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Abstract

For a ring R, Hilbert’s Tenth Problem HTP(R) is the set of poly-
nomial equations over R, in several variables, with solutions in R.
When R = Z, it is known that the jump Z′ is Turing-reducible to
HTP(Z). We consider computability of HTP(R) for subrings R of the
rationals. Applying measure theory to these subrings, which naturally
form a measure space, relates their sets HTP(R) to the set HTP(Q),
whose decidability remains an open question. We raise the question
of the measure of the topological boundary of the solution set of a
polynomial within this space, and show that if these boundaries all
have measure 0, then for each individual oracle Turing machine Φ,
the reduction R′ = ΦHTP(R) fails on a set of subrings R of positive
measure. That is, no Turing reduction of the jump R′ of a subring R
to HTP(R) holds uniformly on a set of measure 1.

1 Introduction

The original version of Hilbert’s Tenth Problem demanded an algorithm de-
ciding which polynomial equations from Z[X0, X1, . . .] have solutions in in-
tegers. In 1970, Matiyasevic [5] completed work by Davis, Putnam and
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Robinson [1], showing that no such algorithm exists. In particular, these au-
thors showed that there exists a 1-reduction from the Halting Problem ∅′ to
the set of such equations with solutions, by proving the existence of a single
polynomial h ∈ Z[X, ~Y ] such that, for each n from the set ω of nonnegative

integers, the polynomial h(n, ~Y ) = 0 has a solution in Z if and only if n
lies in ∅′. Since the membership in the Halting Problem was known to be
undecidable, it followed that Hilbert’s Tenth Problem was also undecidable.

One naturally generalizes this problem to all rings R, defining Hilbert’s
Tenth Problem for R to be the set

HTP(R) = {f ∈ R[ ~X] : (∃r1, . . . , rn ∈ R<ω) f(r1, . . . , rn) = 0}.

Here we will examine this problem for one particular class: the subrings R
of the field Q of rational numbers. Notice that in this situation, deciding
membership in HTP(R) reduces to the question of deciding this membership

just for polynomials from Z[ ~X], since one readily eliminates denominators

from the coefficients of a polynomial in R[ ~X]. So, for us, HTP(R) will always
be a subset of Z[X1, X2, . . .].

Subrings R of Q correspond bijectively to subsets W of the set P of all
primes, via the map W 7→ Z[1

p
: p ∈ W ]. We write RW for the subring

Z[1
p

: p ∈ W ]. In this article, we will move interchangeably between subsets
of ω and subsets of P, using the bijection mapping n ∈ ω to the n-th prime
pn, starting with p0 = 2. For the most part, our sets will be subsets of P,
but Turing reductions and jump operators and the like will all be applied to
them in the standard way. Likewise, sets of polynomials, such as HTP(R),
will be viewed as subsets of ω, using a fixed computable bijection from ω
onto Z[ ~X] = Z[X0, X1, . . .].

We usually view subsets of P as paths through the tree 2<P, a complete
binary tree whose nodes are the functions from initial segments of the set
P into the set {0, 1}. This allows us to introduce a topology on the space
2P of paths through 2<P, and thus on the class Sub(Q) of all subrings of Q.
Each basic open set Uσ in this topology is given by a node σ on the tree:
Uσ = {W ⊆ P : σ ⊂ W}, where σ ⊂ W denotes that when W is viewed as a
function from P into the set 2 = {0, 1} (i.e., as an infinite binary sequence),
σ is an initial segment of that sequence. Also, we put a natural measure µ
on Sub(Q): just transfer to Sub(Q) the obvious Lebesgue measure on the
power set 2P of P. Thus, if we imagine choosing a subring R by flipping a fair
coin (independently for each prime p) to decide whether 1

p
∈ R, the measure
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of a subclass S of Sub(Q) is the probability that the resulting subring will
lie in S.

It is also natural, and in certain respects more productive, to consider
Baire category theory on the space Sub(Q), as an alternative to measure
theory. Here we will focus on measure theory. For questions and results
regarding Baire category theory on subrings of Q, we refer the reader to the
forthcoming [6]. Due to the common subject matter of that article and this
one, there is a substantial overlap between the introductions and background
sections of the two papers, which we trust the reader to forgive. Naturally,
we have also made every effort to maintain the same notation across both
papers.

2 Background

2.1 Measure Theory and Cantor Space

The topological space 2P of all paths through 2<P, which we treat as the
space of all subrings of Q, is obviously homeomorphic to Cantor space, the
space 2ω of all paths through the complete binary tree 2<ω. We assign to the
basic open set

Uσ = {W ⊆ P : (∀n < |σ|) [n ∈ W ⇐⇒ σ(n) = 1}

the measure 2−|σ|, as in the standard Lebesgue measure on 2ω, and extend this
measure to all Lebesgue-measurable subsets of 2P. Thus we have a natural
measure on the space of all subrings RW of Q.

All sets W ⊆ ω satisfy W ⊕ ∅′ ≤T W ′, and for certain W , Turing-
equivalence holds here. Those W for which W ≡T W ⊕ ∅′ are said to be
generalized-low, and it turns out that this is the standard situation, according
to both measure and Baire category.

Lemma 2.1 (Folklore) The class

GL1 = {W ∈ 2ω : W ′ ≡T W ⊕ ∅′}

of generalized-low sets is comeager and has measure 1 in 2ω. However, there
is no single Turing functional Φe for which the subclass

GL1,e = {W ∈ 2ω : W ′ = ΦW⊕∅′
e }

has measure 1.
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We express the content of the second statement by saying that although
W ′ ≤T W ⊕ ∅′ on a set of measure 1, the reduction is nonuniform. This
contrasts with the situation in Baire category, where a single Turing reduction
does succeed on a comeager set.

We give the full proof of the measure-theoretic statements in Lemma 2.1
even though they are well known. They will be illustrative when we come to
consider measures of boundary sets of polynomials.

Proof. First, for an arbitrary rational ε > 0, we describe a Turing reduction
Φe for which µ(GL1,e) ≥ 1− ε. This will prove that GL1 has measure 1.

With an oracle W ⊕ ∅′, on input x, the functional Φe simultaneously
performs two searches. At each stage s, it checks the first s strings σ ∈ 2<ω.
Whenever it finds a σ for which Φσ

x,s(x) ↓, it enumerates this σ into its set
Sx,s. Simultaneously, for the s-th rational r, it asks its ∅′ oracle whether

(∃t ∃〈σ0, . . . , σn〉 ∈ (2<ω)<ω) [µ(∪iUσi) > r & (∀i ≤ n)Φσi
x,t(x)↓].

If this statement is false, it enumerates that r into its set Rx,s. (We start
with r = 1 in Rx,0, since the statement must be false for this r.)

These searches continue until we reach a stage s at which some r in Rx,s

has the property that µ(∪σ∈Sx,sUσ) + ε
2x+1 ≥ r. Since µ(∪σ∈SxUσ) (where

Sx = ∪sSx,s) must equal the infimum of the subset ∪sRx,s of Q, it is clear
that this process eventually halts. When it does, we use the W -oracle to
check whether any of the finitely many σ already in Sx,s is an initial segment
of W . If so, we conclude that ΦW

x (x)↓; if not, we conclude that ΦW
x (x)↑.

Of course, this conclusion will not always be correct. However, it fails
only on the class of those W for which ΦW

x (x) ↓ but no initial segment of
W lies in the finite set Sx,s we had enumerated by the stage s at which the
process halted. The class of all these W must have measure ≤ ε

2x+1 , since
Sx = {W : ΦW

x (x) ↓}, which has measure ≤ r, and at least r − ε
2x+1 of this

set has initial segments in Sx,s. Since the process gives the wrong answer (on
input x) only for a class of measure ≤ ε

2x+1 , the class of all W such that, for
that W and some x, it gives the wrong answer is a class of measure ≤ ε, as
required.

Now we prove the nonuniformity, by constructing (the index x of) a spe-
cific program. Fix an effective numbering σ0 = 〈〉, σ1 = 〈0〉, σ2 = 〈1〉, . . .
of all of 2<ω. The function Φx, on arbitrary input, halts if and only if there
exists an n such that its oracle has initial segment σn̂ 1n+2 (that is, σn fol-
lowed by (n+ 2) consecutive 1’s). Notice that the class A of all W such that

4



ΦW
x (x)↓ has measure ≤

∑
n 2−|σn|−n−2 ≤

∑
n 2−(n+2) = 1

2
. It follows that, if

a functional Φe computes W ′ from W ⊕ ∅′ uniformly on a class of measure
1, then there must be sets W for which ΦW

e (x) ↓= 0. However, the initial
segment σ ⊆ W used in this computation is equal to σn for some n, and then
ΦV
e (x) must give the same output 0, incorrectly, on each V in the basic open

set Uσn̂1n+2 . Since each basic open set has positive measure, we see that Φe

fails, on a class of positive measure, to compute W ′ from W ⊕∅′ correctly.

The proof of Lemma 2.1 showed that GL1 had measure 1 by showing that,
for each ε > 0, a single Turing functional could compute W ′ from W ⊕ ∅′
correctly on a set of measure > 1− ε. This near-uniformity may sound like
a useful fact, but in fact the next lemma can be adapted to show that it has
to be the case in order for that lemma to be true at all.

Lemma 2.2 (Folklore) Suppose µ{W : A⊕W ≥T B} > r. Then there exists
a single Turing functional Ψ such that µ{W : ΨA⊕W = B} > r.

Proof. The idea is that we glue finitely many functionals together, using
initial segments of the different W to choose which one to run. Formally, set
r + ε = µ{W : A⊕W ≥T B}. Since there are only countably many Turing
functionals in all, there must exist finitely many functionals Ψ0, . . . ,Ψm such
that

µ{W : (∃e ≤ m) ΨA⊕W
e = B} > r +

ε

2
.

But then, for each e ≤ m, there must also exist finitely many initial segments
σe0, . . . , σeke such that∑

e≤m

µ{W : (∃j ≤ ke) [σej ⊆ W & ΨA⊕W
e = B]} > r +

ε

4
,

and such that all these σej are pairwise incomparable. So the desired func-
tional Ψ, given any oracle V ⊕W , checks to see whether any of the finitely
many σej is an initial segment of W : if so, it runs Ψe on its oracle, while if
not, it simply diverges.

Lemma 2.3 (Folklore) Let A 6≥T B. Then the class C = {W : A⊕W ≥T B}
has measure 0.
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Proof. If µ(C) > 0, then there is some σ for which µ(C∩Uσ)
µ(Uσ) > 1

2
. (See e.g.

[4, Lemma 3.1a] for a proof of this result, which is standard. The broader
principle is the Zero-One Law, which states that all measurable subsets of
2ω invariant under Turing equivalence have measure either 0 or 1.) Let
δ = µ(Uσ) = 1

2|σ|
, and pick ε > 0 so that µ(C ∩ Uσ) = δ

2
+ ε. Now by Lemma

2.2, there is a single Turing functional Φ such that ΦA⊕W = B for all W in
a subclass of Uσ of measure δ

2
+ ε

2
. But then we could compute B directly

from A: B(x) = n iff there exist finitely many pairwise-incomparable strings
τ ⊇ σ of total measure > δ

2
for which ΦA⊕τ (x)↓= n.

In [11], Stillwell went much further, proving the decidability of the entire
almost-everywhere theory of the Turing degrees under meet, join, and jump.
(The class of pairs of sets A and B for which the meet A ∧ B is defined has
measure 1, so it is reasonable to discuss the almost-everywhere theory with
∧ as a binary function.)

2.2 Subrings of the Rationals

Now we turn to background results specifically about subrings of Q. For all
W ⊆ P, we have the Turing reductions

W ⊕ HTP(Q) ≤T HTP(RW ) ≤T W ′.

Indeed, each of these two Turing reductions is a 1-reduction. For instance, the
Turing reduction from HTP (RW ) to W ′ can be described by a computable

injection which maps each f ∈ Z[ ~X] to the code number h(f) of an oracle
Turing program which, on every input, searches for a solution ~x in Q to
the equation f = 0 for which the primes dividing the denominators of the
coordinates in ~x all lie in the oracle set W . The reduction W ≤T HTP(RW )
is simple: p ∈ W if and only if (pX − 1) ∈ HTP(RW ). The reduction from
HTP(Q) to HTP(RW ) uses the fact that every element of Q is a quotient

of elements of RW , so that f( ~X) has a solution in Q if and only if Y d ·
f(X1

Y
, . . . , Xn

Y
) has a solution in RW with Y > 0. (Here d is the total degree

of f , so that Y d suffices to cancel all denominators.) Since the Four Squares
Theorem ensures that every nonnegative integer is a sum of four squares of
integers, we may express the condition Y > 0 by a polynomial: if a rational
y is positive, then there is a solution in Z to:

h(y, U1, . . . , U4, V1, . . . , V4) = y(1 + V 2
1 + · · ·+ V 2

4 )− (1 + U2
1 + · · ·+ U2

4 ).

6



Conversely, any solution in Q to h(y, ~U, ~V ) = 0 forces y > 0. It follows that
when y > 0, this polynomial has a solution in every subring of Q, while when
y ≤ 0, it has no solution in any subring. Therefore we may use it within any
subring we like, to define the positive elements there. From all this we see
(for arbitrary W ) that f ∈ HTP(Q) if and only if the following polynomial
lies in HTP(RW ):(

Y d · f
(
X1

Y
, . . . ,

Xn

Y

))2

+ (h(Y, ~U, ~V ))2.

Recall that the semilocal subrings of Q are precisely those of the form
RW where the set W is cofinite in P, containing all but finitely many primes.
It will be important for us to know that whenever R is a semilocal subring
of Q, we have HTP(R) ≤1 HTP(Q). Indeed, both the Turing reduction and
the 1-reduction are uniform in the complement. This result, stated formally
below, essentially follows from work of Julia Robinson in [9]. For a proof by
Eisenträger, Park, Shlapentokh, and the author, see [2].

Proposition 2.4 (see Proposition 5.4 in [2]) There exists a computable
function G such that for every n, every finite set A0 = {p1, . . . , pn} ⊂ P and

every f ∈ Z[ ~X],

f ∈ HTP(RP−A0) ⇐⇒ G(f, 〈p1, . . . , pn〉) ∈ HTP(Q).

That is, HTP(RP−A0) is 1-reducible to HTP(Q) for all semilocal RP−A0, uni-
formly in A0.

The proof in [2], using work from [3], actually shows how to compute, for
every prime p, a polynomial fp(Z,X1, X2, X3) such that for all rationals q,
we have

q ∈ RP−{p} ⇐⇒ fp(q, ~X) ∈ HTP(Q).

Therefore, an arbitrary g(Z0, . . . , Zn) has a solution in RP−A0 if and only if

(g(~Z))2 +
∑

p∈A0,j≤n

(fp(Zj, X1j, X2j, X3j))
2

has a solution in Q.
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3 The Boundary Set of a Polynomial

For a polynomial f ∈ Z[ ~X] and a subring RW ⊆ Q, there are three pos-
sibilities. First, f may lie in HTP(RW ). If this holds for RW , the reason
is finitary: W contains a certain finite (possibly empty) subset of primes
generating the denominators of a solution. For this reason, the set A(f) =
{W : f ∈ HTP(RW )} is open: for any solution of f in RW and any σ ⊆ W
long enough to include all primes dividing the denominators in that solution,
every other V ⊇ σ will also contain that solution.

The second possibility is that there may be a finitary reason why f /∈
HTP(RW ): there may exist a finite subset A0 of the complement W such that
f has no solution in RP−A0 . For each finite A0 ⊂ P, the set HTP(RP−A0) is 1-
reducible to HTP(Q), by Proposition 2.4; indeed the two sets are computably

isomorphic, with a computable permutation of Z[ ~X] mapping one onto the
other. We write

C(f) = {W ⊆ P : (∃ finite A0 ⊆ W ) f /∈ HTP(RP−A0)}

for the set of W where this second possibility holds. C(f) is another open
set, for the same reasons that A(f) is open.

The third possibility is that neither of the first two holds: W may not lie
in A(f) ∪ C(f). Now one can computably enumerate the collection of those
σ such that the basic open set Uσ = {W : σ ⊆ W} is contained within A(f).
The set Int(A(f)) is similarly a union of basic open sets, and these can be
enumerated by an HTP(Q)-oracle, since HTP(Q) decides HTP(R) uniformly
for every semilocal ring R. The boundary B(f) of f remains: it contains those
W which lie neither in A(f) nor in Int(A(f)). This set B(f) will be the focus
of much of the rest of this article. Topologically, it is indeed the boundary of
A(f), since it contains exactly those points which lie neither in the interior
of A(f) (namely A(f) itself) nor in the interior of its complement. Therefore
B(f) is always closed. In computability theory, B(f) is a Π0

2 subset of 2P,

and indeed is Π
HTP(Q)
1 , since with an HTP(Q)-oracle one can enumerate its

complement (A(f) ∪ C(f)).
To reduce the computability discussion to first-order, one can say of nodes

σ that it is Σ0
1 for Uσ to be contained within A(f), while it is HTP(Q)-

decidable whether Uσ ⊆ C(f). However, no Uσ can be contained within any
B(f). Indeed, if Uσ 6⊆ C(f), then some τ ⊇ σ must have Uτ ⊆ A(f). It
follows that, in Baire category theory, B(f) is nowhere dense, as shown in
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[6], and therefore the union

B =
⋃

f∈Z[ ~X]

B(f)

is meager. Since meager sets often (but not always) are of measure 0, and vice
versa, we will ask below whether B has measure 0 (or equivalently, whether
every B(f) has measure 0). Theorem 3.4 will suggest the importance of this
question.

3.1 Examples of B(f)

A boundary set B(f) can be empty, but need not be, and we now give a
specific example where it is nonempty. The basic idea is to use the polynomial
X2 + Y 2 − 1. Of course, this polynomial has two trivial solutions (0, 1) and
(1, 0) in Z, so we modify it: our actual f has as its solutions those rationals
(x, y) with x2 + y2 = 1 and x > 0 and y > 0. This is readily accomplished
using the Four Squares Theorem. Technically, the polynomial f uses twelve
other variables as well, but it has a solution in RW iff RW contains positive
rationals (x, y) with x2 + y2 = 1.

Now if this f lies in HTP(RW ), we may write each solution in RW as
(a
c
, b
c
), where a, b, c are all nonzero integers with no common factors and

c > 1. Every prime p dividing c must lie in W . For each such p, we have
a2 + b2 ≡ 0 mod p. But p cannot divide both a and b (lest it be a common
factor), and so easy arithmetic yields(a

b

)2
≡ −1 mod p.

This forces p 6≡ 3 mod 4. It follows that f has no solutions in any subring
RV for which V contains only primes congruent to 3 modulo 4.

On the other hand, it is known that every prime p ≡ 1 mod 4 is a sum of
two squares of integers. Poonen pointed out that, writing p = m2 + n2, this
yields (

m2 − n2

p

)2

+

(
2mn

p

)2

=
(m2 + n2)2

p2
= 1.

With p prime, we know mn 6= 0 and m 6= ±n, so this is a solution to f in
the subring R{p}. It follows that f has solutions in every subring RW for
which W contains any prime ≡ 1 mod 4, and only in such subrings. (The
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only remaining prime that could divide c is 2, in which case 4 divides c2. But
if a2 + b2 = c2 ≡ 0 mod 4, then a and b must both be even, giving them a
common factor with c.)

It now follows that A(f) has measure 1, since the probability is 1 that
an arbitrary W contains at least one prime ≡ 1 mod 4. Hence C(f), being
open of measure 0, must be empty. But we saw above that A(f) 6= 2P, so
B(f) 6= ∅, although µ(B(f)) = 0. In particular, every subring W which
contains no prime ≡ 1 mod 4 has the defining property for being in the
boundary set of f : no initial segment σ ⊂ W determines whether or not RW

contains a solution to f .
Next, imitating the foregoing proof, we show that for each odd prime

q, there is an infinite decidable set V of primes such that RV contains no
nontrivial solutions to X2 + qY 2 = 1. (Here the trivial solution is (1, 0),
which can be ruled out by a messier polynomial, just as above.)

Lemma 3.1 Fix a prime q ≡ 3 mod 4, and let x and y be positive rational
numbers with x2 + qy2 = 1. Then every prime factor of the least common
denominator of x and y is a square modulo q.

For a prime q ≡ 1 mod 4, the situation is a little more complicated. If
x2 + qy2 = 1 and y 6= 0 and a prime p divides the least common denominator
of x and y, then one of the following holds:

• p ≡ 1 mod 4 and p is a square modulo q.

• p ≡ 3 mod 4 and p is not a square modulo q.

Proof. We proceed similarly to the q = 1 case done above. Suppose that q ≡
3 mod 4 and a, b, c are positive integers, with no common factor, satisfying

a2 + qb2 = c2. Thus
(
a
b

)2 ≡ −q mod p for every prime p dividing c. If
p ≡ 1 mod 4, then −1 is also a square mod p, so q is a square mod p, and by
quadratic reciprocity p must be a square mod q. Likewise, if p ≡ 3 mod 4,
then −1 is not a square mod p, so q is not either; but with both p and
q congruent to 3 mod 4, quadratic reciprocity now shows that p is again a
square mod q. (The number-theoretic results here may be found in any
standard text on the subject, e.g., [10].)

When q ≡ 1 mod 4, a similar analysis, with careful use of quadratic
reciprocity, gives the result stated in the lemma.

One could use Lemma 3.1 to build infinitely many distinct polynomials
(with different prime values of q) such that there is an infinite set V for which
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RV contains no solution of any of those polynomials, yet for which no finite
subset of the complement of V suffices to establish that any individual one
of those polynomials fails to have a solution in RV . (Saying the same thing:
every one of these polynomials has solutions in every HTP-generic subring
of Q.) In particular, for every prime q and every nonzero j ∈ Z, we have(

j2 − q
j2 + q

)2

+ q ·
(

2j

j2 + q

)2

= 1,

so that X2+qY 2 = 1 has a nontrivial solution in each subring with the prime
factors of (j2 + q) inverted. Given a finite set {r1, . . . rk} of primes which we
may not invert, just take j = Πri 6=q ri; then no ri divides (j2 + q), and so the
semilocal ring RP−{r1,...,rk} contains the above solution to the polynomial.

3.2 HTP-genericity

Recall that B denotes the union of all boundary sets B(f), over all polynomi-

als f ∈ Z[ ~X]. For a set W to fail to lie in B, it must be the case that for every
polynomial f , either f ∈ HTP(RW ) or else some finite initial segment of W
rules out all solutions to f . This is an example of the concept of genericity,
common in both computability and set theory, so we adopt the term here.
With this notion, we can show not only that HTP(RW ) ≤ W ⊕HTP(Q) for
all W ∈ B, but indeed that the reduction is uniform on B.

Definition 3.2 A set W ⊆ P is HTP-generic if W /∈ B. In this case we will
also call the corresponding subring RW HTP-generic.

Proposition 3.3 HTP(RW ) is Turing-reducible to W ⊕HTP(Q) uniformly
on the set B. That is, there exists a single Turing reduction Φ such that, for
every HTP-generic set W , ΦW⊕HTP(Q) = HTP(RW ).

Proof. Given f ∈ Z[ ~X] as input, the program for Φ simply searches for either
a solution ~x to f = 0 in Q for which all primes dividing the denominators
lie in the oracle set W , or else a finite set A0 ⊆ W such that the HTP(Q)
oracle, using Proposition 2.4, confirms that f /∈ HTP(RP−A0). When it finds
either of these, it outputs the corresponding answer about membership of f
in HTP(RW ). If it never finds either, then W ∈ B(f), and so this process
succeeds for every W except those in B.
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Theorem 3.4 µ(B) = 0 if and only if there exists a Turing reduction of
HTP(RW ) to W ⊕ HTP(Q) which succeeds uniformly on a class of measure
1. Moreover, if these equivalent conditions hold, then:

1. The measures µ(A(f)) and µ(C(f)) are HTP(Q)-computable uniformly
in f . (This claim is precisely defined later in this subsection.)

2. There is no Turing reduction of W ′ to HTP(RW ) which succeeds uni-
formly on a class of measure 1.

Proof. Proposition 3.3 proves the forwards direction of the equivalence imme-
diately. For the backwards direction, suppose that HTP(RW ) = ΦW⊕HTP(Q)

for everyW in a classD of measure 1. Fix any polynomial f , and any setW ∈
B(f). Then f /∈ HTP(RW ), but we claim that ΦW⊕HTP(Q)(f) cannot halt and
output 0. If it did, then fix n large enough that Φ(W �n)⊕HTP(Q)(f)↓= 0. Then
also ΦV⊕HTP(Q)(f)↓= 0 for every V ⊃ W�n. However, since W ∈ B(f), there
exists some V ⊃ W�n for which f ∈ HTP(RV ). Fix m ≥ n large enough that
f ∈ HTP(RV �m). Then, for every U ⊃ V �m, we have both f ∈ HTP(RU)
and ΦU⊕HTP(Q)(f) ↓= 0, contradicting the assumption that Φ succeeds uni-
formly on a class of measure 1. Thus we must have either ΦW⊕HTP(Q)(f) ↑
or ΦW⊕HTP(Q)(f)↓6= 0 whenever W ∈ B(f). But since Φ succeeds uniformly
on a class of measure 1, this means that every class B(f) has measure 0, and
hence so does the countable union B of these classes.

Now suppose that the two equivalent conditions hold. (1) will follow from
the more general Theorem 3.6 below. For (2), we simply note that by Lemma
2.1, no single Turing functional can compute W ′ from W ⊕∅′ uniformly on a
class of measure 1. Since we are assuming that HTP(RW ) can be computed
from W ⊕ HTP(Q) (hence from W ⊕ ∅′) uniformly on a class of measure 1,
there cannot possibly exist a further reduction of W ′ to HTP(RW ) which also
succeeds uniformly on a class of measure 1. (The intersection of two classes
of measure 1 also has measure 1, of course.)

For the next theorems, we simplify our notation by writing

α(f) = µ(A(f)) β(f) = µ(B(f)) γ(f) = µ(C(f))

for each f ∈ Z[ ~X]. Of course α(f) + β(f) + γ(f) = 1. Notice, however, that
we have very little a priori information about the values in the images of
these functions. Complexity bounds exist, since α(f) is always a left-c.e. real
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number, and γ(f) is always left-c.e. relative to HTP(Q), but it is not clear
whether these real numbers need to be algebraic over Q. The author is not
aware of any polynomials f for which α(f) fails to be a dyadic rational, nor
of any for which β(f) > 0. Likewise, it is open whether the set C(f) must
always be a finite union of basic open sets Uσ. (Our examples in Subsection
3.1 do show that A(f) can fail to be a finite union of basic open sets.)

In order to deal with these functions from ω (or from Z[ ~X]) into R, we will
say that we can compute a real number r (such as α(f)) if we can enumerate
both the strict lower cut and the strict upper cut in Q defined by r. (Notice
that if r itself is rational, this means that r will never appear in either cut.)
Of course, an enumeration E = ∪sEs of the non-strict lower cut of r quickly
yields an enumeration of its strict lower cut: we may assume |Es| ≤ s and
take E ′s = Es − {max(Es)}.

A uniform enumeration of the strict lower cuts of a sequence of real
numbers 〈ri〉i∈ω (such as 〈α(f)〉f∈Z[ ~X]) is a single procedure that, on input
i, enumerates the strict lower cut of ri; similarly for strict upper cuts. To
compute the sequence 〈ri〉i∈ω uniformly means to enumerate both strict upper
and lower cuts for the sequence uniformly. Finally, a function θ from ω into
R (such as α, β, or γ) is computable if the sequence 〈θ(i)〉i∈ω is uniformly
computable.

The next theorems show the potential power of being able to compute α,
β, and γ. Of course, if it turns out that µ(B) = 0, then β would be very
readily computable, and α and γ would both be HTP(Q)-computable.

Theorem 3.5 The following are equivalent.

1. The strict upper cuts of the measures α(f) of polynomials f are com-
putable uniformly in f .

2. α(f) is computable uniformly in f .

3. There is a single Turing functional Ψ such that, for all rational ε > 0,

µ({W ⊆ P : (∀f) HTP(RW )(f) = ΨW (ε, f)}) ≥ 1− ε.

Proof. The equivalence of (1) and (2) is immediate, since we can enumerate
the lower cuts of α(f) uniformly in f simply by searching for solutions to
f in Q. The argument for (2) =⇒ (3) is similar to the proof of Lemma

2.1. Given ε and the n-th polynomial f in Z[ ~X], we first approximate α(f)
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by finding an r ∈ Q with r < α(f) ≤ r + ε
2n+1 . (Since α(f) could be 0, we

allow r < 0 here, in which case the next step is trivial.) Next, find finitely
many solutions to f in Q such that the class of subrings containing these
solutions has measure ≥ r. If W contains any of these solutions, then output
“yes” (that is, f ∈ HTP(RW )); otherwise output “no.” This output will be
correct except on a class of measure ≤ ε

2n+1 , and so our functional computes
HTP(RW ) correctly except on a class of measure ≤

∑
n

ε
2n+1 = ε.

It remains to show that (3) =⇒ (1). Here we use the uniformity of
the procedure Ψ with respect to ε. Given an f , we wish to enumerate the
upper cut of α(f). For each s > 0 in turn, set ε = 1

s
, and search for strings

σ and naturals t such that Ψσ
t ( ε

3
, f) ↓. By assumption, we will eventually

find a t and a finite set of strings σ0, . . . , σk such that all Ψσi
t ( ε

3
, f) ↓ and

µ(∪i≤k Uσi) ≥ 1 − 2ε
3

. Let r = µ(∪σ(i)=1 Uσi), and enumerate all rationals
> r+ ε into the upper cut of α(f). Now according to the computation by Ψ,
at least (1− r− 2ε

3
)-much of 2P lies outside of A(f). Ψ may have been wrong

about as much as ε
3

of these, but must have been correct on the remaining
ones, whose measure is at least (1− r − ε). So our enumeration did nothing
incorrect. Moreover, if q ∈ Q satisfies q > α(f), then once we reach an s with

ε = 1
s
< q−α(f)

2
, we will have r ≤ α(f) + ε

3
, and hence r + ε ≤ α(f) + 4ε

3
< q.

Thus every q > α(f) will eventually be enumerated into the upper cut given
by our procedure. This completes the proof.

For the next theorem, we consider more than just the characteristic func-
tion of HTP(RW ). For each polynomial f and each W ⊆ P, define

χ(f,W ) =


2, if W ∈ A(f);
1, if W ∈ B(f);
0, if W ∈ C(f).

Theorem 3.6 The following are equivalent.

1. The strict lower cuts of the measures β(f) of the boundary sets B(f) of
polynomials f are enumerable uniformly in f using an HTP(Q)-oracle.

2. α(f), β(f), and γ(f) are all HTP(Q)-computable uniformly in f .

3. There is a single Turing functional Θ such that, for all rational ε > 0,

µ({W ⊆ P : (∀f) χ(f,W ) = ΘW⊕HTP(Q)(ε, f)}) ≥ 1− ε.

14



Proof. We can enumerate the strict lower cut of α(f), of course, just by
searching for solutions of f in Q, and with an HTP(Q)-oracle we can similarly
enumerate the strict lower cut of γ(f). Assuming (1), this allows us to use
an HTP(Q)-oracle to enumerate the strict lower cuts of α(f) + β(f) and of
γ(f)+β(f). But γ(f) = 1−α(f)−β(f), so we can then enumerate the strict
upper cut of γ(f), and similarly for the strict upper cut of α(f). Finally, the
strict upper cut of β(f) is just that of (1−α(f)− γ(f)). Thus (1) =⇒ (2).

Assuming (2), the program for Θ is along similar lines to that of Ψ in
Theorem 3.5. Given ε, the n-th polynomial f , and an oracle for W⊕HTP(Q),
it uses the oracle to compute an r with r < α(f) < r + ε

2n+2 , then finds a
finite union of basic open sets, of measure ≥ r, all contained within A(f).
If W lies within one of these basic open sets, then it outputs 2 (that is, it
concludes, correctly, that f ∈ HTP(RW )), and otherwise it continues with
the procedure below. Thus, for this f , the class of W with f ∈ HTP(RW )
and ΘW⊕HTP(Q)(f) 6= 2 has measure at most ε

2n+2 .
If the program concludes (possibly incorrectly) that f /∈ HTP(RW ), then

it goes back to its HTPQ-oracle to approximate γ(f), and finds an r′ with
r′ < γ(f) < r′ + ε

2n+2 . Using the entire oracle W ⊕ HTP(Q), it then enu-
merates strings σ such that f /∈ HTP(RP−σ−1(0)) until it has found a finite
union of basic open sets, of measure ≥ r′, contained within C(f). If W lies
within any of these basic open sets, then the program outputs 0 (correctly,
since W ∈ C(f)); while otherwise it outputs 1. Thus, for this f , the class of
W with f ∈ C(f) and ΘW⊕HTP(Q)(f) 6= 0 has measure at most ε

2n+2 , and so
the class of those W such that the program output is incorrect has measure
≤ ε

2n+1 . (The outputs 2 and 0 are always justified, so the only possible errors
are output 1 with either W ∈ A(f) or W ∈ C(f). These are the two classes
described above, each of measure ≤ ε

2n+2 .) It follows that, apart from a class
of measure ≤

∑
ε

2n+1 = ε, the ΘW⊕HTP(Q) outputs the correct answer for
every f . This proves (3).

The proof that (3) =⇒ (1) is entirely analogous to that in Theorem
3.5. To enumerate the strict lower cut of β(f), using an HTP(Q)-oracle, we

search for strings σ and naturals s, t for which Θ
σ⊕HTP(Q)
s (1

t
, f)↓= 1. When

(and if) we find such strings σ0, . . . , σn (for any single t), we conclude that
µ(β) ≥ µ(∪i≤n Uσi)− 1

t
, and we enumerate all rationals less than this value.

As in Theorem 3.5, this process enumerates precisely the strict lower cut of
β(f).
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4 Questions

The obvious question arising from this article is number-theoretic: does there
exist a polynomial f ∈ Z[ ~X] with β(f) > 0? Equivalently, is µ(B) > 0?
(Recall that β(f) denotes the measure of the boundary set B(f) of the
polynomial f , with B = ∪fB(f).) The useful analogy here is to the class
A = {W : x ∈ W ′} defined (for a specific index x) in Lemma 2.1. That class
A had measure ≤ 1

2
, and could readily have been built to have arbitrarily

small positive measure. However, the interior of its complement was empty,
and so the boundary of A had measure ≥ 1

2
, and could have been made to

have boundary of measure arbitrarily close to 1. The question is whether one
can build a polynomial f for which the set A(f) acts the same way as the
A from the lemma, with small measure itself but with C(f) empty, so that
B(f) must have positive measure. (Of course, the question of possible values
of β(f) does not require C(f) = ∅; this simply seems like the easiest way to
address it.)

A stronger version of this question appears in [2]. There Eisenträger,
Park, Shlapentokh, and the author ask (in essence) whether a polynomial
f could have the properties that C(f) = ∅, yet that there also exists ε > 0

such that for every W ∈ A(f), there is an n for which |W∩{0,...,n}|
n+1

> ε. (One
might as well assume here that W contains only the elements necessary to
cause a single solution of f to appear in RW .) The reasons for posing this
question are explained there. For any f with these properties, the set A(f)
would imitate the set A in our Lemma 2.1: not necessarily ending with a
long string of 1’s, but at least avoiding any string with too many 0’s.

Several other questions are listed in Subsection 3.2. These include whether
α(f) is always dyadic, or always rational, or always algebraic, or always
computable; and also whether the set C(f) is always a finite union of basic
open sets. The computability of the function α remains open: this is one of
the equivalent conditions in Theorem 3.5. Notice that the ability to com-
pute α(f) uniformly in f does not automatically confer the ability to decide
HTP(Z): α(f) can equal 1 even when f /∈ HTP(Z), as in the first example
in Subsection 3.1, for instance. Likewise, Theorem 3.6 proves three condi-
tions to be equivalent, but leaves open the question of whether or not those
conditions actually hold.
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