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Abstract Infinite time register machines (ITRMs) are register machines which
act on natural numbers and which are allowed to run for arbitrarily many
ordinal steps. Successor steps are determined by standard register machine
commands. At limit times register contents are defined by appropriate limit
operations.

In this paper we examine the ITRMs introduced by the third and fourth
author [7], where a register content at a limit time is set to the liminf of
previous register contents if that limit is finite; otherwise the register is reset
to 0. The theory of these machines has several similarities to the infinite time
TURING machines (ITTMs) of HAMKINS and LEwIs. The machines can decide
all IT} sets, yet are strictly weaker than ITTMs. As in the ITTM situation, we
introduce a notion of ITRM-clockable ordinals corresponding to the running
times of computations. These form a transitive initial segment of the ordinals.
Furthermore we prove a Lost Melody theorem: there is a real r such that there
is a program P that halts on the empty input for all oracle contents and
outputs 1 iff the oracle number is r, but no program can decide for every
natural number n whether or not n € r with the empty oracle.

In an earlier paper the third author considered another type of machines
where registers were not reset at infinite liminf’s and he called them infinite
time register machines. Because the resetting machines correspond much bet-
ter to ITTMs we hold that in future the resetting register machines should be
called ITRMs.
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1 Introduction

The infinite time register machines studied in the present paper were intro-
duced by the third and fourth author in [7]. The aim is to stretch standard
register machines into the infinite in a way similar to the ITTMs of JOEL
D. HaMKINS and ANDY LEWIS [2]: let the “standard hardware” of register
machines run in transfinite ordinal time. Successor steps are determined by
standard register machine commands. At limit times the register contents are
defined using liminf’s of the previous register contents.

A crucial issue is the limit behaviour when the liminf is infinite. In a pre-
vious version (see [5]), machines halted or “crashed” on encountering such an
overflow; computability by those machines exactly corresponded to hyperarith-
metic definitions. We obtain a stronger notion of computability by continuing
computations beyond such crashes. So let register machines reset a register
to 0 whenever it overflows. This defines richer descriptive classes which are in
closer analogy with the ITTM-definable classes. Resetting a register to 0 has
some similarities to resetting TURING heads to position 0 at limit times. The
added strength and the similarities to I'TTMs motivate us to propose the name
infinite time register machine for the machines in this paper. The machines
defined in [5] by the third author could be called non-resetting infinite time
register machines.

Indeed, ITRMs are strictly weaker then ITTMs: the halting problem for
ITRMs can be decided by an ITTM (see Theorems 3 and 4 of [7] and also
Theorem 4 of the present paper). This illustrates the phenomenon that notions
of computability that have the same strength in the finite domain may differ
markedly in the infinite. The classical equivalence of register and TURING
computability rests on the fact that a finite tape inscription can be coded by
a single integer, using standard arithmetical operations. In contrast the tape
contents of an I'TTM cannot in general be coded by finitely many integers
or register contents. This explains the power of ITTMs in comparison with
ITRMs.

A decisive component for the behaviour of infinitary machines are the
limit rules for updating the machine configuration at limit times. The ITRMs
considered in the present paper are strictly stronger than the register machines
in [5] because the present limit rule can be used to test for wellfoundedness (see
Theorem 1). Infinitary register and TURING machines may, however, converge
if "space” and "time” are increased to some admissible ordinal « or to the
class Ord of all ordinal numbers (see [6], [8], [9]).

The second section of the present paper contains basic definitions and a
review of the results of [7]. In analogy with the theory of ITTMs we introduce
a notion of ITRM-clockable ordinals corresponding to the running times of
computations. A difference to the theory of ITTMs can be seen in the halt-



ing behaviour of ITRMs: the set of all ITRM-clockable ordinals is an initial
segment of the ordinals, whereas the ITTM-clockable ordinals have gaps. We
also present a relation to computable ordinals. In the final section we transfer
the “lost melody” theorem for ITTMs to ITRMs: there is a “lost melody” real
r and a program P that halts on the empty input for all oracle contents and
outputs 1 iff the oracle number is r, while on the other hand no program with
the empty oracle can decide for every natural number n whether or not n € r.

Ongoing work by the third author is aimed at determining exact strengths
of ITRMs for all numbers N of registers.

2 Infinite time register machines

Definition 1 Let N be a natural number. An N-register machine has regis-
ters Ry, Ry, ..., Ry_1 which can hold natural numbers. An N-register program
is a finite list P = Iy, I, ..., Is_1 of instructions, each of which may be of one
of five kinds where m,n range over the numbers 0,1,... N — 1:

a) the zero instruction Z(n) changes the contents of R,, to 0;

b) the successor instruction S(n) increases the natural number contained in
R, by 1;

¢) the oracle instruction O(n) replaces the content of the register R,, by the
number 1 if the content is an element of the oracle, and by 0 otherwise;

d) the transfer instruction T'(m,n) replaces the contents of R,, by the natural
number contained in R,,;

e) the jump instruction J(m,n,q) is carried out as follows: the contents r,,
and r, of the registers R,, and R, are compared; then, if r,, = r,, the
machine proceeds to the ¢th instruction of P; if r,, # 7,, the machine
proceeds to the next instruction in P.

The instructions of the program can be addressed by their indices which are
called program states. At ordinal time 7 the machine will be in a configuration
consisting of a program state I(7) € w and the register contents which can be
viewed as a function R(7) : N — w. R(7)(n) is the content of register R,, at
time 7. We also write R, (7) instead of R(7)(n).

Definition 2 Let P be an N-register program. Let Ry(0),...,Ry—_1(0) be
natural numbers and Z C w be an oracle. These data determine the infinite
time register computation

I:0—-wR:0—"Nw)
with program P, input Ro(0),..., Ry—_1(0) and oracle Z by recursion:

a) 6 is an ordinal or 8 = Ord; 0 is the length of the computation;

b) I(0) = 0; the machine starts in state 0;

c) Ifr<f@and I(7) € s={0,1,...,s — 1} then 6§ = 7 + 1; the machine halts
if the machine state is not a program state of P;



d) If 7 < fand I(7) € sthen 7+1 < 6; the next configuration I(7+1), R(7+1)
is determined by the instruction I,y according to the previous definition;
e) If 7 < 0 is a limit ordinal, then I(7) = liminf,_,, I(c) and for all k < w

Ri(r) = liminf, ., Ri(o), if liminf,_, Rix(0) <w
RAT) = 0, if iminf,_,; Ri(0) = w.

By the second clause in the definition of Ry (7) the register is reset in case
liminf, ., Ri(o) = w. We also write Ry(7) T to distinguish this situa-
tion from the case where a register is assigned 0 by the first clause in the
definition of Ry (7).

If the computation halts then § = 3+ 1 is a successor ordinal and R(() is the
final register content. In this case we say that P computes R(3)(0) from R(0)
and the oracle Z, and we write P : R(0), Z — R(5)(0).

Definition 3 A partial function F' : w”™ — w is computable if there is some
N-register program P such that for every n-tuple (ao, ..., a,—1) € dom(F),

P (ao,...,an,l,0,0,...,O),(D »—>F(a0,...,an,1).
Obviously any standard recursive function is computable.

Definition 4 A subset  C w, i.e., a (single) real number, is computable if its
characteristic function y, is computable.

A subset A C P(w) is computable in the oracle Y if there is some N-register
program P such that for all Z C w:

ZeAiff P:(0,0,...,0),YxZ—1,and Z & Aiff P:(0,0,...,0),YxZ — 0

where Y x Z is the cartesian product of Y and Z with respect to the pairing
function

(y+z)(y2+z+1)+z

In finite time, register computability and TURING computability coincide.
In transfinite time there are several parallels between ITRMs and ITTMs [7]:

(y,2) =

Theorem 1 The set WO = {Z Cw | Z codes a wellorder} is computable by
an ITRM in the empty oracle ). The decision procedure described in [7] will
run at least « steps to accept a wellorder Z of ordertype a.

Theorem 2 Every II{ set A C P(w) is ITRM-computable in the empty oracle
0.

Further parallels are proved in the present paper.

On the other hand there are marked differences between registers and tapes.
At any point in time register contents are a finite tuple of natural numbers
whereas tape contents can be viewed as a function from w to 2. This makes
ITTMs considerably stronger so that they are able to solve halting problems
for ITRMs.



Theorem 3 Let
I:0—-wR:0—-Nw)
be the infinite time register computation by P with input (0,0, ...,0) and oracle

Z. Then this computation does not halt iff there are 79 < 71 < 6 such that
(I(70), R(70)) = (I(11), R(m1)) and

V7 € [0, m1] (I(70), R(70)) < (I(T), R(T)).
Theorem 4 For every N < w the restricted halting problem
Hy :={(P,Z) | P is an N-register program, Z C w, and the computation
by P with input (0,0,...,0) and oracle Z halts}
is decidable by some ITRM with empty oracle.

This implies that the machines eventually get stronger by increasing the
number of registers. As a consequence there cannot be a universal ITRM.

3 Clockable Ordinals

The study of ITRM-computation leads to the question how long a halting com-
putation exactly takes. In contrast to the standard setting, where obviously
all natural numbers are possible running times, we anticipate some difficul-
ties. Since there are only countably many ITRM-programs there can only be
countably many possible running times. The question of the structure of the
class of possible running times will guide us through this and the following
chapter.

We call an ordinal « clockable, if we can find a program P which performs
« many steps and then halts. Measuring the lengths of computations we want
to ignore the final halt instruction. This way we obtain a precise notion of
clockable limit ordinals even though computation lengths always have to be
successor ordinals (see the discussion at the end of definition 2). This leads to
the following technical definition:

Definition 5 An ordinal o € Ord is (ITRM-)clockable iff there exists an N-
register ITRM-program P and a halting computation on input (0, ...,0) with
empty oracle () of the form

Iia+2—w R:a+2— Mw).
CLOCK := {«a | « clockable} denotes the set of all clockable ordinals.

Any natural number n € w is clockable because n + 1 consecutive zero
instructions constitute a program that states the clockability of n.

A program witnessing that w is clockable uses a flag which is initialized
by 1 and which is switched from 1 to 0 and back to 1 in each iteration. By
the lim inf-rule of Definition 2 e) the value of the flag becomes 0 after w many
steps. A program that halts when the value of the flag becomes 0 clocks w.
By using n flags one is easily convinced that w™ with n € w is clockable. This
observation implies:



Proposition 1 All a < w* are clockable.

w* is equal to sup{w™ | n € w}. We want to use this characterization to

prove the following:
Lemma 1 w¥ is clockable.

To prove this, we store a finite number of bits in one register such that
they behave in a reasonable way at limit times. For n € w define the function
pn "2 — we

(bili € n) — Y b; -2
1EN
All p,, are register computable functions and there are register computable
projection functions 7, with 7, (p,((b;|i € n)),€) = be. Also the functions o,
with o, ({bg, ..., bp-1),£,b) = pr ({bo, ..., be—1,b,be41,...,bs_1)) are register
computable.

Proposition 2 Let A € Lim andn € w. Let <<bf|z € n> I € )\> be a sequence

with bf € 2. Let i € n be maximal, such that there is a o < A, such that for all
i1<j<mnandforala<{<A, b§ is constant. Then for all i < € < n:

T <11£1Li§\1f Pn (<bf|z € n>) ,€> = h?Liilf bg

Proof Choose ¢ as above. W.l.o.g. we may assume that i =n — 1.

Case 1: liminfe_, b, = 1. But then there is a ordinal «, such that for
every A > ¢ > a we have: bS_, = 1. So pn(<bf|z € n>) > 2"~1. This implies
that
lim inf p,, <<bf|z € n> ,n — 1) > on-l

(—

holds. But then
T (lizniilfpn (<bf|z € n> ,n— 1) S — 1) =1
holds as well.

Case 2: liminf._. b2—1 = 0. This case is handled in analogy to case 1. 0O

Proof (Lemma 1) In the following program we use v as a vector of length
n. All vector operations are understood as macros, which have to be subsi-
tuted by corresponding register programs. The following pseudo code has to
be transformed into a valid program P.

01 v=1

02 n=1

03 while not n = O do:

04 for i = n-1, ..., O do:
05 if v[i] = 0 do:



06 if i = n-1 do:
07 n=n+1
08 end if

09 v[i+1] =0

10 v[i+1] =1

11 v[i] =1

12 end if

13 end for
14 v[0] =0
15 v[0] =1
16 end while

Let
I:0—w R:0— Nw)

denote the computation of the N-register program above on input (0,...,0)
and empty oracle. First we note:

(1) For a limit ordinal A € § we have: I(\) = 03.

Proof This is the case because 03 is the instruction with the smallest number
in the outer loop. The inner loop is finite because every manipulation of v
is computable by an register machine. The program has to traverse the outer
loop after finitely many steps. So 03 is the smallest instruction that is executed
unboundedly often. ged(1)

For a € 0 let v(a) denote the value of the register in which v is stored
and n(«) denote the value of the register in which n is stored. For a successor
ordinal a € # and 1 < i < n(a) let v(a)(i) = Ty()(v(a),i) and for limit
ordinals A € 0 let v(\)(i) = liminf, .\ 7, (a) (v(), ).

(2) If v(\)(i) = 0 at a limit ordinal A < w* with i > 1, then v(A + w')(i) =0
and for all limit ordinals B with A\ < 3 < \+w® and j > i we have v(B3)(j) = 1.

Proof We show this result by induction over ¢ > 1.

Let ¢ = 0. It is clear that v(«)(0) = 0 for every limit ordinal «, because in
every traversal of the main loop we flash the flag. In this case the second part
of the proposition is clear.

Let j = i+1. Let a be a limit ordinal with v(«)(i+1) = 0. By the induction
hypothesis, for every £ € w, v(a + w' - £)(i) = 0. Because of the lines 05 to 13
the flag stored in ¢ + 1-th cell is flashed after every limit ordinal of the form
a+w-f for £ € w. By the second part of the induction hypothesis, for all
limit ordinals o < 8 < a + w'*! and j > i, we must have v(3)(j) = 1, so
Proposition 2 shows that we take the lim inf. Hence v(a + w®- £)(i + 1) = 0.
The second part of the proposition follows from the fact that a flag can be 1
at limit times iff it is flagged unbounded often. But for j > i this is not the
case. qed(2)

Now we make the following observation:



(8) For every m € w there is { € w such that m = n(w™ + ¢) and for all
a<w™ n(a) <m.

and

(4) If for a limit ordinal X € 6 and some 1 < i < n(\) we have v(\)(i) = 0,
then also v(A)(j) = 0 whenever 1 < j < i.

At one limit stage n is reset to 0 and by (1) the current instruction at this
time is 03. But then the program stops.

According to (3) n is bounded below w™. Because n is never decreased it
cannot reach zero before w”. n grows unbounded below w* and so the register
is reset. By (1) the instruction 03 is executed and so the program stops. Hence
it clocks w®. O

4 The structure of CLOCK

To get a deeper insight into the structure of CLOCK we first prove a speed-up
lemma, that we will generalize later. The term “speed-up” is adopted from the
analogous infinite time TURING machine results. Here it seems more appro-
priate to speak of a truncation lemma.

Lemma 2 (Speed-up) Let a+n be a clockable ordinal for somen € w. Then
a itself is ITRM-clockable.

Proof Following the strategy of the corresponding proof for ITTMs (see [2])
we design an algorithm which uses additional registers to anticipate the stage
« configuration. We thereby obtain a flag indicating that the registers are set
up in a way which will cause the machine to stop in n additional steps.

Since every computation can easily be made longer by a finite amount of
steps, we can assume that « is a limit ordinal. Since « + n is clockable, there
is an ITRM N-register program P with a computation

Iia4+n+2—w R:a+n+2— (Nw)

by P on input (0,...,0) with empty oracle. At stage « the machine is in a
configuration (I, R) := (I(a), R(e)) which will cause it to halt after n ad-
ditional steps. Therefore stage « has to be the first (and only) occurence of
configuration (I, R) in the computation. We modify P in a way which lets us
decide in one step whether configuration (I, R) has been entered. This will
result in a computation of length o + 2.

The computation by P involves only finitely many registers. Let S C w be
the set of indices of those registers. Let X C S contain the indices ¢ of registers
with R;(a) 1. Finally let N := S\ X. The following program is designed to
handle the case X # (). The case X = ) can be solved by a much simpler
program as noted below.

We fix four registers, denoted by R, Rmin, Remin, Raag, Which are not used
by P. Ra is used as an array of bits to keep track of registers in N, which



have attained the correct value from R. We want Ry, tO always contain the
minimum of all registers in X. Ry, shall contain a cumulative minimum, i.e.
the smallest value of Ry, since Remin was reset for the last time. Rgag shall
be 0 iff configuration (I, R) is entered.

We modify P in three steps and obtain a program P’.

1. Prepend anﬁinstruction to P which initializes Rg,g to 1.
2. Before the I-th instruction of P insert the following block of instructions.

CHECK-FLAG:
01 if FLAG =0
02 stop
03 end

3. Before each instruction of P insert the following block of instructions
named UPDATE.
Here the registers Ra, Rmin, Remin, iaag are denoted by A, MIN, CMIN, FLAG.
For i < w the i-th register is referred to as R[i]. For n € N the value of
R, is written as r n. Let X = {n_0,... nk}.

UPDATE:
AO1 MIN = R[n_0]
[For i =1, ..., kil
A02 if MIN > R[n_i]
AO03 MIN = R[n_i]
A04 end

BO1 if CMIN > MIN

BO2 CMIN = MIN

B0O3 end

[For each n in N]

CO01 if R[n] < r_n

Co2 FLAG = 1

C03 elseif R[n] = r_n
Cco4 Aln] =1

CO5 end

DO1 if all-components-one(A)

D02 A=0

D03 FLAG = CMIN + 2
D04 CMIN = MIN

DO5 end

Clearly the jump instructions in P have to be updated. The first lines of
the inserted blocks UPDATE and CHECK-FLAG respectively shall be used as new
jump destinations.
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If X = () most of this bookkeeping can be avoided: Simply initialize a flag
to 2. Set it to 1 and back to 2 whenever the situation D02-D04 is encountered.
Set it to 0 and back to 2 whenever a register falls below its designated value
from R. An analogous argument as below shows that at limit times the flag
is 1 if and only if the register values from R are attained. We concentrate on
the more complicated case X # () for the rest of the proof.

Let (I', R") be the computation by P’ on input on input (0,...,0) and
empty oracle. Note that the inserted instructions neither contain jump in-
structions nor modify the register used by P. Therefore the computation by
P’ can be thought of as an extension of P where single instructions have been
replaced by blocks of instructions occuring in the same order. Especially since
all additions are finite the configurations of (I’, R’) at limit stages will be equal
to those of (I, R) for registers from S.

(1) If X is a limit ordinal then Rpin(N) T iff Yn € X R,(\) 1.

Proof UPDATE is executed before every instruction of P. Therefore after each
possible change (by an instruction or by the liminf rule) of a register in X at
stage o lines A01-A04 ensure that Ry, is set to min{R, (o) | n € X} after
a finite amount of steps before the computation continues. In particular the
registers from X remain unchanged until Rp,;, has been updated. Hence (*):
Every minimum of registers in X at any stage is assumed by Ry, within
finitely many subsequent steps.

Let A be a limit ordinal. Assume for contradiction that Rpmin(A) T but
R, () 7 for some n € X. Let  := R,,(\). Then there are cofinally many 7
below A such that R, (7) = z and thus min{R,(7) | n € X} < z. Because of
(*) there are cofinally many 7" below A such that Ry, (7') < x which implies
Rumin(A) < x. Contradiction.

Let R,(A) 7 for all n € X. Then liminf, y min{R,(7) | n € X} =
min{liminf, .\ R,(7) | » € X} = w. And since Ruyi, is only updated with
values from registers R, with n € X, Ruyin(\) T follows. qed(1)

(2) Let A be a limit ordinal. Rpag(\) = 0 iff Ry(T) = R,, for allm € N,
R,.(7) ¥ for alln € N and R,(7) | for alln € X.

Proof Observe Rgag = 0 iff Rgag T. Assume R, (M) < R,, for some n € N. Let
x := R, (A). Then R, (1) = z for cofinally many 7 below A. Then Rg,g will be
set to 1 cofinally often below A (line C02). Hence Raag(X) V.

Assume R, ()\) > R, or R, (\) T for some n € N. Then R, will be assigned
R,, only boundedly many times in A. Hence the component of R4 correspond-
ing to n will equal 0 at all sufficiently large stages below A. So Rga.e will no
longer be updated with values from Rcmin (line D03). In particular Raag(A) .

Assume R, () ¥ for some n € X. Then Ryin(A) ¥ by (1). Hence there are
cofinally many 7 below A such that Ry,in(7) = & := Rumin(A). The subsequent
UPDATE block will ensure Remin < Rmin- Observe that R, is decreasing as
long as it is not reset in line DO4. We can assume that Rg,s will be updated
with values from Remin cofinally often below A (else Rpag V). So when Rgag is
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updated for the next time, Repin will not have been reset. So Raag(7) < z+2
for cofinally many 7 below A. Hence Raag(A) V.

For the other direction let Raag(A) 1. In particular Rpae has been updated
cofinally often which implies R,,(A\) < R,, and R,(\) ¥ for all n € N. Since
Rpag has not been reset to 1 cofinally often (line C02) we also know R, (\) >
R,.

Note that all values > 1 of Rg,e correspond to values of Remin. Since Remin
decreases between these assignments to Raag, Raag(A) 1 implies Remin(A) 1.
For the same reason it follows that Rp;,(A) T, which in turn by (1) implies
R,(\) T for all n € X. qed(2)

(8) dom(I') = a + 2.

Proof Assume « € dom(I’). Since the behaviour of P’ on registers from S
corresponds to P and « is limit ordinal: R/ (o) = R, for all n € N and
Rl (a) T+ R, T for alln € S. For the same reason I'(«) is the first instruction
of CHECK-FLAG. Then by (2): Rgag(cr) = 0 and the next instruction will be the
halt instruction. On the other hand the computation by P’ can not stop before
a, because « is the first occurence of the configuration (I, R). So by (2) Rfag
will not be zero and the (enhanced) computation will proceed like P.  ged(3)

Hence « is clockable. O

We want to generalize the Speed-Up Lemma. For this we state another
halting criterion.

Theorem 5 (Halting Criterion) Let
I:0—w R:0—(Nw)

be an ITRM-computation by P with input (0,...,0) and empty oracle (0. This
computation does not stop iff there is some configuration (I, R) such that

otp({t < 0] (I(H), R(t) = (L. R)}) > v

Proof If the computation does not stop then at least one of the configurations
has to occur class-many times. For the converse assume that (¢;]i < w®) is a
strictly increasing and continuous sequence of ordinals < 6 such that

Vi < w®(i ¢ Lim — (I(t;), R(t;)) = (I, R)) .

By the definition of (I(t,«), R(tu«)) using liminf operations, there must
be some ordinal w™ < w* such that:

(1) there is a time t € [ty,tyn) such that 1(t) = I(t,«), and for every register
index k < w there is a time t € [t1,t,n) such that Ri(t) = Rg(twe);

(2) for every timet € [tyn,tyw) the configuration (I(t), R(t)) will be pointwise
> than the configuration (I(tyw), R(tw)).
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We claim

(3) (I(tynsr), Rltonsr)) = (I (tww), R(tww)).

Proof > (pointwise) follows from (2).
For the converse observe that for every m < w

(I(tw”-m+1)> R(tw""erl)) = (i R) .

Then the computations on the time intervals [tyn.m11, twnmt1 + (Eon —t1)) all
begin with the same configuration and are therefore isomorphic up to a shift
in time. By (1), every state and every register content of the configuration
(I(twe), R(tww)) will be reached during the interval [tyn.m+1, twn-mt1 + (Lon —
t1)). Since these intervals limit up to ¢,»+1 and by the lim inf rule, the equality
is established. qed(3)

(3) and (2) imply that the computation will cycle from ¢,»+1 onwards with
a period of length ¢ o — tn+1. Thus the computation does not stop. a

With the help of the halting criterion we are now able to prove the gener-
alized Speed-up lemma:

Lemma 3 (Generalized Speed-up) Let « be a clockable ordinal and 8 < «.
Then @ is ITRM-clockable.

As an implication of this lemma we get:

Theorem 6 (Initial Segment) CLOCK :={« | a ITRM-clockable} is a
transitive initial segment of the countable ordinals.

This theorem states a fundamental difference between the theory of ITTM-
clockable ordinals (as it is developed in [2]) and ITRM-clockable ordinals. In
contrast to the ITTM situation there are no gaps. This can be interpreted as
some kind of weakness of ITRMs. We now prove the lemma:

Proof (Generalized Speed-up) Let I : a+2 — w, R:a+2 — (Nw) be a com-
putation by a program P = Py, ..., Py_1 on input (0,...,0) and empty oracle.
W.lo.g. B is a limit ordinal. At stage 8 the machine is in some configuration

(I, R) := (I(B), R(B)). Let
M:={y |7 <BAI(y),R() = (I,R)}, n:=otp(M).

We shall simulate the program P while counting the number of times that the
configuration (I, R) appears, halting at the nth time.

By Theorem 5 n < w®. 7 is clockable by Proposition 1. Since 3 is a maximal
element of the set on the right side n has to be a successor ordinal: n = n' + 1.
By Lemma 2 7’ is clockable: Let @ = Qo, ..., Q;—1 be a Ng-register program
with a computation Ig : 7 +2 — w, Rg : 7' +2 — (N@)w) by Q on input
(0,...,0) and empty oracle.
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We can assume that P and ) use disjoint sets of registers. W.l.o.g. the
first m registers are used by P and the registers with indices in [m, m+n) are
used by . We fix another register Rji,e which is used by neither P nor @) and
will be employed as a pointer to the lines in the program Q.

Consider the Np/-register program P’ := }50, ceey ]57_1, B, ]57, . ,]5;6,1
where

1. B is the following block of instruction. Again the i-th register is denoted

as R[i], R; is referred to by r_i, and Rjj,e is written as LINE:

if R[0]= r_0 and R[1] = r_1 and ... and R[m] = r_m then
if LINE = 0
Q_TILDE_O
else if LINE = 1
Q_TILDE_1

else if LINE =1 - 1
Q_TILDE_(1-1)
end

if LINE >= 1
stop
end
end

Q_TILDE i for ¢ € [ is a placeholder for the following block of instructions:

Q;, LINE = i + 1, if Q; # J(u,v,q)
;= if R[u] = R[v] then if Q; = J(u,v,q)
e LINE = q
else

LINE =1 + 1

Let G;, i € I, and b be the index of the first instruction of Q; and B in P’
resp.

2. P, for i € k is the same instruction as P; with indices in jump instructions
shifted appropriately: For ¢ € k

P, it P, # J(u,v,q),
P, = J(u,v,q), if P = J(u,v,q) and ¢ < I,
J(u,v,q+|B|) if P, = J(u,v,q) and q > I.

Note that jump instructions with destination Pf are altered to point to the
first line of B.
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Let I' : o/ — w, R :a' — (Nr)w) be the computation by P’ on input
(0,...,0) and empty oracle and (¢, | 7 < ) be the strictly increasing sequence
of stages v < o such that I'(y) = ¢; for some ¢ € [ (i.e. the stages of (I’,R')
just before an instruction of @ is executed). Define Ry, : o' — ((NPp)w) to be
the restriction of R’ to registers used by Q: R (7)(i) := R'(7)(i) when 7 < o
and i € [m,m +n), and R (7)(i) = 0 otherwise.

(1) If T < 0 and Ry, (t;) =k <, then I'(t;) = G.. Moreover, if Qy, is not a
Jjump instruction then P’,(tT) = Q.

Proof By the construction of P’. qed(1)
2) If T < 0 then R, (t;) = Ro(7) and R}, (t;) = Ig(7). In particular 6 <.
Q Q line Q

Proof By induction on 7 < 6.

Let 7 = 0: Ry(to) = (0,...,0) = Rq(0) and Ry, (to) = 0 = I(0) since
neither a register used by @ nor Ry, is altered before t.

Let 7 = v+ 1 < 6 and assume the statement is already proved for v. By
the induction hypothesis R, (t,) = Rq(v) and Ry (t,) = Io(v).

We can assume Ry, (t,) = Io(v) < k. Otherwise the computation would
have halted after ¢, making ¢, the last entry of the sequence. In particular
this shows 0 < dom(Ig) —1=1.

If Io(v) is a jump instruction then Rg(v) = Rg(v + 1). In this case also
Qr,(v) does not contain write instructions. Hence Rg)(t,+1) = Rg(t,) and so
Rb(tT) = Rg(7) by induction. The second part of QIQ(,,) then sets Riine(ty+)
for some small k to I (v+1) by simulating the behaviour of a jump instruction.
This value is not changed until ¢,41 and so Rine(t;) = Io(7).

If I(v) is not a jump instruction then by (4) and the induction hypothesis
Ppy = Qrqw)- So Ry (ty +1) = Rg(v+1). After that Ry, remains constant
until t;. So Ry (t-) = Rg(7). Since Ig(v) is n0t~ajump instruction, Ig(v+1) =
Ig(v) + 1. Analogously the second part of Qp,(,) ensures R (t, +2) =
I,(v)+1. Finally R}, (t,41) = R}, (ty +2) since Ryine remains constant until
tyit.

Let 7 < 6 be a limit ordinal. By the induction hypothesis R, (t,) = Rq(v)
and R}, (t,) = Ig(v) for all v < 7. Let A = sup{t, | v < 7}. Since the
sequence is strictly increasing, A is a limit ordinal. Let ¢ € [m, m 4+ n). Then

Ri(A\) = lim iglf R!(0)

= liminf R;(t,)

= liminf R ;(v) = Rg.:(7).
Here the second equivalence holds because the values taken by R.(o) for o < A
appear in Rj(t,) for v < 7 in same order and the sequence (¢, | v < 7) is cofinal
in A. Obviously A < ¢,. Moreover, R, remains unchanged on [\, ¢;], so we get
Ri(tr) = Ri(N) = Rq.(7).
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For the same reason:
R{ine (tT) = R{ine(/\) = lim lilf R{ine (U)

= liminf R}, (t,)

V—T

= liminf Io(v) = Io(7)

ged(2)
Let (s- | 7 < o) be the increasing sequence of stages v < o/ with P}, ) = P

for some i # I or I'(y) = b.

Since B is traversed in a linear fashion, a similar argument as above shows,
that P’ behaves essentially like P on the registers used by P. Specifically, the
register values at limit stages coincide. Let R’» again denote the restriction of
R’ to P’s registers.

(8) If T < o then Rip(s;) = R(7). For limit ordinals A < o: sy = \.

In particular (I’, R') only halts before 3 if the stop instruction from B is
encountered. Since the block B is inserted before the instruction corresponding
to I, the outer if-condition in B is true exactly at stages s, with (I(7v), R(y)) =
(I, R). At stage (3 the configuration (I, R) occurs for the nth time. This implies
6 =n and o =t,y + m for some m < |B].

For each t;, 7 < 7, there has to exist a unique v € M such that s, <
t; < s, +|B|. Since § is the maximal element of M and n = otp(M), we get
sy = sg. Hence o/ =tz +m/ =+ m' for some m’ < 2|B|. By the Speed-up
Lemma 2, (3 is clockable. a

Lemma 4 FEvery recursive ordinal is ITRM-clockable.

Proof Let a be a recursive ordinal. a then is TURING computable by a program
P. Let Z be the result of the computation of P used as an oracle. Instead of
consulting an oracle it is also possible to rerun P. We use the program which
was introduced in [7] to compute WO (see also Theorem 1). Using recalculated
values of Z this program will take at least @ many steps to halt. Because the
set of ITRM-clockable ordinals is an initial segment of the coutable ordinals,
« is clockable. O

5 Computable Ordinals

In Definition 4 we introduced a notion of computable real numbers. With this
we can define computable ordinals:

Definition 6 An ordinal number « is (ITRM-)computable if there is a com-
putable real number z C w coding a wellorder with

a =otp({(a,b) € w x w | p(a,b) € x})

where p denotes an appropriate pairing function.
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Theorem 7 The class of clockable ordinals CLOCK coincides with the class
of computable ordinals.

Proof (2) Let a be a computable ordinal. Let z C w denote a code for a
wellorder of ordertype « and P a program that computes x.
We again make use of the program which computes WO as described in [7].
If all oracle instructions are replaced by a rerun of P, then this program will
run for at least o many steps. By the Initial Segment Theorem « is clockable.
(©) Let P be a program with a computation

Iia+2—wR:a+2— (Mw)

by P on input (0,...,0) and empty oracle ().
Define for [ € w and R € (Nw):

(I, R) = otp({B € o+ 2| (I(8), R(B)) = (I, R)})
(1) (V8 € a+2) n(I(B), R(B)) < w*
Proof P halts and Theorem 5 proves the claim. qed(1)
The idea is to order the triples of the form (I, R,v) with v < n(I, R) as
follows: (I, R,~v) < (I',R',~") iff the y-th occurrence of (I, R) is before the

~/'-th occurrence of (I’, R').
For this we define

S={(LR,v) | (EB€a+2)(I,R)=(I(B),R(B)) Ay <nl,R)}
Further we define for (I, R,~) € S:
5(T, Ry) = min({f € a+2 | v = otp({o < 5| (T, R) = (I(x), RGP
With this the following definition is natural:
(I, R,y) < (I',R ) iff 6(I,R,7) < 6(I', R %)
The following claim holds:
(2) (S,=<) is a wellorder and o+ 2 = otp((S, <))

Proof To prove this claim we show that § is an order preserving bijection
between S and « + 2. It is clear that § is a function from S to « + 2. Let
8 < a+ 2. The preimage of 8 is (I(3), R(8),otp({y < 8 | (I(8), R(3)) =
(I(7), R(7))})). The injectivity of 4 is proved analogously. ¢ is orderpreserving
by definition. qed(2)
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A triple (I, R,~) can be coded as a natural number. [ is a natural number,
and to code R we observe, that only finitely many registers are used in P.
Every n < w“ can be represented as n = w" !-¢c,_1 +...+w-c; +co for some
Cp—1,--.,Co € W.

Define x as the set of codes of elements in <. We want to prove that z is
computable.

To construct a program that computes = we have to build a counter which
will be able to count an ordinal 7 < w* that is coded by a sequence of natural
numbers {(¢; | i € n) as above. For this modify the program in the proof of
Lemma 1. We observed that on the first limit time with v(¢)(i +1) = 0, t = w’
holds. By the main claim in this proof we further know that for ¢ € w and
t =w®- £, v(t)(i) = 0 holds. For every limit time t with w’- ¢ <t <w’- (£ +1)
holds v(¢)(i + 1) = 1. A traversal of the main loop in the program takes only
finitely many steps, so we may assume that an execution of a step of it is a
full traversal of the main loop.

We have to modify the program: At the begining of the main loop we insert
a block that checks if a limit time is reached. If the flag that corresponds to the
maximal 4 such that ¢; # 0, we decrease ¢; by one. If ¢y # 0 we can’t use the
technique explained above. But counting finitely many steps is no problem. So
the program checks at any limit time if w® additional steps are made. Since
we do this beginning with the biggest we can count n steps in this way.

Let a € z code the pair ((I, R,v),(I’, R',¥)). In the following code let _I
denote I, _I’ denote I’, _R_{i} denote R(i) and so forth. Let Z and Z’ be to
counters as described above. We may assume that they are correctly initialized
from the input at the beginning of the program.

We replace every instruction P; of P with the following block:

% Check if the configuration (_I, _R) is reached

if _I =i and _R_O0 = R(0) and ... and _R_{r-1} = R(r-1) then
execute a step of Z
if Z = _gamma then
if result != 2 then result =1
reached_1 =1
end if
end if

% Check if the configuration (_I’, _R’) is reached

if _I’ =i and _R’_0 = R(0) and ... and _R’_{r-1} = R(r-1) then
execute a step of 7’
if Z = _gamma’ return O
if result != 1 then result = 2
reached_2 =1
end if
end if

P_i
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As in the proof of the Generalized Speed-up Lemma we have to set up all
these things carefully, but the techniques used there are also applicable in this
case.

At the beginning the program has to check if the input is a valid coding of
an element of x, whether it is a pair of two distinct elements of S and return
0 if this is not the case. We also insert a block at the end of the program, that
returns 0 in the case that reached_1 or reached_2 is 0, in which case one of
the triples isn’t in s. If this is not the case, then we return 1 if result is 1
and return 0 if not. Furthermore all jumps in P that terminate the program
should be replaced with jumps to this block.

It remains to check if this program computes z: If the input isn’t a code
for a valid element of <, then we return 0. But if this is the case we count
the occurence of (I, R) and (I’, R’), and decide <. So this program computes
xT. O

6 The Lost Melody Theorem

Intuitively, the lost melody theorem says that there are reals that can be
recognized, but not computed. In [2], this is shown in the context of ITTMs.
Here, we prove the same holds for ITRMs. Accordingly, let us call a real r
recognizable if the set of reals {r} is computable in the empty oracle 0.

Theorem 8 There is a real r which is recognizable, but not computable. Thus,
the Lost Melody Theorem holds for ITRM’s as well.

The rest of the paper is devoted to the proof of this theorem.
We need some notions from the fine structure theory of the constructible
universe L. Fy(z,y) = {z,y}

( )—{(uv) uETAVEYAuUE v}
F4(£U,y)_l'—
Fs(ﬂ%y)—ﬂmy
F6(x7y):
F7(I7y):d m(z)
Fy(z,y) = {(u,v) : (v,u) € z}
Fy(z,y) = {(u,v,w) : (u,w,v) € z}
Fio(z,y) = {u,v,w).(v,wu)ea:}

From now on, we define « to be the smallest ordinal such that J, E ZF~,
where ZF~ is ZERMELO-FRAENKEL set theory without the power set axiom.
Thus, « is a countable ordinal and J, is itself countable. In fact, we have:

Lemma 5 There is s € Joq2 such that s : w — J, is surjective.

Proof Let M, be the X, SKOLEM hull of {J,} in Ju41. All elements of M,
are of the form h(i,{J,}), where h is the canonical X; SKOLEM function for
Ja+1 (which is Xy over J,11 and hence an element of J,12). Also, we have
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M, € Jata. Let mg(z) : * — y be the collapsing map for elements z of Sg,
where y is the transitive collapse of z; this can be defined by induction on 3
and is easily seen to be an element of J, for wa > (. Furthermore, let © be
the collapsing map for M,, i.e. Ugmg.

By the condensation lemma, the transitive collaps of M, is of the form
J for some ordinal v < a + 1. Since J,41 [= 'there is a maximal J-stage’
(namely J,), the same holds in J, and so v = ¢ + 1 for some ordinal 4.
Furthermore, for each axiom ¢ of ZF~, Ju11 E ¢7*, and hence J, | ¢75.
Now, since o was minimal, it follows that o < §, so we get « = d. Now [ : 7 —
m(h(i,{Ja})) is a partial surjection from w onto J,41. Define s(z) = f(z) if
f(z) € Jo, 0 otherwise. Since J,, and J,y1 are in J,42 and the latter is closed
under rudimentary functions, f is easily seen to be an element of J, 42 as well
and is the desired surjection.

Let p: w X w — w be the CANTOR pairing function. Given a surjective map
s as above, we can code J, by a real r in a canonical way by simply putting
n = p(i,j) into r iff s(i) € s(j). Conversely, any real can be interpreted as a
(possibly ill-founded) countable €-structure in this way: Introduce countably
many constants ¢; and let ¢;Ec; < p(i,5) € r. We say that r codes a model
of ZF~ iff the e-structure obtained in this way is such a model. (Obviously,
any structure obtained in this way is transitive.) From now on, r denotes the
<r-minimal real that codes a J, &= ZF~. Since a real coding J, is easily
generated from s as in Lemma 8 by applying some GODEL functions, we have
7 € Joso. From now on, we write P?(n) for the output that the program P
generates from the input n in the empty oracle.
We start by proving:

Lemma 6 r is not computable.

Proof Suppose for the sake of a contradiction that P computes r. Since com-
putations are absolute between transitive models of ZF ™, there is an €-formula
#(v) such that P’(n) =1 « J, = é(n). Since comprehension holds in J,,, we
have r € J,. But then, since J, satisfies replacement, the structure coded by
r is itself an element of J,, and we get J, € J,, a contradiction.

The algorithm for deciding whether or not the oracle number o is equal to r
proceeds in three steps: First, it is checked whether the €-structure R coded
by o (in the sense mentioned above) is well-founded. This can be done as in
section 3. If it doesn’t succeed, we stop with negative result. If it does, we have
to check whether all axioms of ZF~ 4V = L are valid in R and R is €-minimal
with this property. How to do this will follow easily from the effort taken for
the last step: Assuming that the last step was successful (so o codes an e-
minimal model of ZF~ +V = L), we have to check whether o is <p-minimal
with this property. For this purpose, we fix the oracle number o for the rest of
the proof.

Since it is checked by now that R is isomorphic to a transitive, well-founded,
€-minimal model of ZF~ 4 V = L, we may assume that R is of the form J,
for some ordinal 7.
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The J-hierarchy is obtained by iterating the process of closing Jg U {Jg}
under Godel functions and taking unions at limits. Each element of L = (J4 J
can therefore be represented as an iteration of Godel functions applied to
several of the S,. We view such a representation as a name for the element;
if we restrict ourselves to an initial segment of L below a countable ordinal,
this concept can be arithmetized, which will allow us to decide €-formulas
relativized to J,t2 when a J,-oracle is given, where J, is the minimal ZF~ -
model as above.

We start by assigning natural numbers to the constituting elements of
names; having a surjection s as in the introduction at our disposal, we let 3n
code 5(n). Sy (a+i)+js J € w, i € {0,1} is represented by 35 + i+ 1. Names can
now be coded by a suitable application of the pairing function p:

Definition 7 A name is any number generated in the following way:
(i) p(2n, 1) is a name for all i,n € w
(ii) if @ and b are names, i € w, then so is p(2i + 1, p(a, b)).

Thus a name is an ordered pair (a, b) of naturals; the parity of the first element
shows whether the name is flat, i.e. an Sz or an element of J, if a is even or
whether and which Gdédel function was applied. We explain the coding by
giving the interpretation function I:

Definition 8 The interpretation function I is defined as follows:

(i) if i = 3k + 4, j € {1,2}, then I(p(2n,i)) = Sw(7+j—1)+k

(ii) otherwise, I(p(2n,3i)) = s(i)

(iii) if j = 10k 4+ 1, 0 <1 < 10, then I(p(2j + 1, p(a,b))) = Fi+1(I(a), I(D))

Obviously, we assign multiple (and in fact infinitely many) names to each
interpretation. However, this has a technically advantageous consequence:

Proposition 3 FEvery natural number is a name.

This will allow us to search through J,;2 by searching through w without any
further checks.

The idea of a final constituent of a name is given by the following formal
notion:

Definition 9 The argument set A(n) of a name n is given by the following
recursive rules:

(i) A(p(2n,4)) = {i}

(i) A(p(2k +1,p(a,b))) = A(a) U A(b)

The following is the main tool for inductive arguments and definitions on
names. For rational ¢, [¢] denotes the smallest integer n such that n > q.

Definition 10 Let a be a name. Then ps(a), the pseudostage of a, is defined
as follows:

(i) for i = 3k +j, 7 € {1,2}, ps(p(2n,i)) =w(y+7—1) + 3k

(ii) otherwise, ps(p(2n,i)) =0
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(iii) if A(a), A(b) C {3i]i € w}, then ps(p(2k+1, p(a,b))) = max{ps(a), ps(b)}+

1

(iv) if £ = 10n + 1 for some n € w

ps(p(2k + 1,p(a,b))) = max{ps(a), ps(b)} + 1

(v) for k=10n+j, n € w, j € {4,5,6}, if max{ps(a),ps(b)} = w(y + j) + ¢,
let ps(p(2k + 1,p(a,b))) = w(v—I—]) +3[ |+1

(vi)jfork=10n+j,n€w, j€ {2,3,7,8,9,0}, if max{ps(a),ps(b)} = w(y +
J) +t, let ps(p(2k + 1,p(a,b))) = w(y + j) + 3[£] + 2

We call a name m minimal if any name n with I(n) = I(m) satisfies ps(n) >
ps(m).

In our arithmetization, the ordinal w(y + j) + ¢ will be coded by p(j, ).
Accordingly, we slightly abuse our notation by viewing ps as a function taking
naturals to naturals rather than to ordinals. If we talk about relations be-
tween pseudostages like <, we nevertheless mean the ordinals, and similarly
for ps(a) 4+ 2 etc. Since the definition consists of easy recursive rules, which
can be implemented even on a classical (finite) register machine, we note:

Proposition 4 The pseudostage of a name can be computed by an ITRM-
program in finite time.

From now on, if @ and b are names, we write a€b and a=b instead of I(a) € I(b)
and I(a) = I(b). Furthermore, we write a <y b for ps(a) < ps(b), similarly for
>, = etc. If B is an ordinal a <ps B means ps(a) < 8. Sometimes we will write
a <ps+i b, © € w to indicate that ps(a) + 1 < ps(b).

The following lemma is the main reason for the usefulness of the pseu-
dostage. To enhance readability, we will e.g. write (8, z, y) instead of p(8, p(z, y)).

Lemma 7 Suppose a and b are names such that I(a) € I(b). Then:

(i) If ps(b) > 0 then there is a name c such that ps(c) < ps(b) and I(c) = I(a).
Thus, minimal names of elements of sets with names of ps > 0 have a strictly
smaller pseudostage.

(i) If ps(b) = O then there is a name c such that ps(c) =0 and I(c) = I(a).

Proof (a) Easy induction on the pseudostage. To give a feeling for the kind
of argument used here, we prove this for names of the form (8,z,y). In the
following, all names are chosen minimal. Consider z € (8, z,¥), so that z is of
the form (v, u), where (u,v) € z. By definition of ps, we have x <psy1 (8,2,y);
now, by induction, (u,v) <ps z, {u,v} <ps (u,v), u <ps {u,v}, v <ps {u,v}.
Since pairing (i.e. application of F}) increases the pseudostage by 1, we have
(v,u) <ps « <ps (8,z,y). (b) By transitivity of .J,.

We will now define a € b and a = b by induction on a partial order < of the
tripels (o, a,b), where o € {€,=}, a,b names without using the interpretation
function. This will allow a purely syntactical decision procedure for atomic
formulas by inspection of the names.
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Definition 11 For triples as mentioned above, let m, = max{ps(a1), ps(az)},
myp = max{ps(b1),ps(b2)}. Then define (o7,a1,a2) < (02,b1,bs) iff one of the
following holds:

(i) mg < My

(ii) mq = mp, and left triple satisfies that oy is € and a; <,s a2, while the
analogous proposition for the right triple is not true

(iii) m, = myp and the left, but not the right triple satisfies that ois =.

Thus, given that we already know what € and = mean for names with
ps < 3, we first explain a € b for ps(a) < 5. Now, since elements of sets have
names of smaller pseudostages than the sets themselves, we can define a = b
for names with ps <  and then also a € b for § = ps(a) > ps(b), since this is
only possible if there is a name ¢ with ps(c) < 8 and ¢ = a.

This approach leads to a meaningful definition: Since the maximum of
the pseudostages cannot increase when going down in <, and since we can go
down at most two steps while preserving the maximum and these maxima are
ordinals, we have the following:

Proposition 5 < is well-founded.

We will now give a formal version of the above sketch by induction on «.

Definition 12 For the sake of brevity, we abbreviate names and write e.g.
a€x,y, where we really mean a€(1,x,y), and similar for ordered pairs and
triples. The replacement function 7 assigns (codes of) formulas to (codes of)
formulas as follows:
(i) a=b+— Vo <ps max{1, ps(a), ps(b) }(x€a « D)
(i) if ps(a) = ps(b) = 0, then (a€b) — true, if p(a,b) € o, false, otherwise
(iii) if ps(a) > 0, ps(a), ps(b) € w, then (a€b) — (Jag, by =ps 0(ap=a Abg=bA
aoébo))
If ps(b) = B € w, ps(a) < B:
(i) (a€b= (L, z,y)) — (a=z V a=y)
(i) (a€b = (2,z,y)) — (31 <ps 2Tta <ps Y(t1€x A ta€y A (t1,t2)=a))
(iii) (a€b = (3,2, y)) — (Tt1 <ps xTta <ps Y(t1€x At2€YA (t1,t2)=a Nt1ELs))
(iv)a€b = (4, z,y) — az A ady
(v)a€b = (5,z,y) — a€x A a€y
(vi) a€b = (6,z,y) — Iz <ps z(2€x N a€z)
(vil) a€b = (7,2,y) — Ju, v <pst3 232z <ps 2(2=(u, v) A a=u)
(vill) a€b = (8, x,y) — Tz <ps 3, v <pst1 2(2=(u, v) A a=(v,u) A z€x)
(ix) a€b = (9, z,y) — Iz <ps U <pst1 230, W <psysz 2(z2=(u, w,v) A z€x A
=, 0,10))
x) a€b = (10,2, y) — Fz <ps 230 <pst1 23w, u <pst3 2(2=(v, w,u) A z€x A
a=(u,v,w))
xi)b is an S-stage: j € {1,2},a€b = p(2n,3k+ j) — Je <ps alc=a A e <ps b)
1f ps(a) > ps(6):
a€b — e <5 bla=c A cED)
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If 0 = ps(a) < ps(b) € w then the above almost works. Just replace each
<ps & by <ps max{l,ps(z)} and terms like (u,v) by their definition (so if, for
example, {u,v} appears, replace it by a new variable ¢ and add the condition
Vo <ps max{1,ps(c)}(z € ¢ < & = uV x = v); similarly for ordered pairs and
triples.)

This function produces for every triple (s, x, y), where s is € or =, an equivalent
formula which is only based on <-smaller atomic formulas. This procedure can
be implemented on an ITRM.

For this, an arithmetization of the appearing formulas is needed: So set
a(z€y) = 5p(z,y), a(z=y) = 5p(z,y) + 1, a(¢ A ) = 5p(a(¢), a(psi)) +
2, a(—¢) = 5a(¢p) + 3, a(3tiyy) = 5p(p(i,a(y)) + 4. A formula of the form
It <pst;¢ is viewed as 3t;(ps(t;) + 7 < ps(x) A ¢ in this respect; this will,
in connection with the fact that the implementation considers conjunctions
from left to right, lead to the termination of the algorithm. For the sake of
uniformity, we introduce the symbol {2 and write unbounded quantifiers like
Jx¢ as Iz <ps £2¢. We now describe a stack algorithm for deciding e-formulas
in J»Y+2.

The implementation essentially uses only two registers, one of which con-
tains a sequence of (codes of) €-formulas coded by iterating the pairing func-
tion, while the others holds a status for the most recently processed element
of this sequence (true, false, unknown, represented by 0,1,2, respectively). In
addition, numerous auxiliary registers are used for calculating the auxiliary
functions. We leave out those details.

For the description, we use sequences of pairs of the form

(f1,81) — {(f2,82), where the first element represents the sequence of
formulas, the second the status; the reader will easily convince himself that
the described development of the stack contents can easily be generated by a
standard register machine without assigning other values to the two central
registers in between. () is the empty sequence, (S|e), S = (s, ..., $,) denotes
the sequence (s, ..., s, e); ¢[x/i] for i € w is the formula derived from ¢ by
replacing every free occurence of x in ¢ by i.

Base cases:

((),1) : output = true;, ((),0) : output = false, ({),?) : output = true
({S|false),?) — (S,0)

({S[true), ?) — (S,1)

Atomic formulas, s € {€,=}:

((S]s(z,y)), 7y — ((S|n(s(z,y))),?) (where n is the replacement function de-
fined above; we assume that the formula on the right hand side is rewritten in
such a way that in contains only 3, = and A as logical symbols.)
Conjunction:

((S|o A),?) = (((Slo Ah)|9), 7)

((S|¢ A ), 0) — (S, 0)

{(S16 A ), 1) — (ST), )

Negation:

(=), 7) — ()1, )
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(8]}, 0) — (5.1)
((S]=),1) — (5,0)
Existential quantifier:
((SFz¢),?) — ({(S(Fz¢, 0))|p[x/0]),7)
((S](3ze, k), (5,1)

((S|(Bze, k), (5,0) —
((S1(Fxg, k+ 1)) |¢lz/k +1]),7)

—
—

)
0)
1

We will now show that this algorithm, given the input ((¢),?), ¢ an &-
formula without free variables, always terminates and returns the truth value
of Jot2 = ¢. We do this by induction on a well-order on these formulas.

In the following, at(¢) is the set of atomic subformulas of ¢, written in
the form (€, z,y) etc. First, write ¢ in prenex normal form and bound all
unbounded quantifiers with the help of the symbol §2 as introduced above.

For 8 = wy+j, weset §—i=wy+ (j—1) for ¢ < j and otherwise
8 —i=wny.

Definition 13 For such a formula ¢ we define pt(¢)), the potential of ¢, as
follows:

(i) pt(3z <psti y@) = < — max{y[z/ps(y) — il[¢ € at(¢)}

(i)pt(—¢) = pt(¢)

(iii)pt(¢ A ¢) = < — max{pt(¢), pt(¢) }

Intuitively, pt(¢) is an upper bound for the complexity of an atomic formula
that has to be decided in order to evaluate 1. For our purposes, a slightly finer
order is necessary:

Definition 14 If ¢ and v are formulas as described above, we let ¢ <p 1 iff
one of the following cases occurs:

(i) pt(¢) < pt(v)
(ii) pt(¢) and pt(e)) are incomparable in < and ¢ is a proper subformula of .

Proposition 6 <p is a well-order on formulas of this kind.
By case distinction and the definition of the replacement function:

Lemma 8 Whenever the algorithm puts a new formula ¢ on the stack on top
of the formula v, we have ¢ <p 1.

Therefore, finally:

Lemma 9 The algorithm terminates and gives the correct result.

Proof By induction on <p with the help of the last lemma and the last propo-
sition; observe that the bounding of a quantifier is always processed as the
first conjunct by the way the algorithm treats conjunctions and that the com-
plexity drop is therefore mirrored by the processing steps. The only interesting
case is existential quantification: If dz¢ is true, a witnessing x will be found,
the formula will be taken off the stack, and the status register will be set to
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1. If it is false, the seemingly pointless step in the last line in the description
of the algorithm forces the occurence of a limit state, in which the formula is
of the stack and the status register contains a 0.

Thus, we are now able to decide arbitrary €-formula in J, 2.

Finally, we have to check the <j-minimality of o. Since in this case, we
have o = r and we know that r € J,t2, we can do this by finding a name n
for 0 and then checking for each name u whether I(u) <j r and u codes an
€ —minimal model of ZF~. We just gave a procedure for the latter; the well-
order <y, of the constructible hierarchy (restricted to J,12) can be expressed
by an e-formula in J,9 and thus computed by the same method. Since there
are only countably many names, we will have a way to test for <j-minimality
of a real given in the oracle as soon as we can tell how to find n such that
I(n) = o. Again, since the number of names is countable, it suffices to be
able to test for some given name m and some oracle number z whether or not
I(m) =z.

For this, we first run through all the names until we find one, say yq, such
that =3t(t € I(yo)), that is, I(yo) = 0 and save it in a separate register.

Definition 15 For k € w the canonical name cn(k) of k is defined as follows:
(1) en(0) = wo
(2) en(k + 1) = (6, (1,en(k), (1, cn(k), cn(k))), 0)

Proposition 7 I(cn(k)) =k fork e w

Proof By definition of yo for k =0, else I(cn(k + 1)) is just
U{I(cn(k)),{I(en(k)),I(cn(k))}}, which, by induction, equals
Uik, {k, k}} = Ufk, {k}} = kU{k} =k + L.

cn(k) is obviously easy to compute. So we can check for a name m whether
I(m) € w simply by checking for any i € w wether I(m) = I(cn(7)), at the same
time finding the corresponding i in case of success. From this, one constructs
an algorithm for checking I(m) C w by running through the names and testing
for being an element of I(m) and of w.

To find out if z C I(m), run through w, checking by oracle call for every
k € w whether k € z, then, if so, whether ¢(k) € I(m).

Finally, check I(m) C z by finding out if I(m) C w and, if so, running
through the canonical names of all k& € w and calling the oracle for each
cn(k) € m to see if k € 2.

This concludes the description of the algorithm, and thus the proof of the
lost melody theorem.
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