
THE HIERARCHY OF EQUIVALENCE RELATIONS ON THE NATURAL
NUMBERS UNDER COMPUTABLE REDUCIBILITY

SAMUEL COSKEY, JOEL DAVID HAMKINS, AND RUSSELL MILLER

ABSTRACT. We define and elaborate upon the notion of computable reducibility between
equivalence relations on the natural numbers, providing a natural computable analogue of
Borel reducibility, and investigate the hierarchy to which it gives rise. The theory appears
well suited for an analysis of equivalence relations on classes of c.e. structures, a rich con-
text with many natural examples, such as the isomorphism relation on c.e. graphs or on
computably presented groups. In this regard, our exposition extends earlier work in the
literature concerning the classification of computable structures. An abundance of open
questions remain.

1. INTRODUCTION

In this paper, we aim to study the complexity of equivalence relations on the natural
numbers and their hierarchy, introduced here, under the relation of computable reducibil-
ity. Using a blend of methods from computability theory and descriptive set theory, we
thus carry out a computable analogue of the theory of Borel equivalence relations. The
resulting theory appears well suited for undertaking an analysis of the complexity of iso-
morphism relations and other equivalence relations on the class of computably enumer-
able (c.e.) structures, such as the isomorphism relation on c.e. graphs or on computably
presented groups and the orbit equivalence relations arising from computable group ac-
tions. The c.e. analogues of many of the relations playing important roles in the Borel
theory, such as equality, E0 and others, play similar roles in the computable theory here,
and in addition, the naturally arising equivalence relations from computability theory on
c.e. sets, such as Turing equivalence, 1-equivalence and m-equivalence, also fit into the
hierarchy. Although in broad strokes the resulting theory exhibits many of the important
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and attractive features of the Borel theory, there are notable differences, such as the exis-
tence of a complex hierarchy of relations strictly below the equality relation on c.e. sets, as
well as relations incomparable to equality, and we shall remark on these differences when
they arise.

In the subject known as Borel equivalence relations, one studies arbitrary equivalence
relations on standard Borel spaces with respect to Borel reducibility, a notion introduced in
[FS89]. Here, if E, F are equivalence relations on X, Y, then we say that E is Borel reducible
to F, written E ≤B F, if there is a Borel function f : X → Y such that

x E x′ ⇐⇒ f (x) F f (x′) .

This notion is particularly meaningful when E or F represent a naturally arising classifica-
tion problem in mathematics, for it allows us to compare the difficulty of such classifica-
tion problems in a precise and robust manner. For instance, the isomorphism relations on
the spaces of countable groups, graphs, fields, and linear orders, the isometry relation on
separable Banach spaces, and the conjugacy relation on measure-preserving transforma-
tions can all be compared with respect to Borel reducibility. In these cases, we interpret
E ≤B F as saying that the classification problem for elements of X up to E is no harder
than the classification problem for elements of Y up to F. Indeed, the reduction function
f yields a classification of the elements of X up to E using invariants from Y/F. For a
fantastic introduction to the subject and its motivations, see the text [Gao09].

Motivated by the desire to imitate this field of research in the computable setting, we
work with the following natural notion of reducibility for equivalence relations on the
natural numbers.

1.1. Definition. Let E, F be equivalence relations on N. We say that E is computably
reducible (or just reducible) to F, written E ≤ F, if there exists a computable function
f : N→N such that

n E n′ ⇐⇒ f (n) F f (n′)

In other words, the equivalence classes N/F form a set of effectively computable invari-
ants for the classification problem up to E.

The equivalence relations which we shall study in this paper come in several varieties.
The simplest of these are the partitions of the natural numbers which are of a number-
theoretic or combinatorial nature. Here, our notion of computable reducibility can be seen
as a degree-theoretic structure on the equivalence relations which properly generalizes
the classical Turing reducibilities. The connection with degree theory is more than just an
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analogy; for instance, we will observe in Proposition 2.6 that the 1-reducibility ordering
on the c.e. 1-degrees embeds into the computable reducibility ordering on the equivalence
relations with two classes.

Another connection with degree theory is the role of the arithmetical hierarchy. Here
our theory departs from the classical Borel theory in a significant way. For instance, in the
Borel theory almost all interesting equivalence relations are either Borel or Σ1

1. As a conse-
quence, equivalence relations cannot typically be distinguished up to Borel bireducibility
just on the basis of their position in the projective hierarchy. In this paper, we shall con-
sider equivalence relations on various levels of the arithmetic hierarchy, and this will give
us a convenient and powerful tool for establishing nonreducibility.

A second, more substantial variety of equivalence relations, to which we shall devote
most of our attention, are those arising from relations on the collection of computably
enumerable (c.e.) subsets of N. The goal is to study the hierarchy of equivalence rela-
tions arising naturally in this realm—including isomorphism relations on natural classes
of c.e. structures, such as groups, graphs and rings—in a manner analogous to the Borel
theory. Since the c.e. sets and structures have a canonical enumeration {We}e from com-
putability theory, every equivalence relation on the c.e. sets arises from a corresponding
equivalence relation on the indices for those sets, in effect using the program index e to
stand in for the set We that it enumerates. Specifically, when E and F are equivalence re-
lations defined on the c.e. sets, we can say that E ≤ F if and only if there is a computable
function f such that for all indices e, e′,

We E We′ ⇐⇒ W f (e) F W f (e′) .

Thus, E ≤ F in this sense if and only if Ece ≤ Fce in the sense of Definition 1.1, where Ece

denotes the relation on N defined by e Ece e′ ⇐⇒ We E We′ .
In this context our theory is more closely analogous with the Borel theory. For instance,

many of the classically studied equivalence relations can be fruitfully restricted to just the
c.e. sets. Moreover, many of the Borel reductions between these relations turn out to be
computable in our sense, yielding a familiar hierarchy of equivalence relations on c.e. sets.
As we shall see, there is even an analogue of the very important class of countable Borel
equivalence relations.

The last type of equivalence relations that we shall consider are isomorphism relations,
that is, equivalence relations which arise from classification problems. One might expect
that we would be interested in the isomorphism relation on finite structures, since these
are coded by natural numbers. However, it is computable whether two finite structures
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are isomorphic, and we shall see that computable equivalence relations are essentially
trivial according to our reducibility notion. Instead, we shall consider isomorphism of c.e.
structures by again using the indices as stand-ins for the structures they code.

In this context, the notion of computable reducibility extends or complements several
notions of effective reducibility from recent literature. The most important of these are
the “computable” and “Turing computable” reductions of Knight et. al.; see the series of
papers [KKNM04], [CK06], and [KMVB07]. Here, these notions of reducibility are used to
compare natural classes of general countable structures, computable structures, and even
finite structures. In its most general form, presented in [FF09] and [FFH+10]), the notion of
“Turing computable” reducibility is equivalent to our notion of computable reducibility.
In those two papers the authors confine themselves to the study of computable structures.

Several other important analogues of Borel reducibility theory appear in the literature.
For instance the effective version of Borel reducibility, that is, hyperarithmetic reducibility
between equivalence relations on the real or natural numbers, is studied in [FFT10]. In
[CH11] the authors consider a computability-theoretic strengthening of Borel reducibility,
namely the reductions which are computable by an infinite time Turing machine.

This paper is organized as follows. In the next section we consider relations of the first
variety, that is, relations on the natural numbers taken at face value. Here, we show that
computable reducibility of equivalence relations in some sense generalizes both many-one
and one-one reducibility of c.e. sets. In the third and fourth sections we begin to export
some of the Borel equivalence relation theory to the theory of equivalence relations on c.e.
sets, for instance observing that many of the classical Borel reductions hold in our con-
text as well. On the other hand, we show some that unfamiliar phenomena occur, such
as the existence of a large hierarchy of relations on c.e. sets which lie properly below the
equality relation. In the fifth section we define and discuss c.e. analogues of the count-
able Borel equivalence relations and orbit equivalence relations. In the sixth section we
introduce the theory of isomorphism and computable isomorphism relations on classes of
c.e. structures. Finally, in the last section we compare equivalence relations arising from
computability theory itself, such as the Turing degree relation on c.e. sets.

2. COMBINATORIAL RELATIONS ON N

In this section, we consider several families of equivalence relations on N of compar-
atively low complexity. At the very lowest level, some easy general observations lead
quickly to a complete classification of the computable equivalence relations up to bire-
ducibility. The fact that the computable relations are essentially trivial in the hierarchy of
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computable reducibility stands in contrast to the Borel theory, of course, where the Borel
equivalence relations have a wildly rich structure under Borel reducibility. Meanwhile, at
a level just above the computable relations, we show that the hierarchy immediately ex-
hibits enormous complexity in the context of c.e. equivalence relations. In later sections,
we shall treat many natural equivalence relations arising from much higher realms of the
arithmetic and even the descriptive set-theoretic hierarchies.

2.1. Definition.

◦ For each n let =n be the equality relation on 0, . . . , n − 1. In order to make the
relation defined on all of N, we throw the remaining numbers n, n + 1, . . . into the
equivalence class of n− 1.
◦ Let =N denote the equality relation on N.

Thus =n is a canonically defined computable equivalence relation on N with exactly
n equivalence classes. Similarly, N, is a canonical computable equivalence relation with
infinitely many classes.

2.2. Proposition.

◦ If E is any equivalence relation with at least n classes, then =n is reducible to E.
◦ If E is Π0

1 and E has infinitely many equivalence classes, then =N is computably reducible
to E.

Proof. Let i0, . . . , in−1 be a system of pairwise E-inequivalent natural numbers. Then =n is
easily seen to be reducible to E by the map f (k) = ik for k < n, and f (k) = in−1 for k ≥ n.

Now suppose that E is Π0
1 and that E has infinitely many classes. Then =N is reducible

to E by the map which, on input n, begins enumerating E-incomparable elements. When a
system of n pairwise E-incomparable elements is found, we map n to the largest one. �

On the other hand, we shall see later on that there exist c.e. equivalence relations which
are computably incomparable with =N.

2.3. Proposition.

◦ If E is a Σ0
1 or Π0

1 equivalence relation with finitely many equivalence classes, then E is
computable.
◦ If E is computable and has exactly n classes, then E is computably reducible to =n.
◦ If E is computable, then E is computably reducible to =N.

Proof. Begin by letting i1, . . . , in be a maximal system of pairwise E-inequivalent natural
numbers. If E is Σ0

1, then given natural numbers a, b we can decide whether a E b as
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A Ac A Ac

FIGURE 1. Left: The equivalence relations described in Definitions 2.5
(left) and 2.7 (right).

follows. Begin enumerating E-equivalent pairs until it is discovered that a E ij1 and b E ij2 .
Then a E b if and only if j1 = j2.

On the other hand, if E is Π0
1 then we can enumerate E-inequivalent pairs until we find

that a 6E ij for all j other than some j1, and b 6E ij for all j other than some j2. Then again,
a E b if and only if j1 = j2.

Finally, if E is computable then given a, a program can order the equivalence classes
which occur below a by their least elements, and map a 7→ j if a is in the jth class. Note
that in the case that E has just n classes, then this is also a reduction to =n. �

We thus obtain a complete classification of the computable equivalence relations by
the number of equivalence classes. This situation is identical to the classification of Borel
equivalence relations with just countably many classes up to Borel reducibility.

2.4. Corollary. An equivalence relation E is computable if and only if it is computably bireducible
with one of =n or =N.

The above results show that if we want to find distinct equivalence relations with some
finite number of classes n, then we must look at least to the level ∆0

2. In fact, we need look
no higher, since for instance any ∆0

2 non-computable equivalence relation with exactly
n classes is not computably reducible to =n. We now observe that there is significant
complexity even among the ∆0

2 equivalence relations with just two classes.

2.5. Definition. For A ⊆ N, write Ac for N r A. Then EA,Ac denotes the equivalence
relation defined by n EA,Ac n′ if and only if both n, n′ ∈ A or neither n, n′ ∈ A. That is,
EA,Ac has two classes: A and Ac.

It is clear that if A is c.e., then the relation EA,Ac is ∆0
2; indeed, its complement is a

difference of c.e. sets. The result below follows directly from the definition of many-one
reducibility (see [Soa87, Definition I.4.7]).

2.6. Proposition. EA,Ac is reducible to EB,Bc if and only if A is many-one reducible to either B or
Bc. �
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Thus we obtain a copy of the partial ordering of many-one degrees, modulo the relation
which identifies A and Ac.

We now turn to a discussion of the c.e. equivalence relations. We show in particular
that the computable reducibility hierarchy has an interesting and rich structure even at
this low complexity level. The next result reflects the idea, hinted at in the introduction,
that computable reducibility of equivalence relations in some sense generalizes the notion
of one-one Turing reducibility of sets.

2.7. Definition. For any A ⊆N, let EA denote the equivalence relation defined by n EA n′

if and only if n, n′ ∈ A or n = n′. That is, A is one equivalence class, and each remaining
point is in an equivalence class by itself.

Observe that if A is c.e., then EA is c.e.

2.8. Theorem. Suppose that A, B ⊆ N are c.e. and non-computable. Then EA is reducible to EB

if and only if A is 1-reducible to B.

Proof. If f : N → N is a 1-reduction from A to B, then it is easy to see that f is a also a
computable reduction from EA to EB. On the other hand, suppose that f is a reduction
from EA to EB. Then f (A) is either contained in B, or else it is a singleton. If f (A) were a
singleton, say {n}, then A = f−1({n}) would be computable, contradicting our hypothe-
sis. Hence f (A) ⊆ B and f (N r A) ⊆ N r B, and so f is a many-one reduction from A
to B. Moreover, f is already injective on N \ A.

Now, we will adjust f on A to obtain a 1-reduction g from A to B as follows. Let
g(0) = f (0), and inductively let g(n + 1) = f (n + 1) so long as f (n + 1) is distinct from
g(0), . . . , g(n). On the other hand, if f (n + 1) = g(k) for some k ∈ 0, . . . , n, then we must
have that f (n + 1) ∈ B. Hence we simply enumerate B in search of a new element a ∈ B
which is distinct from g(0), . . . , g(n), and let f (n + 1) = a. Then g is as desired. �

Thus the partial ordering of c.e. equivalence relations is at least as complicated as the
1-reducibility ordering on the c.e. 1-degrees. This last ordering is known to be quite com-
plex. Moreover, we shall show later on that it contains a copy of the c.e. sets with the
partial ordering of containment.

2.9. Corollary. There exist c.e. relations which are incomparable with =N.

Proof. Consider the relation EA where A is a simple set (see [Soa87, Theorem V.1.3]). That
is, A is a c.e. co-infinite set whose complement contains no infinite c.e. sets. Since A is
not computable, neither is EA, and it follows that EA is not reducible to =N. On the other
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hand, if f is a computable reduction from =N to EA then there exists n ∈ N such that
f (N r {n}) ⊆ Ac. But this is a contradiction, since f (N r {n}) is c.e. and infinite. �

We next show that the class of c.e. equivalence relations, for all of its complexity, still
admits a universal element. Again, this reflects the situation for the c.e. degrees.

2.10. Theorem. There exists a c.e. relation Uce which is universal in the sense that every c.e. equiv-
alence relation is reducible to Uce. Moreover, for any real parameter z, there exists an equivalence
relation which is universal for all equivalence relations which are c.e. in z.

Proof. For any program e, let Ee be the equivalence relation obtained by taking the transi-
tive closure of whatever relation is enumerated by e, together with the diagonal for reflex-
ivity. That is, we interpret the set We as pairs, and we set Ee to be the smallest equivalence
relation containing these pairs. Thus, Ee is the eth c.e. equivalence relation, and every c.e.
equivalence relation arises this way.

Now define the universal relation by (e, a) Uce (e′, a′) if and only if e = e′ and a Ee a′.
Thus, we have divided N into slices, and put Ee on the eth slice. This relation is c.e.,
since we may computably enumerate approximations to Uce by running all programs and
taking the transitive closure of what has been produced so far. It is universal for c.e.
relations since Ee reduces to Uce by mapping a 7→ (e, a).

This construction generalizes to oracles as follows. If z is any oracle, we have the no-
tion Ez

e and we can define the relation Uz
ce defined by performing the above construction

relative to z. The relation Uz
ce is z-c.e., and every Ez

e computably reduces to Uz
ce (without

need for z) by the map a 7→ (e, a), as before. �

Many of the results in this section so far are summarized in Figure 2.
We close this section with a result that is perhaps just a curiosity, but will motivate our

discussion of orbit equivalence relations in later sections. In what follows, a group Γ is
said to be computable if its domain is N and its multiplication function is a computable
set of triples. If Γ is such a group, then a computable action of Γ on N is just a computable
function Γ×N→N satisfying the usual group action laws. Finally, if Γ acts computably
on N, then the resulting orbit equivalence relation is defined by x EΓ x′ if and only if there
exists γ ∈ Γ such that x′ = γx.

2.11. Theorem. The c.e. equivalence relations are precisely the orbit equivalence relations induced
by computable actions of computable groups.

Proof. Clearly if E is the orbit equivalence relation induced by a computable action, then
it is c.e. Conversely, suppose that E is a c.e. relation, enumerated by a program e. Let Γ be
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c.e.
comp

=1

=2

=N

···

Uce

=ce

EA

EA,Ac

FIGURE 2. Diagram of reducibility among equivalence relations from Sec-
tion 2. The relation =ce is equality of c.e. sets as a relation on indices,
namely, e =ce f ⇐⇒ We = W f , and it will be a major focus of section 3.

a fixed computable copy of the free group Fω with generators x1, x2, . . .. If e enumerates a
pair (n, n′) into E at stage s, then we let i be a code for the triple (s, n, n′) and let xi act by
swapping n and n′ and leaving the other generators fixed. Clearly the orbit relation arising
from this action is precisely E. Moreover the action is computable, since each generator
codes a bound which tells how long to run e to find out which elements it swaps. �

3. EQUIVALENCE RELATIONS ON C.E. SETS

We now begin our study of the second variety of equivalence relations, namely, those
defined on the c.e. real numbers. In this section, we will study a series of key equivalence
relations from Borel relation theory. As was discussed in the introduction, the c.e. sets will
be represented by their indices.

3.1. Definition. For any any equivalence relation denoted E on the collection of c.e. sub-
sets of N, we shall denote by Ece, adding the superscript “ce,” the corresponding equiva-
lence relation on N defined on the indices by e Ece e′ if and only if We E We′ .

One of the most important equivalence relation on c.e. sets is, of course, the equality
relation.
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3.2. Proposition. =ce is a Π0
2-complete set of pairs.

Proof. To see that =ce is in Π0
2, note that We = We′ if and only if for all numbers n enumer-

ated into We, there is a stage by which n is also enumerated into the other We′ (and vice
versa). To show that it is Π0

2 complete, we use the fact that the set TOT of programs which
halt on all inputs is Π0

2 complete (see [Soa87, Theorem IV.3.2]). The set TOT is m-reducible
to the =ce-equivalence class of We0 = N by the following function: f (e) is the program
which outputs n just in case e halts on input n. �

3.3. Proposition. If E is a c.e. equivalence relation, then E lies properly below =ce.

Proof. Let E be an arbitrary c.e. relation. Since each equivalence class [n]E of E is c.e.,
we can define a reduction from E to =ce by mapping each n to a program f (n) which
enumerates [n]E. On the other hand, there can’t be a reduction from =ce to E since =ce is
Π0

2 complete and E is c.e. �

A second equivalence relation which plays an essential role in the Borel theory is the
almost equality relation on P(N). Let E0 denote this relation, that is, A E0 B if and only if
the symmetric difference A 4 B is finite. Then Ece

0 is the almost equality relation on the
(indices for) c.e. sets. We have the following analogue with the Borel theory.

3.4. Theorem. =ce lies strictly below Ece
0 .

Proof. It is not difficult to build a reduction from =ce to Ece
0 . For instance, given a program

e, we can define the program f (e) as follows. Whenever n is enumerated into We, the
program f (e) enumerates codes for the pairs (n, 0), (n, 1), (n, 2), . . . (or more accurately, it
arranges to periodically add more and more of these). Then clearly we have that We and
We′ differ if and only if W f (e) and W f (e′) differ infinitely often.

On the other hand, there cannot be a computable reduction from Ece
0 to =ce, since Ece

0

is Σ0
3 complete while =ce is just Π0

2. To see that E0 is Σ0
3 complete, note that by [Soa87,

Corollary IV.3.5], even its equivalence class COF = { e : We is cofinite } is Σ0
3 complete. �

It is natural to wonder to what extent the arithmetic equivalence relations on c.e. sets
mirror the structure of the Borel equivalence relations. For instance, one might ask whether
an analogue of Silver’s theorem holds, that is, whether =ce is minimum among some large
class of relations on the c.e. sets with infinitely many classes. In the next section we shall
show that this fails even for relations of very low complexity. However, we do not address
any other analogues of the classical dichotomy theorems.
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3.5. Question. Are there any relations lying properly between =ce and Ece
0 ? More generally,

is there a form of the Glimm-Effros dichotomy in this context? In other words, is there a
large collection of equivalence relations E such that if =ce lies strictly below E, then Ece

0

lies below E?

We next consider some of the combinatorial equivalence relations that play key roles in
the Borel theory.

3.6. Definition.

◦ Let E1 be the equivalence relation on P(N)N defined by (An) E1 (Bn) if and only
if for almost all n, An = Bn.
◦ Let E2 be the equivalence relation defined by A E2 B if and only if ∑n∈A4B 1/n <

∞.
◦ Let E3 be the equivalence relation on P(N)N defined by (An) E3 (Bn) if and only

if for all n, An E0 Bn.
◦ Let Eset be the equivalence relation on P(N)N defined by (An) Eset (Bn) if and

only if
{ An : n ∈N } = { Bn : n ∈N }.
◦ Let Z0 denote the density equivalence relation defined by A Z0 B if and only if

lim |(A 4 B) ∩ n| /n = 0.

As usual, we are really interested in the corresponding “superscript c.e.” relations on
the indices. That is, we define e Ece

1 e′ if and only if We and We′ , thought of as subsets of
the lattice N×N, are identical in almost every column of this lattice. The relations Ece

3

and Ece
set are defined analogously, using c.e. subsets of N×N to represent c.e. sequences

of c.e. sets.

3.7. Proposition. The Borel reductions between the equivalence relations given in Definition 3.6
hold also in the case of computable reducibility. Specifically, Ece

0 is reducible to Ece
1 , Ece

2 , and Ece
3 ,

and E3 is reducible to Eset and Z0.

Sketch of proof. The reductions are just the same as the classical ones from the Borel theory.
We will quickly give the reductions so that the reader may verify they are computable in
our sense. To begin, notice that E0 is reducible to E3 by the map: A 7→ N× A, where
each column of the image of A looks exactly like A itself. To reduce E0 to E1, map A to
{ 〈x, y〉 : y ≥ x & y ∈ A }, so that the column x equals A− {0, . . . , x− 1}. For E0 ≤ E2, we
let In be any fixed c.e. partition of N into sets such that ∑i∈In

1/i ≥ 1. Then it is easy to
see that E0 ≤ E2 via the map A 7→ ⋃

n∈A In.
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To show that E3 ≤ Z0, we first observe that E0 reduces to Z0 via the map f (A) =⋃
n∈A[2n, 2n+1). (Indeed, if A E0 B then f (A) 4 f (B) is finite and hence has density zero.

Conversely, if A E0 B is infinite, then ( f (A) 4 f (B)) ∩ N will be ≥ 1/2 infinitely often,
and hence f (A) 4 f (B) does not have density zero.) Now, fix a partition In of N into
sets such that the density of In is exactly 1/2n, and let πn denote the unique isomorphism
N ∼= In. Then we can reduce E3 to Z0 using the map (An) 7→

⋃
πn( f (An)).

Finally, to reduce E3 to Eset, suppose we are given a sequence (An). For each column
An and each s ∈ 2<N, we will place the set 1n_0_s_(A r |s|) as a column of f ((An)). It
is not difficult to check that this mapping is as desired. �

=

E0

E1 E2 E3

Eset Z0

=ce

Ece
1 ∼ Ece

0

Ece
2 Ece

3

Ece
set Zce

0

FIGURE 3. Left: The Borel reducibility relations between classical com-
binatorial equivalence relations. This diagram is complete for Borel re-
ducibility. Right: Computable reducibility relations between c.e. versions
of these relations. We do not know whether this diagram is complete for
computable reducibility.

This result is summarized in Figure 3. We remark that the diagram is complete for Borel
reducibility, in the sense that any edge not shown is known to correspond to a nonreduc-
tion. For computable reducibility, Theorem 3.8 uses the arithmetic hierarchy to show that
the missing edges involving Ece

3 remain nonreductions. The other missing edges are more
difficult, and among them, the only one which we have settled appears further below as
Theorem 3.10. Surprisingly, this theorem shows that Ece

1 ≤ Ece
0 , which distinguishes the

hierarchy for computable reducibility from that for Borel reducibility.

3.8. Theorem. Ece
3 is not computably reducible to any of Ece

0 , Ece
1 or Ece

2 .

Proof. We use a direct arithmetic complexity argument. Observe that Ece
0 , Ece

1 , and Ece
2 are

all easily seen to be Σ0
3. On the other hand, we shall show that Ece

3 is not Σ0
3. In fact, we

shall show that Ece
0 has one equivalence class which is Π0

3 complete, namely, the set F
consisting of indices e for c.e. subsets of N×N such that every column of We is finite. (As
a matter of fact, Ece

3 is Π0
4-complete, but we will not prove this here.)
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To begin, consider any set of the form A = { x : (∀n)(∃N)(∀k)φ(x, n, N, k) }, where φ

is computable. For each x, we shall write down a program ex which enumerates a c.e.
subset of N ×N such that x ∈ A if and only if ex ∈ F. For each n, the program ex

considers each N in turn, and checks whether for all k, φ(x, n, N, k) holds. Whenever we
find a counterexample k for the current N, we enumerate one more element into the nth

column of Wex . Observe that if x ∈ A, then for every n, we will eventually find the N that
works, and so the nth column of Wex will be finite. Hence in this case ex ∈ F. If x /∈ A,
then for some n, we will have to change our mind about N infinitely often, and so the nth

column of Wex will be all of N. Hence in this case ex /∈ F. �

To prove that Ece
1 ≤ Ece

0 , which surprised us, we will build the necessary computable re-
duction. This requires a detailed construction. To aid comprehension, we first present the
basic module for this construction, stated here as proposition 3.9. Note that this proposi-
tion does not provide a reduction in the required sense, since the function f depends on
both i and j; nevertheless, understanding this proof will help the reader follow the proof
of the full Theorem 3.10.

3.9. Proposition. There exists a computable function f such that, for every i, j ∈ ω, we have

Wi E1 Wj ⇐⇒ W f (i,j) E0 W f (j,i).

Proof. On inputs i and j, let the output f (i, j) be (a Gödel code for) the program which
enumerates the set W f (i,j) we now describe. For each element 〈c, k〉 and each stage s + 1,
enumerate 〈c, k〉 into W f (i,j),s+1 if the following hold:

◦ 〈c, k〉 ∈Wi,s rWj,s; and
◦ (∀n < k) [〈c, n〉 ∈Wi,s ⇐⇒ 〈c, n〉 ∈Wj,s].

Additionally, if 〈c, k〉 ∈ W f (j,i),s ∩Wi,s ∩Wj,s, then enumerate 〈c, k〉 into W f (i,j),s+1. This is
the entire construction.

Now fix c, and suppose that Wi and Wj agree on their cth columns: (∀k)[〈c, k〉 ∈Wi ⇐⇒
〈c, k〉 ∈ Wj]. Then, if 〈c, k〉 ever entered W f (i,j), it did so either because it had already
entered W f (j,i), or else because 〈c, k〉 ∈Wi,s rWj,s, in which case it must later have entered
Wj as well (by their agreement on the cth column), and therefore was then enumerated
into W f (j,i) as well. Thus W f (i,j) and W f (j,i) agree with each other on their cth columns.

On the other hand, suppose Wi and Wj disagree on their cth columns, and let 〈c, k〉 be
the least point lying in just one of them. If 〈c, k〉 ∈ Wi r Wj, then by its minimality, it
will eventually be enumerated into W f (i,j),s+1 at some stage s + 1. It will never appear in
W f (j,i). Moreover, the only numbers k′ such that 〈c, k′〉 can be enumerated into either W f (i,j)



EQUIVALENCE RELATIONS ON N UNDER COMPUTABLE REDUCIBILITY 14

or W f (j,i) at stages > s + 1 are those which either sat in W f (j,i),s+1 or W f (i,j),s+1 already, or
else have k′ < k, because once 〈c, k〉 has appeared in Wi,s+1, no 〈c, k′〉 with k′ > k could
ever again be the least difference between the cth columns of Wi and Wj. Therefore, W f (i,j)

and W f (j,i) do differ on at least one element of their cth columns, but do not differ by more
than finitely many elements. (In fact, each of these columns is finite.)

A symmetric argument holds when the least difference lies in (Wj −Wi). Therefore,
if Wi E1 Wj, then each of the finitely many columns on which they differ contains only
finitely many differences between W f (i,j) and W f (j,i), and none of the other columns con-
tain any differences at all between them. Thus W f (i,j) E0 W f (j,i). Conversely, if Wi and Wj

differ on infinitely many columns, then every one of those columns contains at least one
difference between W f (i,j) and W f (j,i) as well, and so W f (i,j) and W f (j,i) are not E0-related.
Thus we have proven Proposition 3.9. �

Adapting this basic module to cover all sets We at once, rather than just two particular
sets Wi and Wj, is challenging, but it can be done. In the following, we write Wc

e =

We ∩ { 〈c, n〉 : n ∈ ω } for the cth column of any c.e. set We. Also, for each c, we will need
infinitely many subsets Ccj of ω on which to execute our construction. To avoid confusion,
we refer to these sets as slices of ω, not as columns.

3.10. Theorem. Ece
1 ≤ Ece

0 . Hence, Ece
1 and Ece

0 are computably bireducible.

Proof. We define a computable function g implicitly by building the c.e. sets Wg(i) for i ∈
ω. At each stage s + 1 in the construction, we will consider all c, j ∈ ω and all i < j, and
define auxiliary elements mcij

s and xcj ∈ Ccj. At stage 0, every element mcij
0 is undefined,

and xcj
0 is the least element of the slice Ccj. We also enumerate xcj into the set Wg(j),0 (which

as yet contains nothing other than this element).
At stage s + 1, for each fixed j and c and for every i < j, we find the least element mcij

s+1
(if any) of the symmetric difference (Wc

i,s4Wc
j,s). Suppose first that there exists either an

i < j such that this symmetric difference is empty, or an i < j such that mcij
s+1 6= mcij

s . Then

we enumerate the xcj
s into every slice Wg(k),s+1, (we shall see that it was already in Wg(j),s),

define xcj
s+1 to be the next-smallest element of Ccj, and enumerate this xcj

s+1 into Wg(j),s+1.

On the other hand, suppose that for every i < j we have mcij
s+1 = mcij

s . In this case we
consider each k with j < k ≤ c. (If j ≥ c, we do nothing.) For each such k in turn, we ask
whether the following fact holds at this stage s + 1:

(∀i < j)[mcij
s ∈Wk,s+1 ⇐⇒ mcij

s ∈Wj,s+1] ,
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and also whether the same fact held at the preceding stage s:

(∀i < j)[mcij
s ∈Wk,s ⇐⇒ mcij

s ∈Wj,s] .

If for some k the fact held at the preceding stage but fails to hold now, then xcj
s already lies

in all such slices Wg(k),s, and in this case we enumerate xcj
s into every Wg(i),s+1 for every i,

define xcj
s+1 to be the next-smallest element of Ccj, and enumerate this xcj

s+1 into Wg(j),s+1.

If there is no such k, we keep xcj
s+1 = xcj

s .
Finally, for every k for which the fact holds at the current stage and failed to hold at

the preceding stage, we enumerate into Wg(k),s+1 the element xcj
s+1 chosen above. This

completes the construction.
To show that the computable function g defined by this construction actually consti-

tutes a reduction from Ece
1 to Ece

0 , we will prove a series of lemmas. First, however, we
give some intuition for the construction. The slice Ccj is dedicated to making sure that, if
the set Wj differs on column c from the sets Wi with i < j, then there should be at least
one difference between Wg(j) and each Wg(i). We also want to ensure that there are at most
finitely many such differences, since Wj and some Wi might be equal on all other columns
(hence might be E1-related). The Ccj slice is not intended to differentiate any Wi and Wi′

with i′ < i < j; indeed, we want to have Wg(i) ∩ Ccj = Wg(i′) ∩ Ccj for all such i and i′,
leaving it to Cci to differentiate between them if necessary. Moreover, if any i < j has
Wc

i = Wc
j , then we will let Cci do the job, and Wg(j) ∩ Ccj will be equal to Wg(k) ∩ Ccj for

every k, so that we do not repeat the process of adding differences between the same sets.
A set Wk with k > j might equal Wj on the cth column, or might equal some Wi with

i < j there. In the former case we would want to build Wg(k) to be equal on Ccj to Wg(j), but
in the latter case we would want it equal to Wg(i) instead – which could pose difficulties
if Wg(j) 6= Wg(i) on Ccj. Our solution is to use the least difference (if any) between Wc

i and

Wc
j to guess which is the case. If this minimum element mcij = lims mcij

s lies in both Wj

and Wk, for instance, then we can be sure that Wc
k 6= Wc

i , and if similar outcomes hold for
each minimum (for every i < j), then we will make Wg(k) look like Wg(j) on Ccj. On the
other hand, if there is some minimum element which shows that Wc

k 6= Wc
j , then on this

slice we will make Wg(k) look like the sets Wg(i) (which are the same for all i < j). We do
this for only finitely many k > j, namely those≤ c, to avoid having to add infinitely many
elements to the sets Wg(j) and Wg(i), for that could wipe out the difference we would like
to build between those sets. For each single k, there are only finitely many values j and
columns c for which this restriction will stop Wk from being considered in the construction
of Wg(k) on Ccj; whenever either j ≥ k or c > k, Wk will be used in that construction. On
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the finitely many slices Ccj in which it was not considered, Wg(k) will have only a finite
difference from any other set Wg(n) anyway, which will have no effect on the question of
whether Wg(k) E0 Wg(n).

For the slice Ccj, there are two basic outcomes possible. First, suppose some i < j
satisfies Wc

i = Wc
j . Then there will be infinitely many stages s at which mcij

s+1 is either

6= mcij
s or undefined (if the symmetric difference is empty at that stage). At every one of

these stages, the current xcj
s , which already sat in Wg(j), will be added to every set Wg(k)

with k 6= j, and the newly chosen xcj
s+1 will be added to Wg(j). Since this happens infinitely

often, we wind up with Ccj ⊆Wg(k) for every k ∈ ω.

On the other hand, suppose every i < j has Wc
i 6= Wc

j . Then every sequence 〈mcij
s 〉s∈ω

will converge to a limit mcij, the minimum of Wc
i 4Wc

j . Once we reach a stage s0 at which
all Wi,s0 � (m

cij + 1) = Wi� (mcij + 1) and also Wj,s0 � (m
cij + 1) = Wj� (mcij + 1) for all i,

the values mcij
s will never change again, and therefore will never cause xcj

s0 to enter any
Wg(i). The indices k with j < k ≤ m (if there are any) may yet cause this element to
enter the sets Wg(i). There are only finitely many such k, however, and each one causes
this to happen at no more than one stage after s0 (namely, the unique stage s + 1, if one
exists, such that Wc

j,s and Wc
k,s agree on the set of minima

{
mcij | i < j

}
, but Wc

j,s+1 and
Wc

k,s+1 fail to agree on that set). Therefore, in this second outcome, there will exist a limit

xcj = lims xcj
s , which will lie in Wg(j), will not lie in any Wg(i) with i < j, and will lie in

Wg(k) (for j < k ≤ m) if and only if Wk and Wj contain exactly the same elements from
the set of minima. Moreover, this xcj will be the only element of Ccj on which Wg(j) differs
from any set Wg(k). So in this case we have accomplished the goal of establishing a single
difference on the slice Ccj between Wg(i) and Wg(j) for each i < j, while not differentiating
Wg(i) from Wg(i′) on this slice for any i′ < i < j. The point of our treatment of the sets
Wg(k) with j < k ≤ m was discussed above, and will appear below in Lemma 3.13. (The
sets Wg(k) with k > m agree on Ccj with all Wg(i) for i < j, and hence differ by at most the
element xcj from Wg(j).)

3.11. Lemma. For every c, j, m , and n, the sets Wg(m) ∩ Ccj and Wg(n) ∩ Ccj differ on at most

the element xcj = lims xcj
s , if this limit exists. If Wc

i = Wc
j for some i < j, then xcj does not exist,

and the two sets above are equal.

Proof. At each stage s, on the slice Ccj, these two sets differ on at most xcj
s , which enters

Wg(j) at one stage, might possibly enter certain sets Wg(k) with j < k ≤ m at a subsequent

stage, and then enters all other sets Wg(m) when and if a new xcj
s+1 is chosen. No elements
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of Ccj ever enter any of these sets except those chosen at some stage t as xcj
t . So the lemma

is clear. �

3.12. Lemma. For all triples n < m < c with Wc
m 6= Wc

n there is some j ≤ m, the slice Ccj has a
limit element xcj ∈Wg(n)4Wg(m).

Proof. If every i < m satisfies Wc
i 6= Wc

m, then we simply take j = m, and the above
analysis shows that xcj ∈ Ccj exists and lies in Wg(j) (that is, in Wg(m)), but not in Wg(n),
since n < j.

Otherwise, choose the least m′ < m with Wc
m′ = Wc

m and the least n′ ≤ n with Wc
n′ = Wc

n.
Let i = min(m′, n′) and j = max(m′, n′); thus i < j. (With Wc

n′ = Wc
n 6= Wc

m = Wc
m′ , we

know i 6= j.) Now no i′ < j satisfies Wc
j = Wc

i′ , so there exists a limit element xcj which
lies in Wg(j) but not in Wg(i).

Suppose first that Wc
m = Wc

j . Then we have j ≤ m < c, and so eventually Wm and Wj

agree on all minima mci′ j, for all i′ < j. At every subsequent stage, Wg(m) ∩ Ccj will equal
Wg(j) ∩ Ccj, so in particular xcj ∈Wg(m). Now if n ≤ j, then n < j because Wc

j = Wc
m 6= Wc

n

and so automatically xcj will not lie in Wg(n). On the other hand, if j < n, then with
Wc

n = Wc
i and i < j, mcij must lie in Wc

n4Wc
j . Once mcij has appeared in one of these sets,

Wg(n) will fail to contain xcj
s at all subsequent stages s, and therefore will fail to contain the

limit xcj. Thus xcj lies in Wg(m) rWg(n), giving the difference we desired.
The exact same argument holds if Wc

n = Wc
j , only with m and n reversed. So we have

proven the lemma. �

We can now establish one direction of Theorem 3.10, namely that if Wm 6E1 Wm then
Wg(m) 6E0 Wg(n). Indeed, if Wm and Wn differ on infinitely many columns c, then they
differ on infinitely many columns c with c > max(m, n). For each such c, Lemma 3.12
gives a j and an element xcj ∈ Ccj on which Wg(m) and Wg(n) differ, as desired. It remains
to prove the converse, namely that if Wm E1 Wn then Wg(m) E0 Wg(n). To begin with, we
consider the columns c on which they agree.

3.13. Lemma. Fix m < n and c ≥ n. If Wc
m = Wc

n, then for all j ∈ ω we have Wg(m) ∩ Ccj =

Wg(n) ∩ Ccj.

Proof. Of course, if Wc
j = Wc

i for some i < j, then every Wg(k) contains all of Ccj, and
we are done. So assume that there exists no such i < j, and that therefore the limit xcj is
defined. We consider all possible values of j relative to m and n.

If j = n, then there is an i < j (namely i = m) with Wc
i = Wc

j , and so Wg(n) ∩ Ccj =

Wg(m) ∩ Ccj = Ccj.
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If j = m, then Wc
n agrees with Wc

j on all minima mcij with i < j, and so Wg(j) and Wg(n)

both contain xcj, and therefore are equal on Ccj. (This uses the fact that n ≤ c.)
If j < m, then Wc

m and Wc
n either both agree with Wc

j on all minima, or both disagree
with it on some particular minimum. In the former case, they both contain xcj, while in
the latter case they both omit it. Either way they both are equal, by Lemma 3.11.

If j > n, then automatically Wg(m) ∩ Ccj = Wg(n) ∩ Ccj, because for all i < j, Wg(i)

contains exactly those elements of Ccj which are < xcj.
Finally, suppose m < j < n. If Wc

j 6= Wc
i for every i < j, then in particular Wc

j 6= Wc
m =

Wc
n. So xcj fails to lie in Wc

m (since m < j) and also fails to lie in Wc
n (because they differ on

the minimum mcmj). By Lemma 3.11, therefore, Wg(m) and Wg(n) agree on Ccj. �

3.14. Lemma. Fix m < n, and assume Wc
m = Wc

n. If Wg(m) ∩ Ccj 6= Wg(n) ∩ Ccj, then c < n
and j ≤ n, and the symmetric difference (Wg(m) ∩ Ccj)4 (Wg(n) ∩ Ccj) is finite.

Proof. That c < n follows from Lemma 3.13. Moreover, we know that Wg(i) ∩ Ccj =

Wg(i′) ∩ Ccj for every i < i′ < j, and if n < j, then this applies to m and n. Finally, Lemma
3.11 shows that the symmetric difference of the two sets contains at most one element. �

3.15. Lemma. Suppose Wm E1 Wn, and let the set C be the union of all those Ccj with j ∈ ω and
Wc

m = Wc
n. Then (Wg(m) ∩ C) and (Wg(n) ∩ C) differ by at most finitely many elements.

Proof. By Lemma 3.14, the difference is contained within finitely many slices Ccj, and that
difference is finite (in fact, at most a single element) on each of those finitely many Ccj. �

So, for m < n with Wm E1 Wn, it remains to consider Wg(m) and Wg(n) on those slices
Ccj with Wc

m 6= Wc
n. There are only finitely many such c, but there are infinitely many

corresponding j. However, all but finitely many of these j satisfy m < n < j, and for all
those j, we know that Wg(m) ∩ Ccj = Wg(n) ∩ Ccj. On the finitely many remaining sets Ccj,
there may be a difference, but only a finite difference, by Lemma 3.11. Thus, whenever
Wm E1 Wn, we must have Wg(m) E0 Wg(n). This completes the proof of Theorem 3.10. �

Using Proposition 3.7 we also conclude that Ece
1 ≤ Ece

2 and Ece
1 ≤ Ece

3 . The remaining
questions in establishing a version of Figure 3 for computable reducibility are whether
Ece

2 ≤ Ece
1 and whether either Ece

set or Zce
0 is ≤ Ece

3 .

4. BELOW EQUALITY

In this section, we show that there is a rich collection of equivalence relations on c.e. sets
which lie properly below =ce in the computable reducibility hierarchy. This is a departure
from the Borel theory, where Silver’s theorem implies that = is continuously reducible
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to every Borel equivalence relation (with uncountably many classes). We shall also show
that there are relations on c.e. sets which are computably incomparable with =ce.

We begin with the following simple examples.

4.1. Definition.

◦ Let e Ece
min e′ if and only if min(We) = min(We′) or We = W ′e = ∅.

◦ Let e Ece
max e′ if and only if either We, We′ 6= ∅ and max(We) = max(We′), or

We = We′ = ∅, or |We| = |We′ | = ℵ0.

It is easy to see that these relations are computably reducible to =ce. Indeed, to show
Ece
min ≤ =ce, given a program e we saturate We upwards by letting f (e) enumerate the set
{ n ∈N : ∃l ∈We(l ≤ n) }. Similarly, to show Ece

max ≤ =ce, we saturate downwards with
the program f (e) that enumerates the set { n ∈N : ∃l ∈We(l ≥ n) }. In both cases, these
functions are computable selectors, in the sense that W f (e) is Ece

min or Ece
max equivalent to We

and constant on these classes.

4.2. Remark. It is worth mentioning that Ece
min and Ece

max each admit another simple de-
scription. Namely, Ece

min is computably bireducible with the relation e Ece
gcd e′ if and only

if gcd(We) = gcd(We′). (Here gcd(S) is the greatest n which divides every element of S,
with gcd(∅) = ∞.) Indeed, to show Ece

gcd ≤ Ece
min we let W f (e) = { d < ∞ : ∃s(d = gcd(We,s)) };

to show Ece
min ≤ Ece

gcd we let W f (e) = { n! : n ∈We }. Similarly, Ece
max is bireducible with the

relation e Ece
lcm e′ if and only if lcm(We) = lcm(We′).

The next result gives our first example of a violation of Silver’s theorem in the com-
putable context.

4.3. Theorem. Ece
max is not computably reducible to Ece

min. Consequently, Ece
min lies properly below

=ce.

Proof. This holds for the simple reason that Ece
min is ∆0

2, while Ece
max is Π0

2 complete. To see
that Ece

min is ∆0
2, observe that We and We′ have the same minimum if and only if for every

n in We there exists an m ≤ n in We′ and vice versa; and also if and only if there exists
n in We and We′ such that every m ≤ n is in neither We nor We′ (or both are empty). To
see that Ece

max is Π0
2 complete, note that by [Soa87, Theorem IV.3.2], even the Emax class

INF = { e : |We| = ℵ0 } is Π0
2 complete. �

In fact, Ece
max and Ece

min are incomparable up to computable reducibility, and hence both lie
properly below =ce. However, the proof that Ece

min is not computably reducible to Ece
max is

slightly more difficult. For this, we require the monotonicity lemma, a key result which
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will be used a number of times over the next few sections. Before stating it, we need the
following terminology.

4.4. Definition.

◦ We say that f : N→ N is well-defined on c.e. sets if We = We′ implies W f (e) = W f (e′)

(in other words, f is a homomorphism from =ce to =ce).
◦ We say that such a function f is monotone if We ⊆We′ implies W f (e) ⊆W f (e′).

4.5. Lemma (Monotonicity lemma). If f : N→ N is computable and well-defined on c.e. sets,
then f is monotone.

Proof. Fix e, e′, and x such that We ⊆ We′ , and x ∈ W f (e); we must show that x ∈ W f (e′) as
well. We shall use the recursion theorem to design an auxiliary program p which knows
its own index, and hence the index of f (p). The program p simulates both f (p) and e,
and at first p behaves just like We. Of course, if p were to continue in this manner forever,
then we would have Wp = We and since f is well-defined on c.e. sets, we would have
W f (p) = W f (e). It follows that there is some stage by which x appears in W f (p). Once
this occurs, p begins to simulate e′ and mimic its behavior instead of that of e. This does
not contradict the earlier behavior of p, since We ⊆ We′ . Thus in the end, we will have
Wp = We′ , and hence W f (p) = W f (e′), since f is well-defined on c.e. sets. But we also
arranged that x ∈W f (p) and therefore x ∈W f (e′), as desired. �

We can now complete the proof that Ece
min and Ece

max are computably incomparable.

4.6. Theorem. Ece
min is not computably reducible to Ece

max. Consequently, Ece
max lies properly below

=ce.

Proof. Suppose to the contrary that f is a reduction from Ece
min to Ece

max. We first claim that
we can assume, without loss of generality, that f is well-defined on c.e. sets. Indeed let
g be the reduction from Ece

max to =ce given just below Definition 4.1. Then clearly g ◦ f is
well-defined on c.e. sets. Moreover since g is a selector, that is, g(e) Ece

max e, we have that
g ◦ f is again a reduction from from Ece

min to Ece
max. Hence, we may replace f with g ◦ f to

establish the claim.
Now, for each n, let en be a program enumerating [n, ∞). Then the sets Wen form a

monotone decreasing sequence of sets. By the claim, the monotonicity lemma implies that
W f (en) is also a monotone decreasing sequence of sets. Moreover, since the min(Wen) are
all distinct and f is a reduction, we must have that max(Wen) are all distinct. It follows that
max(Wen) is a strictly decreasing sequence of natural numbers, which is a contradiction.

�
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At the end of the section, we will give a broad generalization of this argument. Before
doing so, we will use these ideas to find an equivalence relation on c.e. sets which is
incomparable with =ce.

4.7. Definition. Let Ece
med denote the equivalence relation on c.e. sets defined by e Ece

med e′

if and only if the sets We and We′ are both finite and have the same median (or are both
empty or both infinite).

4.8. Proposition. Ece
med lies between Ece

max and Ece
0 in the reducibility hierarchy.

Proof. First, Ece
max ≤ Ece

med by the function f which saturates downwards, that is, such
that W f (e) = { n : ∃m ∈We(n ≤ m) }. Next, Ece

med is reducible to Ece
0 via the function e 7→

f (e) defined as follows. The program f (e) simulates e, and at each stage of simulation
computes the median rs of the stage s approximation We,s. As long as rs does not change,
f (e) will enumerate multiples of rs into W f (e). Whenever rs does change, f (e) fills in
everything up to its current maximum and starting there enumerates multiples of the
new rs.

Now, if We and We′ both have median r, then by some stage the medians of We,s and We′,s

will have both stabilized at r. Hence both W f (e) and W f (e′) will both eventually contain
just the multiples of r. If We and We′ are both empty or both infinite, then W f (e) and W f (e′)

will both be empty or all of N, respectively. Finally, if We and We′ have distinct medians,
then We and We′ will disagree on an infinite set. �

4.9. Theorem. Ece
med is incomparable with both Ece

min and =ce with respect to computable reducibil-
ity.

Proof. It suffices to show that Ece
min is not reducible to Ece

med and that Ece
med is not reducible

to =ce. Suppose first that f is a reduction from Ece
med to =ce. Then f is well-defined on c.e.

sets, and therefore it is monotone. Consider the three sets We1 = {1}, We2 = {1, 2}, and
We3 = {0, 1, 2}. Since We1 ⊆ We2 and med(We1) 6= med(We2), we have W f (e1) ( W f (e2).
Since We2 ⊆ We3 and med(We2) 6= med(We3), we have W f (e2) ( W f (e3). It follows that
W f (e1) 6= W f (e3). But this contradicts that f is a reduction, since med(We1) = med(We3).

Next suppose that f is a reduction from Ece
min to Ece

med, which means that WeEminWe′ ⇐⇒
W f (e)EmedW f (e′). Fix any index e0 for which We0 is nonempty and W f (e0) has finite median
r0. Let N = 2r0 + 2 and choose a finite sequence of programs e1, e2, . . . , eN , for which
min(We0) < min(We1) < min(We2) < · · · < min(WeN ) and each ri = med(W f (ei)) exists
and is finite. Such a sequence exists because there are infinitely many different possible
minimums for Wei and at most two of these minimums leads to W f (ei) being empty or
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infinite; all the rest have finite medians. Note also that the ri are distinct. Consider now
the program e that begins by enumerating min(WeN ) into We. Since so far this set has
the same minimum as WeN , it must eventually happen that there is a stage sN at which
W f (e),sN

has median rN . At such a stage, let program e now enumerate min(WeN−1) into
We. Because We at this stage has the same minimum as WeN−1 , if we do not add anything
more to We then there must be a stage sN−1 at which the median of W f (e),sN−1

becomes
rN−1. And when this occurs, let program e enumerate min(WeN−2) into We, and so on.
After N iterations of this process, we have a set We with the same minimum as We1 , and
at some eventual stage s1 the median of W f (e),s1

becomes r1. When this occurs, finally,
we enumerate min(We0) into We, thereby ensuring that the minimum of We is the same
as that of We0 , and so the median of W f (e) must now eventually become r0. But a careful
examination of our construction will reveal that W f (e) has at least N elements, that is, at
least 2r0 + 2 many, since at least one new element was added at each step of the process.
But if W f (e) has this many elements, then it is impossible for it to have median r0, which
is a contradiction. Therefore, no such reduction f exists. �

The relationships expressed by the last two results are summarized in Figure 4.

=ce

Ece
min Ece

max

Ece
med

Ece
0

FIGURE 4. Diagram of reducibility among the relations in this section thus
far. It follows from Theorems 4.3, 4.6, and 4.9 that this diagram is complete,
in the sense that any edges not shown represent non-reducibilities.

It is natural to generalize the examples of Emin and Emax to try to find a large family
of simple incomparable relations. There are many possibilities for doing so, and in the
remainder of this section we shall consider just one: a generalization to arbitrary com-
putable linear orders. This will enable us to find numerous equivalence relations which
are incomparable and lie below =ce, and therefore strengthen our denial of Silver’s theo-
rem for computable reducibility.

In what follows, if L is a linear ordering with order relation <L and W ⊆ L, then we let
cutL(W) denote the Dedekind cut determined by W, that is,

cutL(W) = { l ∈ L : ∃w ∈W(l <L w) } .
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Evidently, if L is a computable linear ordering with domain N, and W is a c.e. subset of
N, then cutL(W) is c.e. as well.

4.10. Definition.

◦ For L a computable linear ordering, let EL denote the same cut equivalence relation
defined by e EL e′ if and only if cutL(We) = cutL(We′).
◦ Similarly, we define HL to be the same hull equivalence relation defined by e HL e′

if and only if the convex hull of We in L is the same as the convex hull of We′ in L.

For any computable L, the relations EL and HL are both computably reducible to =ce

(by mapping We to the cut or the hull that it determines, respectively). Moreover, both EL

and EL∗ are computably reducible to HL, where L∗ denotes the reverse of L. To see this,
note that the cut map again defines a reduction EL ≤ HL, and of course HL is bireducible
with HL∗ , since in fact HL and HL∗ are the same relation.

We have already seen several of the EL in another context. For instance, the relation
Emax can be identified as Eω, where ω denotes the usual ordering on N. Similarly, Emin

can be identified with Eω∗ . Finally, =ce is computably bireducible with EQ; to see that
=ce≤ EQ consider the map which sends a c.e. set W to the cut in Q corresponding to the
real number ∑n∈W 1/3n+1.

We shall use the following notation. For L a computable linear order, let L denote the
set of c.e. cuts in L. We shall say that L1 is computably embeddable into L2, written L1 ↪→c L2,
if there exists a computable function α : N→N such that for all programs e, e′, we have

cutL1(We) < cutL1(We′) ⇐⇒ cutL2(Wα(e)) < cutL2(Wα(e′)) .

The next result characterizes the structure of the EL relations with respect to computable
reducibility.

4.11. Theorem. Let L1 and L2 be computable linear orders. Then EL1 ≤ EL2 if and only if
L1 ↪→c L2.

Proof. This is another application of the monotonicity lemma. Suppose first that f is a
computable reduction from EL1 to EL2 . We can suppose without loss of generality that f
is well-defined on c.e. sets. (Indeed, simply post-compose f with the map that sends p to
a program enumerating cutL2(Wp).) It follows that f is ⊆-preserving and hence preserves
the ordering on cuts. Moreover, since f is a reduction, it must be injective on cuts. Hence
it is an embedding of L1 into L2.
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Next suppose that α : L1 ↪→c L2. Then we simply define W f (e) = cutL2(Wα(e)), so that

e EL1 e′ ⇐⇒ cutL1(We) = cutL1(We′)

⇐⇒ cutL2(Wα(e)) = cutL2(Wα(e′))

⇐⇒ W f (e) = W f (e′)

⇐⇒ f (e) EL2 f (e′) .

(The last equivalence holds because W f (e) and W f (e′) are both cuts.) Hence, f is a reduction
from EL1 to EL2 . �

4.12. Remark. This result can also be generalized without much effort to the “same down-
wards closure” equivalence relation on c.e. subsets of computable partial orders.

Hω

EωEmax ∼ Eω∗ ∼ Emin

EQ

· ·
·

Eα

· · ·

· · ·

Eα∗

· ·
·

···

Hα

···
∼ =ce

FIGURE 5. Diagram showing the cut and hull relations for computable or-
dinals α and their reverse orderings α∗. In 2017 this will be the first diagram
to land on Gliese 581g.

Figure 5 elaborates on Figure 4 by showing the relationships between some sample EL

which hold thanks to Theorem 4.11. Note that the reductions are strict as one moves to
larger ordinals, because the cuts of a larger ordinal cannot map into the cuts of a smaller
ordinal, and no infinite well-order can map into the cuts of its reverse. We end this section
by mentioning a couple more easy consequences of this result.

4.13. Corollary. As long as L 6↪→c L∗, we have that EL and EL∗ lie properly below HL.

4.14. Corollary. There exist infinite chains and arbitrarily large finite antichains of equivalence
relations on c.e. sets which lie below =ce.
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Sketch of proof. For instance, to construct an antichain of size three, consider computable
copies of L1 = ω + ω + ω∗, L2 = ω + ω∗ + ω, and L3 = ω∗ + ω + ω. (For convenience,
assume that all of the cuts are computable.) Then it is easy to check that for i 6= j we have
Li 6↪→ Lj. �

5. ENUMERABLE EQUIVALENCE RELATIONS

A great portion of Borel equivalence relation theory focuses on the countable Borel
equivalence relations, that is, the Borel equivalence relations with every class countable.
The foundation of this theory is Lusin/Novikov theorem from descriptive set theory
which states that every countable Borel equivalence relation can be enumerated in a Borel
fashion. In other words, if E is a countable Borel equivalence relation on X, then there
exists a Borel function f : X → XN such that for all x, f (x) enumerates [x]E. Using this
key fact, an argument of Feldman/Moore implies that any countable Borel equivalence
relation can be realized as the orbit equivalence relation induced by a Borel action of a
countable group. In this section, we begin to develop a computable analogue of count-
able Borel equivalence relations.

We begin by introducing an analogue of the Lusin/Novikov property for equivalence
relations on c.e. sets.

5.1. Definition. Let E be an equivalence relation on c.e. sets. We say that Ece is enumerable
in the indices if there exists a computable function α : N×N→N such that e Ece e′ if and
only if there exists n ∈N such that Wα(n,e) = We′ .

For example, Ece
0 has this property. To see this, let sn denote the nth element of some

computable enumeration of 2<N, and let α(n, e) = be a program which enumerates sn
_(We r

|sn|). Thus, as n varies the sets Wα(e,n) enumerates all finite modifications of We, and so α

witnesses that Ece
0 is enumerable in the indices.

5.2. Proposition. If Ece is enumerable in the indices then Ece ≤ Ece
set. �

Indeed, simply send a program e to a program for a subset of N×N which acts like
α(n, e) on the nth column. Of course Ece

set is not itself enumerable, since enumerable rela-
tions are easily seen to be Σ0

3, whereas it follows from Theorem 3.8 that Ece
set is Π0

3 complete.
We next consider the important special case of equivalence relations on c.e. sets which

are induced, in an appropriate sense, by a computable action of a computable group.

5.3. Definition. Suppose that Γ is a computable group acting on the c.e. subsets of N.
We say that the action is computable in the indices if there exists a computable function
α : N×N→N such that Wα(γ,e) = γWe.
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For example, if Γ is a computable group then the left translation action of Γ on the set
P(Γ)ce of c.e. subsets of Γ is computable in the indices. We shall use the following notation:
if the group Γ acts on CE, which we write Γ y CE, then the induced orbit equivalence
relation is defined by e Ece

Γ e′ if and only if ∃γ ∈ Γ such that We′ = γWe.
One would like to prove an analogue of the Feldman/Moore theorem which would say

that every enumerable relation is in fact the orbit relation of some action which is com-
putable in the indices. Unfortunately, this is not the case. To get an idea of the difficulties
involved, consider the natural action giving rise to E0, namely, the bitwise addition action
of 2<N on P(N). This action is highly effective in many natural senses, but not in the
sense of this paper: given e and s ∈ 2<N, it is not clear how to computably produce a pro-
gram which enumerates the bitwise sum s

.
+ We. Indeed, the next result strongly negates

the possibility that there is an analogue of Feldman/Moore in this context.

5.4. Theorem. Let E be an equivalence relation on c.e. sets. Suppose that there exists e ∈N such
that |[We]E| > 2 and, for all e′ Ece e we have We ⊆ We′ . Then E is not induced by any action
which is computable in the indices.

Proof. Suppose to the contrary that Γ is a computable group acting on the c.e. sets and
that E is the induced orbit equivalence relation. Let α be the computable function which
witnesses that the action of Γ is computable in the indices. Then for each γ, the map
e 7→ α(γ, e) is well-defined on c.e. sets, and hence monotone. Now, choose e′ Ece e such
that We ( We′ and choose γ ∈ Γ such that γWe′ = We. Now γWe ⊆ γWe′ = We, so by
hypothesis, γWe = We as well. This contradicts that α really gives rise to an action of Γ,
since elements of a group must act by injective functions. �

5.5. Corollary. Ece
0 is not induced by any action which is computable in the indices.

Proof. The empty set We = ∅ is minimal in its E0 equivalence class, which consists of all
the finite sets. �

This leaves open the following important question.

5.6. Question. Is Ece
0 computably bireducible with an orbit relation induced by an action

which is computable in the indices?

We close this section by showing that like the countable Borel equivalence relations, the
orbit relations induced by actions which are computable in the indices admit a universal
element. This gives some hope that the structure of the orbit equivalence relations on c.e.
sets will mirror that of the countable Borel equivalence relations.
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5.7. Proposition. There exists an equivalence relation Ece
∞ which is induced by an action that is

computable indices, and satisfies EΓ ≤ Ece
∞ whenever EΓ arises from an action which is computable

in the indices.

Proof. We begin by showing that for any computable group Γ there exists an equivalence
relation UΓ which is universal for equivalence relations induced by actions of Γ which are
computable in the indices. For this, we first regard c.e. sets as codes for functions φ : Γ→
CE (say by viewing them as subsets of Γ×N and declaring φ(γ) = the γth column). We
then let UΓ be the equivalence relation induced by the action (γ · φ)(g) = φ(gγ−1). It is
easy to see that this action is computable in the indices. Moreover, if EΓ is the orbit relation
induced by some other action of Γ which is computable in the indices, then EΓ is reducible
to UΓ via the function f (e) = a program which enumerates the function φe : g 7→ gWe.
(Indeed, just check that γWe = We′ if and only if γ−1 · φe = φe′ .)

Now, let Fω denote the free group on generators x1, x2, . . .. We claim that we can take
Ece

∞ to be UFω . To see this, let EΓ be the orbit equivalence relation induced by some action
of Γ which is computable in the indices. We can regard this as an action of Fω by simply
enumerating Γ = { γi : i ∈N } and letting a word w(x1, . . . xn) act by the composition
w ◦ (γ1, . . . , γn). It is easily seen that this action is computable in the indices, and so by
the previous paragraph E is computably reducible to UFω . �

Figure 6 shows the two new classes defined in this section, and the handful of equiva-
lence relations we have considered.

The results of this section have only scratched the tip of the iceberg. It would be very
interesting to investigate the structure of the orbit equivalence relations on c.e. sets in
further detail. For instance, we leave the following sample questions.

5.8. Question. Is =ce minimum among the relations induced by actions which are com-
putable in the indices?

5.9. Question. Does there exist an infinite antichain of relations induced by actions which
are computable in the indices?

6. CLASSIFICATION OF C.E. STRUCTURES

We now direct our study towards what we expect will be one of the most important
applications—isomorphism relations on classes of c.e. structures. As mentioned in the
introduction, the isomorphism relations play a prominent role in Borel equivalence re-
lations; in fact Borel reducibility was initially defined just for isomorphism relations on
classes of countable structures. This has motivated several authors to consider various
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enumerable

orbit

=ce

Ece
0

Ece
Γ

UFω

Ece
set

FIGURE 6. The enumerable relations. Note that we do not know whether
E0 is bireducible with an orbit equivalence relation.

notions of computable reducibility between classes of countable structures. Here we be-
gin to use the machinery built in earlier sections to study classes of c.e. structures.

6.1. Definition. Let ∼=ce
bin denote the isomorphism relation on the codes for c.e. binary

relations. That is, let e ∼=ce
bin e′ if and only if We and We′ , thought of as binary relations on

N, are isomorphic.

We remark that in order to analyze the isomorphism on arbitrary L-structures, it is
enough to consider just the binary relations, since if L is a computable language then the
isomorphism relation ∼=ce

L on the c.e. L-structures is computably reducible to ∼=ce
bin. This

follows from the proof of Proposition 6.2, cited below.
In analogy with the Borel theory, we can study the classification problem for c.e. undi-

rected graphs, trees, linear orders, groups, and so on by considering the restriction of∼=ce
bin

to the class of indices for such structures. Unfortunately, we immediately confront the dif-
ficulty that these restrictions are not total, and so far we have not addressed reducibility
for relations which are not defined on all of N.

In many practical situations, we can work around this difficulty. For instance, rather
than identify graphs with binary relations on N, we can identify them with subsets of
a fixed computable copy Γ of the random graph. Thus, we formally define ∼=ce

graph to be
isomorphism relation on the c.e. subsets of Γ. These two coding methods yield equivalent
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results in following sense: there is a computable reduction from ∼=ce
graph to ∼=ce

bin taking
values in the indices for undirected graphs, and there is a computable function f such
that whenever We, We′ code undirected graphs then We ∼=bin We′ if and only if W f (e)

∼=graph

W f (e′) (the last fact follows from Proposition 6.2 below). Similarly, we can consider the
relation ∼=ce

lo on the c.e. subsets of Q, and ∼=ce
tree on the downward closure of c.e. subsets of

N<N.

6.2. Proposition. ∼=ce
bin is computably bireducible with each of ∼=ce

graph, ∼=ce
lo , and ∼=ce

tree. �

The point is that the usual reductions go through in our context as well (see [Gao09] for
an elegant presentation). Intuitively, this is because the reductions only make use of the
positive information about the structures; that is, they need to know when two elements
are related, but not when two elements are non-related.

In terms of our hierarchy of equivalence relations, ∼=ce
bin is very high. For one thing,

it follows from results of [FFH+10] that it is Σ1
1-complete. It also lies above most of the

relations considered thus far; as an example we show the following:

6.3. Proposition. Ece
set lies properly below ∼=ce

bin.

Proof. To reduce Ece
set to∼=ce

bin, we simply let W f (e) be an code for We, thought of as a heredi-
tarily countable set. In other words, W f (e) is a tree coding the transitive closure of We. The
absence of any reverse reduction follows from complexity, since Ece

set is Π0
4. �

We close our discussion of isomorphism relations by considering the example of groups.
Classically, the isomorphism relation for countable groups is Borel bireducible with the
other relations addressed in Proposition 6.2. However, in our case there are once again
several possible coding methods. First, we can let group be the set of indices e such that
We, thought of as a subset of N×N×N, satisfies the laws for the multiplication function
for a group. We then define ∼=ce

group to be the restriction of the isomorphism relation ∼=ce
tern

on the c.e. ternary relations to group. (Note that all of the elements of group are in fact
computable, because they are c.e. functions.)

Alternatively we can code a group by a presentation, that is, a set of words in Fω, think-
ing of the group as the corresponding quotient. We thus let e ∼=ce

pres e′ if and only if We

and We′ , thought of as sets of relations in Fω, determine isomorphic groups. (Note that all
groups with c.e. presentations actually have computable presentations by Craig’s trick.)
This relation has the advantage of being defined everywhere, but it does not reflect the
same classification problem as ∼=ce

group. In fact the classification problem for groups splits
into two separate problems: that for computable group multiplication functions, and that
for computably presented groups.
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6.4. Proposition. ∼=ce
group ≤ ∼=ce

bin ≤ ∼=ce
pres.

We suspect that neither reduction is reversible.

Proof. Of course ∼=ce
group is computably reducible to ∼=ce

tern in the sense that there is a com-
putable function (the identity) which, when restricted to group, satisfies e ∼=ce

group e′ if and
only if f (e) ∼=ce

tern f (e′). Hence, ∼=ce
group is reducible to ∼=ce

bin in the same sense. To see that
∼=ce

bin ≤ ∼=ce
pres one need only inspect the classical argument of [Mek81], which yields group

presentations, and check that it can be done in our context as well. �

We next consider the computable isomorphism equivalence relations on these classes of
structures.

6.5. Definition. Let 'ce
bin denote the computable isomorphism relation on the space of c.e.

binary relations. That is e 'ce
bin e′ if and only if We and We′ , thought of as codes for binary

relations on N, are isomorphic via a computable bijection.

The results of Proposition 6.2 apply also to the case of computable isomorphism. For in-
stance if φ is a computable isomorphism between We and We′ , and f is the reduction given
in [Gao09] from binary relations to to graphs, then it is easy to use φ to find a computable
isomorphism between W f (e) and W f (e′). This need not always hold, since sometimes one
is able to show that We ∼= We′ if and only if W f (e)

∼= W f (e′) without necessarily construct-
ing the isomorphisms explicitly. But it is not difficult to check that it does hold for the
examples in this section.

6.6. Proposition. The computable isomorphism relation on the class of c.e. binary relations,
graphs, linear orders and trees are all computably bireducible. �

On the other hand, the computable isomorphism relation lies much lower in the hier-
archy than the isomorphism relation.

6.7. Proposition. 'ce
bin lies properly below Ece

set.

Proof. Let We ⊆ N be a c.e. set, which we shall think of as coding a binary relation. We
will create a c.e. subset W f (e) of N ∪ −1×N whose columns consist of all computably
isomorphic copies of We whose domain is a subset of N, together with all finite sets of
the form F ∪ −1. To do this, f (e) first arranges to write all finite sets of the form F ∪ −1
onto the odd-numbered columns. Then, it considers all pairs of programs p, p′, hoping in
each case that Wp codes a bijection φp of N with itself and Wp′ codes its inverse. As p is
simulated, we write φp applied to the graph We onto the column 2np,p′ (where np,p′ is a
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code for the pair (p, p′)). If Wp and Wp′ do not turn out to code a bijection and its inverse
then this will be apparent at some stage of simulation, and at that point we enumerate −1
into column 2np,p′ and then stop writing to that column. It is not difficult to check that
this reduction is as desired.

Finally, to see that Ece
set is not reducible to 'ce

bin simply compute that 'ce
bin is Σ0

3, but it
follows from Theorem 3.8 that in Ece

set there is a Π0
3 complete equivalence class. �

The hierarchy of isomorphism relations considered in this section is shown in Figure 7.

=ce

'ce
bin

Ece
set

∼=ce
L

∼=ce
bin ∼ ∼=ce

graph ∼ ∼=ce
lo ∼ ∼=ce

tree

∼=ce
group

∼=ce
pres

FIGURE 7. Relationships between the isomorphism equivalence relations
considered in this paper.

7. RELATIONS FROM COMPUTABILITY THEORY

Some of the most important examples of relations on c.e. sets are those arising from
computability theory itself. In this section, we consider the degree-theoretic equivalence
relations, fitting them into the computable reducibility hierarchy. We then briefly gener-
alize our method of dealing with the c.e. sets to handle the larger class of n-c.e. sets.

We begin with the degree-theoretic equivalence relations.

7.1. Theorem. =ce lies properly below each of ≡ce
T , ≡ce

1 , and ≡ce
m in the computable reducibility

hierarchy.

Proof. We will define a function which reduces =ce to all three relations at once. To begin,
we use a strong form of the Friedberg-Muchnik theorem to obtain a c.e. sequence of sets
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Ai with the property that for all i, we have Ai 6≤T
⊕

j 6=i Aj (and also 6≤1 and 6≤m). Then,
we let W f (e) be the subset of N×N whose kth column is Ank , where nk is the kth element
enumerated into We by e.

We first show that if We = We′ then W f (e) ≡1 W f (e′) (and hence ≡m and ≡T). Assuming
first that We is infinite, W f (e) can be obtained from W f (e′) by the following permutation of
N×N: If the kth element to appear in We′ is the rth element to appear in We, then send the
kth column to the rth column. In the case that We is finite, W f (e) can be obtained by W f (e′)

by a finite permutation of the columns.
We now show the converse: that if We 6= We′ then W f (e) 6≡T W f (e′) (and 6≡1 and 6≡m).

For this, we can suppose that i ∈ We r We′ . Now, suppose towards a contradiction that
W f (e) ≤T W f (e′). Then we have

Ai ≤T W f (e) ≤T W f (e′) ≤T
⊕
j 6=i

Ai ,

the last reduction holding using arguments similar to the previous paragraph. But this
contradicts our choice of the Ai. As noted, this argument also works for ≤1 and ≤m.

Finally, none of the three degree relations are reducible to =ce because they are each Σ0
3

complete (see for instance [Soa87, Corollary IV.3.6]) while =ce is just Π0
2. �

Note that in defining the set W f (e) we cannot simply use the sum
⊕

j∈We
Aj, since here

a complicated set is coded into the indices of summation.

7.2. Theorem. ≡ce
m is computably reducible to ≡ce

1 .

Proof. For this we simply let W f (e) = We ×N. If φ : N → N is a many-one reduction
from We to We′ , then the map (m, n) 7→ (φ(m), 〈m, n〉) is a one-one reduction from W f (e)

to W f (e′). Conversely, if ψ : N×N → N×N is a one-one reduction from W f (e) to W f (e′),
then the map m 7→ the first coordinate of ψ(m, 0) is a many-one reduction from We to
We′ . �

The next result clarifies how the degree-theoretic relations fit in with other relations
previously considered. This and earlier results are depicted in Figure 8.

7.3. Proposition. ≡ce
1 is computably reducible to the computable isomorphism relation 'ce

bin on
c.e. binary relations.

Proof. The point is that ≡ce
1 is precisely the computable isomorphism relation on the set

of c.e. unary relations. So for instance ≡ce
1 ≤ 'ce

bin via the map such that W f (e) codes the
graph on N∪ {?} where ?→ n if and only if n ∈We. �
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=ce

≡ce
m

≡ce
1

'ce
bin

≡T

FIGURE 8. Relationships between the degree-theoretic equivalence rela-
tions and some others considered in earlier sections.

We close this section with a generalization of the reducibility hierarchy on c.e. sets.
Here, we shall consider equivalence relations on the d.c.e. and even n-c.e. sets. This is
natural given what we have done, because like the c.e. sets, the n-c.e. sets are also charac-
terized by natural number indices.

7.4. Definition.

◦ If e = 〈 e1, . . . , en 〉 is a sequence of indices then the corresponding n-c.e. subset of
N is the set We = (We1 rWe2)∪ (We3 rWe4)∪ · · ·r∪Wen . Here, the last operation
is either r or ∪ depending on whether n is even or odd.
◦ If E is an equivalence relation on n-c.e. sets, then En-ce is the relation on Nn defined

by e En-ce f if and only if We E Wf .

The 1-c.e. sets are of course the c.e. sets, and the 2-c.e. sets are sometimes called the
d.c.e. sets (difference of c.e. sets). Thus we shall write Edce for E2-ce. It is trivial to check
that for all n we always have En-ce ≤ En+1-ce: fix an e with We = ∅, and let (e1, . . . , en) 7→
(e1, . . . , en, e).

7.5. Theorem. For every n > 0, =n-ce lies properly below =(n+1)-ce.

Proof. We claim that there is no computable reduction from =(n+1)-ce to =n-ce. Suppose
that g were such a reduction. Fix some e and f of length (n + 1) with We = {0} and
Wf = ∅. By assumption, Wg(e) 6= Wg(f ), and we suppose first that there exists some
number m ∈Wg(e)rWg(f ). Of course, the n-c.e. sets Wg(e) and Wg(f ) can be approximated
using the indices g(e) and g(f ). We will use the Recursion Theorem to define an (n + 1)-
c.e. set Wi which “knows its own indices i” and is approximated as follows. We will use
the notation Wi,s denote the approximation to Wi at stage s.

We start with Wi,0 = ∅ and Wi,1 = {0}. At the first stage s0 (if any) with m ∈ Wg(i),s0
,

we take 0 out, leaving Wi,s0+1 = ∅. Then we do nothing further until the next stage s1 > s0
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at which m /∈Wg(i),s1
. At stage s1 + 1, we enumerate 0 back into Wi, leaving Wi,t+1 = {0}.

Then, if we encounter another stage s2 > s1 at which m enters Wg(i) again, we take 0 back
out of Wi, and so on, back and forth, as many times as m enters or leaves the set Wg(i).
This happens at most n times, so Wi is (n + 1)-c.e. (including the initial enumeration of 0
into Wi,1). However, our construction leaves Wi = ∅ = Wf if and only if m ∈ Wg(i), in
which case Wg(i) 6= Wg(f ); whereas, if m /∈Wg(i), then Wi = {0} = We, yet Wg(i) 6= Wg(e),
since m ∈Wg(e).

If there is no m in Wg(e) rWg(f ), then there must be some number m′ ∈ Wg(f ) rWg(e),
since We 6= Wf and g is assumed to be a reduction. In this case, we execute the same
construction, except that we leave Wi,s = ∅ until reaching a stage s0 with m′ ∈ Wg(i),s0

,
then enumerate 0 into Wi, then wait for m′ to leave Wg(i), then remove 0 from Wi, and so
on. In this case, Wi is actually just n-c.e., not (n + 1)-c.e., and again the strategy works: if
m′ ∈ Wg(i), then Wi = {0} = We, yet m′ /∈ Wg(e); whereas, if m′ /∈ Wg(i), then Wi = ∅ =

Wf , yet m′ ∈Wg(f ). So g cannot have been a computable reduction. �

We can define an equivalence relation above all of these. Let h : ω → ω<ω be a com-
putable bijection, and define

i ≡<ω-ce j ⇐⇒ Wh(i) = Wh(j) .

Here, if h(i) ∈ ω<ω has length n, then Wh(i) is exactly the n-c.e. set defined above. So
this relation =<ω-ce is really just an amalgam of all the relations =n-ce. It is clear that
=n-ce ≤ =<ω-ce for every n, and Theorem 7.5 then shows that =<ω-ce 6≤ =n-ce.

Many of the results in this paper concerning equivalence relations on c.e. sets have
analogues for the n-c.e. sets. However, it is also interesting to consider how relations on
n-c.e. sets fit in with the relations on the c.e. sets.

7.6. Theorem. The relation =<ω-ce is computably reducible to Ece
3 , but no reduction exists in the

opposite direction.

Proof. For the reduction, let e = 〈 e1, . . . , en 〉 be an index for an n-c.e. set. We define
a program f ((ei)) enumerating a subset of N×N as follows. Begin by simulating the
programs e1, . . . , en. If k appears in We,s, we write the first s elements of the kth column
into W f (e). Note that as s increases, the status of k ∈ We,s can only change n times, and
therefore k ∈We if and only if the kth column of W f (e) is infinite. It follows easily that f is
a reduction to Ece

3 .
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In the opposite direction, we note that the relation Ece
3 is Π0

3-complete. However, We =

Wf iff, for every x, we have x ∈ We if and only if x ∈ Wf . Since membership in each of
We and Wf is ∆0

2, the relation =<ω−ce is Π0
2, precluding any computable reduction. �

=ce

=dce

=n-ce

=<ω-ce

Ece
3

Ece
0

FIGURE 9. Known relationships between the relations on n-c.e. sets.

These relationships are shown in Figure 9. It would also be interesting to decide the
relationship between =n-ce and Ece

0 . Since Ece
0 is is Σ0

3 complete while =nce is just Π0
2, we

can conclude that Ece
0 is not computably reducible to =n-ce. This leaves open the following

question.

7.7. Question. Are any of the =n-ce computably reducible to Ece
0 ?
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