0
p equivalence relations under

≤<ω
c , as given in Proposition 4.5. Define i E j if and only if

∃m[nm ≤ i < (n+ 1)m & nm ≤ j < (n+ 1)m & am,i−nm F am,j−mn],

again using an effective enumeration {(am,0, . . . , am,n−1) : m ∈ ω} of ωn. Once
again we have an n-reduction from F to E: set f(i, x0, . . . , xn−1) = nm + i,
where (am,0, . . . , am,n−1) = (x0, . . . , xn−1). And for p > 0, the same strategy as
in Theorem 4.3 succeeds in showing that no ϕe can be an (n+1)-reduction from
F to E, although this must be checked for the different cases. When p > 0, for
each fixed ϕe, there is a computable reduction to the Σ0

p-complete equivalence
relation F from the Σ0

p equivalence relation which makes 0, . . . , n all equivalent
if all ϕe(xi) converge to values in the same interval [nm, n(m+ 1)), and leaves
them pairwise inequivalent otherwise.
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The same argument also works with Π0
p in place of Σ0

p. Our F , defined
exactly the same way, is now a Π0

p equivalence relation, and the n-ary reduction
from E is also the same. We claim that again E 6≤n+1

c F . For p > 1, our F

is equality of the sets W ∅
(n)

i and W ∅
(n)

j , and so the proof in Theorem 4.3 using

the Recursion Theorem still works, each c.e. set being also c.e. in ∅(n). For
p = 1, let all the numbers ≤ n be equivalent unless, on all of those (n + 1)
numbers, ϕe converges to values in the same interval [nm, n(m + 1)), in which
case they become pairwise inequivalent. This Π0

1 equivalence relation must
have a computable reduction to the Π0

1-complete equivalence relation F , which
therefore cannot have any (n+ 1)-ary reduction to E.

Finally, we adapt Theorem 4.3 to compare finitary reducibility with full
computable reducibility. Of course, it is already known that equality of ∅(n)-c.e.
sets is Π0

n+2-complete under the former, but not under the latter.

Theorem 4.7 For each p > 0, there exists a Σ0
p equivalence relation E which

is complete under finitary reducibility among Σ0
p equivalence relations, but not

under computable reducibility.

Proof. Again, let F be Σ0
p-complete under computable reducibility. This time

we use an effective enumeration {(am,0, . . . , am,nm
)}m∈ω of ω<ω, and define the

computable function g by g(0) = 〈0, 0〉, and

g(x+ 1) =

{
〈m, i+ 1〉, if g(x) = 〈m, i〉 with i < nm;
〈m+ 1, 0〉, if g(x) = 〈m,nm〉.

We let x E y iff there is an m with g(x) = 〈m, j〉 and g(y) = 〈m, k〉 and
am,j F am,k. Since F is Σ0

p, so is E, and the finitary reduction from F to E is
given by h(i, x0, . . . , xn) = g−1(〈m, i〉), where (x0, . . . , xn) = (am,0, . . . , am,nm

).
With F Σ0

p-complete under ≤c, this makes E Σ0
p-complete under ≤<ω

c . But
for each computable total function f (which you think might be a full com-
putable reduction from F to E), there would be a computable reduction to E
from a particular slice of F (say the c-th slice) on which we wait until f(〈c, 0〉)
converges to some number 〈m, k〉, then wait until f has converged on each of
〈c, 1〉, . . . , 〈c, 1+nm〉 as well, and define these (2+nm) elements to be in distinct
F -classes if f maps each of them to a pair of the form 〈m, j〉 for the same m,
or else all to be in the same F -class if not. As usual, this shows that f cannot
have been a computable reduction.

So we have answered the basic question. However, the proof did not in-
volve any equivalence relation with only finitely many Π0

2-complete equivalence
classes, as we had originally guessed it would. Indeed, 4-completeness for Π0

2

equivalence relations turns out to require a good deal more than just two Π0
2-

complete equivalence classes, as we now explain.
Say that a total computable function h is a Π0

2-approximating function for
an equivalence relation E if

(∀x∀y)[x E y ⇐⇒ ∃∞s h(x, y, s) = 1].
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(We may assume that h has range ⊆ {0, 1}. Every Π0
2 equivalence relation has

such a function h.) We say that, under this h, a particular E-class [z]E is ∆0
2 if,

for all x, y ∈ [z]E , we have lims h(x, y, s) = 1. Of course, if x ∈ [z]E and y /∈ [z]E ,
then lims h(x, y, s) = 0, so in this case the class [z]E really is ∆0

2, uniformly in
any single element x in the class. On the other hand, even if [z]E is not ∆0

2 under
this h, it could still be a ∆0

2 set, under some other computable approximation.
For this reason, our next theorem does not preclude the possibility that cofinitely
many E-equivalence classes might be ∆0

2, but it does say that cofinitely many
classes cannot be uniformly limit-computable.

For an example of these notions, let E be the relation Ece
max, saying of i and

j that Wi and Wj have the same maximum. More formally, i Ece
max j iff

(∀x∀s∃t∃y ≥ x)[(x ∈Wi,s =⇒ y ∈Wj,t) & (x ∈Wj,s =⇒ y ∈Wi,t)].

We can define h here by letting h(i, j, s) = 1 when either max(Wi,s) = max(Wj,s)
or else max(Wi,s) > max(Wi,t) and max(Wj,s) > max(Wj,t) (where t is the
greatest number < s with h(i, j, t) = 1), and taking h(i, j, s) = 0 otherwise.
Then the Ece

max-class Inf of those i with Wi infinite is the only class which
fails to be ∆0

2 under this h, and since the set Inf is in fact Π0
2-complete, it

cannot be ∆0
2 under any other h either. Recall that Ece

max is complete among
Π0

2 equivalence relations under ≤3
c , but not under ≤4

c . The following theorem
generalizes this result.

Theorem 4.8 Suppose that E is complete under ≤4
c among Π0

2 equivalence re-
lations. Let h be any computable Π0

2-approximating function for E. Then E
must contain infinitely many equivalence classes which are not ∆0

2 under this h.

Proof. Suppose that z0, . . . , zn were numbers such that 〈zi, zj〉 /∈ E for each
i < j, and such that every E-class except these (n+ 1) classes [zi]E is ∆0

2 under
h. For each e, we will build four c.e. sets which show that ϕe is not a 4-reduction
from the relation =ce to E. (Recall that i =ce j iff Wi = Wj , and that this Π0

2-
equivalence relation is complete under finitary reducibility, making it a natural
choice to show 4-incompleteness of E.)

Fix any e, and choose four fresh indices a, b, c and d of c.e. sets A = Wa,
B = Wb, C = Wc, and D = Wd, which we enumerate according to the following
instructions. First, we wait until ϕe(i, a, b, c, d) has converged for each i < 4.
(By the Recursion Theorem, these indices may be assumed to know their own

values.) Set â = ϕe(0, a, b, c, d), b̂ = ϕe(1, a, b, c, d), etc. If ϕe is a 4-reduction,

then A = B iff â E b̂, and A = C iff â E ĉ, and so on.
At an odd stage 2s+ 1, we first compare â and b̂, using the computable Π0

2-

approximating function h for E. If h(â, b̂, s) = 1 and A2s = B2s, then we add to
A2s+1 some even number not in B2s, so A2s+1 6= B2s+1. On the other hand, if
h(â, b̂, s) = 0 and A2s 6= B2s, then we make A2s+1 = B2s+1 = A2s ∪ B2s. (The

purpose of these maneuvers is to ensure that lims h(â, b̂, s) diverges, so that â

and b̂ lie in one of the properly Π0
2 E-classes.)
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Next we do exactly the same procedure with ĉ and d̂ in place of â and b̂,
and using a new odd number if needed, instead of a new even number. This
completes stage 2s+ 1, ensuring that lims h(ĉ, d̂, s) also diverges.

At an even stage 2s + 2, we fix the i ≤ n such that h(â, zi, s
′) = 1 for the

greatest possible s′ ≤ s, and similarly the j ≤ n such that h(ĉ, zj , s
′′) = 1 for the

greatest possible s′′ ≤ s. (If there are several such i, choose the least; likewise
for j. If there is no such i or no such j, then we do nothing at this stage.) If
i = j, then add a new even number to both A2s+2 and B2s+2, thus ensuring
that they are both distinct from C2s+2 and D2s+2 (and keeping A2s+2 = B2s+2

iff A2s+1 = B2s+1). If i 6= j, then we add all the even numbers in A2s+1 to
both C2s+2 and D2s+2, and add all the odd numbers in C2s+1 to both A2s+2

and B2s+2. (This is the only step in which even numbers are enumerated into
C or D, or odd numbers into A or B.) This completes stage 2s + 2, and the
construction.

We claim first that the odd stages succeeded in their purpose of making
â, b̂, ĉ, and d̂ all belong to properly Π0

2 E-classes. At each stage 2s + 1 such

that h(â, b̂, s) = 1, we made A2s+1 contain a new even number, which only
subsequently entered B if A2s′ = B2s′ at some stage s′ > s. Therefore, if
lims h(â, b̂, s) = 1, this even number would show A 6= B, yet â E b̂, so that ϕe

would not be a 4-reduction. So there are infinitely many s with h(â, b̂, s) = 0,
and at all corresponding stages 2s + 1 we made A2s+1 = B2s+1, which implies
A = B. If ϕe is a 4-reduction, then we must have â E b̂, so there were infinitely
(but also coinfinitely) many s with h(â, b̂, s) = 1. Therefore lims h(â, b̂, s) di-

verged, and so the E-class of â must be one of the [zi]E with i ≤ n, with b̂ lying

in the same class. We now fix this i. A similar analysis on ĉ and d̂ shows that
they both lie in one particular E-class [zj ]E with j ≤ n, and that C = D.

Recall that z0, . . . , zn were chosen as representatives of distinct E-classes.
Therefore, there must exist some stage s0 such that, at all stages s > s0, we had
h(â, zk, s) = 0 = h(b̂, zk, s) for every k 6= i, and also h(ĉ, zk, s) = 0 = h(d̂, zk, s)
for every k 6= j. Moreover, we know that i = j iff zi E zj . If indeed i = j, then
at every even stage > 2s0 we were in the i = j situation, and we added a new
even number to A and B at each such stage, while no even numbers were added
to either C or D at any stage > 2s0. Therefore, if i = j, we would have A 6= C,
yet â E zi E ĉ, which would show that ϕe is not a 4-reduction. On the other
hand, if i 6= j, then at every even stage > 2s0 we were in the i 6= j situation,
and so all even numbers ever added to A were subsequently added to both C
and D, and all odd numbers in C were subsequently added to both A and B.
However, no odd numbers were ever added to A or B except numbers already
in C, and no even numbers were ever added to C or D except numbers already
in A. So we must have A = B = C = D, yet â E zi and ĉ E zj , which lie in
distinct E-classes. So once again ϕe cannot have been a 4-reduction from =ce

to E.
This same argument works for every e (by a separate argument for each;

there is no need to combine them), and so =ce 6≤4
c E.

It remains open whether an equivalence relation E which is Π0
2-complete
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under ≤4
c might have cofinitely many (or possibly all) of its classes be ∆0

2 in
some nonuniform way.

5 Myhill’s theorem

Myhill’s Theorem (as stated, for instance, in [13, Theorem I.5.4]) shows that
when A and B are subsets of ω, each 1-reducible to the other, then there exists a
computable isomorphism between them – which essentially means that a single
computable function and its inverse can serve as the 1-reduction in both direc-
tions. This is often seen as an effective version of the Cantor-Schröder-Bernstein
Theorem from set theory. Since a reduction from E to F on equivalence relations
induces an injective function from the E-equivalence classes to the F -classes, it
is natural to ask whether a similar result holds for computable reductions. Here
we give a negative answer.

Theorem 5.1 There exist c.e. equivalence relations S and T , each with in-
finitely many infinite classes, such that S ≡c T but there is no computable
reduction from S to T which is surjective on equivalence classes.

Proof. Let (ω)i be the set of all numbers of the form 〈x, i〉. Denote Ae
i as (ω)〈e,i〉.

LetBe
i = Ae

i . At the beginning S and T start off with distinct equivalence classes
{Ak

i | k, i ∈ ω} and {Bk
i | k, i ∈ ω} respectively. S and T start off exactly the

same way, we use A and B to distinguish between the domains of S and T .
We must meet each requirementRe, which ensures that if ϕe is a computable

reduction mapping elements in dom(S) to dom(T ) then it is not surjective on
the T equivalence classes. Each requirement Re will use the classes {Ak

i | i ∈ ω}
and {Bk

i | i ∈ ω} for some k.
Let f map each class Ak

i to Bk
i+1 and g map Bk

i to Ak
i+1. We will ensure

that f witnesses S ≤c T and g witnesses T ≤c S.
Construction of S and T . At stage 0 initialize every requirement. This

means to reset the follower associated with Re (which we will call ke) for every
e. At stage s > 0 we pick the smallest e < s such that Re requires attention.
This means that either Re has no associated follower, or ϕe has converged on
some element of Ake

0 , some element of Ake
1 and some element of Bke

0 has entered
the range of ϕe.

First initialize all lower priority requirements. If the former holds we pick a
fresh value for ke. Suppose the latter holds. Suppose ϕe(a0) ∈ Bl0

i0
, ϕe(a1) ∈ Bl1

i1

and ϕ(a2) ∈ Bke
0 for some a0 ∈ Ake

0 , a1 ∈ Ake
1 and a2 ∈ Al2

i2
.

(i) The finite restriction of ϕe on {a0, a1, a2} is not 1-1 on equivalence classes.
That is, for some pair i, j, aiSaj ⇔ ϕe(ai)Tϕe(aj) fails. In this case we
do nothing.

(ii) (l0, i0) = (ke, 0). For each i ∈ ω, we collapse classes Ake
2i and Ake

2i+1 with

respect to S, and collapse Bke
2i+1 and Bke

2i+2 with respect to T .
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(iii) l0 6= ke. Collapse Ake
i and Ake

j for every i, j, and collapse Bke
i and Bke

j for
every i, j.

(iv) l2 6= ke. Collapse Ake
i and Ake

j for every i, j, and collapse Bke
i and Bke

j for
every i, j.

(v) Otherwise. For each i ∈ ω, we collapse classes Ake
2i and Ake

i2+2i, and collapse

Bke
2i+1 and Bke

i2+2i+1.

Pick from the list the first item which applies, and take the action described
there. Go to the next stage.

Verification. We first argue that f witnesses S ≤c T and g witnesses T ≤c S.
We note that Ak

i and Ak′

i′ are never collapsed if k 6= k′. The same goes for the

Bk
i and Bk′

i′ . Hence it suffices to verify that the restriction of f on each block
{Ak

i | i ∈ ω} is a computable reducibility. The same goes for g. Fix k. We
assume that some requirement Re acted on this block (there is at most one
requirement which may do so) during the construction. If (i), (iii) or (iv) holds
there is nothing to check, since either everything in the block is collapsed or
untouched. For (ii) and (v) consider an action collapsing Ak

2i and Ak
m+2i, and

Bk
2i+1 and Bk

m+2i+1 for some m > 0. Suppose m is odd. Then on the kth

block we end up with the distinct equivalence classes {Ak
2i ∪ Ak

m+2i | i ∈ ω}
for S and {Bk

2i+1 ∪ Bk
m+2i+1 | i ∈ ω} for T . Each class not mentioned is an

original class which did not grow. Hence it is easy to see that f and g are both
computable reducibilities on the kth block. Now suppose that m is even. Now
it is easy to see that this time we end up with the distinct equivalence classes
{∪p∈ωAk

2i+pm | 2i < m} for S and {∪p∈ωBk
2i+1+pm | 2i < m} for T . Again each

class not mentioned is an original class which did not grow, and it is easy to
see that f and g are both computable reducibilities on the kth block. Thus we
conclude that S ≡c T .

Next we argue that each Re is satisfied. Inductively assume that Re−1
receives attention finitely often. Hence Re receives a final follower ke. Suppose
ϕe is a computable reduction. Since ke is fresh each class in the ke

th block Ake
i

and Bke
i start off being unrelated with each other. If ϕe is surjective on the T

equivalence classes thenRe must eventually require attention. If (i) applies then
we keep the disagreement preserved so that ϕe is not a computable reducibility.
If (ii) is the first that applies then we have that ϕe(a1) 6∈ Bke

0 . We make a0Sa1
but do not collapse Bke

0 with any other class. Hence ¬(ϕe(a0)Tϕe(a1)). Suppose
(iii) is the first that applies. Then the construction made a0Sa1. If l1 6= l0 then
¬(ϕe(a0)Tϕe(a1)) holds as different blocks are never collapsed. If l1 = l0 then
at this stage ¬ (ϕe(a0)Tϕe(a1)) as (i) did not apply. These two elements are
never collapsed in the construction as Re have now the highest priority.

Suppose now that (iv) is the first that applies. Therefore l0 = ke. The
construction made a0Sa1 but as different blocks are never collapsed we have
¬(ϕe(a0)Tϕe(a1)). Finally assume that (v) is the first that applies. Hence
l0 = l2 = ke and i0 6= 0. Since (i) did not apply we have i2 6= 0. The
construction made a0Sa2 but did not collapse Bke

0 with any other class. Hence
¬(ϕ(a0)Tϕ(a2)).
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6 Questions

Computable reducibility has been independently invented several times, but
many of its inventions were inspired by the analogy to Borel reducibility on 2ω.
Therefore, when a new notion appears in computable reducibility, it is natural
to ask whether one can repay some of this debt by introducing the analogous
notion in the Borel context. We have not attempted to do so here, but we
encourage researchers in Borel reducibility to consider this idea. First, do the
obvious analogues of n-ary and finitary reducibility bring anything new to the
study of Borel reductions? And second, in the context of 2ω, could one not
also ask about ω-reducibility? A Borel ω-reduction from E to F would take an
arbitrary countable subset {x0, x1, . . .} of 2ω, indexed by naturals, and would
produce corresponding reals y0, y1, . . . with xi E xj iff yi F yj . Obviously,
a Borel reduction from E to F immediately gives a Borel ω-reduction, and
when the study of Borel reducibility is restricted to Borel relations on 2ω, such
ω-reductions always exist. The interesting situation would involve E and F
which are not Borel and for which E 6≤B F : could Borel ω-reductions (or
finitary reductions) be of use in such situations? And finally, if the Continuum
Hypothesis fails, could the same hold true of κ reductions, or < κ-reductions,
for other κ < 2ω?

Meanwhile, back on earth, there are plenty of specific questions to be asked
about computable finitary reducibility. Computable reductions have become a
basic tool in computable model theory, being used to compare classes of com-
putable structures under the notion of Turing-computable embeddings (as in
[3, 4], for example). In situations where no computable reduction exists, fini-
tary reducibility could aid in investigating the reasons why: is there not even
any binary reduction? Or is there a computable finitary reduction, but no com-
putable reduction overall? Or possibly the truth lies somewhere in between?
Finitary reducibility has served to answer such questions in several contexts al-
ready, as shown in this article, and one hopes for it to be used to sharpen other
results as well.
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