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Abstract. For a ring R, Hilbert’s Tenth Problem HTP(R) is the set
of polynomial equations over R, in several variables, with solutions in
R. We consider computability of this set for subrings R of the ratio-
nals. Applying Baire category theory to these subrings, which naturally
form a topological space, relates their sets HTP(R) to the set HTP(Q),
whose decidability remains an open question. The main result is that,
for an arbitrary set C, HTP(Q) computes C if and only if the subrings R
for which HTP(R) computes C form a nonmeager class. Similar results
hold for 1-reducibility, for admitting a Diophantine model of Z, and for
existential definability of Z.

1 Introduction

The original version of Hilbert’s Tenth Problem demanded an algorithm deciding
which polynomial equations from Z[X1, X2, . . .] have solutions in the integers.
In 1970, Matiyasevic [4] completed work by Davis, Putnam and Robinson [1],
showing that no such algorithm exists. In particular, these authors showed that
there exists a 1-reduction from the Halting Problem ∅′ to the set of such equa-
tions with solutions, by proving the existence of a single polynomial h ∈ Z[Y,X]
such that, for each n from the set ω of nonnegative integers, the polynomial
h(n,X) = 0 has a solution in Z if and only if n lies in ∅′. Since the membership
in the Halting Problem was known to be undecidable, it followed that Hilbert’s
Tenth Problem was also undecidable.

One naturally generalizes this problem to all rings R, defining Hilbert’s Tenth
Problem for R to be the set

HTP(R) = {f ∈ R[X] : (∃r1, . . . , rn ∈ R<ω) f(r1, . . . , rn) = 0}.
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Here we will examine this problem for one particular class: the subrings R of the
field Q of rational numbers. Notice that in this situation, deciding membership in
HTP(R) reduces to the question of deciding this membership just for polynomials
from Z[X], since one readily eliminates denominators from the coefficients of a
polynomial. So, for us, HTP(R) will always be a subset of Z[X1, X2, . . .].

Subrings R of Q correspond bijectively to subsets W of the set P of all primes,
via the map W 7→ Z[ 1p : p ∈ W ]. We write RW for the subring Z[ 1p : p ∈ W ]. In
this article, we will move interchangeably between subsets of ω and subsets of P,
using the bijection mapping n ∈ ω to the n-th prime pn, starting with p0 = 2.
For the most part, our sets will be subsets of P, but Turing reductions and jump
operators and the like will all be applied to them in the standard way. Likewise,
sets of polynomials, such as HTP(R), will be viewed as subsets of ω, using a
fixed computable bijection from ω onto Z[X] = Z[X0, X1, . . .].

We usually view subsets of P as paths through the tree 2<P, a complete binary
tree whose nodes are the functions from initial segments of the set P into the set
{0, 1}. This allows us to introduce a topology on the space 2P of paths through
2<P, and thus on the space of all subrings of Q. Each basic open set Uσ in this
topology is given by a node σ on the tree: Uσ = {W ⊆ P : σ ⊂W}, where σ ⊂W
denotes that when W is viewed as a function from P into the set 2 = {0, 1} (i.e.,
as an infinite binary sequence), σ is an initial segment of that sequence. Also, we
put a natural measure µ on the class Sub(Q) of all subrings of Q: just transfer
to Sub(Q) the obvious Lebesgue measure on the power set 2P of P. Thus, if
we imagine choosing a subring R by flipping a fair coin (independently for each
prime p) to decide whether 1

p ∈ R, the measure of a subclass S of Sub(Q) is the
probability that the resulting subring will lie in S. Here we will focus on Baire
category theory rather than on measure theory, however, as the former yields
more useful results. For questions and results regarding measure theory, we refer
the reader to Section 3 and to the forthcoming [5].

For all W ⊆ P, we have Turing reductions, which in fact are 1-reductions:

W ⊕HTP(Q) ≤1 HTP(RW ) ≤1 W
′.

For instance, the Turing reduction from HTP (RW ) to W ′ can be described by
a computable injection which maps each f ∈ Z[X] to the code number h(f) of
an oracle Turing program which, on every input, searches for a solution x to
f = 0 in Q for which the primes dividing the denominators of the coordinates
in x all lie in the oracle set W . The reduction from HTP(Q) to HTP(RW ) uses
the fact that every element of Q is a quotient of elements of RW , so that f(X)
has a solution in Q if and only if Y d · f(X1

Y , . . . , Xn

Y ) has a solution in RW
with Y > 0. The condition Y > 0 is readily expressed using the Four Squares
Theorem. Finally, W ≤1 HTP(RW ) by mapping p to (pX − 1).

The topological space 2P of all paths through 2<P, which we treat as the space
of all subrings of Q, is obviously homeomorphic to Cantor space, the space 2ω

of all paths through the complete binary tree 2<ω. Hence this space satisfies the
property of Baire, that no nonempty open set is meager. We recall the relevant
definitions. Here as before, A represents the complement of a subset A ⊆ 2P, and
we will write cl(A) for the topological closure of A and Int(A) for its interior.



Definition 1. A subset B ⊆ 2P is said to be nowhere dense if its closure cl(B)
contains no nonempty open subset of 2P. In particular, every set Uσ with σ ∈ 2<P

must intersect Int(B), the interior of the complement of B.
The union of countably many nowhere dense subsets of 2ω is called a meager

set, or a set of first category. Its complement is said to be comeager.

All sets W ⊆ ω satisfy W ⊕∅′ ≤T W ′, and for certain W , Turing-equivalence
holds here. Indeed, it is known that the class

GL1 = {W ∈ 2ω : W ′ ≡T W ⊕ ∅′}

is comeager, although its complement is nonempty. In computability theory,
elements of GL1 are called generalized-low1 sets. The low sets – i.e., those W
with W ′ ≤T ∅′ – clearly lie in GL1.

Lemma 1 (Folklore). There exists a Turing functional Ψ such that {W ⊆ ω :
ΨW⊕∅

′
= χW ′} is comeager. It follows that GL1 is comeager.

Proof. Consider the following oracle program Ψ for computing W ′ from W ⊕∅′.
With this oracle, on input e, the program searches for a string σ ⊆ W such
that either (1) (∃s) Φσe,s(e) ↓, or (2) (∀τ ⊇ σ)(∀s) Φτe,s(e) ↑. The program uses
its ∅′ oracle to check the truth of these two statements for each σ ⊆ W . If it
ever finds that (1) holds, it concludes that e ∈ W ′; while if it ever finds that
(2) holds, it concludes that e /∈ W ′. Thus, ΨW⊕∅

′
can only fail to compute

W ′ if there exists some e /∈ W ′ such that, for every n, some τ ⊃ W � n has
Φτe (e)↓. This can happen, but for each single e, the set of those W for which this
happens constitutes the boundary of the open set {W : e ∈W ′}. This boundary
is nowhere dense (cf. Lemma 3 below), so the union of these sets (over all e) is
meager, and ΨW⊕∅

′
= χW ′ for every W outside this meager set. ut

GL1 also has measure 1, but no single Turing functional computes W ′ from
W ⊕ ∅′ uniformly on a set of measure 1.

Lemma 2 (Folklore). If A 6≥T B, then C = {W : A⊕W ≥T B} is meager.

Proof. To show that C is meager, define Ce = {W ⊆ P : ΦA⊕We = χB}, so
C = ∪eCe. We claim that, if σ ∈ 2P and Uσ ⊆ cl(Ce), the following hold.

1. ∀x∀τ ⊇ σ [ΦA⊕τe (x)↑ or ΦA⊕τe (x)↓= χB(x)].
2. ∀x∃τ ⊇ σ [ΦA⊕τe (x)↓].

To see that (1) holds, suppose ΦA⊕τe (x) ↓. With Uτ ⊆ Uσ ⊆ cl(Ce), some
W ∈ Ce must have τ ⊆W . But then χB(x) = ΦA⊕We (x)↓= ΦA⊕τe (x).

To see (2), fix any W ∈ Ce with σ ⊆ W : such a W must exist, since Uσ ⊆
cl(Ce). Then we can take τ to be the restriction of this W to the use of the
computation ΦA⊕We (x) (or τ = σ if the use is < |σ|).

But now every Ce must be nowhere dense, since any σ satisfying (1) and (2)
would let us compute B from A: given x, just search for some τ ⊇ σ and some s
for which ΦA⊕τe,s (x)↓. By (2), our search would discover such a τ eventually, and

by (1) we would know χB(x) = ΦA⊕τe,s (x). Since A 6≥T B, this is impossible. ut



Finally, on a separate topic, it will be important for us to know that whenever
R is a semilocal subring of Q, we have HTP(R) ≤1 HTP(Q). Indeed, both the
Turing reduction and the 1-reduction are uniform in the complement. (The result
essentially follows from work of Julia Robinson in [8]. For a proof by Eisenträger,
Park, Shlapentokh, and the author, see [2].) Recall that the semilocal subrings of
Q are precisely those of the form RW where the set W is cofinite in P, containing
all but finitely many primes.

Proposition 1 (see Proposition 5.4 in [2]). There exists a computable func-
tion G such that for every n, every finite set A0 = {p1, . . . , pn} ⊂ P and every
f ∈ Z[X],

f ∈ HTP(RP−A0
) ⇐⇒ G(f, 〈p1, . . . , pn〉) ∈ HTP(Q).

That is, HTP(RP−A0
) is 1-reducible to HTP(Q) for all semilocal RP−A0

, uni-
formly in A0. ut

The proof in [2], using work from [3], actually shows how to compute, for every
prime p, a polynomial fp(Z,X1, X2, X3) such that for all rationals q, we have

q ∈ RP−{p} ⇐⇒ fp(q,X) ∈ HTP(Q).

2 Baire Category and HTP(Q)

For a polynomial f ∈ Z[X] and a subring RW ⊆ Q, there are three possibilities.
First, f may lie in HTP(RW ). If this holds for RW , the reason is finitary: W
contains a certain finite (possibly empty) subset of primes generating the denom-
inators of a solution. Second, there may be a finitary reason why f /∈ HTP(RW ):
there may exist a finite subset A0 of the complement W such that f has no so-
lution in RP−A0

. For each finite A0 ⊂ P, the set HTP(RP−A0
) is 1-reducible to

HTP(Q), by Proposition 1; indeed the two sets are computably isomorphic, with
a computable permutation of Z[X] mapping one onto the other. Therefore, the

existence of such a set A0 (still for one fixed f) is a Σ
HTP(Q)
1 problem.

The third possibility is that neither of the first two holds. An example is given
in [5], where it is shown that a particular polynomial f fails to lie in HTP(RW3

),
where W3 is the set of all primes congruent to 3 modulo 4, yet that, for every
finite set V0 of primes, there exists some W disjoint from V0 with f ∈ HTP(RW ).
We consider sets such as this W3 to be on the boundary of f , in consideration of
the topology of the situation. The set A(f) = {W : f ∈ HTP(RW )} is open in
the usual topology on 2P, since, for any solution of f in RW and any σ ⊆W long
enough to include all primes dividing the denominators in that solution, every
other V ⊇ σ will also contain that solution. Moreover, one can computably
enumerate the collection of those σ such that the basic open set Uσ = {W : σ ⊆
W} is contained within A(f). The set Int(A(f)) is similarly a union of basic
open sets, and these can be enumerated by an HTP(Q)-oracle, since HTP(Q)
decides HTP(R) uniformly for every semilocal ring R. The boundary B(f) of f
remains: it contains those W which lie neither in A(f) nor in Int(A(f)). The



boundary can be empty, but need not be, as seen in the example mentioned
above.

It follows quickly from Baire category theory that the boundary set for a
polynomial f ∈ Z[X] must be nowhere dense. In general the boundary set ∂A
of a set A within a space S is defined to equal (S − Int(A)− Int(A)), and thus
is always closed.

Lemma 3. For every open set A in a Baire space S, the boundary set ∂A is
nowhere dense. In particular, for each f ∈ Z[X], the boundary set B(f) =
∂(A(f)) must be nowhere dense. Hence the entire boundary set

B = {W ⊆ P : (∃f ∈ Z[X]) W ∈ B(f)} = ∪f∈Z[X]B(f)

is meager.

Proof. Since A is open, every open subset V of the closure of ∂A (namely ∂A
itself) lies within the complement A, hence within Int(A), which is also disjoint
from ∂A. This proves that ∂A is nowhere dense. Hence B, the countable union
of such sets, is meager. ut

For a set W to fail to lie in B, it must be the case that for every polynomial
f , either f ∈ HTP(RW ) or else some finite initial segment of W rules out all
solutions to f . This is an example of the concept of genericity, common in both
computability and set theory, so we adopt the term here. With this notion, we
can show not only that HTP(RW ) ≤ W ⊕ HTP(Q) for all W in the comeager
set B, but indeed that the reduction is uniform on B.

Definition 2. A set W ⊆ P is HTP-generic if W /∈ B. In this case we will also
call the corresponding subring RW HTP-generic. By Lemma 3, HTP-genericity
is comeager.

Proposition 2. For every HTP-generic set W , HTP(RW ) ≡T W ⊕ HTP(Q),
via uniform Turing reductions. Hence there is a single Turing reduction Φ such
that the following set is comeager:

{W ⊆ P : ΦW⊕HTP(Q) = χHTP(RW )}.

Proof. Given f ∈ Z[X] as input, the program for Φ simply searches for either a
solution x to f = 0 in Q for which all primes dividing the denominators lie in
the oracle set W , or else a finite set A0 ⊆W such that the HTP(Q) oracle, using
Proposition 1, confirms that f /∈ HTP(RP−A0

). When it finds either of these,
it outputs the corresponding answer about membership of f in HTP(RW ). If
it never finds either, then W ∈ B(f), and so this process succeeds for every W
except those in the meager set B. (The reduction W ⊕ HTP(Q) ≤T HTP(RW )
was described in Section 1.) ut

Corollary 1. For every set C ⊆ ω, the following are equivalent

1. C ≤T HTP(Q).



2. {W ⊆ P : C ≤T HTP(RW )} = 2P .
3. {W ⊆ P : C ≤T HTP(RW )} is not meager.

This opens a new possible avenue to a proof of undecidability of HTP(Q): one
need not address Q itself, but only show that for most subrings RW , HTP(RW )
can decide the halting problem (or some other fixed undecidable set C). Con-
structions in the style of [6, Theorem 1.3] offer an approach to the problem along
these lines: that theorem, proven by Poonen, shows that the set of subrings R
with ∅′ ≤T HTP(R) has size continuum and is large in certain other senses.
Poonen constructs decidable subsets T0, T1 ⊆ P, both of asymptotic density 0
within P, such that for every W ⊆ P with T0 ⊆W and T1 ∩W = ∅, the subring
RW has ∅′ ≤T HTP(RW ). This feels like a substantial collection of subrings,
but the conditions T0 ⊆W and T1 ∩W = ∅ each imply that this set of subrings
is nowhere dense, and therefore this set does not by itself enable us to apply
Corollary 1. Moreover, it is not clear that any of Poonen’s subrings need be
HTP-generic.

Proof. Trivially (1 =⇒ 2 =⇒ 3), since all W satisfy HTP(Q) ≤T HTP(RW ).
So assume (3). Then by Proposition 2, C ≤T W ⊕ HTP(Q) holds on a non-
meager set, as the intersection of a non-meager set with a comeager set cannot
be meager. So by Lemma 2, C ≤T HTP(Q). ut

Having examined classes of subsets of P defined by Turing reductions in-
volving HTP(RW ), we now replace Turing reducibility by 1-reducibility and ask
similar questions about classes so defined. It is not known whether there exists a
subring R ⊆ Q for which ∅′ ≤T HTP(RW ) but ∅′ 6≤1 HTP(RW ), and we have no
good candidates for such a subring. Ever since the original proof of undecidabil-
ity of Hilbert’s Tenth Problem in [1, 4], every Turing reduction ever given from
the Halting Problem to any HTP(R) with R ⊆ Q has in fact been a 1-reduction.
Of course, if ∅′ ≤1 HTP(Q), then ∅′ ≤1 HTP(R) for all subrings R, so in some
sense Q itself is the “only” candidate.

We have a result for 1-reducibility analogous to Corollary 1, but the proof is
somewhat different.

Theorem 1. For every set C ⊆ ω with C 6≤1 HTP(Q), the following class is
meager:

O = {W ⊆ P : C ≤1 HTP(RW )}.

Proof. One naturally views O as the union of countably many subclasses Oe =
{W ⊆ P : C ≤1 HTP(RW ) via ϕe}. Of course, for those e for which the e-th
Turing function ϕe is not total, this class is empty. We claim that if any one
of these Oe fails to be nowhere dense, then C ≤1 HTP(Q), contrary to the
assumption of the theorem.

Suppose that indeed Oe fails to be nowhere dense, and fix a σ for which
Uσ ⊆ cl(Oe). Let A0 = σ−1(0) contain those primes excluded from all W ∈ Uσ,
and set R = R(P−A0). Now whenever n ∈ C and W ∈ Oe, the polynomial
ϕe(n) must lie in HTP(RW ). Since some W ∈ Oe lies in Uσ, we must have



ϕe(n) ∈ HTP(R), because RW ⊆ R whenever W ∈ Uσ. On the other hand,
suppose n /∈ C. If R contained a solution to the polynomial ϕe(n), then some
τ ⊇ σ would by itself invert the finitely many primes required to generate this
solution, and thus we would have Uτ ∩ Oe = ∅. With Uσ ⊆ cl(Oe), this is
impossible, and so, whenever n /∈ C, we have ϕe(n) /∈ HTP(R).

Thus R itself lies in Oe, as ϕe is a 1-reduction from C to HTP(R). But R is
semilocal, inverting all primes p except those with σ(p) = 0. By Proposition 1,
we have HTP(R) ≤1 HTP(Q), and so C ≤1 HTP(Q). ut

Now we prove two similar results, one about subrings of Q which admit
diophantine models and one about subrings which admit existential definitions
of the integers within the subring. In both cases, the result is a sort of zero-one
law: that the given phenomenon must either hold almost everywhere (i.e., on a
comeager set of subrings) or almost nowhere (i.e., on a meager set). We begin
with the diophantine models.

Definition 3. In a ring R, a diophantine model of Z consists of three polynomi-
als h, h+, and h×, with h ∈ R[X1, . . . , Xn,Y ] and h+, h× ∈ R[X1, . . . , X3n,Y ]
(for some n), such that the set

{x ∈ Rn : (∃y ∈ R<ω) h(x,y) = 0}

(equivalently, {x ∈ Rn : h(x,Y ) ∈ HTP(R)}) is isomorphic to the structure
(Z,+, ·) under the binary operations whose graphs are defined by

{(x1,x2,x3) ∈ R3n : h+(x1,x2,x3,Y ) ∈ HTP(R)}

for addition and the corresponding set with h× for multiplication.

If a computable ring R admits a diophantine model of Z, then HTP(Z) can be
coded into HTP(R), and so ∅′ ≡1 HTP(Z) ≤1 HTP(R). For subrings RW of Q for
which ∅′ 6≤T W , this is the only known method of showing that ∅′ ≤T HTP(RW )
(apart from the original proof by Matiyasevich, Davis, Putnam, and Robinson
for the case W = ∅, of course, which is what allows this method to succeed).

Definition 4. D = {W ⊆ P : RW admits a diophantine model of Z}.

In this section we address the question of the size of the class D. The main
result fails to resolve this question, but shows it to have an “all-or-nothing”
character.

Theorem 2. The class D is non-meager if and only if there exists a particular
triple (h, h+, h×) of polynomials over Z and a finite binary string σ ∈ 2<P such
that, for every HTP-generic V ∈ Uσ, RV admits a diophantine model of Z via
these three polynomials.

Moreover, if D is non-meager, then P ∈ D (i.e., Q admits a diophantine
model of Z).



Proof. For each triple h = (h, h+, h×) of polynomials of appropriate lengths over
Z, we set Dh to contain those W for which h defines a diophantine model of Z
within RW . If each Dh is nowhere dense, their countable union D is meager.

Now suppose that D is non-meager, so some class Dh fails to be nowhere
dense. Then there must be a string σ such that Uσ ⊆ cl(Dh). Using this σ and
this h, we now prove the main claim: all W ∈ Uσ with HTP-generic RW lie in
Dh. Let R0 = Rσ−1(1) and R1 = RP−σ−1(0) be the smallest and largest subrings
(under ⊆) in Uσ, so R0 is finitely generated and R1 is semilocal.

Fix a single W ⊃ σ with W ∈ Dh, and fix the tuples x0 and x1 from RW
which represent the elements 0 and 1 in the diophantine model defined in RW
by h. It follows that h×(x0,x0,x0,Y ) ∈ HTP(RW ) and h×(x1,x1,x1,Y ) ∈
HTP(RW ). Now if any other tuple x from R1 had h(x,Y ) ∈ HTP(R1) and
h×(x,x,x,Y ) ∈ HTP(R1), then we could set τ = σ 1̂11 · · · 1 to contain enough
primes that Rτ−1(1) would contain x, x0, and x1. This would mean that h
could not define a diophantine model of Z in any RV with V ∈ Uτ , contrary
to hypothesis. Therefore, no other x from R1 can do this. Now suppose that
x0 does not lie within R0. In this case, some extension ρ = σ 0̂00 · · · 0 would
exclude enough primes to ensure that x0 does not lie in RP−ρ−1(0), and then no
τ ⊇ ρ would admit a diophantine model via h, since no other tuple with the right
properties lies in R1. Again, this contradicts our hypothesis that Uσ ⊆ cl(Dh),
since Dh ∩ Uρ would be empty, and so x0 lies in R0. Similarly so does x1.

Now one proceeds by induction on the subsequent elements of the diophantine
model in R1. Some tuple x2 from RW must satisfy h(x2,Y ) ∈ HTP(RW ) and
h+(x1,x1,x2,Y ) ∈ HTP(RW ), and by the same arguments as above, we see that
x2 is the only tuple in R1 with this property, and then that x2 actually lies in R0.
Likewise, x−1 must satisfy h(x−1,Y ) ∈ HTP(RW ) and h+(x1,x−1,x0,Y ) ∈
HTP(RW ), and again this forces x−1 to lie in R0 and to be the unique tuple
with these properties in R1.

Continuing this induction, we see that every tuple in the domain of the
diophantine model of Z in RW actually lies in R0, and hence in every RW
with W ∈ Uσ; and moreover that these are the only tuples x in R1 for which
h(x,Y ) ∈ HTP(R1). Likewise, if some xm, xn and xp (representing m, n, and
p in the diophantine model) satisfy h+(xm,xn,xp,Y ) ∈ HTP(R1), then for
some k, τ = σ 1̂k is long enough to ensure that every W extending τ must have
h+(xm,xn,xp,Y ) ∈ HTP(RW ). But some such W lies in Dh, so we must have
m+n = p. The same works for h×, so h defines a diophantine model of Z in R1.

It is not clear whether h defines a diophantine model in the subring R0

(which, being finitely generated, lies in B). The domain elements of the model
in R1 all lie in R0, but the witnesses might not. However, suppose that V ∈ Uσ
is HTP-generic, and fix any domain element x. Let τ = V �m, for any m ≥ |σ|.
Then some U ⊇ τ lies in Dh, and so some extension of τ yields a solution
to h(x,Y ). Since V is HTP-generic (that is, V /∈ B), this forces h(x,Y ) ∈
HTP(RV ). Likewise, for each fact coded by h+ or h× about domain elements of
the model, some extension of V �mmust yield a witness to that fact, and therefore



RV itself contains such a witness. So h defines this same diophantine model in
every HTP-generic subring RV with V ∈ Uσ, as required by the theorem.

Cases (1) and (2) of the theorem cannot both hold, because under (2), Uσ∩B
would be a nonmeager subset of D. Moreover, the 1-reduction HTP(R1) ≤1

HTP(Q) given in [2, Proposition 5.4] has sufficient uniformity that the images
of h, h+, and h× under this reduction define a diophantine model of Z inside
Q. (Specifically, h(X,Y ) maps to the sum of h2 with several other squares of
polynomials in such a way as to guarantee that all solutions use values from
R1 for the variables X and Y ; likewise with h+ and h×.) This proves the final
statement of the theorem. ut

Now we continue with the question of existential definability of the integers.

Definition 5. In a ring R, a polynomial g ∈ Z[X,Y ] existentially defines Z if,
for every q ∈ R,

q ∈ Z ⇐⇒ g(q,Y ) ∈ HTP(R).

Z is existentially definable in R if such a polynomial g exists.

A ring in which Z is existentially definable must admit a very simple diophan-
tine model of Z, given by the polynomial g along with h+ = X1 +X2 −X3 and
h× = X1X2 −X3. The question of definability of Z in the field Q was originally
answered by Julia Robinson (see [8]), who gave a Π4 definition. Subsequent work
by Poonen [7] and then Koenigsmann [3] has resulted in a Π1 definition of Z in
Q, but it remains unknown whether any existential formula defines Z there.

Definition 6. E is the class of subrings of Q where Z is existentially definable:

E = {W ⊆ P : Z is existentially definable in RW }.

We now address the question of the size of the class E . As with D, we show
E to be either very large or very small, in the sense of Baire category.

Theorem 3. The following are equivalent.

1. The class E is not meager.
2. There is a σ ∈ 2<P, and a single polynomial g which existentially defines Z

in all HTP-generic subrings RV with V ∈ Uσ.
3. P ∈ E; that is, Z is existentially definable in Q.
4. There is a single existential formula which defines Z in every subring of Q.

Proof. The proof that (1) =⇒ (2) =⇒ (3) proceeds along the same lines as
that of Theorem 2, with Eg as the class of those W for which the polynomial g
existentially defines Z within RW . If every one of these classes is nowhere dense,
then their countable union E is meager. Otherwise one proves (2), and from
that (3), by a simplification of the same method as before, with no induction
required. To see that (3) implies (4), notice that if Z is defined in Q by the
formula ∃Y f(X,Y ) = 0, and d is the total degree of f , then the formula

∃Y ∃Z [Zd · f
(
X,

Y1
Z
, . . . ,

Yn
Z

)
= 0 & Z > 0]

defines Z in RW . ut



It is possible to turn Theorem 2 into an equivalence analogous to that in
Theorem 3, with the third condition stating that P ∈ D. As far as we know,
however, it is necessary to consider diophantine interpretations in subrings RW ,
rather than diophantine models, in order to accomplish this.

3 Measure Theory

Normally there is a strong connection between measure theory and Baire cat-
egory theory. Each defines a certain Σ-ideal of sets to be “small”: the sets of
measure 0, and the meager sets. In Cantor space, neither of these properties im-
plies the other, but empirically they appear closely connected, especially when
the sets are given by natural definitions: sets of measure 0 are often meager, and
vice versa. (Exceptions to this principle do exist, however, and another difference
was mentioned in the context of Lemma 1.)

Our results here rely heavily on the simple Lemma 3, stating that the bound-
ary set B(f) of a polynomial f is nowhere dense. Most of our subsequent results
have measure-theoretic analogues which would go through fairly easily, provided
that these sets B(f) also have measure 0. However, determining the measure
of the boundary set of a polynomial appears to be a nontrivial problem. It is
unknown whether there exists any polynomial f for which µ(B(f)) > 0. Indeed,
in work to appear elsewhere, the author has shown that if µ(B(f)) = 0 for all
f ∈ Z[X], then there is no existential definition of the set Z within the field Q.

Moreover, if an f exists with µ(B(f)) > 0, it is unclear what other constraints
on the real number µ(B(f)) exist, apart from the computability-theoretic upper
bound given by its definition as µ(B(f)). Could such a number be transcen-
dental? Or noncomputable? If not, is there an algorithm computing µ(B(f))
uniformly in f? These appear to be challenging questions, often with a more
number-theoretic flavor than most of this article. Resolving them might make
it possible to determine whether Hilbert’s Tenth Problem on subrings of Q has
measure-theoretic zero-one laws similar to those proven here for Baire category.

References

1. M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential
diophantine equations. Annals of Mathematics (2), 74:425–436, 1961.
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