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We study computable trees with distinguished initial subtree (briefly, I-trees). It is proved that
all I-trees of infinite height are computably categorical, and moreover, they all have effectively
infinite computable dimension.

In a finite language, a model A is computable if its domain is a computable subset of ω, and its basic
operations and relations are all computable. In computable model theory, algorithmic properties of algebraic
systems are treated up to computable isomorphism. The number of distinct (up to computable isomorphism)
computable presentations of a model A is called the computable dimension of A. If this dimension is 1 then
we say that A is computably categorical.

The computable categoricity of trees was studied in [1, 2]. In [1], it was proved that all computable
trees of infinite height have computable dimension ω. For computable trees of finite height, in [2], it was
shown that their computable dimension may assume only the value 1 or ω, and a complete characterization
of computable categoricity was given.

In the present paper, we study the question about spectrum of possible computable dimensions of
trees enriched by an initial subtree (briefly, I-trees). It is proved that the computable dimension of any
computable I-tree of infinite height is ω. Moreover, this dimension is effectively infinite, in the sense
that, given any uniformly presented list of computable copies of the same I-tree, we can construct another
computable copy of that tree, which is not computably isomorphic to any of the copies on the list. Notice
that the results obtained can be naturally generalized to the case of several distinguished initial subtrees.

1. THE NOTATION AND BASIC DEFINITIONS

The notation and basic definitions on computable models are standard and can be found, for instance,
in [3, 4]. But our definitions on trees demand attention here.

A tree with distinguished initial subtree is a triple (T,≺, I) satisfying the following two conditions:
(1) A relation ≺ is a strict partial order on T such that for every x ∈ T , the set of all predecessors of x

in T is well ordered by ≺, and T contains a least element r under ≺ (r is called a root).
(2) A subset I ⊆ T is an initial subtree of T , that is,

∀x∀y((x ∈ T & y ∈ I & x ≺ y) → x ∈ I).
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Throughout, the trees with distinguished initial subtree are briefly called I-trees and are denoted by
(T, I). Hence the tree with distinguished initial subtree (T,≺, I) is computable if T is a computable set,
and both ≺ and I are computable relations. If an I-tree has infinite height then without loss of generality
we may assume the universe of T to be ω, pulling back via 1-1 computable function if necessary to make
this so.

If two nodes x and y in T are incomparable under ≺, then we write x ⊥ y. For each node x ∈ T , we
define the level of x in T to be the order type of the set of predecessors of x in T , and we denote it by
levelT (x). Thus the level of the root is 0, its immediate successors under ≺ are at level 1, and so on. The
height of T is defined as follows:

ht(T ) = sup
x∈T

(levelT (x) + 1).

If x is a node in T , then by T [x] we denote the subtree

T [x] = {y ∈ T | x � y}.

The partial order on T [x] is the restriction to T [x] of the partial order ≺ on T . Therefore T [x] is a subtree
of T with root x. The height of T above x is defined as follows:

htx(T ) = ht(T [x]).

A path through a tree T is a maximal linearly ordered subset of T . A node is extendible if it lies on an
infinite path through T , and non-extendible otherwise. The extendible nodes of T (if any) form a subtree
of T , which we denote by Text.

In this paper an embedding of one partial ordering (T1,≺1, I1) with extra relation I1 ⊆ T1 into another
partial ordering (T2,≺2, I2) with extra relation I2 ⊆ T2 will be a one-to-one mapping f : T1 → T2 which
respects the partial orders and the extra relations:

x ≺1 y ⇔ f(x) ≺2 f(y), x ∈ I1 ⇔ f(x) ∈ I2.

Moreover, if, in the previous definition, (T1,≺1, I1) and (T2,≺2, I2) are submodels of some partial
ordering (T,≺, I) with extra relation I ⊆ T , that is, ≺k =≺ ∩T 2

k and Ik = Tk ∩ I for k ∈ {1, 2}, then we
say that f : T1 → T2 is an I-embedding.

For elements x and y of a tree, x ∧ y denotes the infimum (if it exists) of x and y. In some papers, all
embeddings of trees are required to respect the infimum function. The latter requirement is stronger: any
one-to-one map respecting ∧ respects ≺, but not conversely. Kruskal’s theorem, which we will use in Sec. 2,
proves the existence of the stronger type of embeddings.

To prove that the computable dimension of some I-tree is effectively infinite, we use the branching models
method, brought in sight in [5]. The method allows us to obtain necessary conditions for models in many
classes of algebraic systems to be computably categorical (without using straight priority constructions). A
number of generalizations and modifications of this method have been worked up to date (see [3]). We will
need the following two versions of the theorem on branching models, the first of which was proven in [6].

Let L be a finite predicate language, and let AandB be models for L. We write A ≤ B if A is a submodel
of B. By writing A ≡1 B we mean that the same ∃-sentences in L are true in A and in B.

First we formulate a definition of branching, necessary for the first version of the theorem. Let A

be an infinite computable model for a language L, and let {Ap}p∈ω be a computable sequence of finite
models for L such that Ap ≤ Ap+1 ≤ A for each p, and A =

⋃
p

Ap. Further, let {cp}p∈ω be a computable
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sequence of finite (possibly empty) tuples from A with cp ∈ Ap, and let {ψp(xp, yp)}p∈ω be a computable
sequence of ∀-formulas, where the length of a tuple yp is equal to the length of a tuple cp. We say that a
system {Ap, cp, ψp(xp, yp)}p∈ω is branching at level p if, for any tuple dp from A with (A, cp) ≡1 (A, dp), the
following two conditions hold:

(1) the set {b | A |= ψp(b, dp)} is non-empty;
(2) if {bi}i∈I is some 1-1 enumeration of the set {b | A |= ψp(b, dp)}, where I is an initial segment of

ω, and {ai}i∈I is a sequence of tuples from A such that (A, cp, a0, . . . , ai) ≡1 (A, dp, b0, . . . , bi) for all i ∈ I,
then there exists n ∈ I with the following property:

(∗) there are infinitely many t � p for which a0, . . . , an ∈ At, and there is an isomorphic embedding
βt : At → At+1 such that At+1 |= ¬ψp(βt(an), cp), and βt is the identity on Ap, a0, . . . , an−1.

THEOREM 1 (on branching models [6]). If a system {Ap, cp, ψp(xp, yp)}p∈ω is branching at any level
p ∈ ω, then the computable dimension of A is effectively infinite.

Now we formulate the second version. Let A be an infinite computable model for a language L, and
let {Ap}p∈ω be a computable sequence of finite models for L such that Ap ≤ Ap+1 ≤ A for each p, and
A =

⋃
p

Ap. Further, let {ψn
p (xn)}p,n∈ω be a computable sequence of ∀-formulas, where xn = 〈x0, x1, . . . , xn〉.

We say that a system {Ap, ψ
n
p (xn)}p,n∈ω is branching at level p if the following two conditions hold:

(1) the set {b | A |= ψn
p (b), n ∈ ω, b = 〈b0, . . . , bn〉} is non-empty;

(2) if {bi}i∈I is some 1-1 enumeration of the set {b | A |= ψn
p (b), n ∈ ω, b = 〈b0, . . . , bn〉}, where I is an

initial segment of ω, and {ai}i∈I is a sequence of tuples from A such that (A, a0, . . . , ai) ≡1 (A, b0, . . . , bi)
for all i ∈ I, then there exists r ∈ I such that ar = 〈a0

r, a
1
r, . . . , a

n
r 〉, and

(∗) there are infinitely many t � p for which a0, . . . , ar ∈ At, and there is an isomorphic embedding
βt : At → At+1 such that At+1 |= ¬ψn

p (βt(ar)), and βt is the identity on Ap, a0, . . . , ar−1.
A proof of the previous theorem, offered in [6], implies that the present theorem admits the following

modification.

THEOREM 2 (on branching models). If a system {Ap, ψ
n
p (xn)}n,p∈ω is branching at any level p ∈ ω,

then the computable dimension of A is effectively infinite.

2. KRUSKAL’S THEOREM FOR I-TREES

In what follows, we will need the ability to embed some finite I-trees in other ones. For this goal to
be met, the well-known Kruskal theorem must be modified so as to yield a version tailored to the case of
I-trees. Below is the exact formulation of Kruskal’s theorem for finite trees with labelling function.

A quasiordering is a set Q together with a reflexive transitive relation �. A well quasiordering (wqo) is
a quasiordering Q with the property that for any infinite sequence {qk | k ∈ ω} of elements qk ∈ Q, there
exist indices i and j such that i < j and qi � qj .

Let T be the set of all finite trees (up to isomorphism of trees). If Q is an arbitrary quasiordering, we
set

T(Q) = {(T, l) | T ∈ T, l : T → Q}.
Thus an element of T(Q) is a finite tree with labels from Q. The function l : T → Q is called a labelling
function. We write (T1, l1) � (T2, l2) if there exists a one-to-one mapping f : T1 → T2 such that:

(1) f(a ∧ b) = f(a) ∧ f(b) for all a, b ∈ T1;
(2) l1(a) � l2(f(a)) for all a ∈ T1.
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Obviously, T(Q) is quasiordered by this relation.

Kruskal’s THEOREM. If Q is an arbitrary wqo, then T(Q) is also a wqo.
Proof. See [7, 8]. From Kruskal’s theorem we derive the following:

LEMMA 3. Let {(Ti, Ii) | i ∈ ω} be an infinite collection of finite I-trees, each with a labelling
li : Ti → ω. Then there exist i, j ∈ ω, i < j, and an embedding f : (Ti, Ii) → (Tj , Ij) such that for every
x ∈ Ti, li(x) � lj(f(x)).

Proof. We may assume that every Ii is non-empty. (In other words, for every i ∈ ω the root of Ti lies
in Ii.) Otherwise, the subset J = {i ∈ ω | Ii = ∅} of indices is non-empty. If J is finite, we consider the
infinite collection {(Ti, Ii) | i /∈ J} instead of {(Ti, Ii) | i ∈ ω}. If J is infinite, we apply Kruskal’s theorem
immediately to the infinite collection {(Ti, Ii) | i ∈ J}.

Consider an infinite collection {Ii | i ∈ ω} of finite non-empty trees. For each i ∈ ω, the labelling function
mi : Ii → T(ω) × ω on the tree Ii is defined as follows: for any x ∈ Ii, we set mi(x) = (m1

i (x),m
2
i (x)),

where
(1) m1

i (x) = (Si(x), li�Si(x)) ∈ T(ω) with finite tree

Si(x) = {x} ∪ {y ∈ Ti | y � x & ∀z � y (x ≺ z → z /∈ Ii)},

and a labelling function li�Si(x) : Si(x)→ ω. (Here, li�Si(x) denotes the restriction of li to Si(x).)
(2) m2

i (x) = li(x).
It is clear that ω under the ordinary partial order is a wqo. By Kruskal’s theorem, T(ω) is also a wqo. It
follows that the Cartesian product T(ω)× ω together with the componentwise quasiorder is a wqo. Again,
by Kruskal’s theorem T(T(ω) × ω) is a wqo.

Thus, for the collection {(Ii,mi) | i ∈ ω} of elements of T(T(ω) × ω), there exist i and j (i < j) with
(Ii,mi) � (Ij ,mj), that is, there is an embedding g : Ii → Ij such that mi(x) � mj(g(x)) for every x ∈ Ii.
The last inequality implies the following two conditions:

(1) there exists an embedding hx : Si(x) → Sj(g(x)) such that li(y) � lj(hx(y)) for every y ∈ Si(x)
(since m1

i (x) � m1
j(g(x)));

(2) li(x) � lj(g(x)) (since m2
i (x) � m2

j(g(x))).
We define a mapping f : Ti → Tj as follows:

f(y) =

{
g(y) if y ∈ Ii;
hx(y) if y /∈ Ii and y ∈ Si(x) for some x ∈ Ii.

Since Ti =
⋃

x∈Ii

Si(x), and Si(x1) ∩ Si(x2) = ∅ for x1 
= x2, f is well defined. It is easy to see that

f : (Ti, Ii)→ (Tj , Ij) is the desired embedding.

LEMMA 4. Let {(Ti, Ii) | i ∈ ω} be an infinite collection of finite I-trees. Then there exist i, j ∈ ω,
i < j, such that (Ti, Ii) can be embedded in (Tj , Ij).

The proof follows from Lemma 3 (we need only neglect the labelling functions).

LEMMA 5. Let {(Ti, Ii) | i ∈ ω} be an infinite collection of I-trees. (These trees need not to be finite,
nor even finitely branching.) Then there exists an i ∈ ω such that for every finite subtree T ⊆ Ti, there is
j > i for which (T, T ∩ Ii) embeds in (Tj, Ij).

Proof. Suppose that {(Ti, Ii) | i ∈ ω} is the collection of I-trees contradicting the statement of the
lemma. Then, for each i, we would have some finite subtree Si ⊆ Ti such that (Si, Si ∩ Ii) did not embed
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in any (Tj , Ij) with j > i. In particular, (Si, Si ∩ Ii) would not embed in (Sj , Sj ∩ Ij), for all i, j (i < j).
Thus the collection {(Si, Si ∩ Ii) | i ∈ ω} contradicts Lemma 4.

LEMMA 6. Let {(Ti, Ii) | i ∈ ω} be as in Lemma 5. Then there is an n ∈ ω such that for every i > n

and every finite subtree T ⊆ Ti, there exists j > i such that (T, T ∩ Ii) embeds in (Tj, Ij).
Proof. If not, then we could find in ω an increasing sequence i0 < i1 < i2 < . . . such that {(Tik

, Iik
) |

k ∈ ω} contradicted Lemma 5.

LEMMA 7. Let {(Ti, Ii) | i ∈ ω} be as in Lemma 5. Then there is an n ∈ ω such that for every i > n

and every finite partial subordering T ⊆ Ti, there exists j > i for which (T, T ∩ Ii) embeds in (Tj , Ij).
Proof. Note that T ⊆ Ti is a tree iff T has a root. Thus, if T has no root, we can consider a finite subtree

T ′ = T ∪{ri}, where ri is a root of Ti. By Lemma 6, there exists an embedding h′ : (T ′, T ′ ∩ Ii)→ (Tj, Ij),
for some j > i. Obviously, the restricted mapping h = h′�T is the desired embedding.

LEMMA 8. Let {(Ti, Ii) | i ∈ ω} be an infinite collection of finite I-trees. Then there is a number
m ∈ ω such that for every index i and every node x ∈ Ti with levelTi(x) = m, there exists an embedding
f : (Ti, Ii)→ (Tj , Ij), j > i, for which

levelTj (f(x)) > levelTi(x).

Proof. Assume the contrary. Then, for every m, we would have an index im and a node xm ∈ Tim with
levelTim

(xm) = m satisfying the following condition:
(∗) for each j > im and for any embedding f : (Tim , Iim) → (Tj , Ij), we have levelTj (f(xm)) =

levelTim
(xm).

Now the set {i0, i1, i2, . . .} will be infinite, since each Ti has finite height. Moreover, the index im satisfies
(∗) not only for xm but also for all predecessors of xm. Therefore we can choose im+1 > im for all m.

For each m, define the labelling function lm : Tim → ω on the I-tree (Tim , Iim) by setting

lm(x) =

{
0 if levelTim

(x) < m;
1 otherwise.

Then lm(xm) = 1 for all m.
However, for any k,m (k > m) and for any embedding f : (Tim , Iim)→ (Tik

, Iik
), we have

levelTik
(f(xm)) = levelTim

(xm) = m < k.

This forces lk(f(xm)) = 0. Thus the sequence {(Tim , Iim) | m ∈ ω} contradicts Lemma 3.

LEMMA 9. Let {(Ti, Ii) | i ∈ ω} be as in Lemma 8. Then there is a number m ∈ ω such that for
every index i and every node y ∈ Ti with levelTi(y) � m, there exists an embedding f : (Ti, Ii)→ (Tj, Ij),
j > i, for which

levelTj (f(y)) > levelTi(y).

Proof. For every y ∈ Ti with levelTi(y) � m, we find a node x � y in Ti such that levelTi(x) = m, and
then we apply Lemma 8 to that x.

LEMMA 10. Let {(Ti, Ii) | i ∈ ω} be any collection of I-trees. Then there exist an n and an m

with the property that for all indices i > n, for every finite subtree S ⊆ Ti, and for any node x ∈ S with
levelS(x) � m, there is an embedding g : (S, S ∩ Ii)→ (Tj , Ij), j > i, such that

levelTj (g(x)) > levelS(x).
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Proof. Assume the contrary. The negation of the statement is as follows:

(∀n)(∀m)(∃i > n)(there exists a finite S ⊆ Ti)(∃x ∈ S)
[
levelS(x) � m &

(∀j > i)(for every embedding g : (S, S ∩ Ii)→ (Tj , Ij))(levelTj (g(x)) = levelS(x))
]
.

We apply this negation first with n = 0 and m = 0, yielding an index i0 > 0 and a node x0 at level � 0
in some finite subtree S0 of Ti0 . Inductively, then, we apply the negation with n = ik and m = k + 1 to
obtain an index ik+1 > ik and a corresponding node xk+1 at level � k + 1 in some finite subtree Sk+1 of
Tik+1 . From the negation, we see that for any j > ik, every embedding of (Sk, Sk ∩ Iik

) into (Tj , Ij) fixes
the level of xk. For any j > k, in particular, every embedding of (Sk, Sk ∩ Iik

) into (Sj , Sj ∩ Iij ) fixes the
level of xk. Thus the sequence {(Sk, Sk ∩ Iik

) | k ∈ ω} contradicts Lemma 9.

LEMMA 11. Let (T, I) be an I-tree such that Text is non-empty and finite-branching. Then, for any
infinite path γ through T , all but finitely many nodes x ∈ γ have the property that for every finite subtree
S ⊆ T [x], γ contains a y � x such that (S, S ∩ I) embeds in (T [y], T [y]∩ I).

Proof. Assume the contrary. Then there exists an infinite path γ through T such that the set U of
nodes for which the conclusion of the lemma fails is infinite. We represent all elements of U as an ascending
chain u0 ≺ u1 ≺ u2 ≺ . . . . Now, for each i, there exists a finite subtree Si ⊆ T [ui] such that (Si, Si ∩ I)
does not embed in (T [y], T [y] ∩ I) for any y � x with y ∈ γ. In particular, (Si, Si ∩ I) does not embed in
any (T [uj], T [uj] ∩ I) with j > i. Thus the sequence {(T [ui], T [ui] ∩ I) | i ∈ ω} contradicts Lemma 5.

3. TREES WITH ω-BRANCHING NODES

In this section, we prove that I-trees from some significant subclass cannot be computably categorical.
Let (T, I) be a fixed computable I-tree with height ω, which is ω-branching at a node x0, that is, x0 has
infinitely many immediate successors x1, x2, . . . . We define the limit-supremum of a sequence {ht(T [xi]) |
i ∈ ω} to be

lim sup
i

ht(T [xi]) = inf
j

sup
i>j

ht(T [xi]).

Assume further that lim sup
i

ht(T [xi]) = ω. Hence either infinitely many T [xi] have height ω, or there exist

trees T [xi] of arbitrarily large finite height.

Proposition 12. Let (T, I) be a computable I-tree of height ω containing an ω-branching node x0 with
immediate successors x1, x2, . . . such that

lim sup
i

ht(T [xi]) = ω.

Then the computable dimension of (T, I) is effectively infinite.
Proof. We may assume the universe of T to be ω. A successor tree of x0 is a tree of the form T [xi] with

i � 1. Lemma 10, applied to the collection {(T [xi], T [xi] ∩ I) | i � 1} of all successor trees, yields m and n
in ω such that for every finite subtree S ⊆ T [xi], where i > n, and every node x ∈ S with levelS(x) � m,
there is an embedding of (S, S ∩ I) into some (T [xj ], T [xj] ∩ I), where j > i, which maps x to a node of
greater level. We fix these values of m and n for the rest of the proof.

Let {Tt | t ∈ ω} be the preliminary representation for an I-tree (T, I), where Tt = {r, x0, x1, . . . , xn} ∪
{0, 1, . . . , t} is an I-tree under ≺ with distinguished initial subtree Tt ∩ I (r is the root of T ). We define
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an increasing unbounded computable function f(s) and a new representation {Ds | s ∈ ω} for (T, I) in the
following way.

At stage 0, put f(0) = 0 and D0 = T0.
At stage s + 1, we have f(s) defined, and Ds = Tf(s). We will say that a finite subtree S ⊆ Ds is a

successor tree at stage s if S is a tree of the form Ds[y], where y is an immediate successor of x0 in Ds

(although not necessarily in T ). Let S1, . . . , Sk be the list of all successor trees at stage s such that for each
l, 1 � l � k, the tree Sl differs from successor trees Ds[x1], . . . , Ds[xn], and ht(Sl) � m+ 1.

We search for the least t > f(s) such that for each l, 1 � l � k, and for any node x ∈ Sl with
levelSl

(x) � m, there exists a node z ∈ Tt satisfying the following three conditions:
(1) z is an immediate successor of x0 in Tt;
(2) Tt[z] ∩Ds = ∅;
(3) there is an I-embedding g : Sl → Tt[z] with

levelTt(g(x)) > levelDs(x).

Then we put f(s+ 1) = t and Ds+1 = Tt.
We now prove that at each stage s+1, the desired t exists. Consider an arbitrary l such that 1 � l � k,

and any node x ∈ Sl with levelSl
(x) � m. Obviously, Sl ⊆ T [xi] for some unique i > n. Therefore there

exists a sufficiently great j > i such that T [xj] ∩Ds = ∅, and there is an I-embedding gl,x : Sl → T [xj]
with

levelT [xj](gl,x(x)) > levelSl
(x).

We denote this j by j(l, x).
Since Ds is finite and ht(T ) = ω, there exists a t0 > f(s) such that

{xj(l,x) | 1 � l � k, x ∈ Sl, levelSl
(x) � m} ⊆ Tt0 ,⋃{gl,x(Sl) | 1 � l � k, x ∈ Sl, levelSl

(x) � m} ⊆ Tt0 ,

and for each l, 1 � l � k, for any node x ∈ Sl with levelSl
(x) � m, and for j = j(l, x), we have

levelT [xj ](gl,x(x)) = levelTt0 [xj](gl,x(x)).

Again consider an arbitrary l such that 1 � l � k, and any node x ∈ Sl with levelSl
(x) � m. By

the choice of j = j(l, x) and t0, we conclude that xj ∈ Tt0 and xj is an immediate successor of x0 in Tt0 .
Therefore condition (1) is satisfied. Further, Tt0 [xj ]∩Ds ⊆ T [xj]∩Ds = ∅, and so (2) is satisfied. Finally,
there is an I-embedding

g = gl,x : Sl → gl,x(Sl) ⊆ Tt0 [xj ],

which gives rise to the following chain of inequalities:

levelDs(x) = levelDs(x0) + levelSl
(x) + 1 < levelDs(x0) + levelT [xj ](g(x)) + 1 �

levelTt0
(x0) + levelTt0 [xj](g(x)) + 1 = levelTt0

(g(x)).

Thus condition (3) is satisfied.
We apply Theorem 1 to the model (T, I). For each p ∈ ω, let c1, . . . , ckp be the set of all immediate

successors of x0 in Dp. We put cp = 〈c0, c1, . . . , ckp〉, where c0 = x0. Also define the ∀-formula

ψp(u0, . . . , um+1, w0, . . . , wkp) =
(
w0 = u0 ≺ u1 ≺ . . . ≺ um+1

)
&
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∀y(u0 � y � um+1 → (y = u0 ∨ . . . ∨ y = um+1)
)

&
kp∧
i=1

¬(u1 � wi).

Our goal is to prove that the system {(Dp, Dp ∩ I), cp, ψp(u,wp)}p∈ω is branching at any level p ∈ ω.
Let p ∈ ω and dp = 〈d0, d1, . . . , dkp〉 be any tuple of elements of T such that (T, I, cp) ≡1 (T, I, dp).

There exists a tuple a = 〈a0, . . . , am+1〉 for which (T, I) |= ψp(a, cp). To prove this, choose the least q � n

so that Dp[x0] ⊆ T [x1]∪ . . .∪T [xq]. Since Dp is finite, such q must exist. Since lim sup
i

ht(T [xi]) = ω, there

exists i > q with ht(T [xi]) � m + 1. Therefore there is a node am+1 ∈ T [xi] with levelT [xi](a
m+1) = m.

Thus the chain x0 = a0 ≺ a1 ≺ . . . ≺ am+1 of all predecessors of am+1 in T [x0] has length m + 1. By the
choice of i, we conclude that a1 = xi, and the successor tree T [a1] does not contain any element of Dp.
Therefore (T, I) |= ψp(a0, . . . , am+1, c0, . . . , ckp), and a = 〈a0, . . . , am+1〉 is the desired tuple.

Now, let z1, . . . , zα be all the elements of the finite set {z ∈ T | c0 ≺ z � ci for some i � kp}. Obviously,

(T, I, cp) |= ∃z1 . . .∃zα∃a0 . . .∃am+1

(
(c0 = a0 ≺ a1 ≺ . . . ≺ am+1) &

∧
i�=j

(zi 
= zj) &
α∧

i=1


c0 ≺ zi &

kp∨
j=1

(zi � cj)


 &

α∧
i=1

¬(zi � a1)
)
.

Consequently, (T, I, dp) insists on the similar property

(T, I, dp) |= ∃y1 . . . ∃yα∃v0 . . .∃vm+1

(
(d0 = v0 ≺ v1 ≺ . . . ≺ vm+1) &

∧
i�=j

(yi 
= yj) &
α∧

i=1


d0 ≺ yi &

kp∨
j=1

(yi � dj)


 &

α∧
i=1

¬(yi � v1)
)
.

Let d0 = b0 ≺ b1 ≺ . . . ≺ bm+1 be the chain of elements of T such that bm+1 � vm+1 and
levelT [d0](b

m+1) = m + 1. By the choice of elements z1, . . . , zα, and since (T, I, cp) ≡1 (T, I, dp), we
see that there is no di with 1 � i � kp and b1 � di. This immediately implies that (T, I) |= ψp(b0, . . . , bm+1,

d0, . . . , dkp), and the set {b | (T, I) |= ψp(b, dp)} is non-empty.
Now, let {bj}j∈J be some 1-1 enumeration of {b | (T, I) |= ψp(b, dp)}, where J is an initial segment of

ω, and let {aj}j∈J be a sequence of tuples from T such that (T, I, cp, a0, . . . , aj) ≡1 (T, I, dp, b0, . . . , bj),
for each j ∈ J . Consider the first tuple a0 = 〈a0

0, . . . , a
m+1
0 〉. Since (T, I) |= ψp(a0, cp), we see that

levelT [x0](a
m+1
0 ) = m + 1, a0

0 = x0, and a1
0 = xi for some i > n, and the successor tree T [xi] does not

contain any element of Dp.
Choose a stage s0 such that Dp ∪ {a0} ⊆ Ds and levelDs(x0) = levelT (x0) = k, for all s � s0. For any

such s, we have levelDs[xi](a
m+1
0 ) = m. By construction, therefore, there exists z ∈ Ds+1 such that z is an

immediate successor of x0 in Ds+1, Ds+1[z] ∩Ds = ∅, and there is an I-embedding g : Ds[xi] → Ds+1[z]
with the property

levelDs+1(g(a
m+1
0 )) > levelDs(a

m+1
0 ) = k +m+ 1.

For all such stages s � s0 and for any x ∈ Ds, we define

βs(x) =

{
g(x) if x ∈ Ds[xi];
x if x ∈ Ds −Ds[xi],
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which is an I-embedding. In the successor tree Ds[xi] at stage s, there are no elements of Dp; so, we
conclude that βs is identical on Dp. Finally, note that

levelDs+1(βs(am+1
0 )) > k +m+ 1.

Therefore the chain a0
0 = βs(a0

0) ≺ βs(a1
0) ≺ . . . ≺ βs(am+1

0 ) does not contain all the nodes lying between
βs(a0

0) and βs(am+1
0 ) in Ds+1. Thus (Ds+1, Ds+1 ∩ I) |= ¬ψp(βs(a0), cp).

4. TREES WITH INFINITE PATHS

In this section, we assume that T has an extendible node, that is, Text is non-empty. We also think
of Text as being finite-branching, that is, any node x ∈ Text has only finitely many extendible immediate
successors in T .

The side tree above a node x is denoted by S[x], and is a subtree of T [x] of the form

S[x] = {y ∈ T [x] | ∀z ∈ T (x ≺ z � y → z /∈ Text)},

where x itself may or may not be extendible. Equivalently, we consider extendible immediate successors
x1, x2, . . . of x. The side tree S[x] is precisely T [x]−⋃

i

T [xi]. Thus x is the only node of S[x] which can be

extendible in T , and S[x] contains no infinite paths, although it can have height ω if it is infinite-branching.

Proposition 13. Let (T, I) be a computable I-tree of height ω such that Text is non-empty and finite-
branching. If all side trees in T have finite height, then the computable dimension of (T, I) is effectively
infinite.

Proof. We may assume that T = ω. Fix some infinite path γ lying in T . By Lemma 11, the set U of
all nodes in γ for which the statement of the lemma fails is finite. Let m = max{levelT (x) | x ∈ U}. Then
there exists y � x with y ∈ γ such that (S, S ∩ I) embeds in (T [y], T [y] ∩ I) for every node x ∈ γ with
levelT (x) > m and for each finite subtree S ⊆ T [x].

Let xm be a node in γ such that levelT (x) = m, and let r = x0 ≺ x1 ≺ . . . ≺ xm be all the predecessors
of xm in T . By Ts we denote the subtree of T with nodes {x0, x1, . . . , xm} ∪ {0, 1, . . . , s} under ≺ with
distinguished initial subtree Ts ∩ I. We define an increasing computable function f(s) and a computable
sequence {Ds | s ∈ ω} of finite subtrees of T in the following way.

At stage 0, put f(0) = 0 and D0 = T0.
At stage s+ 1, we have f(s) defined, and Ds = Tf(s). Put ls = ht(Ds) > m. For each l, m < l < ls, let

{v0
l,s, v

1
l,s, . . . , v

nl,s

l,s } be all the nodes in Ds lying at level l in Ds. We search for the least t > f(s) so that
for each l, m < l < ls, one of the following two conditions holds:

(a) there exist k � nl,s and an I-embedding g : Ds[vk
l,s]→ Tt[vk

l,s] such that

levelTt(g(v
k
l,s)) � levelDs(v

k
l,s) + s;

(b) there exists x ∈ Tt such that levelTt(x) = l, ht(Tt[x]) � s, and either x /∈ Ds or levelDs(x) < l.
We put f(s+ 1) = t and Ds+1 = Tt.
We now prove that at each stage s + 1, either condition (a) or condition (b) must hold for some t.

Consider an arbitrary l with m < l < ls. Suppose that there exists an extendible node x ∈ {v0
l,s, . . . , v

nl,s

l,s }.
By the choice of m, the finite subtree Ds[x] can be I-embedded in some T [y] for y ∈ γ, y � x. By induction,
Ds[x] can be I-embedded in T [x] with the root mapping to a node at an arbitrarily high level of T . Therefore
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there exist tl > f(s) and an I-embedding g : Ds[x] → Ttl
[x] such that levelTtl

(g(x)) � levelDs(x) + s, that
is, condition (a) will hold for x.

Otherwise, none of v0
l,s, . . . , v

nl,s

l,s is extendible. Nevertheless some node x at level l in T must be
extendible. Therefore either x ∈ Ds and levelDs(x) < l, or x /∈ Ds. Then there exists tl > f(s) such that
condition (b) will hold for x. Now we define the desired t to be equal to max{tl | m < l < ls}.

We apply Theorem 2 to the model (T, I). For all p, n ∈ ω, define the ∀-formula

ψn
p (x0, x1, . . . , xn) =

(
x0 ≺ x1 ≺ . . . ≺ xn

)
& ∀y(x0 � y

)
&

∀y(x0 � y � xn → (y = x0 ∨ . . . ∨ y = xn)
)
.

(The definition of ψn
p (xn) does not depend on p.)

We prove that the system {(Dp, Dp ∩ I), ψn
p (xn)}p,n∈ω is branching at any level p ∈ ω. Since Dp is

finite, we can define
l = max{levelT (x) | x ∈ Dp}+ 1.

Note that l > m. Since all side trees in T have finite height and Text is finite-branching, we have

l1 = max{ht(S[x]) | x ∈ Text, levelT (x) � l}.

Take a stage s0 so that s0 � max{p, l1} and {x ∈ Text | levelT (x) � l} ⊆ Ds0 . Then, for any stage
s � s0, condition (a) will never again hold for any k � nl,s with vk

l,s non-extendible, and condition (b) will
not hold for any non-extendible node x. Thus only finitely many extendible nodes vk

l,s satisfy either (a) or
(b) at each stage s � s0. But every extendible node x at level l in T already satisfies levelDs(x) = l at stage
s � s0. Therefore condition (b) will never hold again at stages s � s0. Thus there must exist an extendible
node x at level l in T which satisfies condition (a) at infinitely many stages s � s0.

By y1, . . . , yα we denote all extendible nodes at level l in T . By the above argument, we may assume
that y1 satisfies condition (a) at infinitely many stages s � s0.

Let now {bj}j∈J be some 1-1 enumeration of a non-empty set {b | (T, I) |= ψn
p (b), b = 〈b0, . . . , bn〉},

where J is an initial segment of ω, and let {aj}j∈J be a sequence of tuples from T such that
(T, I, a0, . . . , aj) ≡1 (T, I, b0, . . . , bj) for each j ∈ J . It is clear that for any node yi with 1 � i � α,
there is a tuple b = 〈b0, . . . , bn〉 such that (T, I) |= ψn

p (b), and yi is an element of b. Therefore there
exists q ∈ J such that all nodes y1, . . . , yα have already appeared in tuples b0, . . . , bq. By the choice of our
elements y1, . . . , yα, and since (T, I, a0, . . . , aq) ≡1 (T, I, b0, . . . , bq), we conclude that all nodes y1, . . . , yα

must appear in tuples a0, . . . , aq. In particular, the node y1 appears in one of the tuples a0, . . . , aq.
Take the least r ∈ J such that y1 has appeared in a tuple ar = 〈a0

r, a
1
r, . . . , a

n
r 〉, that is, n � l and

al
r = y1. Choose a stage s1 � s0 so that a0, . . . , ar ∈ Ds1 . By our choice of y1, for infinitely many stages
s � s1, there is an I-embedding g : Ds[y1]→ Ds+1[y1] with the property

levelDs+1(g(y1)) � levelDs(y1) + s.

For all such stages s � s1, we define

βs(x) =

{
g(x) if x ∈ Ds[y1];
x if x ∈ Ds −Ds[y1].

Then βs : Ds → Ds+1 is an I-embedding. Since levelT (y1) = l and all nodes from Dp lie below the level
l in the tree Ds, βs is identical on Dp. By the choice of r, the node y1 is not an element of any tuple
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a0, . . . , ar−1. Therefore βs is the identity on a0, . . . , ar−1. Finally, we observe that

levelDs+1(βs(al
r)) � levelDs(a

l
r) + s > levelDs(a

l
r) = l,

levelDs+1(βs(al−1
r )) = levelDs+1(a

l−1
r ) = l− 1.

Thus (Ds+1, Ds+1 ∩ I) |= ¬ψn
p (βs(ar)).

5. TREES OF HEIGHT EXCEEDING ω

We now prove that no I-tree of height exceeding ω is computably categorical. In such trees, there exists
a node xω at level ω. The predecessors of xω form a computable infinite chain in T . The chain is not a path,
but it is still perfectly useful for our purposes. We will appeal to Kruskal’s theorem again to guarantee the
existence of the necessary embeddings upwards along this chain.

Proposition 14. Let (T, I) be a computable I-tree with ht(T ) > ω. Then the computable dimension
of (T, I) is effectively infinite.

Proof. Since ht(T ) > ω, T contains a node xω at level ω. Let r = x0 ≺ x1 ≺ x2 ≺ . . . be all
the predecessors of xω in T . For each i ∈ ω, we set Si = T [xi] − T [xi+1], and for a limit index, define
Sω = T − ⋃

i∈ω

Si. Note that Si ∩ Sj = ∅ for any i, j ∈ ω ∪ {ω} with i 
= j, and if x ∈ Sω, then xi ≺ x and

levelT (x) � ω, for any i ∈ ω. In particular, xω ∈ Sω.
We apply Lemma 7 to the collection of I-trees (Si, Si∩ I), i ∈ ω, yielding an n such that for every i � n

and every finite partial subordering S ⊆ Si, there is some j > i for which (S, S ∩ I) embeds in (Sj , Sj ∩ I).
By induction, then, every finite subordering of each such Si I-embeds in infinitely many Sj , where j > i.

Let {Ts | s ∈ ω} be the preliminary representation for an I-tree (T, I), where Ts = {x0, x1, . . . , xn} ∪
{0, 1, . . . , s} ∪ {xω} is an I-tree under ≺ with distinguished initial subtree Ts ∩ I. For each s ∈ ω, let

{xn = xn,s ≺ xn+1,s ≺ . . . ≺ xls,s}

be the chain of all the predecessors of xω in Ts[xn]. Clearly, lim
s
xi,s = xi for all i. We define an increasing

unbounded computable function f(s) and a new representation {Ds | s ∈ ω} for (T, I) in the following way.
At stage 0, put f(0) = 0 and D0 = T0.
At stage s+1, given f(s) and Ds = Tf(s) defined, we search for the least t > f(s) satisfying the following

condition:
(∗) for each i with n � i � lt, there exists an I-embedding gi : Ds[xi,t]→ Tt[xi,t] with the property

∀x ∈ Ds[xi,t]
(
xlt,t ⊀ x→ levelDs(x) < levelTt(gi(x))

)
& ∀x ∈ Ds[xi,t]

(
xlt,t ≺ x→ gi(x) = x

)
.

Then we put f(s+ 1) = t, Ds+1 = Tf(s).
We observe that above we defined Ds[xi,t] to be {y ∈ Ds | xi,t � y}, and considered an I-embedding

gi : Ds[xi,t]→ Tt[xi,t] as the embedding of the partial ordering Ds[xi,t] into Tt[xi,t] which preserves I.
We now prove that at each stage s + 1, the desired t exists. Since Ds[xn] is finite, there exists m � n

such that Si ∩ Ds[xn] = ∅, for every i > m, i ∈ ω. Therefore Ds[xi] ⊆ Sω, for every i > m. Since each
sequence {xi,t}t∈ω converges to xi, we can find a stage t0 > f(s) so that for all t � t0,

xn,t = xn, . . . , xm,t = xm, xm+1,t = xm+1.

This implies that Ds[xi,t] ⊆ Ds[xi] ⊆ Sω for all t � t0 and for every i > m.
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Consider an arbitrary i such that n � i � m. Obviously, the identity embedding ι : Ds[xi] → Tt0 [xi]
satisfies the following condition:

∀x ∈ Ds[xi]
(
xlt0 ,t0 ⊀ x→ levelDs(x) � levelTt0

(ι(x))
)
& ∀x ∈ Ds[xi]

(
xlt0 ,t0 ≺ x→ ι(x) = x

)
.

Since Tt0 [xi] is finite, there are only finitely many nodes xi = xi0 ≺ xi1 ≺ . . . ≺ xiq for which

Tt0 [xi] ∩ Si0 
= ∅, . . . , Tt0 [xi] ∩ Siq 
= ∅, Tt0 [xi]−
⋃

p�q

Sip ⊆ Sω.

By the choice of n, we can find an I-embedding

h0 : Tt0 [xi] ∩ Si0 → Sj0 ,

where j0 > i0, such that xi0 ∈ Tt0 [xi] ∩ Si0 iff xj0 ∈ h0(Tt0 [xi] ∩ Si0), and h0(xi0 ) = xj0 , if either is true.
Then we can find an I-embedding

h1 : Tt0 [xi] ∩ Si1 → Sj1 ,

where j1 > j0, such that xi1 ∈ Tt0 [xi] ∩ Si1 iff xj1 ∈ h1(Tt0 [xi] ∩ Si1), and h1(xi1 ) = xj1 , if either is true,
and so on.

Finally, we define the identity map

hω : Tt0 [xi]−
⋃

p�q

Sip → Tt0 [xi]−
⋃

p�q

Sip .

The union fi = h0 ∪ . . . ∪ hq ∪ hω of these I-embeddings is the I-embedding of Tt0 [xi] into T [xi+1].
Further, we can find a stage t1 > t0 so that

⋃
n�i�m

fi(Tt0 [xi]) ⊆ Tt1 . Then our I-embedding fi is of the

form fi : Tt0 [xi]→ Tt1 [xi+1], for every i. Now fix an arbitrary i such that n � i � lt1 . There are two cases
to consider.

Suppose n � i � m. Take the following composition of I-embeddings:

gi = fi ◦ ι : Ds[xi]→ Tt1 [xi+1] ⊆ Tt1 [xi].

If x ∈ Ds[xi] and xlt1 ,t1 ≺ x, then x ∈ Sω. Therefore gi(x) = hω(x) = x. If x ∈ Ds[xi] and xlt1 ,t1 ⊀ x, then
x ∈ Tt0 [xi] ∩ Sip for some p � q. Therefore we obtain the following chain of inequalities:

levelDs(x) � levelTt0
(x) = levelTt0

(xi) + levelTt0 [xi](x) <

levelTt1
(xi+1) + levelTt1 [xi+1](fi(x)) = levelTt1

(fi(x)) = levelTt1
(gi(x)).

Suppose m < i � lt1 . Then Ds[xi,t1 ] ⊆ Ds[xi] ⊆ Sω. Consequently, we have xlt1 ,t1 ≺ x for any
x ∈ Ds[xi,t1 ]. It is sufficient to take the identity map

gi = id : Ds[xi,t1 ]→ Tt1 [xi,t1 ]

to satisfy the desired conditions. Thus there exists a t = t1 for which condition (∗) holds.
Again we apply Theorem 1 to the model (T, I). Define the ∀-formula

ψ(u0, u1, v) =
(
u0 ≺ u1 ≺ v

)
& ∀y(u0 � y � u1 → (y = u0 ∨ y = u1)

)
.
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Therefore (T, I) |= ψ(a0, a1, xω) iff a0 and a1 lie on our computable infinite chain under xω, and a0 is
an immediate predecessor of a1 in T . We will prove that the system {(Dp, Dp ∩ I), xω , ψ(u0, u1, v)}p∈ω is
branching at any level p ∈ ω. (Formula ψ and parameter xω do not depend on p, and are the same for
all p.)

Let p ∈ ω and yω be any element of T such that (T, I, xω) ≡1 (T, I, yω). Since xω has infinite level and
(T, I, xω) ≡1 (T, I, yω), yω also lies on the infinite level, that is, levelT (yω) � ω, and there exists a countable
chain

r = y0 ≺ y1 ≺ y2 ≺ . . .

of all the predecessors of yω sitting at finite levels in T . Therefore, for every i ∈ ω, 〈yi, yi+1〉 ∈ {b | (T, I) |=
ψ(b, yω)}. Thus the set {b | (T, I) |= ψ(b, yω)} is not empty.

Let now {bj}j∈J be some 1-1 enumeration for the set {b | (T, I) |= ψ(b, yω)}, where J is an initial segment
of ω, and let {aj}j∈J be a sequence of pairs from T such that (T, I, xω, a0, . . . , aj) ≡1 (T, I, yω, b0, . . . , bj),
for all j ∈ J . Since Dp is finite, there exists the natural

m = max{k ∈ ω | k � n & ∃y ∈ Dp[xn](y /∈ Sω & xk � y)}.

Thus, for every i � m+1, the tree T [xi] contains no element of Dp[xn]−Sω. As noted above, 〈ym, ym+1〉 ∈
{b | (T, I) |= ψ(b, yω)}. Then 〈ym, ym+1〉 = bj = 〈b0j , b1j〉 for some j ∈ J , and we conclude that T |=
∃z0 . . . ∃zm(z0 ≺ . . . ≺ zm = b0j). Therefore we must have T |= ∃z0 . . .∃zm(z0 ≺ . . . ≺ zm = a0

j). Hence
there exists j ∈ J with levelT (a0

j ) � m.
Consider the least j ∈ J such that levelT (a0

j) � m for the pair aj = 〈a0
j , a

1
j〉. It follows that a0

j = xi

and a1
j = xi+1, where i = levelT (a0

j ) � m � n. In particular, the tree T [xi+1] contains no elements of
Dp[xn]−Sω. Choose a stage s0 so that Dp ∪ {a0, . . . , aj} ⊆ Ds, and levelDs(a0

j) = levelT (a0
j ) for all s � s0.

For any such s, we have a1
j = xi+1 = xi+1,f(s). By construction, therefore, there exists an I-embedding

g : Ds[xi+1]→ Ds+1[xi+1] with the property

levelDs(xi+1) < levelDs+1(g(xi+1)),

∀x ∈ Ds[xi+1]
(
xlf(s+1),f(s+1) ≺ x→ g(x) = x

)
.

For all such stages s � s0, define

βs(x) =

{
g(x) if x ∈ Ds[xi+1];
x if x ∈ Ds −Ds[xi+1],

which is an I-embedding. Since T [xi+1] contains no elements of Dp[xn] − Sω, we have Dp − Sω ⊆ Ds −
Ds[xi+1], and so βs is identical on Dp − Sω. Besides, by the choice of g, βs is identical on Dp ∩ Sω. Also,
by the choice of j ∈ J , all the previous tuples a0, . . . , aj−1 do not lie in Ds[xi+1]. This implies that βs is
identical on elements of the tuples a0, . . . , aj−1. Finally, we observe that

levelDs+1(βs(a1
j)) > levelDs(a

1
j ) = levelDs(a

0
j) + 1 = levelDs+1(βs(a0

j )) + 1.

Therefore there exists y ∈ Ds+1 for which βs(a0
j) ≺ y ≺ βs(a1

j ). Thus (Ds+1, Ds+1 ∩ I) |= ¬ψ(βs(a0
j ),

βs(a1
j), xω).
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6. TREES OF INFINITE HEIGHT

We now prove the basic theorem for I-trees of infinite height.

THEOREM 15. The computable dimension of any computable I-tree with infinite height is effectively
infinite.

Proof. Let (T, I) be a computable I-tree of infinite height. There are five cases to consider.
Case 1. Let ht(T ) = ω and T contain no infinite paths. Then T contains an ω-branching node x0 with

immediate successors x1, x2, . . . such that ht(T [x0]) = ω, but ht(T [xi]) < ω for all i � 1. Therefore we must
have lim sup

i
ht(T [xi]) = ω, and so Proposition 12 applies to (T, I).

Case 2. Let ht(T ) = ω, Text 
= ∅, and Text not be finite-branching. Then there is a node x0 ∈ Text

with infinitely many immediate successors x1, x2, . . . in Text (x0 may also have non-extendible immediate
successors). Therefore ht(T [xi]) = ω for all i � 1. Thus ht(T [y]) = ω for infinitely many immediate
successors y of x0 in T , and so Proposition 12 applies to x0.

Case 3. Let ht(T ) = ω, Text 
= ∅, Text be finite-branching, but T contain a node x such that the side
tree S[x] has height ω. Obviously, S[x] contains no infinite paths. As in Case 1, we conclude that S[x]
contains an ω-branching node x0 with immediate successors x1, x2, . . . in S[x] such that ht(S[x0]) = ω, but
ht(S[xi]) < ω for all i � 1.

It follows that {x1, x2, . . .} is exactly the set of all non-extendible immediate successors of x0 in T , and

lim sup
i

ht(T [xi]) = lim sup
i

ht(S[xi]) = ω.

On the other hand, x0 may have only finitely many extendible immediate successors in T , since Text is
finitely branching. Hence Proposition 12 applies to x0.

Case 4. Let ht(T ) = ω, Text 
= ∅, Text be finite-branching, and all side trees in T have finite height.
Then we apply Proposition 13.

Case 5. Let ht(T ) > ω. Then Proposition 14 covers this case.

COROLLARY 16. The computable dimension of any computable I-tree with infinite height is ω.

COROLLARY 17. No computable I-tree of infinite height is computably categorical.

7. THE CASE OF SEVERAL DISTINGUISHED SUBTREES

In conclusion, we show that all results of the present paper can be naturally generalized to the case of
trees with several distinguished initial subtrees.

First, notice that while considering trees in a language with partial order ≺ and with r+1 distinguished
initial subtrees I0, . . . , Ir, it is sufficient to study the case where these subtrees form the chain I0 ⊇ I1 ⊇
. . . ⊇ Ir. This follows from the well-known fact that linear basis for a finite Boolean algebra can be
expressed by its generators via Boolean operations ∨ and ∧ (see [9]).

Second, it is easy to see that in order to generalize Propositions 12-14 to the case of several subtrees we
need only modify Lemmas 10, 11, and 7 correspondingly, which in turn are corollaries to Lemma 3.

Thus we need only generalize Lemma 3 to the case of several nested initial subtrees.
For r ∈ ω, define the class T[r] of multiple I-trees with labels from ω as follows:
T[r] = {(T, l) | T is a finite tree with r + 1 distinguished initial subtrees I0 ⊇ I1 ⊇ . . . ⊇ Ir, l : T → ω}.

We will write (T1, l1) � (T2, l2) iff there exists an isomorphic embedding f : (T1, I
0
1 , . . . , I

r
1 ) →

(T2, I
0
2 , . . . , I

r
2 ) such that l1(x) � l2(f(x)) for all x ∈ T1. Clearly, T[r] is quasiordered by this relation.
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LEMMA 18. Let {(Ti, I
0
i , . . . , I

r
i ) | i ∈ ω} be an infinite collection of multiple I-trees, each with a

labelling li : Ti → ω. Then there exist i < j in ω and an embedding f : (Ti, I
0
i , . . . , I

r
i ) → (Tj, I

0
j , . . . , I

r
j )

such that li(x) � lj(f(x)) for every x ∈ Ti.
Proof. For r = 0, the statement is established in Lemma 3. We proceed by induction on r. As in

Lemma 3, we may assume that every subtree of the form Ir
i is non-empty. For each i ∈ ω, the labelling

function
mi : Ir

i → T[r−1] × ω
on the tree Ir

i is defined as follows: for any x ∈ Ir
i , put mi(x) = (m1

i (x),m
2
i (x)), where

(1) m1
i (x) = (Si(x), li �Si(x)) ∈ T[r−1] with finite tree

Si(x) = {x} ∪ {y ∈ Ti | y � x & ∀z � y(x ≺ z → z /∈ Ir
i )},

and a labelling function li �Si(x) : Si(x)→ ω.
(2) m2

i (x) = li(x).
By Kruskal’s theorem, in view of the inductive assumption, we conclude that T(T[r−1] × ω) is a wqo.

Thus, for the collection {(Ir
i ,mi) | i ∈ ω} of elements of T(T[r−1]×ω), there are i and j for which i < j and

(Ir
i ,mi) � (Ir

j ,mj), that is, there exists an embedding g : Ir
i → Ir

j such that mi(x) � mj(g(x)) for every
x ∈ Ir

i . It follows that li(x) � lj(g(x)) for all x ∈ Ir
i , and there exists an embedding hx : Si(x)→ Sj(g(x)),

which respects the initial subtrees I0, . . . , Ir−1 and is such that li(y) � lj(hx(y)) for every y ∈ Si(x).
We define a mapping f : Ti → Tj as follows:

f(y) =

{
g(y) if y ∈ Ir

i ;
hx(y) if y /∈ Ir

i and y ∈ Si(x) for some x ∈ Ir
i .

As in Lemma 3, we conclude that f is well defined. Now it is easy to see that f : (Ti, I
0
i , . . . , I

r
i ) →

(Tj, I
0
j , . . . , I

r
j ) is the desired embedding.
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