
Enumerations in computable structure theory

Sergey Goncharov
Academy of Sciences, Siberian Branch

Mathematical Institute
630090 Novosibirsk, Russia
gonchar@math.nsc.ru

Valentina Harizanov
Department of Mathematics

The George Washington University
Washington, D.C. 20052, U.S.A.

harizanv@gwu.edu

Julia Knight
Department of Mathematics
University of Notre Dame

Notre Dame, IN 46556, U.S.A.
julia.f.knight.1@nd.edu

Charles McCoy
University of Notre Dame

Notre Dame, IN 46556, U.S.A.
cmccoy1@nd.edu

Russell Miller
Department of Mathematics

Queens College—City University of New York
Flushing, NY 11367, U.S.A.
rmiller@forbin.qc.edu

Reed Solomon
Department of Mathematics
University of Connecticut
Storrs, CT 06269, U.S.A.
solomon@math.uconn.edu∗

June 1, 2004

∗Goncharov, Harizanov, Knight, Miller and Solomon gratefully acknowledge NSF support under binational
grant DMS-0075899. Miller was partially supported by a VIGRE postdoc under NSF grant #9983660 to

1

0 Introduction

Families of sets with special enumeration properties have been used to produce a number of
interesting examples in computable structure theory. Selivanov [17] constructed a family of
sets that Goncharov [11] used to produce a structure that is computably categorical but not
relatively computably categorical. Manasse [14] used Selivanov’s family of sets to produce a
computable structure with a relation that is intrinsically computably enumerable (c.e.) but
not relatively intrinsically c.e. Goncharov [10] constructed families of sets that he then used
to produce computable structures with computable dimension n, for all finite n [11]. Wehner
[20] constructed a family of sets that yields a structure with isomorphic copies in exactly the
non-computable Turing degrees. Slaman [18] produced another such structure.
Here, we lift the results of Goncharov, Manasse, and Slaman and Wehner to higher lev-

els. Using Selivanov’s construction, in relativized form, we show that for each computable
successor ordinal α, there is a computable structure that is ∆0

α categorical, but not relatively
∆0

α categorical. From this structure, we obtain another computable structure, with a relation
that is intrinsically ∆0

α, but not relatively intrinsically ∆0
α. Using the enumeration results of

Goncharov, relativized, we show that for each computable successor ordinal α, and each finite
n, there is a computable structure with exactly n computable copies, up to ∆0

α isomorphism.
Using the enumeration result of Wehner, also relativized, we show that for each computable
successor ordinal α, there is a structure with copies in just the degrees of sets X such that
∆0

α(X) is not ∆
0
α. In particular, for each finite n, there is a structure with copies in just the

non-lown degrees.
Section 1 has some basic definitions. In Section 2, we state the enumeration results of

Selivanov, Goncharov, and Wehner. In Section 3, we say how enumeration properties of a
family of sets translate into properties of certain graph structures derived from the family.
In Section 4, we prove the basic results of Goncharov, Manasse, and Slaman and Wehner,
using the results from Sections 1, 2 and 3. In Section 5, we describe a construction that,
for a computable successor ordinal α, transforms a graph G into a structure G∗ such that G
has a ∆0

α copy iff G∗ has a computable copy. We indicate how various special features of G
translate into features of G∗. This construction requires the existence of a pair of structures
B0,B1, which are uniformly relatively ∆0

α categorical and have nice properties with respect to
the standard back-and-forth relations ≤γ for γ < α. We describe the structures in Section 5,
but we delay proving that they have the required properties until Section 7. In Section 6, we
use the construction taking G to G∗ to lift the results from Section 4. In Section 8, we state
some open problems.

1 Background

We consider only computable languages, and structures with universe contained in a com-
putable set of constants. We identify sentences with their Gödel numbers. In measuring
complexity of a structure A, we identify the structure with its atomic diagram D(A). Thus,
A is a subset of ω, and it makes sense to say that A is computable, or to speak of the Turing
Cornell University.

2

degree of A. Our main goal in this section is to give definitions, and state some known results.
All of the material may be found in [4], with examples and proofs.

1.1 Notions related to computable categoricity

LetA be a computable structure. We say thatA is computably categorical if for all computable
B ∼= A, there is a computable isomorphism from A onto B. Similarly, A is ∆0

α categorical if
for all computable B ∼= A, there is a ∆0

α isomorphism. We say that A is relatively computably
categorical if for all B ∼= A, there is an isomorphism that is computable relative to B, and A
is relatively ∆0

α categorical if for all B ∼= A, there is a ∆0
α(B) isomorphism.

There are syntactical conditions that imply ∆0
α categoricity, and are equivalent to relative

∆0
α categoricity. The conditions involve the existence of nice “Scott families”. The notion

comes from the proof of Scott’s Isomorphism Theorem, which says that for a countable struc-
ture A, there is an Lω1ω sentence whose countable models are just the copies of A [16], [13].
Scott derived the “Scott sentence” for A from a family of Lω1ω formulas defining the orbits
of tuples in A.
A Scott family for A is a set Φ of formulas, with a fixed finite tuple of parameters c in A,

such that

1. each tuple in A satisfies some ϕ ∈ Φ, and

2. if a, b are tuples in A satisfying the same formula ϕ ∈ Φ, then there is an automorphism
of A taking a to b.

According to this definition, a Scott family for A may contain formulas that are not
satisfied by any tuple in A. If Φ has parameters c, and A |= ϕ(a), where ϕ ∈ Φ, then ϕ
defines the orbit of a in the expanded structure (A, c). If there are nice isomorphisms from
A onto its copies, then we expect a nice Scott family. A formally c.e. Scott family is a c.e.
Scott family consisting of finitary existential formulas. A formally Σ0α Scott family is a Σ0α
Scott family consisting of “computable Σα” formulas.
A detailed discussion of computable infinitary formulas is given in [4]. For our purposes

here, an intuitive definition, together with one characteristic property, will suffice. Roughly
speaking, computable infinitary formulas are Lω1ω formulas in which the infinite disjunctions
and conjunctions are over c.e. sets. There is a useful hierarchy of computable infinitary
formulas. A computable Σ0 or Π0 formula is a finitary quantifier-free formula. For α > 0, a
computable Σα formula is a c.e. disjunction of formulas of the form ∃uψ, where ψ is computable
Πβ for some β < α, and a computable Πα formula is a c.e. conjunction of formulas of the form
∀uψ, where ψ is computable Σβ for some β < α. (To make this precise, we would assign
indices to the formulas, based on Kleene’s system of notations for computable ordinals.) The
important property of these formulas is given in the following theorem.

Theorem 1.1. For a structure A, the set {a : A |= ϕ(a)} is Σ0α(A) if ϕ(x) is computable Σα,
and Π0α(A) if ϕ(x) is computable Πα. Moreover, this holds with all imaginable uniformity,
over structures and formulas.

3

It is easy to see that if A has a formally c.e. Scott family, then it is relatively computably
categorical, so it is computably categorical. More generally, if A has a formally Σ0α Scott
family, then we can see, using Theorem 1.1, that it is relatively ∆0

α categorical, so it is ∆
0
α

categorical. Goncharov [11] showed that, under some added effectiveness conditions (on a
single copy), if A is computably categorical, then it has a formally c.e. Scott family. Ash [1]
showed that, under some effectiveness conditions (on a single copy), if A is ∆0

α categorical,
then it has a formally Σ0α Scott family. For the relative notions, the effectiveness conditions
disappear. The following result is from [5] and [8].

Theorem 1.2 (Ash-Knight-Manasse-Slaman, Chisholm). A computable structure A is
relatively ∆0

α categorical iff it has a formally Σ0α Scott family. In particular, A is relatively
computably categorical iff it has a formally c.e. Scott family.

It would be pleasant if computable categoricity and relative computable categoricity were
the same–then we could drop the effectiveness conditions from Goncharov’s result. However,
Goncharov [11] showed that this is not the case, using an enumeration result of Selivanov [17].
There are examples with further properties. Cholak, Goncharov, Khoussainov, and Shore [9]
gave an example of a structure that is computably categorical, but ceases to be after naming
a constant. It follows from Theorem 1.2 that such a structure is not relatively computably
categorical.
A rigid structure is one with no non-trivial automorphisms. If a rigid structure is ∆0

α

categorical, then it is also ∆0
α stable; i.e., every isomorphism from A onto a computable copy

is ∆0
α. For a rigid structure A, we may replace the notion of a Scott family by that of a

defining family, where this is a set Φ of formulas with just x free, and with a fixed finite tuple
of parameters, such that

1. each element of A satisfies some formula ϕ(x) ∈ Φ, and

2. no formula of Φ is satisfied by more than one element of A.

If A is rigid, and the isomorphisms from A to its copies are nice, then we expect a nice
defining family. A defining family Φ is said to be formally c.e. if it is a c.e. set of finitary
existential formulas, and it is formally Σ0α if it is a Σ0α set of computable Σα formulas. For
a rigid computable structure A, there is a formally c.e. Scott family iff there is a formally
c.e. defining family, and there is a formally Σ0α Scott family iff there is a formally Σ

0
α defining

family. The parameters in the Scott family and the defining family will be the same.

1.2 Intrinsically and relatively intrinsically Σ0α relations

Let A be a computable structure, and let R be a relation on A. We say that R is intrinsically
c.e. if in all computable B ∼= A, the image of R is c.e., and R is intrinsically Σ0α if in all
computable B ∼= A, the image of R is Σ0α. We say that R is relatively intrinsically c.e. if in
all B ∼= A, the image of R is c.e. relative to B, and R is relatively intrinsically Σ0α if in all
B ∼= A, the image of R is Σ0α(B).

4

If R is definable in A by a computable Σα formula, with a finite tuple of parameters, then
R is relatively intrinsically Σ0α, so it is intrinsically Σ

0
α. Ash and Nerode [6] showed that under

some effectiveness conditions, on a single copy, if R is intrinsically c.e., then it is defined by
a computable Σ1 formula, with a finite tuple of parameters. Barker [7] showed that under
some effectiveness conditions, on a single copy, if R is intrinsically Σ0α, then it is defined by
a computable Σα formula, with a finite tuple of parameters. For the relative notions, the
effectiveness conditions are not needed. The following result is in [5] and [8].

Theorem 1.3 (Ash-Knight-Manasse-Slaman, Chisholm). Let A be a computable struc-
ture. Then a relation R on A is relatively intrinsically Σ0α iff it is defined by a computable Σα

formula, with a finite tuple of parameters. In particular, R is relatively intrinsically c.e. iff it
is defined by a computable Σ1 formula, with parameters.

It would be pleasant if the intrinsically c.e. and relatively intrinsically c.e. relations were
the same. However, Manasse [14] produced an example showing that this is not so. His
construction also used the family of sets constructed by Selivanov [17].

1.3 Notions related to computable dimension

The computable dimension of a structure A is the number of computable copies, up to com-
putable isomorphism. Similarly, the ∆0

α dimension is the number of computable copies, up to
∆0

α isomorphism. Goncharov [11] showed that there are structures of computable dimension
n for all finite n. McCoy [15] showed that computable dimension does not relativize.

Theorem 1.4 (McCoy). Suppose A is a computable structure. If A is not computably
categorical, then for all n > 1, there exist B1, . . . ,Bn isomorphic to A such that for 1 ≤ i <
j ≤ n, there is no (⊕1≤k≤nBk)-computable isomorphism from Bi onto Bj.

2 Basic enumeration results

We begin with some definitions. For S ⊆ P (ω) an enumeration is a binary relation ν such
that

S = {ν(i) : i ∈ ω} , where ν(i) = {x : (i, x) ∈ ν} .
When we say that the enumeration is computable (c.e., respectively) we mean that the binary
relation is computable (c.e., respectively). We note that in some of the literature, ν is called
computable when the binary relation is merely c.e. It is easy to see that a family S has a
computable enumeration just in case the family

S+ = {A⊕A : A ∈ S}

has a c.e. enumeration.

An enumeration is Friedberg if it is 1 − 1, in the sense that if i 6= j, then ν(i) 6= ν(j).
Suppose ν, µ are two enumerations of the same family S. We write ν ≤ µ if there is a

5

computable function f such that for all i, ν(i) = µ(f(i)); i.e., we can effectively pass from
a ν-index to a µ-index for the same set. We say that ν and µ are computably equivalent if
µ ≤ ν and ν ≤ µ. Note that if µ and ν are Friedberg enumerations of the same family S,
then µ ≤ ν implies ν ≤ µ.

A family S ⊆ P (ω) is discrete if for each A ∈ S, there exists σ ∈ 2<ω such that for all
B ∈ S, σ ⊆ χB iff B = A. The family is effectively discrete if there is a c.e. set E ⊆ 2<ω such
that
(a) for each A ∈ S, there is σ ∈ E such that σ ⊆ χA, and
(b) for all σ ∈ E and all A,B ∈ S, if σ ⊆ χA, χB, then A = B.

In [17], Selivanov proved the following.

Theorem 2.1 (Selivanov). There exists a family S ⊆ P (ω) which has a unique computable
Friedberg enumeration, up to computable equivalence, and is discrete but not effectively dis-
crete.

Actually, Selivanov produced a family of functions f ∈ ωω such that the family of sets
Af = {hx, f(x)i : x ∈ ω}, representing the graphs of the functions, has the properties above.
For such a family, any c.e. enumeration is actually computable. Hence, Selivanov’s family
also has a unique c.e. Friedberg enumeration, up to computable equivalence.

In [10], Goncharov proved the following.

Theorem 2.2 (Goncharov). For each finite n ≥ 1, there is a family of sets with just n c.e.
Friedberg enumerations, up to computable equivalence.

We do not know whether there are similar examples of families with just n computable
Friedberg enumerations, up to computable equivalence.

In [20], Wehner proved the following.

Theorem 2.3 (Wehner).

1. There is a family S ⊆ P (ω) such that for each noncomputable set X, S has an enumer-
ation computable in X, but S has no computable enumeration.

2. There is a family S ⊆ P (ω) such that for each noncomputable set X, S has an enumer-
ation c.e. relative to X, but S has no c.e. enumeration.

The enumeration results of Selivanov, Goncharov, and Wehner all relativize. In the next
section, we describe a general method for turning a family of sets with special enumeration
properties into a directed graph structure with related properties.

6

3 Turning a family of sets into a graph

Let S be a family of sets. For each A ∈ S, a daisy graph GA consists of one index point a at
the center, with a→ a, and, for each n ∈ A, a petal of the form

a→ a0 → · · ·→ an → a .

The petals are disjoint except for the index point, which is common to all. Let G(S) be the
union of a disjoint family of daisy graphs GA, one for each A ∈ S.
We put the important facts about this construction into the following technical lemmas.

Lemma 3.1. For any family S ⊆ P (ω), both G(S) and G(S+) are rigid graphs.
This is clear.

Lemma 3.2. If S has a unique c.e. Friedberg enumeration, up to computable equivalence,
then G(S) is computably categorical. Similarly, if S has a unique computable Friedberg enu-
meration, up to computable equivalence, then G(S+) is computably categorical.
Proof. If ν is a c.e. Friedberg enumeration of S, then we can use ν to produce a computable
copy of G(S), with a computable function taking i to the index point for the daisy graph
Gν(i). If H is a computable copy of G(S), then H yields a c.e. Friedberg enumeration µ of S,
as follows. First, there is a computable function taking the ith index point of H to i. We can
easily recognize index points in H–they are the points a such that H |= a → a. If a is the
ith index point, then we let µ(i) be the set coded in the daisy graph with a as its center. If S
has a unique computable Friedberg enumeration, up to computable equivalence, then for any
two computable copies of G(S), we effectively match up the index points, and we can then
effectively match up the remaining points in the daisies to obtain a computable isomorphism.
If S has a unique computable Friedberg enumeration, up to computable equivalence, then

S+ has a unique computable c.e. enumeration, up to computable equivalence, and we have
seen that G(S+) is computably categorical.

Lemma 3.3. If S has just n c.e. Friedberg enumerations, up to computable equivalence,
then G(S) has computable dimension n. Similarly, if S has just n computable Friedberg
enumerations, up to computable equivalence, then G(S+) has computable dimension n.

Proof. Suppose that S has just n c.e. Friedberg enumerations, up to computable equivalence.
Let ν1, . . . , νn be computably inequivalent c.e. enumerations of S. For each k, let Hk be a
computable copy of G(S) with a computable function taking each i to the index point for νk(i)
in Hk. For k 6= m, the fact that νk and νm are not computably equivalent means that there is
no computable isomorphism from Hk to Hm. Therefore, G(S) has computable dimension at
least n. SupposeH is a computable copy of G(S), and let ν be a computable enumeration of S
with a computable function taking i to the index point for the daisy graph of type Gν(i) in H.
For some k, ν is computably equivalent to νk, and then we have a computable isomorphism
from H onto Hk. Therefore, G(S) has computable dimension at most n.

7

If S has just n computable Friedberg enumerations, up to computable equivalence, then
S+ has just n c.e. enumerations, up to computable equivalence, and we have seen that G(S+)
has computable dimension n.

Lemma 3.4. If S is discrete, then every element of G(S+) has a finitary existential definition
with no parameters.

Proof. First, let a be the index point for the daisy graph of type GA⊕A, where A ∈ S. Because
S is discrete, we can fix a finite binary string α such that α ⊆ χA and for any B 6= A from
S, α 6⊆ χB. The string α corresponds to a particular collection of odd and even length cycles
in the daisy graph with index point a. From this, we get an existential formula defining a in
G(S+). If c is some other element of the daisy graph containing a, then for some n and k, c
is the kth element of a cycle of length n which starts and ends with a. Using this, we get an
existential definition for c.

Lemma 3.5. Suppose S has a computable Friedberg enumeration, and is discrete but not
effectively discrete. Then G(S+) does not have a formally c.e. defining family.
Proof. Wemay apply the proof of Lemma 3.2 and suppose that G(S+) is computable. Suppose
there is a formally c.e. defining family Φ, hoping for a contradiction. By Lemma 3.4, each
element of G(S+) has a finitary existential definition, and we may assume that there are no
parameters in the formulas of Φ. We consider the c.e. setD consisting of pairs (ϕ, a) such that
ϕ ∈ Φ, and a is an index point satisfying ϕ(x) in G(S+). For each such pair, the formula ϕ(x)
describes the way a sits in a finite subgraph of G(S+), where the finite subgraph includes part
of the daisy with index point a, and possibly parts of some other daisies, with index points
b1, . . . , bn.
By enlarging the finite subgraph, we may suppose that any petal represented in it is

completely included, and there are enough petals to give information distinguishing among
the sets A, Bi that correspond to the indices a, bi. That is, for each distinct pair of sets
X,Y ∈ {A,B1, . . . , Bn}, there must be some number k such that k ∈ X and k 6∈ Y , or k ∈ Y
and k 6∈ X. These differences are recorded in the graph by the existence of an appropriate even
length cycle in one daisy graph and an odd length cycle in the other daisy graph. Furthermore,
we can find such differences effectively by searching. From the lengths of the petals, we see
that α ⊆ χA, and βi ⊆ χBi

, where α, βi are distinct sequences of the same finite length. Note
that if c is an index point corresponding to some C ∈ S, where α ⊆ χC , then c also satisfies
the formula ϕ(x), so C = A. We have a c.e. set E of finite sequences α obtained effectively
in this way from the pairs (ϕ, a) in D. Therefore, S is effectively discrete, a contradiction.

For S ⊆ P (ω), we may also form a graph structure G∞(S) made up of infinitely many
copies of GA for each A ∈ S. The structure G∞(S) is not rigid. Copies of G∞(S) correspond
to arbitrary enumerations of S–not just to Friedberg enumerations.

8

Lemma 3.6. Let S ⊆ P (ω). For any set X, there is an enumeration of S c.e. in X iff there
is a copy of G∞(S) computable in X. Similarly, there is an enumeration of S computable in
X iff there is a copy of G∞(S+) computable in X.

Proof. Clearly, if there is a copy of G∞(S) computable in X, then there is an enumeration of
S c.e. in X; in fact, we get an enumeration in which each element of S has infinitely many
indices. Now, suppose ν is an enumeration of S c.e. in X. We can define another enumeration
µ by µ(hi, ji) = ν(i). This µ enumerates every set in S infinitely many times, and it is also
c.e. in X. From µ, we get a copy of G∞(S) computable in X.
If there is a copy of G∞(S+) computable in X, then there is an enumeration of S com-

putable in X; in fact, there is an enumeration in which each element of S has infinitely many
indices. If there is an enumeration of S computable in X, then there is an enumeration of S+
c.e. in X. We get a copy of G∞(S+) computable in X, as above.

4 Results of Goncharov, Manasse, Slaman, andWehner

In this section, we review the basic results that we plan to lift. Here is the result of Goncharov
[11].

Theorem 4.1 (Goncharov). There is a rigid graph structure G that is computably categorical
but not relatively computably categorical.

Proof. We take the family S from Selivanov’s Theorem (Theorem 2.1). By Lemma 3.1, the
structure G(S+) is rigid. By Lemma 3.2, it is computably categorical. By Lemma 3.5, it has
no formally c.e. defining family. Therefore, by Theorem 1.2, it is not relatively computably
categorical.

As a corollary of Theorem 4.1, we obtainManasse’s result on intrinsically c.e. and relatively
intrinsically c.e. relations.

Theorem 4.2 (Manasse). There is a computable structure A with a relation R that is
intrinsically c.e. but not relatively intrinsically c.e.

Proof. The cardinal sum of disjoint structures B0,B1, in the same relational language, is
formed by taking the disjoint union of the structures and adding predicates P0 and P1 which
hold of the elements of B0 and B1, respectively. Let A be the cardinal sum of two disjoint
computable copies of the graph structure G from Theorem 4.1, and let R be the unique
isomorphism. The fact that G is computably categorical implies that R is intrinsically c.e.
Suppose R is relatively intrinsically c.e., hoping for a contradiction. For any copy H of G, we
take the disjoint union of the universes, and form a copy of A. There is an isomorphism from
G onto H, computable in H. Then G is relatively computably categorical, a contradiction.

Next, we obtain Goncharov’s result on computable dimension.

9

Theorem 4.3 (Goncharov). For each finite n, there is a rigid graph structure G with
computable dimension n.

Proof. By Goncharov’s Enumeration Theorem (Theorem 2.2), there is a family of sets S with
just n c.e. Friedberg enumerations, up to computable equivalence. By Lemma 3.1, G(S) is a
rigid graph. By Lemma 3.3, it has computable dimension n.

Here is the result of Slaman and Wehner on degrees of structures.

Theorem 4.4 (Slaman, Wehner). There is a structure A with copies in just the non-
computable degrees.

Proof. By Theorem 2.3, there is a family of sets S with enumerations c.e. in all non-
computable sets, but no c.e. enumeration. By Lemma 3.6, G∞(S) has copies computable
in X, for all non-computable sets X, but no computable copy. (We could equally well take
a family S with enumerations computable in all non-computable sets, but no computable
enumeration, and form G∞(S+).)

5 Coding a ∆0α structure in a computable one

To lift the basic results of Goncharov and Manasse, we first relativize them, producing a
directed graph G that is ∆0

α. We then pass to a computable structure G∗, using a pair
of structures to code the arrow relation (from the graph). For a graph G, and a pair of
structures B0, B1 for the same relational language, let G∗ = (G ∪ U,G,U,Q, . . .), where
1. G is the universe of G,
2. G and U are disjoint,

3. Q is a ternary relation assigning to each pair a, b ∈ G an infinite set U(a,b), where
x ∈ U(a,b) iff Qabx,

4. the sets U(a,b) form a partition of U ,

5. each of the other relations of G∗ (in . . .) corresponds to some symbol in the language of
B0, B1, and is the union of its restrictions to the sets U(a,b),

6. for each pair a, b ∈ G, if U(a,b) is the structure (U(a,b), . . .), then

U(a,b) ∼=
½ B0, if G |= a→ b ,
B1, otherwise .

We give conditions on the pair of structures Bi (i = 0, 1) under which a∆0
α graph structure

G gives rise to a computable structure G∗. We need some definitions. The standard back-and-
forth relations ≤β on the set of pairs {(i, b) : b ∈ Bi}, are defined inductively as follows:

10

(i) (i, b) ≤1 (j, c) if the existential formulas true of c in Bj are true of b in Bi,
(ii) if β > 1, (i, b) ≤β (j, c) if for all c0 in Bj, and all γ such that 1 ≤ γ < β, there exists

b
0
in Bi such that (j, c, c0) ≤γ (i, b, b

0
).

Remark: By a result of Karp [12], (i, b) ≤β (j, c) iff all Πβ formulas of Lω1ω true of b in Bi
are true of c in Bj (not just the computable Πβ formulas).

A pair of structures {B0,B1} is α-friendly if the structures are computable and the stan-
dard back-and-forth relations ≤β for β < α are c.e., uniformly in β. (To make this precise, we
fix a notation a for α in O and identify each ordinal β < α with its unique notation b <O a.)

Lemma 5.1. Let α be a computable successor ordinal. Let B0,B1 be such that

1. the pair {B0,B1} is α-friendly,
2. B0, B1 satisfy the same Πβ sentences (of Lω1ω) for β < α,

3. each Bi (i = 0, 1) satisfies some computable Πα sentence that is not true in the other.

Then for any ∆0
α set S, there is a uniformly computable sequence (Cn)n∈ω such that

Cn ∼=
½ B0, if n ∈ S ,
B1, otherwise .

Lemma 5.1 is related to results in [3], where a Π0α set (as opposed to a ∆
0
α one) is coded

in a computable sequence of structures. The proof of Lemma 5.1 uses the same machinery;
namely, Ash’s α-systems. The reader who is not familiar with this machinery will find a
thorough discussion in [4].

Proof. Suppose α = β + 1. We give a uniform effective procedure for constructing Cn. Let
C be an infinite computable set of constants, for the universe. We have a ∆0

β function
gn : ω → {0, 1} which is eventually constant, with limit value 1 if n ∈ S, and 0 otherwise. We
want

Cn ∼=
½ B0, if limk gn(k) = 1 ,
B1, if limk gn(k) = 0 .

For simplicity, we suppose that B0, B1 are structures for a finite relational language. Also,
for convenience, we suppose that they have disjoint, computable universes.
To put ourselves in a position to apply Ash’s metatheorem, we begin by defining a β-

system (L,U, P, ĉ, E, (≤γ)γ<β). Let L be the set of all finite partial 1 − 1 functions from C

to B0, or B1. Let U = {0, 1}. Let ĉ = ∅. For c ∈ L, let E(c) be the set of atomic sentences
and negations of atomic sentences that c makes true in B0, or B1. Let P be the set of finite
alternating sequences c0u1c1u2c2 . . . (ending with an element of U or L) such that

1. c0 = ĉ,

2. uk ∈ U , and ck ∈ L,

11

3. dom(ck) includes the first k elements of C,

4. if uk = 0, then ran(ck) ⊆ B0, if uk = 1, then ran(ck) ⊆ B1, and in either case, ran(ck)
includes the first k elements of the structure,

5. if uk = uk+1, then ck ⊆ ck+1.

For c, c0 ∈ L, we let c ≤0 c0 if E(c) ⊆ E(c0), and for 0 < γ < β, we let c ≤γ c0 if
dom(c) ⊆ dom(c0), and for any extension µ0 of c0 and any δ < γ, there is an extension µ
of c, such that µ0 ≤δ µ. These are the standard back-and-forth relations.
We have defined the β-system. We can show that Ash’s four conditions are satisfied.

1. c ⊆0 c0 implies E(c) ⊆ E(c0),

2. c ≤γ c
0 implies c ≤δ c

0 if γ > δ,

3. ≤γ is transitive and reflexive,

4. if σc0u ∈ P , c0 ≤γ0 c
1 ≤γ1 . . . ≤γk−1 c

k, and β > γ0 > γ1 > . . . > γk−1 > γk, then there
exists c∗ such that σc0uc∗ ∈ P and for i = 0, 1, . . . k, we have ci ≤γi c

∗.

The first three conditions are obvious. For Condition 4, the important thing is that for any
γ < β and any extension µ, there is µ0, with range in the opposite structure, such that µ ≤γ µ

0.
Next, we define a ∆0

β instruction function g∗n (related to the function gn), such that if
σ ∈ P , where σ has length 2k + 1, then g∗n(σ) = limk gn(k). A run of (P, g∗n) is an infinite
path π = c0u1c1 . . . through P in which the terms from U are given by g∗n. For the run π,
F−1 = ∪kck is a 1− 1 function from C onto the desired structure Bi, with inverse F . If Cn is
the structure induced by F on C, then

E(π) = ∪kE(ck) = D(Cn) .

By Ash’s metatheorem, there is a run π such that E(π) is c.e. Then the resulting Cn is
computable. Moreover, the uniformity in the metatheorem means that given n, we can
effectively find a computable index for Cn.
We need pairs of structures Bi satisfying the hypotheses of Lemma 5.1. In addition,

each Bi will be uniformly relatively ∆0
α categorical ; i.e., given an X-computable index for

C ∼= Bi, we can find a ∆0
α(X) index for an isomorphism from Bi onto C. By the comments

following Theorem 1.1, to show that a structure B is uniformly relatively ∆0
α categorical, it is

enough to show that it has a formally Σ0α Scott family Φ with no parameters. We introduce
some notation to describe certain structures. If C1, C2 are structures for the same relational
language, we write C1|C2 for the cardinal sum, where this includes unary predicates for the
two universes.

Proposition 5.2. For each computable successor ordinal α ≥ 2, there exist B0, B1 such that

1. the pair {B0,B1} is α-friendly,

12

2. B0, B1 satisfy the same Πβ sentences (of Lω1ω) for β < α,

3. each Bi (i = 0, 1) satisfies some computable Πα sentence that is not true in the other,

4. each Bi is uniformly relatively ∆0
α categorical.

We note that if α is a limit ordinal, then structures that satisfy the same Πβ formulas for
all β < α also satisfy the same Πα formulas. Therefore, there is no possibility of extending
Proposition 5.2 to limit ordinals. Since proving Proposition 5.2 immediately would disrupt
the flow of the argument, we present the structures that satisfy the proposition, but we delay
proving that these structures have the required properties until Section 7. The structures we
use are all either linear orders or cardinal sums of linear orders. We use ω to denote the order
type of the natural numbers, and Z to denote the order type of the integers. For any ordering
ξ, we write ξ∗ for the reverse ordering. For any ordinal δ > 0, we define

ξδ =
X
γ<δ

Zγ · ω.

We treat Z0 as a single point, so ξδ is

ξδ = ω + Z · ω + Z2 · ω + · · ·+ Zγ · ω + · · · .
Now, we describe the pairs of structures corresponding to successor ordinals α ≥ 2. For

α = 2, we let B0, B1 be orderings of type ω and ω∗. For a successor ordinal α > 2, we can
write α as either γ+2n+1 or γ+2n+2, where n ∈ ω and γ is either a limit ordinal or zero.
Notice that if γ = 0, then n ≥ 1. If we let β = γ+n, then 2β+1 = 2γ+2n+1 = γ+2n+1.
Similarly, 2β +2 = γ +2n+2. So, to consider all successor ordinals α > 2, it suffices to look
at 2β + 1 and 2β + 2 for all β ≥ 1.
For 2β + 1, we use the cardinal sums ξβ|(ξβ + Zβ) and (ξβ + Zβ)|ξβ. For example, for

α = 3, when β = 1, we use ω|(ω + Z) and (ω + Z)|ω, and for α = 5, when β = 2, we use

(ω + Z · ω)|(ω + Z · ω + Z2) and (ω + Z · ω + Z2)|(ω + Z · ω).
To meet the conditions of Proposition 5.2, it suffices to prove the following lemma.

Lemma 5.3. For all β ≥ 1,
1. ξβ|(ξβ + Zβ) ≡2β (ξβ + Zβ)|ξβ,
2. each of ξβ|(ξβ +Zβ) and (ξβ +Zβ)|ξβ satisfies a computable Π2β+1 sentence not true in
the other,

3. the pair {ξβ|(ξβ + Zβ), (ξβ + Zβ)|ξβ} is (2β + 1)-friendly,
4. ξβ|(ξβ + Zβ), (ξβ + Zβ)|ξβ are uniformly relatively ∆0

2β+1 categorical.

For 2β + 2, we use the orders Zβ · ω and Zβ · ω∗. For example, for α = 4, when β = 1,
we use Z · ω and Z · ω∗, and for α = 6, when β = 2, we use Z2 · ω and Z2 · ω∗. To meet the
conditions of Proposition 5.2, it suffices to prove the following lemma.

13

Lemma 5.4. For all β ≥ 1,

1. Zβ · ω ≡2β+1 Zβ · ω∗,
2. each of Zβ · ω and Zβ · ω∗ satisfies a computable Π2β+2 sentence not true in the other,
3. the pair {Zβ · ω,Zβ · ω∗} is (2β + 2)-friendly,
4. Zβ · ω,Zβ · ω∗ are uniformly relatively ∆0

2β+2 categorical.

We now continue with the general argument, delaying the proofs of Lemmas 5.3 and 5.4
until Section 7.

Lemma 5.5. Let α be a computable successor ordinal, and let B0, B1 be as in Proposition
5.2. Suppose G is a graph structure, and G∗ is constructed from G, Bi in the way that was
described at the beginning of this section. Then G has a ∆0

α copy iff G∗ has a computable copy.
More generally, for any X ⊆ ω, G has a ∆0

α(X) copy iff G∗ has an X-computable copy. In
addition,

(a) if G has just one ∆0
α copy, up to ∆0

α isomorphism, then G∗ is ∆0
α categorical,

(b) if G has just n ∆0
α copies, up to ∆0

α isomorphism, then G∗ has ∆0
α dimension n,

(c) if G has no Σ0α Scott family consisting of finitary existential formulas, then G∗ has
no formally Σ0α Scott family.

Proof. For (a), suppose that G∗ is computable, let H∗ be a computable copy of G∗, and let H
be the image of G under the isomorphism. From the computable Πα sentences distinguishing
the structures Bi, we get computable Πα and Σα definitions of the relation → on G. Now,
H is ∆0

α (the universe is computable and → is ∆0
α). Therefore, there is a ∆

0
α isomorphism f

from G onto H. For each pair (a, b) in G, we can effectively determine a computable index for
the structure U(f(a),f(b)) corresponding to U(a,b), and using ∆0

α, we can determine whether it is
a copy of B1 or B2. Since Bi is uniformly ∆0

α categorical, we can effectively find a ∆
0
α index

for an isomorphism f(a,b) from U(a,b) onto U(f(a),f(b)). Then the union of f and the functions
f(a,b) is a ∆0

α isomorphism from G∗ onto H∗.
For (b), let H∗i , i < n, be computable copies of G∗, and let Hi be the ∆0

α copy of G
definable in H∗. If f is a ∆0

α isomorphism from H∗i onto H∗j , then by restricting f , we get a
∆0

α isomorphism from Hi onto Hj. If g is a ∆0
α isomorphism from Hi onto Hj, then we can

extend g, as in part (a), to a ∆0
α isomorphism from H∗i onto H∗j . From this, (b) is clear.

The proof of (c) requires some model-theoretic effort. The main idea is that from the
point of view of ∆0

α, there is no extra structure on G in G∗ beyond the coded graph structure.

Claim 1: Let a, b and a0, b
0
be two pairs of tuples from G∗ with the following properties:

|a| = |a0|; |b| = |b0|; a and a0 are in G; each d from b is in U(a1,a2) for some pair a1, a2 ∈ a and
each d0 in b

0
is similarly connected to some pair of elements from a0; if two elements of a or

b are equal, then so are the corresponding elements in a0 or b
0
and vice versa; and if d ∈ b

14

is in U(a1,a2), where a1, a2 ∈ a, then d0 ∈ U(a01,a02) for the corresponding d
0 ∈ b

0
and a01, a

0
2 ∈ a0

and vice versa. Fix any β < α. Suppose that for all a1, a2 ∈ a, if d is the part of b in U(a1,a2)
and d

0
is the corresponding part of b

0
in U(a01,a02), we have (U(a1,a2), d) ≤β (U(a01,a02), d

0
). Then

(G∗, a, b) ≤β (G∗, a0, b0).

Proof of Claim 1: The proof proceeds by induction on β. The base case, where β = 1, is
easy to check–we use the fact that Bi ≤1 Bj. Assuming that the claim holds for all γ < β,
we prove it for β. Let v0 be a tuple in G∗ which breaks into v01 ∈ G and v02 ∈ U . It suffices
to prove that for any given γ < β, there is a tuple v which breaks into v1 ∈ G and v2 ∈ U
such that (G∗, a0, b0, v0) ≤γ (G∗, a, b, v). We assume, without loss of generality, that the tuples
a0 and v01 are disjoint and the tuples b

0
and v02 are disjoint. Furthermore, we assume that for

any y ∈ v02, there are x1, x2 from a0, v01 such that y ∈ U(x1,x2). We can achieve this property
by slightly expanding our tuples.
Let v1 be a tuple of elements of G, disjoint from a, and such that |v1| = |v01|. Consider

an arbitrary pair of distinct elements r0, s0 from a0, v01. Let d
0
be the tuple of elements from b

0

which are in U(r0,s0) (this tuple is empty unless r0, s0 are both from a0) and let w0 be the tuple
of elements from v02 which are in U(r0,s0). Let r, s be the elements of a, v1 which correspond
to r0 and s0, and let d be the tuple of elements from b which are in U(r,s) (this tuple is empty
unless r, s are both from a). If r0, s0 are both from a0, then (U(r,s), d) ≤β (U(r0,s0), d

0
) by the

hypothesis of the claim. Otherwise, d and d
0
are empty and, by the properties of our coding

structures (since β < α), we have U(r,s) ≤β U(r0,s0). In either case, there is a tuple of elements
w from U(r,s) such that (U(r0,s0), d

0
, w0) ≤γ (U(r,s), d, w). We declare the tuple w to be the part

of v2 that corresponds to w0, as a part of v02.
We repeat this process for each pair r0, s0 from a0, v01 to build v2. Notice that once v2 is

completed, we have satisfied the hypotheses of this claim with the sequences a0, v01, b
0
, v02 and

a, v1, b, v2 and the ordinal γ. Then, by the induction hypothesis, (G∗, a0, b0, v0) ≤γ (G∗, a, b, v),
as required. This completes the proof of Claim 1.

Now, suppose Φ∗ is a formally Σ0α Scott family for G∗. Let c denote the set of parameters
in these formulas and assume c is split into c1 ∈ G and c2 ∈ U . We can assume that for each
y from c2, there are x1, x2 from c1 such that y ∈ U(x1,x2). To arrive at a contradiction, we
produce a Σ0α Scott family of finitary existential formulas for G. We use ∆0

α as an oracle and
give an effective list of this Scott family of finitary existential formulas. For any tuple a ∈ G,
using ∆0

α, we can find a computable Σα formula ϕ(c, x) ∈ Φ∗ such that G |= ϕ(c, a). We may
suppose that ϕ(c, x) has the form (∃u)ψ(c, x, u), where ψ is computable Πβ for some β < α.
Using the oracle ∆0

α, we can find b such that G |= ψ(c, a, b). Say b = b1, b2, where b1 ∈ G
and b2 ∈ U . Expanding the tuples, if necessary, we may assume that for each y from b2,
the “parents” of y are in c1, a, b1; i.e., y ∈ U(x1,x2) for x1, x2 in c1, a, b1. Using ∆0

α, we can
determine, for each pair of points (a1, a2) from a, b1, c1, whether there is an arrow from a1 to
a2 in G. Let δ(c1, x, u1) be a finitary formula (in the language of G) that describes the graph
structure on c1, a, b1. Notice that a (as a tuple in G) satisfies the finitary existential formula
∃u1 δ(c1, x, u1).

15

Claim 2: If G |= (∃u1) δ(c1, a0, u1), then there is an automorphism of G that fixes c1 and
takes a to a0.

Proof of Claim 2: Assume that G |= δ(c1, a
0, b

0
1). Suppose there is a tuple b

0
2 from U such that

for b
0
= b

0
1, b

0
2 we have (G∗, c, a, b) ≤β (G∗, c, a0, b0). Then, G∗ |= ψ(c, a0, b

0
) and so G∗ |= ϕ(c, a0).

Therefore, there is an automorphism of G∗ that fixes c and takes a to a0. However, any
automorphism of G∗ induces an automorphism of G, so a and a0 are automorphic in G, as
required.
It remains to show that there is an appropriate tuple b

0
2. We choose b

0
2 so that we can

apply Claim 1 to the sequences: c1, c2, a, b1, b2 and c1, c2, a
0, b

0
1, b

0
2. Since c1, a, b1 and c1, a

0, b
0
1

both satisfy δ, equality and the graph relation → are preserved between these two tuples.
Let u, v be a pair of distinct elements in c1, a, b1, and let u0, v0 be the corresponding pair in
c1, a

0, b
0
1. Since G |= u → v iff G |= u0 → v0, we have U(u,v) ∼= U(u0,v0). If d is the part of b2

in U(u,v), then we can choose d
0
in U(u0,v0) such that (U(u,v), d) ≤β (U(u0,v0), d

0
). Let b

0
2 be the

result of combining the chosen tuples d
0
in the appropriate way. Now, we can apply Claim 1

to get (G∗, c, a, b) ≤β (G∗, c, a0, b0), as required. This completes the proof of Claim 2.

Now, we let Φ consist of the formulas (∃u) δ(c, x, u), obtained as above. This is a Σ0α
Scott family for G, consisting of existential formulas. This contradiction completes the proof
of (c).

6 Lifting the basic results

Here is our lifting of the result of Goncharov on structures that are computably categorical
but not relatively computably categorical.

Theorem 6.1. For each computable successor ordinal α, there is a structure that is ∆0
α

categorical but not relatively ∆0
α categorical.

Proof. We relativize Theorems 2.1 and 4.1 to ∆0
α, getting a rigid ∆0

α graph structure G such
that

(1) G has just one ∆0
α copy, up to ∆

0
α isomorphism,

(2) G has no Σ0α Scott family consisting of finitary existential formulas.
Next, we apply Lemma 5.5 to pass from G to a computable structure G∗ that is∆0

α categorical,
with no formally Σ0α Scott family. By Theorem 1.2, it follows that G∗ is not relatively ∆0

α

categorical.

Here is our lifting of the result of Manasse on relations that are intrinsically c.e. but not
relatively intrinsically c.e.

Theorem 6.2. For each computable successor ordinal α, there is a computable structure with
a relation that is intrinsically Σ0α but not relatively intrinsically Σ

0
α.

16

Proof. Let G and G∗ be as in the proof of Theorem 6.1. Let A be the cardinal sum of two
copies of G∗ and let R be the unique isomorphism between the associated copies of G. Suppose
B is a computable copy of A, say B is the cardinal sum of H∗1 and H∗2, and let Hi be the
copy of G associated with H∗i . The structures Hi are ∆0

α, and the image of R–the unique
isomorphism from H1 onto H2–is Σ0α. Therefore, R is intrinsically Σ0α.
We must show that R is not relatively intrinsically Σ0α on G∗. Supposing that it is, we

arrive at a contradiction by showing that G∗ is relatively ∆0
α categorical. Let H∗ be a copy of

G∗, and let H be the associated copy of G. We may suppose that G∗ and H∗ are disjoint and
form the cardinal sum B ∼= A. By our assumption, the image of R, the unique isomorphism
from G onto H, is Σ0α(H∗). Now, we extend R to an isomorphism f from G∗ onto H∗, still
∆0

α(H∗).
For each pair a, b in G, we can find the R-images a0, b0 in H. Let U(a,b) be the structure

(U(a,b), . . .), and let V(a0,b0) be the corresponding part of H∗. Using ∆0
α, we can determine

whether G |= a → b, so we can determine which Bi is isomorphic to U(a,b). We can find an
H∗-computable index for the corresponding structure V(a0,b0). Since Bi is uniformly relatively
∆0

α categorical, we can find a ∆
0
α(H∗) index for an isomorphism f(a,b) from U(a,b) onto V(a0,b0).

The union of R with these f(a,b) is a ∆0
α(H∗) isomorphism from G∗ onto H∗. Therefore, G∗ is

relatively ∆0
α categorical, a contradiction.

Here is our lifting of the result of Goncharov on structures with finite computable dimen-
sion.

Theorem 6.3. For each computable successor ordinal α and each finite n, there is a com-
putable structure with ∆0

α dimension n.

Proof. First, we relativize Theorems 2.2 and 4.3 to ∆0
α, getting a rigid graph structure G with

just n ∆0
α copies, up to ∆0

α isomorphism. Then we apply Lemma 5.5 to pass from G to a
computable structure G∗ with ∆0

α dimension n.

Here is our lifting of the result of Slaman and Wehner.

Theorem 6.4. For each computable successor ordinal α, there is a structure with copies in
just the Turing degrees of sets X such that ∆0

α(X) is not ∆
0
α. In particular, for each finite n,

there is a structure with copies in just the non-lown degrees.

Proof. We can relativize Theorems 2.3 and 4.4 to ∆0
α, getting a graph structure G (not rigid)

such that the degrees of copies of G are just the degrees of sets that are not ∆0
α. Next, we

apply Lemma 5.5 to pass from G to a structure G∗, where the degrees of copies of G∗ are
just the degrees of sets X such that ∆0

α(X) is not ∆
0
α. If α = n + 1, where n is finite, then

the degrees of copies of G∗ are the degrees of sets X such that ∆0
n+1(X) is not ∆

0
n+1; i.e.,

X(n) 6≤T ∅(n).

7 Pairs of structures

In this section, we prove Proposition 5.2. Recall that we broke the proof into three parts.
We need to verify that the orderings ω and ω∗ work for the case α = 2, and we need to

17

prove Lemmas 5.3 and 5.4 (which are restated below as Lemmas 7.1 and 7.2). The analysis
of various order types draws heavily on the work of Ash [2].
First, we consider the orderings ω and ω∗. The orderings can be distinguished by finitary

Π2 sentences saying that there is no first, or last, element. Since both orderings are infinite,
we have ω ≤1 ω∗ and ω∗ ≤1 ω. Each ordering is rigid, with a c.e. defining family consisting
of finitary Σ2 formulas ϕn(x) saying that there are exactly n elements to the left, or right,
of x. Similarly, any tuple of elements x in ω or ω∗ can be defined by a conjunction of such
formulas. These properties imply that ω and ω∗ each have a formally Σ01 Scott family without
parameters.
To see that {ω, ω∗} is 2-friendly, fix computable copies of ω and ω∗ in which we can

determine the size of the interval (x, y) for any x < y. Recall the following two facts concerning
the≤γ relations on linear orders. First, L0 ≤1 L1 if and only if either both orders are infinite or
L0 is at least as big as L1. Second, (L0, a) ≤γ (L1, b) iff, writing L0 = A0+a1+A1+. . .+an+An

and L1 = B0 + b1 + B1 + . . . + bn + Bn, we have Ai ≤γ Bi, for all i = 0, . . . , n. From these
two facts and the existence of our nice copies of ω and ω∗, it is clear that we can enumerate
the ≤1 relation between tuples in these models.
In the rest of this section, we will prove Lemmas 5.3 and 5.4. Recall that for any ordinal

δ > 0,
ξδ =

X
γ<δ

Zγ · ω = ω + Z · ω + Z2 · ω + · · ·+ Zγ · ω + · · · .

We will also use the ordering ηδ = ξδ + ξ∗δ. Whenever we mention ξδ or ηδ, we assume that
δ > 0. We repeat the statements of the lemmas so the reader can avoid flipping back and
forth between this section and Section 5.

Lemma 7.1. For all β ≥ 1,

1. ξβ|(ξβ + Zβ) ≡2β (ξβ + Zβ)|ξβ,
2. each of ξβ|(ξβ +Zβ) and (ξβ +Zβ)|ξβ satisfies a computable Π2β+1 sentence not true in
the other,

3. the pair {ξβ|(ξβ + Zβ), (ξβ + Zβ)|ξβ} is (2β + 1)-friendly,
4. ξβ|(ξβ + Zβ), (ξβ + Zβ)|ξβ are uniformly relatively ∆0

2β+1 categorical.

Lemma 7.2. For all β ≥ 1,

1. Zβ · ω ≡2β+1 Zβ · ω∗,
2. each of Zβ · ω and Zβ · ω∗ satisfies a computable Π2β+2 sentence not true in the other,
3. {Zβ · ω,Zβ · ω∗} is (2β + 2)-friendly,
4. Zβ · ω,Zβ · ω∗ are uniformly relatively ∆0

2β+2 categorical.

18

For the rest of this section, we use Πc
γ to abbreviate the expression “computable Πγ”. We

begin by working toward part 2 of Lemmas 7.1 and 7.2. We need to see how complicated
certain statements are in the various structures we have introduced. We assume that all
points x, y we discuss come from a structure of the form Zδ, Zδ · ω, Zδ · ω∗, ξδ, ξδ +Zδ, ηδ, or
the reverse ordering of one of these structures.

Lemma 7.3. For points x ≤ y, the statement “x, y are in the same copy of Zα” is Σc
2α and

the statement “there are exactly n copies of Zα between x and y” is Σc
2α+2.

Proof. We proceed by induction on α. For α = 1, “x, y are in the same Z” is given by_
n>0

(|[x, y]| = n)

where |[x, y]| = n is the standard finitary Σ2 statement saying that the closed interval between
x and y has size n. The disjunction is clearly Σc

2, as required. We abbreviate this formula by
x ∼Z y.
To say “there are exactly n copies of Z between x and y”, we say that there exist

x0 < x1 < · · · < xn+1 such that x = x0, y = xn+1, and^
i<n

(xi 6∼Z xi+1)&
^
i<n

(∀z) ¡xi ≤ z ≤ xi+1 → (xi ∼Z z ∨ z ∼Z xi+1)
¢
.

This formula has the form ∃(Σ0 ∧Πc
2 ∧Πc

3) and hence is Σ
c
4, as required. We abbreviate this

formula by x ∼Z,n y. Notice that when we say “there are exactly n copies of Z between x and
y,” we mean that there are n complete copies. That is, for n = 0, this sentence says that x
and y are in the same or adjacent copies of Z.
For α = δ + 1, we say “x, y are in same Zα” by

x ∼Zδ y ∨
_
n>0

(x ∼Zδ ,n y).

Here, we are using the obvious generalizations of the abbreviations given above in the α = 1
case. This formula has the form Σc

2δ ∨ Σc
2δ+2 and hence is Σ

c
2α, as required. We abbreviate

this formula by x ∼Zα y.
To say that “there are exactly n copies of Zα between x and y” we say there exist

x0 < x1 < · · · < xn+1 such that x = x0 and y = xn+1 and^
i<n

(xi 6∼Zα xi+1) &
^
i<n

(∀z) ¡xi ≤ z ≤ xi+1 → (xi ∼Zα z ∨ z ∼Zα xi+1)
¢
.

This formula has the form ∃(Σ0∧Πc
2α∧Πc

2α+1) and hence is Σ
c
2α+2, as required. We abbreviate

this formula by x ∼Zα,n y.
For a limit ordinal α, we say “x, y are in same Zα” by_

δ<α

(x ∼Zδ y).

Since x ∼Zδ y is Σc
2δ and 2δ < α, this formula is Σc

α = Σc
2α, as required. Saying “x, y have

exactly n copies of Zα between them” is exactly as in the successor ordinal case.

19

Lemma 7.4. For Zβ · ω and Zβ · ω∗, the statements “there is a least copy of Zβ” and “there
is a greatest copy of Zβ” are both Σc

2β+2.

Proof. “There is a least copy of Zβ” is

(∃y) (∀x < y) (x ∼Zβ y)
which is Σc

2β+2, as required. The formula for a greatest copy is similar.

Lemma 7.4 proves 2 in Lemma 7.2. We delay verifying 2 for Lemma 7.1 until we have
analyzed the complexity of some more statements. To check 1 from Lemmas 7.1 and 7.2,
we need to understand the back-and-forth relations on our structures, which means that we
need to understand how the structures can be partitioned by a finite number of points. We
mention two useful facts, both of which were pointed out by Ash [2].

Facts: For any γ > 0 and n ∈ ω ,

1. Zγ = ξ∗γ + 1 + ξγ ,

2. ξγ + Zγ · n+ ξ∗γ = ηγ · (n+ 1).

The first equality follows by a simple examination of the linear orders involved. The second
equality is obtained by applying the first equality to rewrite Zγ ·n as (ξ∗γ+1+ξγ) ·n and then
rearranging the parentheses. Notice that before rearranging the parentheses, we can absorb
the 1’s into either ξγ or ξ

∗
γ.

We next examine the proper initial and final segments of the orders in which we are
interested.

• For Zβ, the only proper initial segment is ξ∗β, and the only proper end segment is ξβ.
• For ξβ, the proper initial segments are either finite or ηγ · (n + 1) for some γ < β and
n ∈ ω. The only proper final segment is ξβ.

• For Zβ ·ω, the proper initial segments have the form Zβ ·n+ ξ∗β. We can have n = 0, in
which case the initial segment is just ξ∗β. The only proper final segment is ξβ + Zβ · ω,
which is, of course, ξβ+1.

• Since Zβ · ω∗ is (Zβ · ω)∗, the only proper initial segment is ξ∗β+1, and the proper final
segments have the form ξβ + Zβ · n. Again, we can have n = 0, in which case the end
segment is ξβ.

We use this information to tell us how various orders can be partitioned by a finite number
of points. For the first example, we provide a detailed explanation, and we leave the similar
explanations for the rest to the reader. If Zβ is partitioned by a finite number of points, then
we have

Zβ = ξ∗β + 1 + σ1 + 1 + σ2 + 1 + · · ·+ 1 + σk−1 + 1 + ξβ

20

if and only if each σi is either finite or ηγ · (n + 1) for some γ < β and n ∈ ω. To obtain
this equivalence, notice that ξ∗β is the only proper initial segment of Zβ. The remaining final
segment is ξβ, so σ1 must be an initial segment of ξβ. Hence, we give the required form for
such an initial segment. After partitioning off σ1, the remaining end segment is again ξβ.
Therefore, σ2 must have the prescribed form. Continuing this process, we see that each σi
must be an initial segment of ξβ, and hence we get the equivalence.
For ξβ,

ξβ = σ0 + 1 + σ1 + 1 + · · ·+ 1 + σk−1 + 1 + ξβ

if and only if each σi is either finite or ηγ · (n+ 1) for some γ < β and n ∈ ω. For Zβ · ω,

Zβ · ω = Zβ ·m+ ξ∗β + 1 + σ1 + 1 + · · ·+ 1 + σk−1 + 1 + ξβ+1

if and only if each σi is either finite or ηγ · (n + 1) for some γ ≤ β and n ∈ ω. Notice that
in this case, in contrast to the earlier cases, we can have γ = β. Also, as explained above, we
can have m = 0 in this case. For Zβ · ω∗,

Zβ · ω∗ = ξ∗β+1 + 1 + σ1 + 1 + · · ·+ 1 + σk−1 + 1 + ξβ + Zβ ·m
if and only if each σi is either finite or ηγ · (n+ 1) for some γ ≤ β and n ∈ ω. Again, we can
have γ = β in this case, and we can also have m = 0, as explained above. For ηβ · n,

ηβ · n = σ0 + 1 + σ1 + 1 + · · ·+ 1 + σk

if and only if each σi is either finite, or ηγ · (m+1) for some γ < β and m ∈ ω, or ηβ · (m+1)
for some m < n. Furthermore, the coefficients of the ηβ terms must sum to n. We use this
information to prove part 2 of Lemma 7.1.

Lemma 7.5. Let x be an element of ξβ +Zβ. The properties “x is in the Zβ summand” and
“x is in the ξβ summand” are both Σc

2β+1.

Proof. To say that x is the Zβ summand, we say

(∃y < x) (y 6∼Zβ x).
To see that this formula is correct, assume that x is in Zβ. Let y be an element in the ξβ
summand and notice that the interval (y, x) is ηβ. However, ηβ is not a bounded interval in
Zβ and therefore y 6∼Zβ x. Next, assume that x is not in the Zβ summand. Then for any
y < x, we have that y and x are in ξβ. Since ξβ occurs as a final segment in Zβ, we have that
y ∼Zβ x, as required.
To say that x is in the ξβ summand, we say

(∃y > x) (x 6∼Zβ y) .
The analysis that this is the correct statement is similar to the argument for being in the Zβ
summand. (Although it will not be important for our discussion, these two formulas actually
show that the properties in the lemma are ∆c

2β+1.)

21

Lemma 7.5 shows that (2) from Lemma 7.1 holds for ξβ|(ξβ + Zβ) and (ξβ + Zβ)|ξβ.
Consider the Σc

2β+1 sentence
(∃x, y) (x < y ∧ x 6∼Zβ y).

This sentence is satisfied in ξβ + Zβ, but it is false in ξβ. Since it is false in the first cardinal
sum and true in the second cardinal sum of ξβ|(ξβ + Zβ), and it is true in the first cardinal
sum and false in the second cardinal sum of (ξβ +Zβ)|ξβ, we have separated these structures,
as required.
For x in ξβ and γ < β, we say “x is in a copy of Zγ” if x is an element of the Zγ · ω

summand in ξβ. We say “x is in the least copy of Zγ” if x is in the first of these ω many
copies of Zγ. We define the phrase “x is in the n-th copy of Zγ” to be the obvious extension
of this concept. We regard being in the least copy as being in the first copy rather than the
0-th copy. When we speak of an element in the n-th copy, we will always assume that n ≥ 1.
Lemma 7.6. For x in ξβ, γ < β and n ≥ 1, there are Σc

2β+1 formulas which say “x is in a
copy of Zγ,” “x is in the least copy of Zγ,” and “x is in the n-th copy of Zγ”.

Proof. To say “x is in a copy of Zγ”, we consider two cases. If γ + 1 < β, then there are
ordinals δ such that γ < δ < β, which contribute summands of the form Zδ ·ω to ξβ. Therefore,
we have to say

(∃y) (y < x ∧ y 6∼Zγ x) ∧ (∀y) (y < x→ y ∼Zγ+1 x).
This formula is ∃(Πc

2γ)∧∀(Σc
2γ+2), which turns out to be Π

c
2γ+3. As long as γ +1 < β, this is

still Σc
2β+1. However, if γ + 1 = β, then Zγ · ω is the last summand in ξβ, so we only have to

say
(∃y < x) (y 6∼Zγ x).

This formula is Σc
2γ+1, and hence is Σ

c
2β+1. It is clear, by arguments similar to those already

given, that these formulas have the correct meaning.
To say “x is in the least copy of Zγ,” we say x is in a copy of Zγ and

(∀y0 < y1 < x)
¡
(y1 6∼Zγ x)→ y0 ∼Zγ y1

¢
.

The displayed part of this formula is ∀(Πc
2γ → Σc

2γ), which is Π
c
2γ+1. So, we are still within

Σc
2β+1. For n > 1, to say “x is in the n-th copy of Zγ,” we say there is y < x such that y is in
the least copy of Zγ and y ∼Zγ ,n−2 x. That is, to say that x is in the second copy of Zγ, we
need to say that there is an element y < x such that y is in the least copy of Zγ and there are
zero copies of Zγ between y and x. The second conjunct in this formula is Σc

2γ+2, and hence
the whole formula is Σc

2β+1.

We will use the following three facts from Ash [2].

Lemma 7.7.

1. If β > γ > 0 and n,m ≥ 1, then ηβ ·m <2γ+1 ηγ · n.
2. If β > 0, then ξβ + Zβ <2β+1 ξβ.

22

3. If m > n ≥ 1 and γ > 0, then ηγ ·m <2γ+1 ηγ · n.

We have already verified the fact that there is a strict inequality in 2 of this lemma. Lemma
7.7 follows by an analysis similar to the ones given below for other order types. Notice that
2 in Lemma 7.7 tells us that ξβ|(ξβ + Zβ) ≡2β (ξβ + Zβ)|ξβ. Therefore, 1 from Lemma 7.1
holds.

Lemma 7.8. For all β > 0, ξβ+1 <2β+1 ξβ.

Proof. First, notice that the statement

(∃x, y) (x < y ∧ x 6∼Zβ y)
shows that this inequality must be strict. To check ξβ+1 ≤2β+1 ξβ, suppose that we are given
a partition of ξβ by finitely many points. We have already seen what such a partition looks
like, and so we know that we can partition ξβ+1 to match these intervals exactly, except for
the final interval. The final interval in ξβ is ξβ, while in ξβ+1 it is ξβ+1. Therefore, we have
to check that ξβ ≤2β ξβ+1.
To show ξβ ≤2β ξβ+1, suppose we are given a partition of ξβ+1 by finitely many points. We

know from our analysis above that we can pick points in ξβ which exactly match the intervals
given from ξβ+1, except for two cases. First, the final intervals still have the form ξβ and
ξβ+1. Second, we could have intervals in ξβ+1 of the form ηβ · (n+1), and we must be able to
match those by intervals of the form ηγ · (n+ 1), with γ < β, from ξβ.
To see that we can choose appropriate intervals of the form ηγ · (n+ 1), we consider two

cases. If β is a successor ordinal, let γ be such that γ+1 = β. By 1 from Lemma 7.7, we have
that ηβ · (n+1) ≤2γ+1 ηγ · (n+1). Since 2γ+1 = 2β− 1, we have the exact relation required
for the back-and-forth relation. If β is a limit ordinal, then 2β = β and so we are required to
verify that ηβ · (n+1) ≤δ ηγ · (n+1) for some given δ < β. However, we can pick γ < β such
that γ > δ. Again, applying 1 from Lemma 7.7, we have ηβ · (n+ 1) ≤2γ+1 ηγ · (n+ 1). Since
δ < 2γ + 1, we have met the requirement for the back-and-forth relation.
We are still left with having to verify that the final intervals ξβ+1 and ξβ match up

correctly. However, notice that we have reduced the level of the back-and-forth relation
required between them. Continuing this process of matching intervals other than the final
interval, we eventually reach the ≤1 relation, which is satisfied between ξβ and ξβ+1 since
both are infinite.

A similar argument gives the following slightly stronger result.

Lemma 7.9. For all β ≥ 1 and all n ∈ ω, ξβ+1 <2β+1 ξβ + Zβ · n.
We are now ready to verify 1 from Lemma 7.2 for the structures Zβ · ω and Zβ · ω∗.

Lemma 7.10. Zβ · ω ≤2β+1 Zβ · ω∗.
Proof. Suppose we are given a partition of Zβ ·ω∗ by finitely many points. Since we know what
this partition looks like, we know that we can partition Zβ · ω to match the intervals exactly,
except for the initial and end intervals. To see that the end intervals match up, we need to see

23

that ξβ + Zβ · n ≤2β ξβ+1. This inequality follows from Lemma 7.9. To verify that the initial
intervals match up, we need to see that ξ∗β+1 ≤2β Zβ · n + ξ∗β. By Lemma 7.9 we know that
ξβ+1 ≤2β ξβ +Zβ · n. However, it is also the case that (ξβ +Zβ · n)∗ = Zβ · n+ ξ∗β. Therefore,
the initial intervals match up correctly since for any δ, if L0 ≤δ L1 then L∗0 ≤δ L

∗
1.

Lemma 7.11. Zβ · ω∗ ≤2β+1 Zβ · ω.
Proof. This follows from Lemma 7.10, together with the fact that for all δ, if L0 ≤δ L1, then
L∗0 ≤δ L

∗
1.

We next turn our attention to 4 from Lemmas 7.1 and 7.2 and verify the appropriate
categoricity results. Lemma 7.12 shows that 4 holds for Zβ · ω, and an almost identical
argument shows that it holds for Zβ · ω∗.
Lemma 7.12. Zβ · ω has a formally Σ02β+2 Scott family with no parameters.
Proof. Let x = (x0, . . . , xn) be a tuple such that x0 < · · · < xn. (We blur the distinction
between variables and elements from Zβ ·ω. That is, when giving the formula below we think
of x as a tuple of elements, but technically we are defining a formula with free variables that
determines the orbit of this tuple.) To determine the orbit of x, we take a conjunction of the
following statements.

1. We say x0 is in the l-th copy of Zβ for the appropriate l. By our work above, this
statement is Σc

2β+2.

2. If xi and xi+1 are not in the same copy of Zβ and there are exactly n copies of Zβ
between xi and xi+1, then we say xi ∼Zβ ,n xi+1. This statement is Σc

2β+2.

3. If xi and xi+1 are in the same Zβ, then fix the minimum αi ≤ β such that xi and
xi+1 are in the same Zαi. Notice that αi = δi + 1 for some δi. Add a clause saying
xi ∼Zαi xi+1 ∧ xi ∼Zδi ,n xi+1 for the appropriate number of copies of Zδi between xi and
xi+1. This statement is Σc

2αi
, and hence is Σc

2β+2.

We have explained why this formula is Σc
2β+2 and it is clear that any two tuples satisfying

this formula are automorphic. Furthermore, every tuple must satisfy a formula of this form.
Therefore, the Scott family consists of all formulas obtained in this way, corresponding to
different tuples.

Lemma 7.13. Both ξβ and ξβ + Zβ have formally Σ02β+1 Scott families with no parameters.

Proof. We prove that ξβ + Zβ has an appropriate Scott family. (The proof for ξβ is almost
identical, except that we do not need to say whether points lie in the ξβ summand or the Zβ
summand, and we do not need to include the clause below, which concerns pairs of points in
the Zβ summand.)
Let x be a tuple of elements in ξβ + Zβ such that x0 < x1 < · · · < xn. We describe a

formula which determines the orbit of x.

1. For each xi, we say whether it is in the ξβ summand or the Zβ summand.

24

2. For each xi in the ξβ summand, we say it is in the n-th copy of Zγ for the appropriate
γ < β and n ≥ 1.

3. For each pair of points xi, xi+1 that are both in Zβ, we determine the interval between
xi and xi+1 exactly as in step 3 in the proof of Lemma 7.12.

4. For each pair of points xi, xi+1 that are both in ξβ and are both in the n-th copy of Zγ,
we determine the interval between xi and xi+1 as in step 3 in the proof of Lemma 7.12,
except that we work in Zγ instead of Zβ.

Notice that if xi, xi+1 are either not both in ξβ, or not both in Zβ, or are both in ξβ but not
in the same copy of Zγ, then we do not need to add any more information about the interval
between them.
Finally, we check that this formula is Σc

2β+1. We have already verified this property for
steps 1 and 2. For steps 3 and 4, the formula is Σc

2αi
for some αi ≤ β. Therefore, the entire

formula is Σc
2β+1.

It remains to verify 3 from Lemmas 7.1 and 7.2. For 3 in Lemma 7.2, we need to show that
there are computable copies of Zβ ·ω and Zβ ·ω∗, which have the property that for all γ < 2β+2,
the set of pairs (a, b) with a ∈ Zβ · ω, b ∈ Zβ · ω∗, |a| = |b| and (Zβ · ω, a) ≤γ (Zβ · ω∗, b) is
uniformly c.e. in γ. Recall that (Zβ ·ω, a) ≤γ (Zβ ·ω∗, b) if and only if each partitioned interval
in Zβ · ω is ≤γ the corresponding interval in Zβ · ω∗. This reduces our work to describing the
≤γ relations between all possible subintervals of Zβ · ω and Zβ · ω∗, and to constructing nice
computable copies of these structures in which we can compute the initial and final segments
determined by each point, and we can compute the bounded interval determined by any pair
of points.
We have already seen the relations ≤γ on all the subintervals of Zβ · ω and Zβ · ω∗. These

are
(i) ξβ+1 <2β+1 ξβ + Zβ ·m for all m,
(ii) ξ∗β+1 <2β+1 Zβ ·m+ ξ∗β for all m,
(iii) ηγ · (n+ 1) <1 m for any m and n,
(iv) n <1 m if and only if n > m,
(v) ηγ ·m <2γ+1 ηγ · n for all m > n ≥ 1, and
(vi) ηα ·m <2γ+1 ηγ · n for all m,n ≥ 1 and α > γ.
The first two statements follow from Lemma 7.9, the third and fourth statements follow

from considering the size of the orders, and the last two statements were proved by Ash and
stated in Lemma 7.7.
It remains to show that there are nice computable copies of Zβ ·ω and Zβ ·ω∗. Suppose we

could construct a nice copy of Zβ in which we understood the relationship between any pair of
points. We could use this copy of Zβ to build uniform copies of Zβ ·ω and Zβ ·ω∗ in the sense
that for each point we would know which copy of Zβ that point sits in. In particular, we would
know the initial and final segments determined by each point and the intervals between any
pair of points. These copies of Zβ · ω and Zβ · ω∗ would establish 3 in Lemma 7.2. Therefore,
it suffices to show there is a computable copy of Zβ in which we can determine the interval
between any pair of points, in terms of the orderings given above. That is, for any two points

25

x < y, we need to be able to say whether the interval they determine is finite or infinite. If
it is finite, we need to give the size. If it is infinite, we need to give the minimum α ≤ β for
which x ∼α y and the exact number of copies of Zδ between x and y, where δ is such that
δ + 1 = α.
To build a nice copy of Zβ, we need (temporarily) to be careful about the distinction

between a linear order with the same order type as Z (which we denote here by ζ) and the
integers with their usual arithmetic structure and with a distinguished element for 0 (which
we denote by Z to make the difference clear). The domain of our nice copy of ζβ is the
set of functions f : β → Z with finite support. That is, we consider functions which take
value 0 on all but finitely many arguments γ < β. Notice that, in addition to using the
distinguished element 0 in an important way, we can talk about subtraction in expressions
such as f(γ) − g(γ), involving these functions. We immediately revert back to using Zβ to
denote the linear order, but warn the reader that we will make use of the arithmetical relations
that hold among elements of this special copy of Zβ.
The ordering relation is defined by f < g if and only if f(γ) < g(γ), where γ < β is the

largest value on which f and g disagree. From a computable copy of β, it is easy to use finite
sequences to build a copy of Zβ in terms of these functions with finite support. Since β is a
computable ordinal, we can assume that we have a computable ordering of type β that is well
connected to the ordinal notations in the sense that there is an ordinal notation b for β, and
from the element of our ordering corresponding to α < β, we can effectively determine the
ordinal notation a <O b for the ordinal α. That is, we will work with ordinals in the usual
way and assume that they are translated into ordinal notations.
Given such a coding of Zβ, fix f, g ∈ Zβ with f < g. We need to show how to determine

the appropriate information about the interval between f and g. Let δ be the largest ordinal
on which f and g disagree and let α = δ+1. We know that f(δ) < g(δ) and that f(γ) = g(γ)
for all γ ≥ α. We claim that f ∼Zα g and f ∼Zδ,n g, where n = g(δ)− f(δ)− 1.
To see that f ∼Zα g, consider the set of all functions in Zβ which agree with f and g

on all γ ≥ α. These functions form a convex interval of type Zα, which contains both f
and g. Therefore, f ∼Zα g. To see that f ∼Zδ,n g, notice that the copy of Zδ in which
f (g, respectively) sits is given by the set of h which agree with f (g, respectively) for all
γ ≥ δ. The copies of Zδ between f and g correspond exactly to the numbers m such that
f(δ) < m < g(δ). That is, for any such m, the set of functions h for which h(δ) = m and h
agrees with f and g for all γ ≥ α forms a convex copy of Zδ which sits completely between f
and g. Furthermore, any function h with h(δ) ≤ f(δ) or h(δ) ≥ g(δ) does not sit in a copy
of Zδ contained completely between f and g. There are g(δ) − f(δ) − 1 many such m, and
hence f ∼Zδ,n g. Therefore, we can determine the status of all intervals in our nice copy of
Zβ, which finishes the proof of 3 from Lemma 7.2.
To perform a similar analysis for 3 in Lemma 7.1, we need to see how ξβ + Zβ can be

partitioned by a finite number of points. There are two possible partitions. If the first k
partition points are in ξβ, then

ξβ + Zβ = σ0 + 1 + · · ·+ 1 + σk−1 + 1 + ξβ + ξ∗β + 1 + σk+1 + 1 + · · ·+ 1 + σl + 1 + ξβ

if and only if each σi is either finite or ηγ · (n + 1) for some γ < β and n ∈ ω. The ξβ + ξ∗β
interval (which is equal to ηβ) consists of the final segment of the ξβ summand and the initial

26

segment of the Zβ summand. If the first partition point is in Zβ, then

ξβ + Zβ = ξβ + ξ∗β + 1 + σ1 + 1 + · · ·+ 1 + σk + 1 + ξβ

if and only if each σi is either finite or ηγ · (n+1) for some γ < β and n ∈ ω. The ξβ+ξ∗β term
consists of all of the ξβ summand and the initial segment of the Zβ summand. As above, it
can be rewritten as ηβ.
We have already specified all the back-and-forth relations ≤γ between the subintervals

occurring in ξβ and ξβ + Zβ, for all γ < 2β + 1. As above, it suffices to show that we can
construct computable copies of ξβ and ξβ + Zβ, in which we know for each point whether it
is in ξβ or Zβ, and we know the interval determined by any pair of points. However, given
a nice copy of Zβ as described above, it is straightforward to put these copies together in a
uniform way to form nice copies of ξβ and ξβ + Zβ.

8 Problems
Problem 1. For a computable limit ordinal α, is there a computable structure that is ∆0

α

categorical but not relatively ∆0
α categorical?

Problem 2. For a computable limit ordinal α, is there a computable structure A with a
relation R that is intrinsically Σ0α but not relatively intrinsically Σ

0
α.

Problem 3. If A is ∆1
1 categorical, must it be relatively ∆

1
1 categorical?

Soskov [19] showed that for a computable (or hyperarithmetical) structureA and a relation
R onA, ifR is invariant under automorphisms ofA, and hyperarithmetical, then it is definable
by a computable infinitary formula. Hence, intrinsically ∆1

1 and relatively intrinsically ∆1
1

relations are the same.

Problem 4. For a computable limit ordinal α and finite n, is there a structure with ∆0
α

dimension n?

Problem 5. Is it true that for any computable successor ordinal α, there is a rigid computable
structure which is ∆0

α categorical but not relatively ∆
0
α categorical?

References

[1] Ash, C. J., “Categoricity in hyperarithmetical degrees”, Annals of Pure and Applied
Logic, vol. 34(1987), pp. 1—14.

[2] Ash, C. J., “A construction for recursive linear orderings”, Journal of Symbolic Logic,
vol. 56(1991), pp. 673—683.

[3] Ash, C. J., and J. F. Knight, “Pairs of recursive structures”, Annals of Pure and Applied
Logic, vol. 46(1990), pp. 211—234.

27

[4] Ash, C. J., and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy,
Elsevier, Amsterdam, 2000.

[5] Ash, C., J. Knight, M. Manasse and T. Slaman, “Generic copies of countable structures”,
Annals of Pure and Applied Logic, vol. 42(1989), pp. 195—205.

[6] Ash, C. J., and A. Nerode, “Intrinsically recursive relations”, in Aspects of Effective
Algebra, ed. by J. N. Crossley, Upside Down A Book Co., Steel’s Creek, Australia, 1981,
pp. 26—41.

[7] Barker, E., “Intrinsically Σ0α relations”, Annals of Pure and Applied Logic, vol. 39(1988),
pp. 105—130.

[8] Chisholm, J., “Effective model theory vs. recursive model theory”, J. Symb. Logic, vol.
55(1990), pp. 1168—1191.

[9] Cholak, P., S. Goncharov, B. Khoussainov and R. A. Shore, “Computably categorical
structures and expansions by constants”, J. of Symb. Logic, vol. 64(1999), pp. 13—37.

[10] Goncharov, S. S., “Computable single-valued numerations”, Algebra and Logic, vol.
19(1980), pp. 507—551 (Russian), pp. 325—356 (English translation).

[11] Goncharov, S. S., “The quantity of non-autoequivalent constructivizations”, Algebra and
Logic, vol. 16(1977), pp. 257—282 (Russian), pp. 169—185 (English translation).

[12] Karp, C., Languages with Expressions of Infinite Length, Ph.D. Thesis, University of
Southern California, 1959.

[13] Keisler, H. J., Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971.

[14] Manasse, M., Techniques and Counterexamples in Almost Categorical Recursive Model
Theory, Ph.D. Thesis, Univ. of Wisconsin, Madison, 1982.

[15] McCoy, C. F. D., “Finite computable dimension does not relativize”, Archive for Math.
Logic, vol. 41(2002), pp. 309—320.

[16] Scott, D., “Logic with denumerably long formulas and finite strings of quantifiers”, in
The Theory of Models, ed. by J. W. Addison, L. Henkin, and A. Tarski, North-Holland,
1965, pp. 329—341.

[17] Selivanov, V. L., “Enumerations of families of general recursive functions”, Algebra and
Logic, vol. 15(1976), pp. 205—226 (Russian), pp. 128—141 (English translation).

[18] Slaman, T. A., “Relative to any nonrecursive set”, Proc. of the Amer. Math. Soc., vol.
126(1998), pp. 2117—2122.

[19] Soskov, I. N., “Intrinsically hyperarithmetical sets”,Math. Logic Quarterly, vol. 42(1996),
pp. 469—480.

28

[20] Wehner, S., “Enumerations, countable structures and Turing degrees”, Proc. of the Amer.
Math. Soc., vol. 126(1998), pp. 2131—2139.

29

