
Local Computability and
Uncountable Structures

Russell Miller∗

June 19, 2009

1 Introduction

Turing computability has always been restricted to maps on countable sets.
This restriction is inherent in the nature of a Turing machine: a computation
is performed in a finite length of time, so that even if the available input was a
countable binary sequence, only a finite initial segment of that sequence was
actually used in the computation. The Use Principle then says that an input
of any other infinite sequence with that same initial segment will result in
the same computation and the same output. Thus, while the domain might
have been viewed as the (uncountable) set of infinite binary sequences, the
countable domain containing all finite initial segments would have sufficed.

To be sure, there are approaches that have defined natural notions of
computable functions on uncountable sets. The bitmap model, detailed in
[3] and widely used in computable analysis, is an excellent model for com-
putability on Cantor space 2ω. On the real numbers R, however, it fails to
compute even the simplest discontinuous functions, which somewhat limits
its utility. The Blum-Shub-Smale model (see [2]) expands the set of func-
tions which we presuppose to be computable. Having done so, it gives an
elegant account of computable functions on the reals, with nice analogies to
computability on ω, but the initial assumption immediately distances it from
Turing’s original concept of computability.
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Nevertheless, mathematicians are hardly daunted by the prospect of doing
actual computations on R. When faced with a real number whose binary
expansion is not immediately accessible, they do not flinch; they simply call
that real “x.” All field operations can then be performed with ease within
the subfield of R generated by x; the mathematician only needs to know
whether x is algebraic or transcendental, and, in the former case, what its
minimal polynomial over Q is. Similar devices handle the situation of several
unknown reals at once. The binary expansions of these reals are not required
for the algebraic operations.

In this chapter we formalize this process. Starting with the notion of
a computable model, which is entirely in keeping with Turing’s notion of
computability, we will view the real numbers and other fields as locally com-
putable structures. No claim is made that the real numbers can be presented
globally, as a single structure with programs for the arithmetic operations on
its entire domain, but we develop a definition in which a countable collection
of countable objects is used to describe all finitely generated substructures
of a (potentially uncountable) structure S. Then the local computability of
S is determined by the computability of the countable objects. In cases such
as the field R, where every finitely generated substructure is computably
presentable, we will say that we have a computable cover of the structure.
Indeed, for R, a single algorithm can list out all elements of this cover.

The term “cover” is borrowed from the definition of a manifold, and the
analogy, while imprecise, can be useful for intuitions about our definitions.
For instance, for a topological space M , being a manifold does not just
require the existence of a cover by open subsets of Rn, but also that the
charts within M given by the cover should fit together in a nice way: the
transition functions between open subsets of Rn, defined whenever two charts
in M intersect, should be continuous (or differentiable, or C∞, depending on
how nicely we wish the manifold to behave). In short, it is not sufficient
just to describe the local behavior of M ; one must ensure that where the
descriptions overlap, they agree with one another in a reasonable way.

For us, it will certainly be true that finitely generated substructures of a
structure S can overlap. Therefore, our description of finitely generated sub-
structures of S will include an account of which such substructures extend to
others. Since any two finitely generated substructures of S lie within a single
larger finitely generated substructure, it is sufficient for our purposes to con-
sider the question of extensions among them. Topological notions do not fit
our setting very well, but embeddings among finitely generated computable
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structures are themselves inherently computable, since they are determined
by their values on the generators of the domain. (This is our main reason for
considering only finitely generated substructures of S, in fact, rather than
all countable substructures.) In order for a structure to be called locally
computable, we will require not only that the finitely generated substruc-
tures be computably presentable in a uniform way, but also that there be a
computable enumeration of the embeddings among them corresponding to
extensions in the structure S. Various strengthenings of this requirement,
mostly in Section 4, will allow us to prove stronger theorems about certain
of the structures.

The technical content of this chapter is not especially high, but when
computability-theoretic notions arise, we refer the reader to [12], the stan-
dard source, for notation and definitions. A good overview of the field of
computable model theory is given in [5]. Certain examples arise in each
section to illustrate the concepts discussed, but several other examples are
grouped together in Section 8, and it may be useful for the reader to work
back and forth between this section and the others.

2 Local Computability

Let T be a ∀-axiomatizable theory in a finite language. We first consider
simple covers of a model S of T . These describe only the finitely generated
substructures of S, with no attention paid to any relations between those
substructures.

Definition 2.1 A simple cover of S is a (finite or countable) collection A of
finitely generated models A0,A1, . . . of T , such that:

• every finitely generated substructure of S is isomorphic to someAi ∈ A;
and

• every Ai ∈ A embeds isomorphically into S.

If T is finitely axiomatizable but not ∀-axiomatizable, we can Skolemize
to give it a set of ∀-axioms, while keeping the language finite. The theory of
fields is a natural example: one makes the axioms for inverses universal by
adding a unary function symbol for negation and another for reciprocation,
with 0 defined to be its own reciprocal. In this expanded language, every
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substructure of a model of T is also a model of T , since the axioms, being
universal, hold in all substructures.

Definition 2.1 could allow uncountable covers, of course, but since we
will mostly be interested in the possibility of presenting all Ai computably,
the uncountable case is irrelevant for our purposes. We often write (Ai;~ai)
to denote that ~ai = 〈a1

i , . . . , a
ki
i 〉 is a finite tuple of generators for Ai. The

intention is that S itself should not be finitely generated, of course, although
the definition is still valid in this case. Indeed, S is not at all required to be
countable, since a single Ai may be isomorphic to many substructures of S.
For countable structures S, a related notion is Fräıssé’s concept of the age
of S, i.e. the set of all finitely generated substructures of S. All elements of
A must be models of T , by the ∀-axiomatizability of T . The existence of a
cover does mean that in some sense only countably many different things can
happen within S. (Model theorists would say that the atomic type space of
S is countable.) Similarly, in our next definition, a computable simple cover
suggests that all parts of S are computably presentable.

Definition 2.2 A simple cover A is computable if every Ai ∈ A is a com-
putable structure whose domain is an initial segment of ω. A is uniformly
computable if the sequence 〈(Ai,~ai)〉i∈ω can be given uniformly: there must
exist a single computable function which, on input i, outputs a tuple of el-
ements 〈e1, . . . , en, 〈a0, . . . , aki

〉〉 ∈ ωn × A<ωi such that Ai is generated by
{a0, . . . , aki

} and ϕej
computes the j-th function, relation, or constant of the

language in Ai. (Here n is the cardinality of the language, which we assumed
to be finite.)

Notice that the definition requires that the generators of Ai be given as a
tuple 〈a0, . . . , aki

〉, so that ki is computable uniformly in i and we know how
many values from Aj are needed to define an embedding in IA

ij . (In the
language of [12, II.2.4], the definition requires that we compute the canonical
index for the set {a0, . . . , aki

}.)
As an example, we show that the best-known uncountable structure in

mathematics is locally computable. The pieces of the proof have long been
established, but for completeness we repeat the details.

Proposition 2.3 The field R = (R,+, ·,−, r, 0, 1) of real numbers is locally
computable.
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Notice that we have added the unary operations of negation and inversion
(r, for reciprocal) to the usual language of fields, in order to get a Π1 axiom
set. For definiteness we set r(0) = 0.

Proof. We construct a uniformly computable cover A of the field R. For this
purpose we will use a computable list 〈n0, p0〉, 〈n1, p1〉, . . . of the set

{〈n, p〉 : n ∈ ω & p ∈ Q[X1, . . . , Xn, Y ]}.

Sublemma 2.4 There is an algorithm which decides, for an arbitrary 〈n, p〉
in this set, whether or not p is irreducible in Q[X1, . . . , Xn, Y ] and has a
solution (x1, . . . , xn, y) ∈ Rn+1 with {x1, . . . , xn} algebraically independent
over Q.

Proof. The algorithm for deciding the irreducibility of p in Q(X1, . . . , Xn)[Y ],
uniformly in n, was developed by Kronecker in [8]; and p is irreducible there

iff it is irreducible in Q[ ~X, Y ]. (Details can be found in [4] and in Lemma 2
on p. 92 of [13].) We immediately rule out the reducible polynomials p. For
the second part of the sublemma, we show that the set of those p which have
such a solution (and are irreducible) is both Σ0

1 and Π0
1.

We claim first that there exists a solution as required iff there exist
q1, . . . , qn, q

′, q′′ ∈ Q such that p(~q, q′) > 0 > p(~q, q′′). If such rational num-
bers exist, then there exist algebraically independent real numbers x1, . . . xn,
with each xi sufficiently close to qi that p(~x, q′) > 0 > p(~x, q′′) still holds.
But then the Intermediate Value Theorem yields the y ∈ R with p(~x, y) = 0.
Conversely, if we have the solution (~x, y) as required, then since the set {~x} is
algebraically independent, the real polynomial p(~x, Y ) ∈ R[Y ] is irreducible,
and so its derivative dp

dY
is nonzero at (~x, y). Therefore there exist y′ and y′′

with p(~x, y′) > 0 > p(~x, y′′). But the density of Q in R then shows that the
rationals ~q, q′, q′′ exist.

Next, we claim that the required solution fails to exist iff there exist
k ∈ ω, polynomials g1, . . . , gk ∈ Q[ ~X, Y ], and rational numbers c1, . . . , ck ≥ 0

such that p( ~X, Y ) = ±
∑k

i=1 ci · (gi( ~X, Y ))2. If these elements exist, then

clearly p( ~X, Y ) is either positive semidefinite (i.e. takes on only values ≥ 0
on Rn+1) or negative semidefinite. But we saw above that the existence of a
solution (~x, y) (with ~x algebraically independent) implies that p(~x, Y ) ∈ R[Y ]
is neither positive nor negative semidefinite. Therefore no solution exists in
which ~x is algebraically independent.
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For the converse, suppose that no solution with ~x algebraically indepen-
dent exists. Sublemma 2.6 below, applied with F = Q, shows that in this
case p( ~X, Y ) must be either positive or negative semidefinite, and the exis-
tence of the required k, gi, and ci then follows from Artin’s Theorem. (For
details, we refer the reader to [9, VIII.1.12].)

Theorem 2.5 (Artin’s Theorem.) Let F be an ordered field. A polyno-
mial f ∈ F [Y1, . . . , Ym] is positive semidefinite iff there exist g1, . . . , gk ∈
F [~Y ] and c1, . . . ck ≥ 0 in F such that f =

∑k
i=1 ci · g2

i .

Sublemma 2.6 Fix any n ∈ ω, and let F ⊂ R be a finitely generated field
extension of Q. Let p ∈ F [X1, . . . , Xn, Y ] be a polynomial, irreducible in this
polynomial ring, which assumes both positive and negative values on Rn+1.
Then there exists a solution (x1, . . . , xn, y) ∈ Rn+1 to the equation p = 0 such
that the set {x1, . . . xn} is algebraically independent over F .

Proof of Sublemma 2.6. We induct on n, with the statement for n = 0 fol-
lowing from the Intermediate Value Theorem. Fix n > 0.

Write p( ~X, Y ) as a polynomial in X2, . . . , Xn, Y , with coefficients qi(X1)
in F [X1], and suppose for a contradiction that for every x1 ∈ R, the polyno-
mial p(x1, X2, . . . , Xn, Y ) is either positive definite or negative semidefinite.
By the assumption of the sublemma, each of these possibilities (positive and
negative semidefinite) does hold for some value of x1. By completeness of R,
there must be an x1 such that p(x1, X2, . . . , Xn, Y ) is identically 0. In partic-
ular, choosing some {x2, . . . , xn, y} algebraically independent over F (x1), we
have p(~x, y) = 0, so p(x1, X2, . . . , Xn, Y ) must be the zero polynomial. Thus

every qi(x1) = 0, yet since p( ~X, Y ) was nonzero, some qi(X1) is nonzero. So
x1 is algebraic over F , and its minimal polynomial in F [X1] is a factor of

every qi(X1), hence divides p( ~X, Y ), contradicting irreducibility.
Therefore there exists an x′1 ∈ R such that p(x′1, X2, . . . , Xn, Y ) assumes

both positive and negative values as a function on Rn. But then there exists
an x1 transcendental over F and sufficiently close to x′1 that the polynomial
q = p(x1, X2, . . . , Xn, Y ) also assumes both positive and negative values.
Moreover, since p is irreducible in F , we see from [13, Lemma 2, p. 92] that
q is irreducible in the field K = F (x1). So we apply the inductive hypothesis
with the field K and the polynomial q to get the required x2, . . . , xn, y. This
completes the proof of Sublemma 2.6, and also of Sublemma 2.4.
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Hence we may enumerate finitely generated fields Ai uniformly in i, by
considering pairs 〈n, p〉 as above until we find the least one which has not
been used for any Aj with j < i and which has a solution (x1, . . . , xn, y) ∈
Rn+1 with ~x algebraically independent. When we find such a pair, it is
straightforward to build a computable field Ai, with domain ω, isomorphic
to the quotient field of Q[X1, . . . , Xn, Y ]/(p( ~X, Y )). These fields Ai will be
the elements of our cover A. Clearly the uniform computability conditions
on the Ai themselves are satisfied. (Below we consider the embeddings in
IA.) It is also clear that every such field is isomorphic to the subfield Q(~x, y)
of R. Conversely, we have the following.

Sublemma 2.7 Every finitely generated subfield of R is isomorphic to some
Ai ∈ A given by this process.

Proof. Let F be a finitely generated subfield of R. By the Noether Normal-
ization Lemma, F is an algebraic extension of a purely transcendental ex-
tension K of Q. Since F is finitely generated, K must have a finite (possibly
empty) transcendence basis {x1, . . . , xn} over Q, so K = Q(~x). Finite gener-
ation also implies that F is a finite algebraic extension of K. Since we are in
characteristic 0, the Theorem of the Primitive Element applies, showing that
F = K(y) for some y ∈ F algebraic over K. Choose p ∈ Q[X1, . . . , Xn, Y ]
such that p(~x, Y ), when divided by its lead coefficient, is the minimal poly-
nomial of y over K. Thus p is irreducible in K[Y ], and by dividing by the

content of p in the ring Q[ ~X], we may assume that p is also irreducible in
Q[X1, . . . , Xn, Y ]. p still has the solution (~x, y) ∈ Rn+1, with ~x algebraically
independent over Q, so F is isomorphic to that Ai which we enumerated into
A when we reached the pair 〈n, p〉. This completes the proofs of Sublemma
2.7 and Proposition 2.3.

It is also useful to see a negative example. Although the real numbers
form a locally computable field, adding the usual < relation to the structure
destroys local computability.

Proposition 2.8 The ordered field (R, <) of real numbers, with R as in
Proposition 2.3, has no computable simple cover, uniform or otherwise.

Proof. Let b be any noncomputable real number. (That is, the Dedekind cut
of b should be a noncomputable subset of Q.) We claim that the ordered
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subfield B of R generated by b has no computable presentation. Clearly this
implies the proposition.

Suppose A were a computable presentation of B, with a ∈ A the image
of b under the isomorphism from B onto A. Then just from knowing the
additive and multiplicative identity elements in A, we could compute the
representation in A of any rational number p

q
. But then we could compute

the Dedekind cut of b, just by using the computable relation < in A to
compare a to each rational. Therefore no such A can exist.

We will be concerned mainly with the full definition of a cover, in which
we also describe how the substructures of S fit together.

Definition 2.9 A cover of S consists of a simple cover A = {A0,A1, . . .}
of S, along with sets IA

ij (for all Ai,Aj ∈ A) of injective homomorphisms
f : Ai ↪→ Aj, such that:

• for all substructures B ⊆ C of S, there exist i, j ∈ ω and f ∈ IA
ij and

isomorphisms β : Ai � B and γ : Aj � C with β = γ ◦ f ; and

• for every k and m and every g ∈ IA
km, there exist substructures D ⊆ E

of S and isomorphisms δ : Ak � D and ε : Am � E with δ = ε ◦ g.

This cover is uniformly computable if A is a uniformly computable simple
cover of S and there exists a c.e. set W such that for all i, j ∈ ω,

IA
ij = {ϕe�Ai : 〈i, j, e〉 ∈ W}.

A structure B is locally computable if it has a uniformly computable cover.

Diagrams of the situation are often useful. Solid arrows represent given maps,
dotted arrows represent maps whose existence is required by the definitions.
Definition 2.9 demands that the following diagrams both commute.

Ai -f Aj

6 6
β ∼= γ ∼=
B - C⊆

Ak -g Am

6 6
δ ∼= ε ∼=
D - E⊆

If A is a computable simple cover, then every embedding of any Ai into
any Aj is determined by its values on the generators of Ai. Since Ai must
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be finitely generated, all such embeddings are computable, and therefore it
is reasonable to call A a computable cover without any further requirements
on the sets IA

ij . (Our main reason for considering only the finitely generated
substructures of S, rather than countable ones, is that embeddings among
such structures are always computable.) For a uniformly computable cover,
on the other hand, the sets IA

ij will play a key role in our development of
the subject, and it should be kept in mind that IA

ij need not contain every
possible embedding of Ai into Aj.

It is an easy exercise to see that the second condition of Definition 2.9
follows trivially from the definition of a simple cover, for any embedding
f : Ai ↪→ Aj. We include this second condition here because it is the dual
of the first, and in the rest of our study of local computability, this duality
between inclusion maps within S and embeddings among structures in A will
appear repeatedly.

In the uniformly computable simple cover A of the reals built in Propo-
sition 2.3, we now consider the embeddings between the structures Ai.

Proposition 2.10 There exists a uniformly computable cover of the field R
of real numbers in which every set IA

ij is not only c.e., but actually computable
uniformly in i and j.

Proof. The simple cover is the same A built in Proposition 2.3. We enumerate
into IA

ij all possible embeddings of the field Ai into Aj. Fix i and j, and
suppose that Ai was built from the pair 〈n, p〉 as above. Embeddings are
given simply by naming the images of the elements x1, . . . , xn, y in Aj and
then extending the embedding to the rest of Ai using the function symbols
of the language. Of course, though, not all choices of images extend to an
embedding, so we need the following sublemma.

Sublemma 2.11 Let Ai = Q(z1, . . . , zm, w) and Aj = Q(x1, . . . , xn, y) with
~x and ~z each algebraically independent over Q, and let q ∈ Q(~z)[W ] and
p ∈ Q(~x)[Y ] be the minimal polynomials of w and y over Q(~z) and Q(~x)
respectively. Then there exists an algorithm, uniform in n, m, p and q, which
decides for any (a1, . . . am, b) ∈ Am+1

j whether the map f with f(zi) = ai and
f(w) = b extends to an injective homomorphism of Ai into Aj.

Proof. We immediately check whether q(~a, b) = 0 and whether n ≥ m. If
either of these fails, then of course f does not extend to an embedding, so
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assume that they do both hold. Then f extends to an embedding iff ~a is
algebraically independent over Q in Aj.

On one hand, we can search for a nonzero polynomial in Q[A1, . . . , Am]
for which ~a is a solution in Aj. Such a polynomial exists iff ~a is algebraically
dependent over Q, so clearly this outcome is Σ0

1.
On the other hand, knowing that n ≥ m, we search for am+1, . . . an ∈ Aj

and polynomials p1, . . . pn ∈ Q[A1, . . . , An, X] such that for every i ≤ n we
have

pi(a1, . . . , an, xi) = 0 & pi(a1, . . . , an, X) 6= 0.

If we find such elements and polynomials, then {a1, . . . , an} is a transcendence
basis for Q(x1, . . . , xn), since it spans Q(x1, . . . , xn) algebraically and has the
minimum possible size for such a spanning set. In this case {a1, . . . , am} is an
algebraically independent set. Conversely, if this set really is algebraically in-
dependent over Q in Aj, then it does extend to a transcendence basis, and so
such elements and polynomials must exist. Therefore algebraic independence
is also a Σ0

1 condition. This proves Sublemma 2.11.

Since IA
ij includes every possible embedding of Ai into Aj, the first con-

dition of Definition 2.9 is immediate, and we have already noted that the
second condition is trivial. Hence we have proven Proposition 2.10.

The point of Proposition 2.10 is the computability of the sets IA
ij . That

they can be computably enumerated would have followed immediately from
our next result.

Lemma 2.12 A structure S has a uniformly computable cover (i.e. is locally
computable) iff S has a uniformly computable simple cover.

Proof. Assume that A = {A0,A1, . . .} is a uniformly computable simple
cover of S. The domain {ai,0, ai,1, . . .} of each Ai is enumerable uniformly in
i, and so it is straightforward to enumerate the domain of the substructure

B〈i,j〉 = 〈{ai,k ∈ Ai : k ∈ Dj}〉 ⊆ Ai

where the generating set is defined using the finite set Dj with canonical
index j, as defined in [12]. Now every Ai is equal to some B〈i,j〉, so {B〈i,j〉}i,j
is another uniformly computable simple cover of S. Next, define the set
I〈i,j〉,〈i′,j′〉 to be empty if i′ 6= i. For i = i′, we wait until all elements of Dj
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have appeared in B〈i,j′〉. If this ever happens, we enumerate the identity map
into I〈i,j〉,〈i,j′〉; if not, then I〈i,j〉,〈i,j′〉 is empty.

Clearly this uniformly enumerates the sets I〈i,j〉,〈i′,j′〉, and we claim that
with these sets, B = {B〈i,j〉 : i, j ∈ ω} forms a cover of S. First, if f ∈
I〈i,j〉,〈i′,j′〉, then i = i′ and B〈i,j〉 ⊆ B〈i,j′〉 ⊆ Ai. Since Ai is isomorphic to
a substructure B ⊆ S, we can simply lift f to the identity map on the
corresponding substructures of this B. Conversely, if B ⊆ C are finitely
generated substructures of S, then C is isomorphic to some Ai, and there
are some j and j′ such that B〈i,j′〉 = A and B〈i,j〉 is the substructure of Ai
corresponding to B within C. But then the identity map from B〈i,j〉 into B〈i,j′〉
must have appeared in I〈i,j〉,〈i,j′〉, and matches the inclusion map from B into
C.

In light of this lemma, one naturally asks why we bothered to give Def-
inition 2.9. The answer is that local computability will be the θ = 0 case
in the definition of θ-extensionally computable structures, which appears in
the next section as Definition 3.6 and which uses the enumeration of the sets
IA
ij extensively. Indeed, it is the enumeration of the embeddings, rather than

that of the finitely generated substructures of S, which will be the heart of
our study of local computability.

3 Theory of Locally Computable Structures

Definition 3.1 Let A be a cover of a structure S. We say that an Ai ∈ A

matches a substructure B ⊆ S extensionally if there is an isomorphism β :
Ai � B for which the following hold.

• for every finitely generated C with B ⊆ C ⊆ S, there exists j ∈ ω,
f ∈ IA

ij , and an isomorphism γ mapping Aj onto C such that β = γ ◦ f ;
and

• for every m ∈ ω and every g ∈ IA
im, there exists a E ⊆ S and an

isomorphism ε mapping Am onto E such that B ⊆ E and β = ε ◦ g.

This β is called an extensional match between Ai and B.

Again, diagrams help explain this definition. The two conditions may be
expressed as follows.
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Ai -f Aj

6 6
β ∼= γ ∼=
B - C⊆

Ai -g Am

6 6β ∼= ε ∼=
B - E⊆

The difference from the diagrams of Definition 2.9 is that now Ai, B, and
the isomorphism β are all fixed: the required j, f , and γ and the required
E and ε must all work for this particular β : Ai → B on the left edge of the
diagram. We refer to β as an extensional match between Ai and B. The
idea is that the embeddings in the sets IA

ij (for all j) correspond precisely to
the finitely generated superstructures of B in S, rather than just to possible
extensions of various B′ ∼= B within S. This distinction will be illustrated in
the examples below.

Definition 3.2 We say that a uniformly computable cover A of S is exten-
sionally computable (and we call A an extensional cover of S) if every Ai ∈ A

extensionally matches some substructure B ⊆ S and every finitely generated
substructure B ⊆ S extensionally matches some Ai ∈ A.

If such a cover exists, we say that S is extensionally locally computable.

The point of this definition is that the extra conditions strengthen the
idea that each finitely generated substructure of S is represented by some
Ai ∈ A: not only are they isomorphic, but the embeddings (enumerated
effectively by IA) of Ai into other structures in A coincide exactly with the
extensions of B to larger finitely generated substructures of S. This point is
best illustrated by the negative example of Proposition 3.5 below. However,
we first show that the definition holds for the field of complex numbers.

Proposition 3.3 Every algebraically closed field C = (C,+, ·,−, r, 0, 1) of
characteristic 0 is extensionally locally computable. In particular, the field C
of complex numbers is extensionally locally computable.

Proof. The construction of a uniformly computable cover A of C is largely
the same as that for the field of real numbers in Proposition 2.3. Of course,
we no longer need worry whether a given polynomial of degree > 0 has a root
in C, and so Sublemma 2.4 in the construction of A is not needed, except
for the remark about Kronecker’s algorithm. Also, in case the transcendence
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degree d of C over Q is finite, we make sure that A only contains fields with
transcendence degree ≤ d over Q. Once again we define IA

ij to contain every
embedding of Ai into Aj, and the same analysis from the proof of Sublemma
2.11 shows that the sets IA

ij are computably enumerable (indeed computable)
uniformly in i and j, and that A is a uniformly computable cover of C. (In
fact, if two algebraically closed fields of characteristic 0 are isomorphic, or if
they both have infinite transcendence degree, then we have built the same A

for both of them.)
It remains to show that A is an extensionally computable cover of C.

Indeed, we will show more.

Lemma 3.4 In this situation, every embedding of any Ai ∈ A into C is
extensional.

Proof. Fix any Ai ∈ A, with generators x1, . . . , xm, y given in the con-
struction of A and with an irreducible polynomial q ∈ Q[ ~X, Y ] such that
q(~x, y) = 0, and let B ⊆ C be any subfield isomorphic to Ai, via any isomor-
phism β. We claim that β is an extensional match.

Now for any g ∈ IA
ij , we start with the embedding γ0 = β◦g−1 of g(Ai) into

C and extend it one-by-one to the generators z1, . . . zl, zl+1 = w of Aj given
by the construction of A. For each k ≤ l+ 1, if zk is transcendental over the
domain of γk−1 (i.e. the subfield of Aj generated by g(Ai) and z1, . . . , zk−1),
then we choose γk(zk) to be any element of C transcendental over the image of
γk−1. (Such an element of C must exist, since we ensured that Aj cannot have
transcendence degree > d over Q.) Otherwise zk is algebraic over dom(γk−1),
so we let p(Z) be its minimal polynomial over that subfeld. and choose γk(zk)
to be any root in C of the polynomial p(Z) ∈ C[Z] gotten by applying γk−1 to
the coefficients of p. In either case, γk then extends to an embedding into C of
the subfield of Aj generated by g(Ai) and z1, . . . , zk. By induction, the map
γ = γk+1 is an isomorphism from Aj onto a finitely generated substructure
of C, and since γ extends γ0 = β ◦ g−1, it is clear that β = γ ◦ g.

The converse is quicker. Fix any finitely generated subfield B of C with
g(Ai) ⊆ B. Extend the transcendence basis {β(x1), . . . , β(xm)} to a (finite)
transcendence basis X for B over Q, and pick a primitive element generating
B over Q(X), using the Primitive Element Theorem. Then B is isomorphic to
that field Aj ∈ A with the same transcendence degree over Q and the same
minimal polynomial for its primitive element. Let γ be this isomorphism.
Then γ−1 ◦ β is an embedding of Ai into Aj, hence lies in IA

ij , and we take
this embedding as our g. Thus this B is an extensional match for Ai.
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Since A was shown to be a cover of C, every Ai ∈ A is isomorphic to some
subfield B ⊂ C, and every finitely generated subfield of C is isomorphic to an
element of A. By Lemma 3.4, the isomorphism in each case is an extensional
match. Thus A is an extensional cover of C.

To make the meaning of Definition 3.2 more obvious, we now give an
instance where it does not apply.

Proposition 3.5 The field R of real numbers is not extensionally locally
computable.

Proof. Suppose that A were an extensionally computable cover of R. Fix
any noncomputable real number t ∈ R. Definition 3.2 gives an Ai ∈ A

which extensionally matches (via some isomorphism β) the subfield B of
R generated by t, and we may assume we know i and β−1(t), since they
constitute finitely much information.

Now we can enumerate the lower cut {q ∈ Q : q < t} defined by t,
knowing that extensions of B in R correspond to embeddings f ∈ IA

ij (for all
j) in the extensionally computable cover. For any rational q ∈ R:

|=R q < t ⇐⇒ |=R (∃x)x2 = t− q
⇐⇒ (∃ f.g. C)[B ⊆ C ⊂ R & |=C (∃x)x2 = t− q]
⇐⇒ (∃j)(∃f ∈ IA

ij) |=Aj
(∃x)x2 = f(β−1(t− q))

⇐⇒ (∃j)(∃f ∈ IA
ij)(∃a ∈ Aj) |=Aj

a2 = f(β−1(t))− f(β−1(q)).

A similar argument holds for the upper cut {q ∈ Q : q > t}, using square
roots of (q − t) in R. So the lower cut is both Σ0

1 and Π0
1, contradict-

ing the noncomputability of t. (Of course, β and f fix the rationals, so
f(β−1(q)) ∈ Aj is just the element of Aj representing q. The domain el-
ement of Aj representing any particular rational q can easily be computed
from the numerator and denominator of q, uniformly in j, by using the func-
tions of Aj.)

So the extensional local computability of C does not follow solely from
the existential closure of the structure; after all, R, viewed as a real closed
field, is also existentially closed. The difficulty for R is that real closed
fields have an implicit order on their elements, whether it is included in
the language of the structure or not, and as we saw in Proposition 2.8,
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adding the order relation to R destroys local computability. R itself can
still be locally computable, because the relation < cannot be defined in R
without quantifiers (even though it is both Σ1-definable and Π1-definable!)
and existential questions about R can be left unanswered by a uniformly
computable cover. An extensional cover, on the other hand, answers all such
questions, as will be seen in Proposition 3.8 and Theorem 3.10.

Next we entend Definition 3.2. Isomorphisms that were called extensional
matches will now be called 1-extensional, according to the following.

Definition 3.6 Let A be a cover of a structure S. Every isomorphism β
between any Ai ∈ A and any substructure B ⊆ S will be called 0-extensional.
For any ordinal θ > 0, we say that such an isomorphism β is θ-extensional
if:

• for every finitely generated C with B ⊆ C ⊆ S, and every ordinal ζ < θ,
there exists j ∈ ω, f ∈ IA

ij , and a ζ-extensional γ mapping Aj onto C
such that β = γ ◦ f ; and

• for every m ∈ ω and every g ∈ IA
im, and every ordinal ζ < θ, there

exists an E ⊆ S and a ζ-extensional ε mapping Am onto E such that
B ⊆ E and β = ε ◦ g.

A uniformly computable cover A of S is θ-extensional if every Ai ∈ A θ-
extensionally matches some substructure of S (i.e. there exists a θ-extensional
isomorphism between them) and every finitely generated substructure of S
θ-extensionally matches some Ai ∈ A. If such a cover exists, we say that S
is θ-extensionally locally computable. Often we will abbreviate this and just
call S itself θ-extensional.

The diagram here is exactly the same as that for Definition 3.1. The only
difference is the stronger requirement about the isomorphisms γ and ε being
ζ-extensional.

Notice that S is 0-extensional iff S is locally computable, iff S has a
uniformly computable simple cover (by Lemma 2.12). In Section 4 we will
add one more version of extensionality, even stronger than θ-extensional local
computability. The rest of this section is devoted to generalizing results such
as Proposition 3.5 and extending them to results about the complexity of the
theory of S and of various fragments of its elementary diagram.

Knowing that a structure S is globally computable gives information
about the decidability of the atomic diagram and the Σn-diagram of S for
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each n > 0: the former is computable, and each of the rest is 1-reducible
to ∅(n). (Indeed, if we allow computable infinitary formulas from the hyper-
arithmetic hierarchy, then for any computable ordinal θ, the Σθ diagram is
likewise Σ0

θ, i.e. 1-reducible to ∅(θ), under reasonable definitions.) When S is
computably presentable, these observations still hold for the quantifier-free
theory and the Σθ-theory of S, although they may not hold for the actual
diagrams. (The Σθ-diagram of S refers to the Σθ-theory of the structure SS
in the extended language with a constant for every s ∈ S.) If S is uncount-
able, then it is pointless to talk about the Σθ-diagrams in terms of Turing
computability, since the diagrams themselves are uncountable. However, we
can still prove analogous results about the Σθ-theory for any θ-extensionally
locally computable structure.

For these purposes, a first-order formula is Σn if it can be written in prenex
normal form with n blocks of like quantifiers, beginning with an existential.
For even n, this means:

(∃x1
1 · · · ∃x

k1
1 )(∀x1

2 · · · ∀x
k2
2 ) · · · (∀x1

n · · · ∀xkn
n )ϕ(~x)

where ϕ is quantifier-free, and similarly for odd n, with (∃x1
n · · · ∃xkn

n ). These
notions generalize with computable ordinals θ ≥ ω in place of n; we refer the
reader to [1] for details. We begin with simple results which do not require
extensional local computability.

Proposition 3.7 If S has a computable cover, then the quantifier-free theory
of S is computable. If S is locally computable, then the Σ1-theory of S is
computably enumerable.

Proof. The truth of a quantifier-free sentence ϕ in S can be checked just by
determining whether ϕ holds in Ai, for any fixed Ai in a computable cover
of A. If A is a uniformly computable cover of S, then we can enumerate the
Σ1-theory of S by enumerating all existential sentences true in each Ai ∈ A.

This is as much as we can say in general about locally computable structures,
but with extensional or perfect local computability we can develop results
for more complex sentences. For simplicity we stick to finitary formulas in
Proposition 3.8 and its proof. The subsequent Theorem 3.10 will generalize
to computable infinitary formulas, as well as to parameters from S.
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Proposition 3.8 For m ∈ ω, any m-extensionally locally computable struc-
ture S, and any n ≤ m+ 1, the Σn-theory of S,

{ϕ ∈ Th(S) : ϕ is a Σn sentence},

is itself a Σ0
n set in the arithmetic hierarchy. (For n > 0, this means that the

Σn-theory is 1-reducible to ∅(n), and for n = 0, the Σ0-theory is computable.)

Proof. Let 〈Ai〉i∈ω be an m-extensionally computable cover of S. Proposition
3.7 already proved the result for in case m ≤ 1. For arbitrary m, the key
fact is simply that for any formula ϕ(x1, . . . , xj),

|=S (∃~x)ϕ(~x) iff (∃ f.g. B ⊆ S)(∃ ~b ∈ Bj) |=S ϕ(~b).

We restate this fact:

|=S (∀~x)ϕ(~x) iff (∀ f.g. B ⊆ S)(∀~b ∈ Bj) |=S ϕ(~b).

When we have alternating quantifiers, we need to take superstructures at
each step. For an arbitrary formula ϕ(~x, ~y),

|=S (∃~x)(∀~y)ϕ(~x, ~y)

iff (∃ f.g. B ⊆ S)(∃ ~x ∈ Bk) |=S (∀~y)ϕ(~x, ~y)

iff (∃ f.g. B ⊆ S)(∃ ~x ∈ Bk)(∀ f.g. C s.t. B ⊆ C ⊆ S)(∀~y ∈ Cp) |=S ϕ(~x, ~y)

If the original sentence was Σ2, then the matrix (after all the quantifiers) will
be the truth in S of the quantifier-free formula ϕ(~x, ~y). In this case, ϕ(~x, ~y)
holds in S iff it holds in C, so we can continue as follows:

iff (∃ f.g. B ⊆ S)(∃ ~x ∈ Bk)(∀ f.g. C s.t. B ⊆ C ⊆ S)(∀~y ∈ Cp) |=C ϕ(~x, ~y)

iff (∃i)(∃ ~b ∈ Aki )(∀j)(∀f ∈ IA
ij)(∀~c ∈ A

p
j) |=Aj

ϕ(f(~b),~c).

The definition of 1-extensional cover shows these last two lines to be equiva-
lent. Specifically, if the last line holds, then the witnessAi has a 1-extensional
match β onto some B ⊆ S, and Definition 3.6, applied to any Aj and f ∈ IA

ij ,
provides a 0-extensional match ε fromAj onto some E ⊇ B such that ε◦f = β.

Then ϕ(ε(f(~b)), ε(~c)) must hold in C, since ϕ(f(~b),~c) holds in Aj and ε is an
isomorphism. Conversely, if the next-to-last line holds, then there is some
1-extensional match β onto the witness B from some Ai ∈ A, and a similar
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argument applies to any C extending B, yielding the j, f , and γ required by
the last line. This completes the proof of the result on 1-extensionally locally
computable structures.

The obvious iteration of this process, applied to any Σn sentence about S,
yields a statement consisting of a Σn-sequence of quantifiers over structures
in A, their elements, and the sets IA

ij , followed by a quantifier-free statement
about an Aj ∈ A. The argument requires that each Ai correspond to some B
via an (n− 1)-extensional map, so that the extensions must then correspond
via (n− 2)-extensional maps, and so on down to 0-extensional maps once all
the quantifiers have been moved outside the turnstile |=. Therefore, for an
m-extensionally locally computable S with m ≥ (n − 1), the Σ0

n statement
yielded by iterating the process holds iff the original Σn sentence held in S.
Since the structures in A, the sets IA

ij and the atomic diagram of such an Aj
are all computable uniformly in i and j, the truth of the original Σn-sentence
in S is itself a Σ0

n fact. Moreover, this process is entirely uniform in n.

Notice that for 1-extensionally locally computable structures, the equiv-
alence of a Σ3 sentence in S with the corresponding Σ3 statement about A

would not follow from this argument. Although the initial Ai would cor-
respond to some B via a 1-extensional map, the isomorphism between the
Aj and the C might be only 0-extensional, and so with a third quantifier,
embeddings from Aj into various Ak would not necessarily correspond to
extensions of C. The same applies to other values of m, and for m = 0 a
specific counterexample appears in Proposition 3.5. More counterexamples
can be derived from Proposition 8.2 and Theorem 8.7, where the Σ2-theory
and the Σ6-theory, respectively, can be arbitrarily complex.

Corollary 3.9 Any two structures with the same m-extensionally locally
computable cover are elementarily (m + 1)-equivalent. Specifically, any two
structures with the same uniformly computable cover are elementarily 1-
equivalent, and any two structures with the same computable cover are el-
ementarily 0-equivalent.

Proof. Given any sentence ϕ, the proof of Proposition 3.8 shows that |=S ϕ is
equivalent to a statement about the cover of S. In fact, this would hold even
if the computability-theoretic requirements were dropped from the definition
of perfect cover. The other results of the corollary are proven similarly.
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Proposition 3.8 is ostensibly only a result about the theory of the structure
S, not about its elementary diagram: the sentences considered there are not
allowed to contain constants from the domain of S. However, the intention
of local computability is to talk about individual elements of the structure S,
not just about the theory, and it is not hard to adapt Proposition 3.8 to do so.
We view the following result as the crux of our discussion of extensionality.
We also extend it to include hyperarithmetical formulas.

Theorem 3.10 For any computable ordinal θ, any θ-extensionally locally
computable structure S, any finite tuple ~p of parameters from S, and any
ζ ≤ θ, the Σζ-theory of S over ~p,

{ϕ ∈ Th(S, ~p) : ϕ is a Σζ sentence},

is itself a Σ0
ζ in the hyperarithmetic hierarchy. For a fixed computable pre-

sentation of a single θ, this holds uniformly in ζ and in an appropriate de-
scription of the parameters (as discussed after the proof).

Proof. Let B be generated by ~p in S, and fix an θ-extensional match β :
Al � B for some Al ∈ A. As before, we give an example by evaluating the
truth in S of an arbitrary Σ2 sentence with the parameters ~p, assuming now
that θ ≥ 2. By an argument similar to that in the proof of Proposition 3.8,
the Σ2 sentence (∃~x)(∀~y)ϕ(~p, ~x, ~y) holds in S iff

(∃i)(∃h ∈ IA
li )(∃~b ∈ Aki )(∀j)(∀f ∈ IA

ij)(∀~c ∈ Amj )

|=Aj
ϕ(f(h(~a)), f(~b),~c),

which is a Σ0
2 condition, uniformly in ~a and l. The obvious iteration works for

any ζ ≤ θ, but no longer applies when ζ = θ+1, whereas Proposition 3.8 did
hold when n = m+1. In the example above, as long as S is 2-extensional, we
may assume that β is 2-extensional, that the h we find lifts to an inclusion
in S via β and some 1-extensional γ : Ai ↪→ S, and therefore that every
inclusion of γ(Ai) into any larger finitely generated substructure of S must
lift some f in some IA

ij . If β were only 1-extensional, this argument would
not suffice. Adding the parameters forces us to start by fixing an Al ∈ A

and a β, whereas in Proposition 3.8 we were allowed simply to search for any
Ai and a single embedding into an Aj. Hence parameters require one more
level of extensionality.
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The extension of this argument to hyperarithmetical formulas (of com-
plexity Σζ with ζ ≤ θ, of course) is intuitively reasonable; the argument is
by induction on ordinals, with the paragraph above covering the case of a
successor ordinal. When ζ is a limit ordinal, the natural argument applies,
using the uniformity of the disjuncts in the Σζ formula. Writing out the de-
tails becomes very messy, and we leave that task to the reader. Notice that
it is not necessary to quantify over the isomorphisms β, γ, etc.; one simply
fixes an appropriate θ-extensional β at the beginning of the argument, and
then translates the formula into a new hyperarithmetic statement in which
all quantification is over effectively given objects such as domains Ai or sets
IA
ij of maps.

Of course, knowing an original parameter pi ∈ B is useless to us; we need
to know l and the value ai = β−1(pi) in Al. For finitely many parameters,
this constitutes only finitely much information, but we also wish to consider
uniformity. Of course, it does not make sense to ask for parameters from
a potentially uncountable structure S to be given uniformly. Instead, our
formal statement of uniformity is that if we are given an l and finitely many
parameters ~a from Al, then for any ζ ≤ θ and any ζ-extensional match β
mapping Al into S, the Σζ-theory of S over the parameters β(a1), . . . , β(an)
is a Σ0

ζ set in the hyperarithmetical hierarchy, uniformly in l and ~a.

We view Theorem 3.10 as the strongest argument yet that local com-
putability, and in particular these ordinal levels of extensional local com-
putability, form the correct analogue in uncountable structures to computable
presentability in countable structures. The point of a computable presenta-
tion of a structure is not just that it allows us to compute the atomic theory
and enumerate the Σ1-theory and so on, but that it actually allows us to do
over specific elements of the structure: the atomic diagram is computable,
and the Σθ diagram is Σ0

θ, uniformly in (a presentation of) θ. For an uncount-
able S, of course, there is no effective way to name all individual elements,
so it is hopeless to expect the entire atomic diagram to be computable. A
θ-extensional cover, however, gives us a way of describing individual elements
and tuples of them: using the cover, we name an Al which θ-extensionally
matches the substructure of S generated by the tuple, and specify which
elements of Al correspond to the tuple.

To state the same fact differently, having a θ-extensional cover tells us
exactly what information we need about the tuple ~p from S in order to com-
pute the atomic theory of S over ~p, or to enumerate its Σ1 theory over ~p, etc.

20



For the field of complex numbers, for instance, an Ai is given by its tran-
scendence degree and the minimal polynomial of a single additional element
generating the rest of Ai over a transcendence basis. If we can determine
this information for the subfield Q(~p) ⊂ C, and know which elements corre-
spond to ~p, then without further information we can give a Σ0

ζ description of
the Σζ-theory of (C, ~p). Each θ-extensional cover of any S says, “if you tell
me this particular information about your tuple ~p from S, I will give you a
Σ0
ζ-presentation of the Σζ facts about ~p in S, for each ζ ≤ θ.”

For a useful example of the foregoing (rather abstract) remarks, we urge
the reader to examine the discussion in Section 8 of the lexicographic order
on Cantor space 2ω. Some further philosophical discussion takes place there
as well, in the context of that example.

4 Perfect Local Computability

Since local computability is conceived as a generalization of the notion of
computable structure, it is natural to ask about the relationship between
local computability and computable presentability for countable structures.
All computably presentable structures are readily seen to be locally com-
putable, and indeed θ-extensionally locally computable for all θ < ωCK1 ; a
proof appears below. However, the converse fails. The attempt to find a ver-
sion of extensionality equivalent to computable presentability for countable
structures leads one to the following definition, which can be viewed as a kind
of ∞-extensionality, stronger than θ-extensionality for every computable θ.

Definition 4.1 Let A be a uniformly computable cover for a structure S.
A set M is a correspondence system for A and S if it satisfies the following
five conditions:

(1). Each element of M is an embedding of some Ai ∈ A into S; and

(2). For every Ai ∈ A, there exists a β ∈M with domain Ai; and

(3). For every finitely generated substructure B of S, there exists a β ∈M
with image B; and

(4). For every Ai ∈ A, every β ∈ M with domain Ai, and every finitely
generated C ⊆ S such that β(Ai) ⊆ C, there exists an Aj ∈ A, a γ ∈M
with domain Aj and image C, and an f ∈ IA

ij such that β = γ ◦ f ; and
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(5). For every Ai ∈ A, every β ∈ M with domain Ai, every Am ∈ A,
and every g ∈ IA

im, there exists an ε ∈ M with domain Am such that
β = ε ◦ g (and hence β(Ai) ⊆ ε(Am)).

If S has a uniformly computable cover A with a correspondence system M ,
then we say S is ∞-extensionally locally computable, and refer to elements
of M as ∞-extensional matches.

A correspondence system M is perfect if it also satisfies:

(6). For every finitely generated B ⊆ S, if β : Ai � B and γ : Aj � B both
lie in M , then γ−1 ◦ β ∈ IA

ij .

If a perfect correspondence system exists, then its elements are called perfect
matches between their domains and their images. The uniformly computable
cover A is then called a perfect cover for S, and S itself is said to be perfectly
locally computable.

Once again, the diagrams for conditions (4) and (5) are exactly those
from Definition 3.1; the only difference is that now the isomorphisms γ and
ε are required to lie in M .

This concept is related to extensionality, clearly, and any correspondence
system M is quickly seen (by induction on θ) to contain only θ-extensional
matches, for every ordinal θ. So every ∞-extensionally locally computable
structure is θ-extensionally locally computable for every θ. This justifies the
terminology and, using Corollary 3.9, also yields:

Corollary 4.2 Any two structures with the same perfect cover are elemen-
tarily equivalent, and indeed have the same hyperarithmetical theory.

However, the definition of ∞-extensionality is stronger than that of θ-
extensionality. For the map β to be a θ-extensional match, we only needed the
existence of ζ-extensional matches γ (with ζ < θ) to relate the embeddings
f ∈ IA

ij (for all j) to the finitely generated extensions of the image of β in S,
and for different values of ζ, we could use different maps γ. Here Conditions
(4) and (5) require that the isomorphisms γ be in M themselves, hence that
they satisfy the same conditions.

For perfect covers, Condition (6) creates a second difference, which will
be important in Theorem 6.3, but is not related to Definition 3.2. In fact a
converse of Condition (6) follows from the first five conditions: if f ∈ IA

ij is an
isomorphism of Ai onto Aj, then M contains maps β with domain Ai and γ
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with domain Aj, with the same image in S and with f = γ−1◦β. Indeed, the
β : Ai ↪→ S given by Condition (2) and the γ : Aj ↪→ S subsequently given by
Condition (4) have the same image in S, since if y ∈ γ(Aj), then y = γ(f(a))
for some a ∈ Ai, but γ(f(a)) = β(a) lies in the image of β. Thus Condition
(6) is essentially a characterization of the isomorphisms in IA: there is an
isomorphism f ∈ IA

ij iff Ai and Aj describe the same substructure of S under
the perfect correspondence system M , in which case f factors through the
relevant maps in M .

Condition (6) is most easily met by requiring the map β in Condition (3)
to be unique. We refer to this as the Uniqueness Condition:

(3′). For every finitely generated substructure B of S, there exists a unique
β ∈M with image B.

Then Condition (6) only requires that each IA
ii contain the identity map; we

will discuss this further in Section 5. If the Uniqueness Condition holds, then
each finitely generated B ⊆ S has a unique Ai ∈ A to describe it.

Condition (6) itself does not quite require this uniqueness, but it comes
close to doing so. If we build the equivalence relation ≡ on {Ai : i ∈ ω}
generated by {〈Ai,Aj〉 : (∃f ∈ IA

ij) range(f) = Aj}, and define the new
cover A/ ≡, with an appropriate adjustment to IA, then we would have
uniqueness. Of course, in a uniformly computable cover A of S, it is Σ1 but
not necessarily decidable whether the image of an f ∈ IA

ij contains all of Aj
or not, and therefore A/ ≡ might not be a uniformly computable cover.

We note that it is not reasonable to replace Condition (2) in Definition
4.1 by any uniqueness condition dual to Condition (3′) above. Since A is
countable, the uniqueness of the maps β in Condition (2) would force S also
to be countable, and of course we wish our analysis to apply to uncountable
structures as well as countable ones.

Corollary 4.3 Every algebraically closed field of characteristic 0 is perfectly
locally computable.

Proof. We refer to the proof of Proposition 3.3. The necessary correspon-
dence system M is the set of all embeddings of structures of A into C. Lemma
3.4 showed that every such isomorphism is an extensional match, and so the
first five conditions of Definition 4.1 are quickly satisfied. Finally, if β and
γ are as in Condition (6), then γ−1 ◦ β is an embedding of Ai into Aj, and
therefore must lie in IA

ij .
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The situation of Corollary 4.3 generalizes to a further result:

Proposition 4.4 Suppose that A is a perfect cover for S, with a correspon-
dence system M such that for all Ai ∈ A, every embedding of Ai into S is
an element of M . Then S is ω-homogeneous.

This result is purely model-theoretic: the same proof would hold for any cover
A for which such a correspondence system M exists, regardless of whether A

were computable. For an introduction to ω-homogeneity, see p. 212 of [7].

Proof. Let ~x, ~y ∈ Sm be two finite sequences of elements of S such that
(S, ~x) ≡ (S, ~y). (The notation ≡ denotes elementary equivalence, as usual.)
We must show that for every z ∈ S there exists w ∈ S such that (S, ~x, z) ≡
(S, ~y, w). To see this, notice that the substructures Bx and By of S generated
by ~x and ~y must be isomorphic, say via an isomorphism g : Bx � By. Now
there exists an Ai ∈ A and a β ∈ M mapping Ai isomorphically onto Bx,
and also an Aj ∈ A, an f ∈ IA

ij , and a γ ∈ M mapping Aj isomorphically
onto the substructure Bz generated by Bx and z, such that γ ◦ f = β. But
the isomorphism g ◦ β from Ai onto By must lie in M , by the assumption
of the Proposition. So there also exists some C ⊆ S and some isomorphism
α : Aj � C such that α ◦ f = g ◦ β. Then α ◦ γ−1 is an isomorphism from
Bz onto C extending β, and we let w = α(γ−1(z)). Definition 4.1 shows that
every extension of Bz in S corresponds to an embedding of Aj into some
other element of A, which in turn corresponds to an extension of C, and
conversely. Hence (S, ~x, z) ≡ (S, ~y, w) as required.

(Alternatively, having found Aj and w as above, work in the language
augmented by constants ~x and z. Apply Corollary 3.9 to the structures
(S, ~x, z) and (S, ~y, w), for each of which A′ = {Am ∈ A : IA

jm 6= ∅} is a

perfect cover, with all IA′
mn = IA

mn.)

5 A Dash of Category Theory

Here we define the natural cover of a structure B. If B is a (globally) com-
putable structure, then its natural cover will be uniformly computable and
perfect. We give the definition under the assumption that B is computable.

Let Bi be the substructure of B generated by the i-th tuple (~b)i of ω<ω.
Then the domain of Bi is a computably enumerable set. Enumerate its
elements, and let Ai be the domain of the enumeration. (That is, Ai is an
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initial segment of ω from which we have a bijection βi onto the domain of Bi,
all computable uniformly in i.) Then we may define computable structures
Ai, uniformly in i and each with domain Ai, isomorphic to each Bi via the
map βi. Next, we define IA

ij to be the set of functions

{β−1
j ◦ βi : Bi ↪→ Bj},

i.e. the inclusion maps in B, lifted to the cover. Clearly these are embeddings,
and the condition (~b)i ⊆ Bj is Σ1, so this is a c.e. set, uniformly in i and j.

If B is countable but not computable, then the A built here is still a cover
of B, but may fail to be uniformly computable, or even to be computable at
all. If B is uncountable, then the indices i range over the uncountable set
containing all finite tuples of elements of the domain of B, and so the cover
A itself is uncountable. In this case, of course, effectiveness considerations
do not apply.

Modulo the pullback to the domain ω, the natural cover of B really just
the category FGSub(B) of all finitely generated substructures of S, known
long before now to model theorists and category theorists. The objects of
FGSub(B) are precisely the finitely generated substructures of B, and the
morphisms are the inclusions among these substructures. (Fräıssé referred
to the set of objects of FGSub(B) as the age of B.) Our definition of the
natural cover pulls each substructure back to the domain ω, or an initial
segment thereof, since we are concerned with issues of computability, but in
pure category theory one normally uses just the substructure itself.

This raises the question of whether all covers are themselves categories.
As collections of objects with maps among them, covers seem ripe for consid-
eration as categories. Definition 2.9 does come up short in two respects. The
first is trivial: for a cover A, it does not require that IA

ii contain the identity
map from Ai to itself. The second is less so: it does not require that the sets
IA
ij of embeddings be closed under composition. This may be rectified in the

case of an ∞-extensional cover.

Lemma 5.1 Let A be a uniformly computable cover of a structure S.

1. Define Aid to consist of the same simple cover as A, with

IAid
ij =

{
IA
ij , if i 6= j

IA
ii ∪ {idAi

}, if j = i.
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Then Aid is also a uniformly computable cover of S. Moreover, each of
these covers is θ-extensional (resp. ∞-extensional) iff the other is. If
A was perfect, then Aid = A.

2. Define A to consist of the same simple cover as A, with IA
ij containing

all compositions

Ai = Ai0 ↪→ Ai1 ↪→ · · · ↪→ Ain ↪→ Ain+1 = Aj

with the intermediate maps each from the appropriate IAid
ikik+1

. The A

is another uniformly computable cover of S. If A was ∞-extensional
(resp. perfect), then so is A, and if A has the Amalgamation Property
(as described in Definition 6.1 below), then so does A.

Proof. Item (1) is immediate from the definitions, since Condition (6) of
Definition 4.1 shows that in a perfect cover, each IA

ii already contains the
identity embedding. Likewise, it is readily seen that A is a uniformly com-
putable cover of S: one need only remark that if f ∈ IA

ij and g ∈ IA
jk, then g

lifts to an inclusion B ⊆ C via some β and γ, and (g ◦ f) lifts to the inclusion
β(f(Ai)) ⊆ C. Now suppose that M is a correspondence system for A. Only
Condition (5) of Definition 4.1 warrants consideration, and it is not difficult:

if β ∈ M with domain Ai and g ∈ IA
im, then g is the composition of a finite

chain of maps from sets IA
ikik+1

, and the result follows by induction on the
length of this chain. Condition (6) is also immediate, giving the result for
perfect covers. A similar induction shows the the Amalgamation Property
holds for A as well, assuming it held for A.

For a θ-extensional cover A with θ > 0, our A can fail to be θ-extensional.
With θ = 1, for example, suppose that β is a 1-extensional match with respect
to A, and fix f ∈ IA

ij and g ∈ IA
jk. 1-extensionality guarantees the existence of

the C and γ in the diagram below, and Aj in turn will have a 1-extensional
match onto some substructure of S, but not necessarily onto C, let alone
via γ. There may not exist any D ⊇ B and 0-extensional δ : Ak → D
corresponding to (g ◦ f) and β, in which case (g ◦ f) shows β not to be
1-extensional with respect to A.

Ai -f Aj -g Ak

6 6β ∼= γ ∼=
B - C⊆
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It remains open whether, for 0 < θ < ∞, a structure S can have a
θ-extensional cover without having a θ-extensional cover closed under com-
position and identity embeddings.

The following appears as Proposition 4.1 in [11].

Proposition 5.2 (Miller-Mulcahey) If S is perfectly locally computable,
then there exists a faithful functor R mapping FGSub(S) into a perfect cover
A of S which is closed under composition and identity embeddings. Moreover,
there exists a natural isomorphism β : (IA ◦ R) → IFGSub(S) where the I−
denote the appropriate inclusions into the category of all L-structures under
embeddings.

As shown there, this functor R : FGSub(S) → A is essentially surjective,
although it need not be onto. It also follows that colim(IA ◦R) ' S.

6 Countable Structures

The general intention of local computability is to apply computability theory
to uncountable structures. Nevertheless, we can learn a good deal about our
definitions by asking which countable structures satisfy them. In particular,
our first result makes clear (especially when seen in concert with Theorem
3.10) that among all the concepts we have defined for uncountable structures,
perfect local computability is the most apt generalization of the notion of
computable presentability for countable structures. First we require a notion
from model theory, adapted to our concept of a cover.

Definition 6.1 A cover A has the Amalgamation Property, abbreviated AP,
if for all i, j, k ∈ ω and all maps e ∈ IA

ij and f ∈ IA
ik, there exists an m and

maps g ∈ IA
jm and h ∈ IA

km for which h ◦ f = g ◦ e:

Ai

Aj

Ak

��
�
��
�*e

HH
HHHHjf

Am

��
��
��
��*

gHH
HH
HH
HHj

h
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We say that we can amalgamate Aj and Ak over Ai, relative to the maps
e and f .

Lemma 6.2 Every perfect cover A of any structure S has the Amalgamation
Property.

Proof. Let M be a perfect correspondence system for S over A, and fix
maps e ∈ IA

ij and f ∈ IA
ik. We use the six conditions from Definition

4.1, and suggest that the reader follow the diagram below (which shows
only the maps among structures in the cover, omitting their images in S).

Ai

Aj

Ak

Al

Am-

-

?

d

h

(α−1
m ◦ αl)

��
�
��
�*e

HH
HHHHjf

Now there is an αi : Ai ↪→ S in M , by Condition (2), and Condition (5)
yields maps αj : Aj ↪→ S and αk : Ak ↪→ S in M with αk◦f = αj◦e = αi. Let
C ⊆ S be generated by the images of αj and αk together. Then C is finitely
generated, so by Condition (4) we have elements l,m ∈ ω, embeddings d ∈ IA

jl

and h ∈ IA
km, and maps αl, αm ∈ M with domains Al and Am, respectively,

and both with image C, such that αl◦d = αj and αm◦h = αk. But Condition
(6) also holds, since M is perfect, and so α−1

m ◦αl ∈ IA
lm. Lemma 5.1 allows us

to assume closure of the sets of embeddings under composition, In particular,
we set

g = α−1
m ◦ αj = (α−1

m ◦ αl) ◦ d ∈ IA
jm.

But then

g ◦ e = α−1
m ◦ (αj ◦ e) = α−1

m ◦αi = α−1
m ◦ (αk ◦ f) = α−1

m ◦ (αm ◦ h) ◦ f = h ◦ f,

as required by the Amalgamation Property.

Theorem 6.3 Let S be any countable structure. Then the following are
equivalent.

1. S is computably presentable.
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2. S is perfectly locally computable.

3. S is ∞-extensional over a cover A with the Amalgamation Property.

Proof. (1 =⇒ 2) is not difficult. Let A be the natural cover of a computable
presentation B of S, as defined in Section 5, and fix the maps βi defined
there as well. It is quickly seen that this A is a perfect cover of B, under the
correspondence system M = {βi : i ∈ ω}. Conditions (1)-(3) of Definition 4.1
are immediate, as is Condition (5), given our definition of IA

ij . For Condition
(4), when βi(Ai) ⊆ C, we know that C = Bj for some j, that the map βj
lies in M , and that (β−1

j ◦ βi) ∈ IA
ij has the necessary properties. Finally, if

βi, βj ∈ M have the same image, then Bi = Bj, and so (β−1
j ◦ βi) ∈ IA

ij as
required by Condition (6). Thus B is perfectly locally computable. To see
that S is perfectly locally computable, take the same cover A and use the
correspondence system {γ ◦ βi : βi ∈M}, where γ is an isomorphism from B
onto S.

(2 =⇒ 3) follows from Lemma 6.2, so it remains to prove (3 =⇒ 1).
Suppose that A is a uniformly computable cover for S, with a correspondence
system M satisfying AP. Using Lemma 5.1, we may assume that A is closed
under composition. In category-theoretic terms, S is just the inverse limit
of the category A, but we need to build a computable presentation B of this
inverse limit. We will define is recursively so that Bs = Ais , with a map
gs : Bs ↪→ Bs+1 from IA

is,is+1
. To start, we let B0 = A0 and i0 = 0.

Given Bs, let s = 〈t, u, v〉, and fix i = it and k = is, so that Bt = Ai and
Bs = Ak. We begin stage s+ 1 by listing out those maps in IA with domain
Bt until we find the u-th element on this list. Let f ∈ IA

ij (for some j) be
this element. (Of course t ≤ s, so Bt is defined. Also, if there were only
finitely many maps in IA with domain Ai, then Definition 4.1 would imply
that S is itself finitely generated, hence isomorphic to some Ai ∈ A, hence
computably presentable. Therefore we may assume that we do find such an
f .)

We will incorporate this f into Bs+1 as follows. By the Amalgamation
Property, there exists some m and embeddings g ∈ IA

km and p ∈ IA
jm such

that
p ◦ f = g ◦ (gs−1 ◦ · · · ◦ gt).

(Recall that we closed the cover under composition of maps, so that gs−1 ◦
· · · ◦ gt ∈ IA

ik.) We find the least such triple 〈m, g, p〉, and define is+1 = m
and Bs+1 = Am, with fs = p ◦ f : Bts+1 ↪→ Bs+1 and gs = g : Bs ↪→ Bs+1.
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This completes stage s+ 1, and we say that f has been incorporated into B
at this stage. Notice that every f ∈ IA whose domain is Ait (= Bt) for any
t will be incorporated into B at infinitely many stages.

The structure B itself is the union of the chain of structures Bs under the
embeddings gs+1 : Bs ↪→ Bs+1. To build this B computably, at stage 〈u, v〉
we consider the element t (if any) which is enumerated into the domain of
Bu at stage v. (Note that Bu might be finite, so we cannot just wait for its
next element to appear.) For each of the finitely many elements x which
has already entered B at some stage 〈u′, v′〉 < 〈u, v〉, we check whether either
x = g′u◦gu′−1◦· · ·◦gu+1(t) (if u′ > u) or t = gu◦gu−1◦· · ·◦gu′+1(x) (if u′ < u).
If either of these holds, we do nothing at this stage; if neither holds, then we
add a fresh element to B and identify it with t ∈ Bu. Iterating this process
over all stages 〈u, v〉 builds the domain of B, and we define the functions and
relations on it in the obvious way. Notice that for every s the embeddings of
Bs and Bs+1 into B are compatible with the map gs : Bs ↪→ Bs+1, and that
we can compute these embeddings uniformly in s, so from here on we will
view each Bs as a substructure of B, with gs : Bs ↪→ Bs+1 as an inclusion.

Next we build the isomorphism α : B → S. Of course, α need not be
computable. At every stage s+1, the image Ss of the current approximation
αs will be a finitely generated substructure of S, its domain will be some Bt,
and αs will lie in M . We will ensure that the extension of αs is compatible
with the inclusion maps gt : Bt ↪→ Bt+1, so that at the end of the construction,
we may define α(x) for x ∈ B simply by finding some s and t with x ∈ Bt =
dom(αs) and letting α(x) = αs(x). We start by taking α0 ∈ M to be any
embedding of B0 = Ai0 into S.

Suppose that dom(αs) = Bt = Ai and that we wish to extend αs to
αs+1 by adding a new element y ∈ S to Ss = range(αs). Since M is a
correspondence system containing αs, there exists Aj ∈ A, f ∈ IA

ij , and a
map β ∈ M such that β maps Aj onto the substructure of S generated by
y and Ss, with β ◦ f = αs. Now since f ∈ IA, there is some stage s′ > t
at which f is incorporated into B. When this happened, we defined an
embedding fs′ = p ◦ f : Bt ↪→ Bs′+1, with p ∈ IA

jm for some m, and with
fs′ ∈ IA

im because IA is closed under composition. But since β lies in the
correspondence system M , there exists γ ∈ M with domain Bs′+1 such that
β = γ◦p. We define αs+1 = γ, with domain Bs′+1 and let Ss+1 = range(αs+1),
noting that for x ∈ dom(αs),

αs+1(gs′ ◦ · · · ◦ gt(x)) = γ(p ◦ f(x)) = β(f(x)) = αs(x).
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Finally, y ∈ range(β) ⊆ range(γ) = range(αs+1). This completes the con-
struction. Notice that for all s, dom(αs) = Bt ⊇ Bs, so that dom(α) is all of
B, and range(α) = S by construction. Thus S and B really are isomorphic,
and S is computably presentable.

7 Computable Simulations

We now show that perfectly locally computable structures can be “simulated”
in a strong way by globally computable (and hence countable) structures.
This can be viewed either as an indictment of perfect local computability,
saying that it is such a strong condition that the only uncountable structures
satisfying it are those which are very closely related to computable structures;
or as further evidence that perfect local computability is the correct analogue,
in the uncountable setting, to computable presentability in the countable
setting. We leave this judgment to the reader. Work in this section is joint
between Dustin Mulcahey and the author.

Definition 7.1 Let S be any structure. A simulation of S is an elementary
substructure B � S such that B and S realize exactly the same finitary types.
We often refer to any A isomorphic to such a B as a simulation of S, even if
A is not itself a substructure of S. Hence a computable simulation of S is a
computable structure isomorphic to a simulation of S.

Lemma 7.2 Let S be locally computable, with a correspondence system N
over a uniformly computable cover A. Then S has a countable substructure
B with its own correspondence system M ⊆ N over A. If N was a perfect
correspondence system for S, then M is perfect for B as well.

Proof. B will be a countable union of countable substructures Bs of S. To
start, we fix for each i ∈ ω one map αi ∈ N with domain Ai, Let M0 = {αi :
i ∈ ω}, and let B0 be the substructure of S generated by the union of all the
images of these αi. The conditions for a perfect cover are ∀∃ conditions, so
now we will be able to keep B countable as we close M under those conditions,
using the analogous conditions in the correspondence system N .

Assume we have defined a countable Bs and Ms. First, for every i, every
α ∈ Ms with domain Ai, and every f ∈ IA

ij (for any j), there exists some
γ ∈ N with domain Aj such that f lifts via α and γ to the inclusion α(Ai) ⊆
γ(Aj). Form M ′

s ⊇Ms by adjoining one such γ to Ms for each such i, α and
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f . Also, let B′s be generated by the union of the images of the maps in M ′
s.

Clearly both B′s and M ′
s remain countable.

Next, for every i, every α ∈ Ms with domain Ai, and every finitely
generated C ⊆ Bs with α(Ai) ⊆ C, there exists some j, some f ∈ IA

ij , and
some γ ∈ N with domain Aj such that f lifts to the inclusion α(Ai) ⊆ C via
α and γ. Adjoin to M ′

s one such γ for each such i, α, and C, to form M ′′
s .

Finally, for every finitely generated substructure C ⊆ Bs, there exists a
γ ∈ N with image C (since C ⊆ S). Form Ms+1 by adjoining to M ′′

s one
such γ for each such C. Since Bs was countable, it has only countably many
finitely generated substructures, and so Ms+1 is still countable.

It is clear that the union B = ∪sBs is a countable substructure of S,
with cover A, and that M = ∪sMs is a correspondence system for this B
over A. Our B0 already satisfied item (2) of Definition 4.1, and our ensuing
adjoinments satisfied (4), (5), and (3), in that order, without ever violating
(1). (Of course A is still uniformly computable as well; that definition has
nothing to do with the structure covered by A.)

It remains to see that this M is perfect for B whenever N is perfect for
S. But this is easy: if α and γ lie in M and have the same image in B, then
they lie in N and have the same image in S. Since N is perfect, γ−1 ◦α must
then lie in the appropriate IA

ij .

In this situation, B will be an elementary substructure of S. The next
lemma extends this observation. (If B is as in Lemma 7.2, and P is empty,
then in the proof of Lemma 7.3 we may show that at every step ψs is just
inclusion.)

Lemma 7.3 Let B and S be two structures, each with a correspondence sys-
tem over the same uniformly computable cover. Assume that B is countable.
Then B is a simulation of S. Indeed, for any countable set P ⊆ S of param-
eters, we can elementarily embed B into S so that its image contains P and
realizes the same finitary types as S over every finite P0 ⊆ P .

Proof. Let A be a common uniformly computable cover of S and B, with
correspondence systems M for B and N for S. Our embedding is built step
by step, so we start by enumerating the domain of B as {b0, b1, . . .}, and
P as {p0, p1, . . .}. Fix an α ∈ M whose image is the substructure B0 ⊆ B
generated by b0, and a γ ∈ N with the same domain as α, and define ψ0 to
be γ ◦ α−1, with B0 = dom(ψ0) ⊆ B and C0 = range(ψ0) ⊆ S.
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At stage t + 1 = 2s + 1, we extend ψt so that its range contains ps. By
induction ψt = γ ◦α−1 for some γ ∈ N and α ∈M with common domain Ai
in A. Let Ct+1 be the substructure of S generated by Ct and ps. By induction
Ct is finitely generated, so there is a δ ∈ N with some domain Aj ∈ A, and an
f ∈ IA

ij , such that f lifts via γ and δ to the inclusion Ct ⊆ Ct+1. In turn there
is a β ∈ M with domain Aj such that f lifts via α and β to the inclusion
Bt ⊆ β(Aj). Set Bt+1 = range(β) and ψt+1 = δ ◦ β−1.

At stage t + 1 = 2s + 2, we extend the embedding ψt from its current
domain Bt to the structure Bt+1 generated by Bt and bs. By induction Bt
is finitely generated, and ψt = γ ◦ α−1 for some γ ∈ N and α ∈ M with
common domain Ai in A. So there is a β ∈ M with some domain Aj ∈ A,
and an f ∈ IA

ij , such that f lifts via α and β to the inclusion Bt ⊆ Bt+1. In
turn there is a δ ∈ M with domain Aj such that f lifts via γ and δ to the
inclusion Ct ⊆ δ(Aj). Set Ct+1 = range(δ) and ψt+1 = δ ◦ β−1.

Now we define ψ = ∪tψt. Clearly ψ has domain B and range ⊆ S con-
taining P , and ψ must be an embedding. To see that it is elementary, sup-
pose that ∃xθ(ψ(b0), . . . , ψ(bs), x) is an existential formula true in S. Now
ψs = γ◦α−1 for some α ∈M and γ ∈ N with common domain Ai ∈ A. Since
N is perfect, there is a δ ∈ N (with some domain Aj) and an a ∈ Aj and an
f ∈ IA

ij , such that θ(f(α−1(b0)), . . . , f(α−1(bs)), a) holds in Aj. But since M
is also a perfect cover, there is a β ∈M with the same domain Aj such that
f lifts to the inclusion Bs ⊆ β(Aj) via α and β. Therefore θ(b0, . . . , bs, β(a))
holds in B. Thus ψ is an elementary embedding.

Finally, given any n-type Γ over any finite parameter set P0 ⊆ P , such
that Γ is realized in S by a tuple (d1, . . . , dn), we start with the substructure
P0 ⊆ S generated by P0. Since P0 ⊆ range(ψ), we have a t for which
P0 ⊆ range(ψt). Let ψt = γ ◦ α−1 with α ∈ M and γ ∈ N . There must
be a δ ∈ N with some domain Aj ∈ A and an f ∈ IA

ij such that f lifts via
γ and δ to the inclusion of P0 into the substructure generated by P0 and
d0, . . . , dn. But now there is also some β ∈ M with domain Aj such that f
lifts via α and β to the inclusion Bt ⊆ β(Aj), and we set bi = β(δ−1(di)) and
ci = ψ(bi) for each i. Then (c1, . . . , cn) is an n-tuple within the image of ψ
which realizes the type Γ over P0, by standard arguments using M and N .

When we have a parameter set P as in Lemma 7.3, we refer to the image
of B as a simulation of S over P . We might also refer to B itself the same
way, but only when the embedding ψ : B ↪→ S is clear, because we need to
know which elements ψ−1(p) ∈ B correspond to the elements of P in this
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simulation. Later we will discuss the extent to which BP can be said to be
uniform in P .

Corollary 7.4 Two countable structures with correspondence systems over
the same uniformly computable cover are isomorphic.

Proof. Since S is countable, we simply set P = S and apply Lemma 7.3,
whose proof may now be regarded as a back-and-forth construction of an
isomorphism from B onto S.

We are now ready for the main result of this section.

Theorem 7.5 Every perfectly locally computable structure S has a com-
putable simulation A, which can be embedded into S so as to simulate S
over arbitrary countable parameter sets. Specifically, there is a set of ele-
mentary embeddings ψp : A ↪→ S, one for each function p : ω → S which
enumerates a countable parameter set Qp = range(p) ⊆ S, such that:

• Qp ⊆ ψp(A); and

• ψp(A) is a simulation of S over Qp; and

• if p and p′ are two such functions and p�n = p′�n, then for all k < n,

ψ−1
p (p(k)) = ψ−1

p′ (p′(k)).

As a partial converse, every structure which has a computable simulation A
with embeddings ψp satisfying these conditions has a uniformly computable
cover with a correspondence system.

To make this last claim an actual converse, we would need to show that the
correspondence system for S is perfect. Whether this is true remains open.
We also note that it would be equivalent to give the same statement only
for finite parameter enumerations p, since the last condition would allow a
simulation over a countable parameter set P to be built by taking successive
nested finite enumerations pm ⊆ pm+1 with P = ∪mrange(pm), and setting
ψ = limm ψpm
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Proof. When we assume that S is perfectly locally computable, the existence
of a computable simulation of S follows from Lemma 7.2, which also ensures
that S and its computable simulation A both have perfect correspondence
systems over the same uniformly computable cover. Therefore Lemma 7.3
shows that A can be elementarily embedded into S so as to simulate S over
any parameter set Qp enumerated by a function p : ω → S. Moreover, an
examination of the proof of Lemma 7.3 shows that the embedding chooses the
a ∈ A with ψp(a) = p(k) using only the common cover A, its correspondence
systems for A and S, and the elements p(0), p(1), . . . , p(k) in S. This proves
the claim about parameter enumerations p and p′ which agree up to n.

Next we show our partial converse: that the existence of such an A implies
that S has a uniformly computable cover with a correspondence system. A
has a perfect cover A, by Theorem 6.3. Let M be a perfect correspondence
system for A and A. The correspondence system N will consist of all maps
of the form ψp ◦ α, for all finite p : n→ S and all α ∈M such that range(α)
is generated by {ψ−1

p (p(i)) : i < n}. (Here we think of a finite function
p : n→ S as a function from ω into S by repeating its image over and over:
p(k + nm) = p(k) for all k and m.)

Now each finitely generated C ⊆ S with generators enumerated by p lies
within the image of ψp, and the finitely generated substructure ψ−1

p (C) ⊆ A
must be the image of some Ai ∈ A under some α ∈M , since M is a perfect
cover of A. Hence C = (ψp ◦α)(Ai) is the image of some map in N . Likewise,
each Ai ∈ A is the domain of some α ∈ M , hence also of some map in N .
Moreover, each f ∈ IA

ij , for any i and j, lifts to an inclusion map within
A, and then lifts further to an inclusion map within S, via any ψp we like.
Conversely, any inclusion C ′ ⊆ C of finitely-generated substructures of S is
the lift (via ψp, where p enumerates first the generators of C ′, and then the
generators of C) of an inclusion in A, which in turn is the lift of some f in
some IA

ij via some α, β ∈ M . If p′ is the restriction of p to the generators of
C ′, then the inclusion C ′ ⊆ C is the lift of f via (ψp′ ◦ α) and (ψp ◦ β), which
both lie in N . Thus A is a uniformly computable cover of S.

The preceding remarks also proved the first three conditions in Definition
4.1. For Condition (5), fix any f ∈ IA

ij for any i and j, along with any β ∈ N
with domain Ai. Then β = ψp ◦ α for some α ∈ M and some p : n → S for
which {ψ−1

p (p(k) : k < n} generates range(α). Since M is a correspondence
system, there is a γ ∈ M with domain Aj such that α = γ ◦ f . But now
there is a finite q such that q�n = p and q(n+ k) = ψp(ak), where a0, . . . , am
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generate γ(Aj) within A. So (ψq ◦ γ) ∈ N , and

(ψq ◦ γ ◦ f) = (ψq ◦ α) = (ψp ◦ α),

with the last equality following because p�n = q�n and range(α) is generated
by the elements ψ−1

p (p(k)) = ψ−1
q (q(k)) for k < n. This proves Condition

(5).
For Condition (4) of Definition 4.1, fix any β ∈ N with domain Ai and

any finitely generated C ⊆ S with β(Ai) ⊆ C. Now β = ψp ◦ α for some
α ∈ M and some finite p : n → S, with the elements ψ−1

p (p(k)) generating
range(α). Let q(k) = p(k) for k < n, and let q(n), . . . , q(n+m−1) enumerate
the generators of C in S. By assumption, ψq is an elementary embedding of A
into S whose image contains range(q). Let D = 〈ψ−1

q (q(k)) : k < m〉 ⊆ A.
Since ψ−1

q (q(k)) = ψ−1
p (p(k)) for all k < n, we know that α(Ai) ⊆ D, and

since M is a correspondence system, there is some β ∈ M and some j and
f ∈ IA

ij with D = range(β) and β ◦ f = α. But then

(ψq ◦ β ◦ f) = (ψq ◦ α) = (ψp ◦ α),

proving Condition (4), since (ψq ◦β) ∈ N . Thus A is a uniformly computable
cover of S with correspondence system N .

We can think of BP as being built uniformly in the parameter set P if the
elements of P are named as elements in different Ai in the cover A of S. That
is, suppose that we are given a computable enumeration 〈(ik, ak, fk)〉k∈ω for
which there exist maps βk ∈ N with ak ∈ Aik = dom(βk) such that

• each fk ∈ IA
ik,ik+1

; and

• βk+1 ◦ fk = βk; and

• {βk(ak) : k ∈ ω} = P .

Then we could build a computable copy of the simulation BP of S over P ,
uniformly in the perfect cover of S and the enumeration 〈(ik, ak, fk)〉k∈ω,
and enumerate the image of P in BP . More generally, if the enumeration
〈(ik, ak, fk)〉k∈ω has Turing degree d, then with a d-oracle we can build a
copy of BP in which the image of P will be computably enumerable in d. It
is awkward to think of the set P itself as having Turing degree d, because an
infinite set P will have distinct enumerations with distinct Turing degrees,
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but within the cover A of S, we can view P as being computably enumerable
in d, as well as in the degrees of other enumerations. Of course, P itself,
viewed as a subset of S, does not admit effective enumeration in any obvious
way.

It is immediate from Definition 4.1 that if M is a correspondence system
for a cover A of S, then likewise M is a correspondence system for the cover
A defined in Section 5. in which we enumerate the identity map on each
Ai into the appropriate set IA

ii and then close the set IA under composition.

That is, for every f ∈ IA
ij and g ∈ IA

jk, we enumerate (g ◦ f) into IA
ik. If

A is uniformly computable, then so is A, since we can build A from A just
by applying this rule as we enumerate the sets IA

ij . (A has the same simple
cover of S that A has, of course.) It is clear that M is now a correspondence
system for the derived cover as well. Moreover, this derived cover A′ may be
viewed as a category, with the elements Ai of the simple cover as the objects,
and with each IA′

ij as the set of morphisms from Ai into Aj.

8 Examples

Several examples, mainly involving fields, have been given in the preceding
sections. In particular, see Porposition 2.3, Proposition 2.8, Proposition 3.3,
Proposition 3.5, and Corollary 4.3. Now we provide an assortment of further
examples.

As an example of perfect local computability, we propose the linear order
L on Cantor space. The domain of L is the uncountable set 2ω, with the
relation < being simply the lexicographic order. This structure is well known
in mathematics, and fairly straightforward to describe via the “middle thirds”
construction, but we know (from Proposition 3.5, for instance) that such
characteristics do not always ensure even 1-extensional local computability.

Of course, a subset S ⊆ 2ω generates only the substructure (S,<), and
so the finitely generated substructures of L are just the finite linear orders.
(This would hold with any infinite linear order in place of L.) So it is trivial
to show that L is locally computable. Building a perfect cover A, on the
other hand, will require some description.

Consider the larger signature containing the relation <, one other binary
relation G, and four unary relations L, R, GL, and GR. The intuition is that
we use L and R to designate the left and right end points of the order, and
LG and RG to name left and right end points of the “gaps” in L, i.e. the end
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points of the missing middle thirds. Gxy holds iff x and y are the left and
right end points of the same gap. One can extend L itself to be a structure
in this signature, indeed with the new relations all definable from <: GL is
just the adjacency relation in L, while LLGx holds iff (∃y)GLxy and RLGx iff
(∃y)GLyx. LLx and RLy hold only of the left and right end points x and y of
the entire order, respectively. We use this new signature to build our cover.

First, for any finite structure B in the new signature, it is decidable
whether B satisfies the following axioms.

1. (B, <) is a linear order.

2. For each x ∈ B, at most one of Lx, Rx, LGx, or RGx holds.

3. (∀x)[(Lx→ ∀y x ≤ y) & (Rx→ ∀y y ≤ x)].

4. (∀x∀y)[Gxy → (x < y & LGx & RGy & ∀z¬(x < z < y))].

The idea is that all finite substructures of L should satisfy these axioms. We
do not require B to have any x with LBx, nor any y with RBy, because an
arbitrary finite subset of L will not necessarily contain the end points of L.
Similarly, it is allowed for LBGx to hold even if there is no y ∈ B with GBxy,
and likewise for RBG.

Now we may compute, uniformly, a list B0,B1, . . . (with no repetitions) of
all models B of these axioms such that the domain of B is an initial segment
of ω and <B is just the standard relation < on that domain. The simple cover
A consists of all Ai with i ∈ ω, where Ai is the reduct of Bi to the signature
with just <. (So in fact Ai is just the linear order 0 < 1 < · · · < |Ai| − 1.)
Of course, the generating set of Ai is its entire domain, and clearly this does
form a uniformly computable simple cover of L.

The maps in IA
ij will be defined as embeddings of Bi into Bj, since such an

embedding is clearly also an embedding Ai ↪→ Aj. We enumerate into IA
ij all

strong homomorphisms f : Bi → Bj in the (larger) signature of these struc-
tures. Such an f must be injective, since it is a homomorphism of strict lin-
ear orders, and must also satisfy ∀x(LBix↔ LBjf(x)) and (∀x∀y)[GBixy →
GBjf(x)f(y)], and likewise for the other symbols in the larger signature..
(However, it is allowed for GBj to hold of the pair 〈f(x), z〉, even if there was
no y ∈ Bi such that GBi held of 〈x, y〉. On the other hand, if such a y did
exist, then GBj holds of 〈f(x), f(y)〉, by our rules above, and the axioms for
G and < then ensure that z = f(y).)
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The perfect correspondence system M will contain all maps α : Ai → L
which are homomorphisms when viewed as maps from Bi into L in the larger
signature (to which L was extended above). That is, they must satisfy:

• α(x) = 0000 · · · iff LBi(x).

• α(x) = 1111 · · · iff RBi(x).

• α(x) has tail 0000 · · · (that is, α(x) contains only finitely many 1’s) iff
RBi
G (x) or LBi(x).

• α(x) has tail 1111 · · · iff LBi
G (x) or RBi(x).

• GBi(x, y) iff there is some σ ∈ 2<ω with α(x) = σ 0̂1111 · · · and α(y) =
σ 1̂0000 · · · .

Now for any finite substructure C of L, there is a unique i such that an
α ∈ M maps Ai onto C. The elements of Bi must be 0, 1, . . . , |C| − 1, under
the usual < relation, and the other relations on Bi are determined by these
conditions. Our enumeration B0,B1, . . . clearly must include some such Bi,
and conversely, it is uniquely determined by the choice of C. On the other
hand, given any i, the conditions above show how to pick out a substructure
C ⊆ L and a bijection α ∈ M from Bi onto C. There will almost always
be more than one such C, of course: C is uniquely determined only if every
x ∈ Bi satisfies either LBi or RBi . This shows that our M satsifies the first
three conditions of Definition 4.1, and also satisfies the Uniqueness Condition
described subsequently.

Now suppose that C ⊂ D are finite substructures of L, and that α ∈ M
with image C. As argued above, there is a unique β ∈M with image D, and
(β−1◦α) defines a homomorphism (in the larger signature) from Bi = dom(α)
onto Bj = dom(β). This homomorphism must lie in IA

ij , so Condition 4 is
fulfilled. Conversely, if we have α ∈ M , with domain Ai and image C, and
are given j and f ∈ IA

ij , then we define β : Aj → L as follows, starting
with β�f(Ai) = α ◦ f−1. For each element x ∈ Aj − f(Ai), starting with the
smallest, we ask first whether there is a y ∈ Aj such that GBj holds of 〈x, y〉 or
of 〈y, x〉. If so, then either β(x) is determined by α(f−1(y)) (if y ∈ f(Ai)), or
else we choose β(x) and β(y) to be the end points of an appropriate gap in L.
If there is no such y, then we simply choose β(x) in the appropriate interval
in L satisfying either L, R, LG, RG, or none of the above there, according
to the relation satisfied by x in Bj, but with ¬GLxz and ¬GLzx for each z
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already in the image of β. This β, and its image β(Aj) ⊆ L, satisfy Condition
5 in Definition 4.1, so M is indeed a correspondence system. Moreover, we
have already noted that M satisfies the Uniqueness Condition, hence must
be perfect.

The main point of this example is that building a cover of a structure
S, especially a perfect cover (or at least a highly extensional cover), usually
requires us to sort out exactly what the important attributes of the various
elements of S may be. In this case, those attributes mainly involved the gaps
in L: being the left or right end point of a gap, first of all, and recognizing the
corresponding right or left end point, if this was the case. If we had used the
same unary relations but omitted G from the signature, then we could have
built a 1-extensional cover, but not a 2-extensional cover, since recognizing
the corresponding right or left end point requires two quantifiers. Cantor
space is sufficiently homogeneous that we can do all of this effectively. Of
course, it could be far more difficult to build a 1- or 2-extensional cover, let
alone a perfect cover, for a suborder of L in which certain end points of gaps
were removed, while others remained.

Likewise, in the case of algebraically closed fields, building a perfect cover
requires recognizing the essential attributes of elements of the ACF: their
algebraic relationships to each other and to the ground field Q. We invite
the reader to build extensional covers of ordinals: by doing so, he or she will
find that the salient attribute of elements there is being a limit ordinal, and
in particular the specific limit level, as described by the Cantor-Bendixson
rank (e.g. ω2 is a limit of limits, ω3 a limit of limits of limits, etc.). The
extent to which one must worry about the Cantor-Bendixson rank depends
on the level of extensionality one demands of the cover. Again, the process
of finding a highly extensional cover leads one to an understanding of the
most relevant characteristics of elements of the structure.

The odd fact is that for countable structures, this is not so much the
case. As shown in Theorem 6.3, every (globally) computable structure has a
perfect cover, yet there this cover is built not by recognizing specific aspects
or attributes to be described. The construction of the cover there comes
directly from the computable presentability of the original stucture, wherein
all those attributes are wrapped up.

By Theorem 7.5, there is a computable simulation of the linear order
L of Cantor space. We omit the details here, but this simulation may be
envisioned by taking the Cantor middle-thirds set C within the real unit
interval [0, 1] and intersecting C with Q. This linear order is soon seen to be
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computably presentable: one way is to present (Q, <) computably and then
take the suborder of those rationals with ternary expressions using only the
digits 0 and 2; while another presentation can be given by a computable set of
pairs 〈σ, τ〉 ∈ (2<ω × 2<ω), with 〈σ, τ〉 representing the string σ τ̂ τ̂ τ̂ˆ · · · in
2ω. We leave the reader to show that both of these methods build computable
simulations of L.

We conclude this section with some examples of countable structures that
distinguish various of our notions. For example, the following is our first proof
that having a computable cover does not imply local computability.

Proposition 8.1 Let Rc be the ordered field containing all computable real
numbers. Then Rc has a computable cover, but no uniformly computable
cover.

A real number is computable if the lower cut which it defines in Q is com-
putable; equivalently, if its binary expansion is

∑
n∈ω f(n) · 2−n for some

computable function f such that f(n) ≤ 1 for all n > 0. That is, f computes
all bits in the binary expansion of the real. The computable reals form a
countable real closed subfield of the reals, of infinite transcendence degree
over Q. (The field Rc[i] of computable complex numbers, on the other hand,
is algebraically closed, hence cannot be extended to an ordered field, and by
Corollary 4.3, it is perfectly locally computable.)

Proof. For any finite set of generators of a subfield B ⊆ Rc, we already
have a computable presentation of B as a field, given in Proposition 2.3. To
compute the order < on B, we need only know the upper and lower cuts
of each generator. Since these generators are all computable real numbers,
there are algorithms for computing these cuts, and ordinary algebra then
allows us to extend our computation of < to all rational functions of these
generators, hence to all of B. Thus the (countable) set of all finitely generated
substructures of Rc forms a computable cover of Rc, with the inclusion maps
as the embeddings for this cover.

However, suppose A were a uniformly computable cover for Rc. Then for
every element x of every Ai ∈ A, we could compute the binary expansion
of x, since the upper and lower cuts of rationals above and below x can
easily be determined by the computable relation < in Ai. Since this could
be done uniformly in i and x, we could give a single algorithm which would
list out all these binary expansions. However, for every computable real
r ∈ Rc, the ordered subfield Q(r) would be isomorphic to some Ai, and since
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the isomorphism would preserve the order, the binary expansion of r would
appear (infinitely often, in fact) on the list above. This is impossible: it is well
known (via an easy diagonalization) that there is no universal computable
set.

Notice, however, that Rc is not too far from being locally computable.
In particular, we could say that Rc is locally ∅′′-computable, in the sense
that there is a ∅′′-computable enumeration of a computable cover of Rc. In
fact, by relativizing Theorem 6.3 using a ∅′′-oracle, we could show that the
ordered fieldRc is perfectly locally ∅′′-computable, since it has a presentation
computable in ∅′′.

We also give a simple example to show that even for countable structures,
local computability is not equivalent to extensional local computability (and
hence, by Theorem 6.3, not equivalent to computable presentability either).
For any nonempty set S ⊆ ω, let TS be the countable tree, in the language
of strict partial orders ≺ with a constant r for the root, built as follows. The
root of T is r = 0, and we put all odd numbers at level 1 in T . Then, writing
S = {n0 < n1 < · · · }, for each k ∈ ω, we add a chain of nk nodes above
each of the nodes 2〈k, i〉 + 1 at level 1. (If |S| = j < ω, then we partition
the nodes at level 1 into j countable classes instead, so that every node at
level 1 has a chain above it. The chain could have length 0 if 0 ∈ S.) Thus
TS branches only at the root, with countably many branches starting at level
1, and for each n ∈ ω, n lies in S iff TS has some branch (hence infinitely
many) containing exactly n + 1 nodes. (Here we do not regard the root as
a node on any branch.) Clearly this structure TS can be built to have the
same Turing degree as S.

Proposition 8.2 The following are equivalent.

1. TS is perfectly locally computable.

2. TS is extensionally locally computable.

3. S is the range of a limitwise monotonic function.

Proof. Recall that a (total) function f is limitwise monotonic if there exists a
total computable binary function h which is monotonic, i.e. h(z, s) ≤ h(z, s+
1) for all z and s, and such that f(z) = lims h(z, s). If such a function exists,
then it is a simple matter to use it to build a computable tree isomorphic
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to TS, and then Theorem 6.3 shows that TS is perfectly locally computable.
Thus (3 =⇒ 1).

(1 =⇒ 2) is immediate. To see that (2 =⇒ 3), suppose that A is an
extensional cover of TS. We define a total computable function h(〈x, i〉, s).
First fix a single element n0 ∈ S, and let h(〈x, i〉, s) = n0 whenever x is not a
node in the structure Ai of A. (Since the language has no function symbols,
Ai contains only its generators and r, so the domain of Ai is computable.)
Also, h(〈r, i〉, s) = n0 for all i and s. If x does lie in Ai and x 6= r, then for
each of the finitely many embeddings f which have appeared in any IA

ij by
stage s, we ask how many other nodes lie on the branch containing f(x):

h(〈x, i〉, s) = max |{y ∈ Aj : r ≺ y ≺ f(x) or f(x) ≺ y}|,

taking the maximum over all j ∈ ω and all f ∈ IA
ij,s. Then h is computable,

increasing in s, and total (since we put h(〈x, i〉, s) = 0 if no embeddings f
have appeared yet).

Now for any Ai and any x 6= r in Ai, we have an extensional match β
mapping Ai onto some finite substructure B ⊆ TS. Consequently, any f ∈ IA

ij

corresponds to an extension of B in TS, and so lims h(〈x, i〉, s) is the number
of other nodes on the branch in TS containing β(x). Thus lims h(〈x, i〉, s)
exists and lies in S. Conversely, every n ∈ S corresponds to a branch of
length n + 1 in TS, and that branch has an extensional match with some
Ai ∈ A, so every n ∈ S lies in the range of lims h( · , s).

Corollary 8.3 There exists a countable, locally computable tree T (in the
language of partial orders) which is not extensionally locally computable.

Proof. Fix a set S which is not the range of any limitwise monotonic function.
The finitely generated substructures of the corresponding tree TS are just
the finite substructures, and we can list these out easily, since they contain
precisely those finite trees which do not branch above the root. Since these
are finite objects, it is easy to enumerate all possible embeddings of one into
another, and every such embedding corresponds to an extension of one finite
substructure of TS to another one. Thus we have a uniformly computable
cover of TS, but no extensional cover, by Proposition 8.2.

Now consider Tω, the tree we build by taking S = ω. That is, Tω branches
infinitely often at its root, branches nowhere else, and for each n ∈ ω has
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countably many branches of length n+1. Then Tω has exactly the same uni-
formly computable cover as any other tree TS (for any infinite S). However,
Tω is computable, and moreover Tω is not elementarily equivalent to any TS
with S 6= ω. (In particular, for any n /∈ S, the Σ2-sentence saying that there
exists a branch containing exactly n + 1 nodes holds in Tω but not in TS.)
This establishes the following.

Corollary 8.4 There exist countable structures with the same uniformly
computable cover, such that one structure is computable (and hence perfectly
locally computable), but the other is not computably presentable, indeed not
even extensionally locally computable.

Our next corollary, in concert with Corollary 3.9, helps distinguish local
computability from perfect local computability.

Corollary 8.5 There exist 2ω-many countable, pairwise elementarily non-
equivalent structures with the same uniformly computable cover. Indeed, these
structures all have distinct Σ2-theories.

Proof. Just consider TS for every nonempty S ⊆ ω.

Finally, we use these results to show that the converse of each statement
in Proposition 3.8 and Theorem 3.10 is false.

Theorem 8.6 There exists a tree T which is not extensionally locally com-
putable, yet such that for every θ < ωCK1 , the Σθ-theory of T is itself Σ0

θ.

Proof. By a result of Hirschfeldt, Miller, and Podzorov in [6, Lemma 3.1],
there exists a set S which is not the range of any limitwise monotonic func-
tion, yet which is low, i.e. its jump S ′ is Turing equivalent to ∅′. The cor-
responding tree TS is not extensionally locally computable, by Proposition
8.2. However, the atomic diagram of TS has the same Turing degree as S,
and more generally, the Σθ theory of TS has the same Turing degree as the θ
jump S(θ), which for θ > 0 is just the degree of ∅(θ).

Now the Σ1-theory of TS simply describes all finite subtrees of TS. But
these subtrees are precisely those finite trees which branch only at the root, so
the Σ1-theory is computable. Now let m > 0 and let ϕ(~x) be any Πm formula.
The Σm+1 sentence ∃~xϕ(~x) holds iff there exist elements ~a in TS such that
ϕ(~a) holds. But a ∅(m) oracle will decide whether ϕ(~a) holds in TS, uniformly
for any fixed ~a, so the Σm+1-theory of TS is enumerable using a ∅(m) oracle,
hence is Σm+1, as required. A similar argument covers hyperarithmetical
formulas.
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The following analogous result shows that the hierarchy of extensionalities
does not completely collapse.

Theorem 8.7 There exist structures which are 1-extensionally locally com-
putable but not 5-extensionally locally computable. Moreover, the Σ0

6-theory
of such a structure can be of arbitrary non-Σ0

6 Turing degree.

Proof. Fix any set U ⊂ ω which is not Π0
6. The structure LU will be the

computable well-order of order type ω4, given by the lexicographic order
≺ on the domain ω4, with a constant symbol 0 for the least element and
an additional unary function symbol S such that for k ∈ S, the (k + 1)-st
iterate Sk+1(0) is the least element � Sk(0) of the form 〈j, 0, 0, 0〉; and for
k /∈ U , Sk+1(0) is the least element � Sk(0) of the form 〈i, j, 0, 0〉. For all
x /∈ {fk(0) : k ∈ ω}, we define S(x) = x.

Notice that LU has no computable presentation, for the complement of U
is definable by a Σ6-formula in the language of LU , yet is not Σ0

6. By similar
reasoning, LU cannot be 5-extensionally locally computable: Proposition 3.8
shows that if it were, then the Σ6-theory of LU would be Σ0

6.
We now construct a uniformly computable cover of LU and show that our

cover is 1-extensional. Finitely generated substructures of LU consist of all
fk(0) and finitely many other points. In our cover A, however, we include
more information. A structure Ai in A consists of such a set of points, along
with a function qi such that

• qi(a, b) ∈ ω ∪ {∞} for all a, b ∈ Ai with a ≺ b; and

• qi(a, b) + qi(b, c) = 1 + qi(a, c) for all a, b, c ∈ Ai with a ≺ b ≺ c; and

• (∀k > 0)(∀a)qi(a, f
k(0)) =∞.

The last condition makes it clear that qi constitutes finitely much informa-
tion. The second condition shows that qi is determined by its values on pairs
of consecutive points in Ai. The intuition is that qi(a, b) tells how many
points are allowed to go in between a and b in extensions of Ai. The last
condition ensures that every fk(0) is a limit point. We use the symbol ∞
rather than ω to emphasize that we are not naming order types of intervals,
but only cardinalities.

The set IA
ij consists of those maps f : Ai ↪→ Aj which respect the symbols

0, S, and ≺ and satisfy, for every a ≺ b in Ai, that Aj contains at most
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qi(a, b) elements between f(a) and f(b). Due to the final condition, there are
only finitely many intervals to be checked, so in fact each IA

ij is computable,
uniformly in i and j.

The 1-extensional match for an Ai will be any substructure B ⊂ LU , with
a bijection β : Ai ↪→ B, satisfying the condition that for each a ≺ b in Ai, the
open interval (β(a), β(b)) in LU contains exactly qi(a, b) points. This β will
be the 1-extensional match. Since the interval between Sk(0) and Sk+1(0)
contains an interval of type ω2, this is possible no matter how many points
fk(0) ≺ a1 ≺ · · · ≺ am ≺ fk+1(0) lie in Ai, even if all qi(aj, aj+1) =∞.

Conversely, for any finitely generated B ⊂ LU , there is a function qB
telling the number of points of LU in each open interval between points from
B, and the 1-extensional match for B will be that Ai with exactly the same
function qi attached to it, with the obvious β as the 1-extensional match.

It is quickly seen that in each of these cases, the map β we have described
really is 1-extensional. Our use of the functions qi and our definition of the
sets IA

ij were designed to ensure this. Each finitely generated C ⊂ S gives an
isomorphic Aj ∈ A with an embedding from IA

ij to match the inclusion of B
in C, and vice versa.

We conjecture that similar results using ωm+4 can be proven which show
for all m that (2m+1)-extensional local computability need not imply (2m+
5)-extensional local computability. Also, it is likely that by allowing the
functions q to be subcomputable, we could show that (2m + 1)-extensional
local computability need not imply (2m+3)-extensional local computability.
We leave these ideas for a different paper.

9 Questions

Many questions arise from the notions we have introduced in this paper, and
here we list some of the most compelling ones.

1. We can consider the field R (and C, the complex numbers) with ad-
ditional function symbols. To what extent are these structures locally
computable? For example, do R and C stay locally computable when
the exponential function ex is added to the language? Similar questions
apply to the trigonometric and other standard functions on R and C.
We have formulas for e(a+b) and e(a·b), of course, but it is possible for ex

to be algebraic for transcendental x, and similarly for the trigonometric
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functions, so a good deal of work needs to be done to build a uniformly
computable cover A, including the enumeration of the embeddings in
IA. Indeed, these structures might turn out not to be locally com-
putable. In fact, if a function f(x) such as ex or cosx were included
in the language, then the existence of even a non-uniform computable
cover would imply that for every x ∈ R, the set

{n ∈ ω : fn(x) is algebraic}

is c.e. The author is not aware of any known results along these lines.

2. Lemma 7.2 can be viewed as a sort of downwards Löwenheim-Skølem
Theorem for perfectly locally computable structures. Is there an up-
wards version? The answer is not always positive. For example, the
natural cover of the computable structure S = (ω, 0, S) cannot be a
perfect cover for any uncountable structure: such a structure would
have to be elementarily equivalent to S, but an uncountable model of
this theory must have a nonstandard element, which would generate a
substructure not isomorphic to any in the natural cover of S. In order
for an upwards version to hold, it appears necessary that the struc-
ture contain infinitely many realizations of at least one 1-type, and
this should remain true even if we construe types as sets of computable
infinitary formulas. Is this sufficient?

3. We have inclusions of the following classes of structures, illustrated by
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the diagram:

{structures with computable covers}
⊇ {locally computable structures}
⊇ {extensionally locally computable structures}
⊇ {2-extensionally locally computable structures}

...

⊇ {θ-extensionally locally computable structures}
⊇ {(θ + 1)-extensionally locally computable structures}

...

⊇ {∞-extensionally locally computable structures}
⊇ {∞-extensionally locally comp. structures with AP}
⊇ {perfectly locally computable structures}.

Certain of these inclusions are known to be strict. For instance, the
ordered field Rc of computable real numbers and the field R of real
numbers show that the first two inclusions do not reverse. Likewise,
in Section 8 we saw countable structures which had some extensional-
ity but were not computably presentable, hence not perfectly locally
computable (by Theorem 6.3). Theorem 8.7 built a structure which
showed that not all inclusions between 1-extensional and 5-extensional
can reverse, and suggested similar results at other levels. We believe
that the related structure (ω(θ+1), <, P ) can be useful here: the linear
order on the ordinal ω(θ+1), for θ < ωCK1 , with a unary relation P which
holds exactly of those elements of the form ωθ · n with n ∈ ∅(θ). The
ordinal ωCK1 itself, viewed as a linear order with no further relations
on it, should also distinguish some two levels of this hierarchy. In gen-
eral we conjecture that there is no collapse within the diagram shown
above, but this conjecture remains open. The case of θ-extensional and
(θ + 1)-extensional structures with θ ≥ ωCK1 seems especially mysteri-
ous.

4. In Section 3, we saw that for a θ-extensionally locally computable struc-
ture S, the Σζ-theory of S is itself Σ0

ζ whenever ζ ≤ θ + 1. However,
Theorem 8.6 showed that the converse of Proposition 3.8 can fail: even
if the Σζ-theory of S is Σ0

ζ for every ζ < ωCK1 , S can still fail to be
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even 1-extensionally locally computable. What additional conditions
on the structure S might yield converses to Proposition 3.8? That is,
we wish to say that, if the Σζ theory of S is Σ0

ζ for all ζ ≤ θ+ 1 and S
satisfies some further condition, then S must be θ-extensionally locally
computable; and similarly that if the Σζ theory of S is Σ0

ζ for all ζ
and S satisfies some (different?) further condition, then S must be∞-
extensionally locally computable. Related versions of these questions
can be posed about the Σζ-theory of (S, ~p) over all finite tuples ~p of
parameters from S, of course.

5. For locally (i.e. 0-extensionally) computable structures, it was proven
that for any n > 1, the Σn-theory can fail to be Σn, since the tree
T constructed in Proposition 8.2 has a Σ2 theory which computes the
set S from which T was built, and we can take S to have arbitrarily
high degree. Are there analogous examples of 1-extensionally locally
computable structures with arbitrarily complex Σ3-theory? And can
this be extended to θ-extensionally locally computable structures and
the Σθ+2-theory?

6. The notion of θ-extensional local computability could be viewed as a
measure of how far a countable structure is from being computably
presentable. Traditionally, the spectrum of a structure has provided
another measure of this distance, so one might ask how the spectrum
is related to the strength of the local computability. (The spectrum of
S is the set of Turing degrees of all structures isomorphic to S with
domain ω.) Proposition 8.2 is a small step in this direction, show-
ing that countable locally computable structures can have arbitrarily
high Turing degree. (More exactly, the spectrum of a countable locally
computable structure can have an arbitrarily high lower bound.) On
the other hand, we can relativize the notion of a uniformly computable
cover to any Turing degree d. For example, the structureRc of Proposi-
tion 8.1, while not locally computable, was shown to be ∅′′-computable
in this sense. What relations (if any) exist between the spectrum of a
countable structure and the degrees in which it is locally computable,
or extensionally locally computable, or perfectly locally computable?

7. What can be said about homomorphisms or isomorphisms between
locally computable structures? Do they induce embeddings or other
actions on the uniformly computable covers? Or vice versa? Is there
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any case in which one can recover the automorphism group of a struc-
ture from a perfect cover of the structure (if one exists)? Or from a
perfect cover and a correspondence system?

The analogy to category theory suggests natural transformations as the
most reasonable definition of interest when one considers “nice” maps
from one cover to another. One would like these maps between covers
to correspond as closely as possible to homomorphisms or isomorphisms
between the structures covered. Of course, it is possible for two struc-
tures of distinct cardinality to have the same perfect cover, and so even
an isomorphism from one cover onto another (under any reasonable
definition) need not yield an embedding for the structures they cover.
Possibly this can be rectified by including cardinality considerations
and/or the correspondence system in the definition.

8. Since one of the basic results of local computability is that adding the
< relation to the field of real numbers destroys all computability, it is
much more reasonable to extend our studies of local computability into
algebraic topics than into analytic topics. An obvious next step would
be the consideration of algebraic groups, over R or C or other locally
computable fields, since those are defined by polynomial maps, with
no use of <. Differential algebra over these base fields could also be a
fruitful topic of study.

9. A model theorist might make use of Definition 2.9 without the restric-
tion to the countable case. In that situation, the least possible cardinal-
ity of an ω-extensional cover of a structure S would likely correspond
to the size of the type space, with some appropriate adjustment for
other levels of extensionality. Proposition 4.4 and Corollary 3.9 both
can be adapted to settings where the covers need not be computable
or even countable (but must still have correspondence systems). It
would also be possible for a pure model theorist to drop the count-
ability restrictions and to consider either covers by uncountably many
finitely generated structures, or covers (of a structure of power λ, say)
by structures with generating sets of size < κ, for some fixed κ ≤ λ.

10. In the analogy to category theory, the structure S itself appears as a
sort of inverse limit of its perfect cover. (S actually is the inverse limit
of the category FGSub(S), and its countable simulation is the inverse
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limit of its perfect cover.) What about direct limits? For example,
there are possible ways to view the automorphism group of a count-
able structure C as a direct limit of the set of partial automorphisms
of C, especially in the case of an algebraic field, and when C is com-
putable, this may lead to effectiveness notions on the (quite possibly
uncountable) automorphism group. Are these dual in some way to local
computability?
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