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Effectivizing Lusin’s Theorem

RUSSELL MILLER

Abstract: Lusin’s Theorem states that, for every Borel-measurable function f on R
and every ε > 0, there exists a continuous function g on R which is equal to f
except on a set of measure < ε . We give a proof of this result using computability
theory, relating it to the near-uniformity of the Turing jump operator, and use this
proof to derive several uniform computable versions. Easier results, which we prove
by the same methods, include versions of Lusin’s Theorem with Baire category
in place of Lebesgue measure and also with Cantor space 2N in place of R . The
distinct processes showing generalized lowness for generic sets and for a set of full
measure are seen to explain the differences between versions of Lusin’s Theorem.
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1 Introduction

Lusin’s Theorem, first proven by Nikolay Lusin (or Luzin) in 1912, states informally
that every measurable function on the real numbers R is “nearly continuous,” in terms
of the Lebesgue measure µ on R. The standard formal statement is as follows.

Theorem 1.1 (Lusin’s Theorem, 1912) For every Borel-measurable function f : R →
R and every ε > 0, there exists a continuous function g : R → R such that

µ({x ∈ R : f(x) ̸= g(x)}) < ε.

Alternative versions allow ±∞ as values of the functions in question. (Some versions
only state that f restricts to a continuous function on a set of comeasure < ε, but we
will consider the stronger version.) A common method of proof of this result involves
Egorov’s Theorem, that continuity of a function on a compact set is “nearly” uniform
continuity. Indeed, in the standard text Royden [4], Lusin’s Theorem is posed as an
exercise, following the exposition of Egorov’s Theorem. On the other hand, Rudin [5,
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2 Russell Miller

Theorem 2.24] proves Lusin’s Theorem from basic principles (and later poses Egorov’s
Theorem as an exercise).

The purpose of this article is to show that Lusin’s Theorem is a direct consequence
of the fact, well known in computability theory, that for almost all sets X of natural
numbers, the jump X′ of X satisfies the property

X′ ≤T ∅′ ⊕ X

ie the jump, which is essentially the Halting Problem relativized to X , can be computed
merely from the Halting Problem ∅′ along with X itself. (The join ∅′ ⊕ X = {2n : n ∈
∅′} ∪ {2n + 1 : n ∈ X} is a least upper bound of ∅′ and X under ≤T .) Certain sets X
fail to satisfy this property, but those sets form a meager subclass of measure 0 within
the Cantor space 2N . The computability-theoretic reason why Lusin’s Theorem needs
to use an ε > 0 is that the Turing reduction from X′ to ∅′ ⊕ X is only uniform up to
a set of measure ε. In contrast, when we use Baire category theory, comeager-many
X ∈ 2N satisfy X′ ≤T ∅′ ⊕X , and here a single Turing reduction succeeds uniformly on
the entire class. This accounts for the companion theorem in analysis, which is much
easier to prove and requires no ε–fudging: that every Borel function f restricts to a
continuous function whose domain is a comeager subset of R.

Our proof of Lusin’s Theorem demands more background in computability and descrip-
tive set theory than the standard proofs. The point is not to replace the original proofs,
but rather to highlight the connections between Lusin’s Theorem and computability
theory. When given in full, our proof will require substantial attention to detail, but it
can be summarized very neatly as the following sequence of steps.

(1) As shown in Weihrauch [8], the continuous functions g : R → R are precisely
those for which there is a Turing functional Γ and an oracle S ⊆ N such that, for
all Cauchy sequences X converging fast to any x, ΓS⊕X converges fast to g(x).

(2) Borel-measurable functions f(x) are those which can be described (in computable
analysis) by the action of a Turing functional Φ whose oracle is the α-th jump
of the input x, for some countable ordinal α that depends on f , along with an
oracle set S ⊆ N. That is, if X is a representation (normally by a fast-converging
Cauchy sequence) of x, then

Φ((S⊕X)(α))

computes a Cauchy sequence which converges fast to f(x). The ordinal α gives
the level of f in the Borel hierarchy (sometimes denoted by Fσ , Gδσ , etc; also
by Σα or Πα ). This generalizes the preceding item, where α = 0,

(3) For each fixed ordinal α < ω1 , almost all subsets X ⊆ N have the property
that the α-th jump X(α) is Turing-reducible to ∅(α) ⊕ X . (For α = 1, such
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an X is said to be generalized low1 , or GL1 ; this situation was described
above.) More generally, relativizing to a fixed S ⊆ N, almost all X satisfy
(S ⊕ X)(α) ≤T S(α) ⊕ X . Details appear in Stillwell [7].

(4) In the preceding item, “almost all” refers to Lebesgue measure on the space of
inputs X , and the Turing reducibility, while not uniform, is uniform up to a set
of arbitrarily small measure, and moreover is uniform in the bound on that set’s
measure. That is, there is a Turing functional Ψ such that, for every ε > 0 and
every S:

µ({X : ΨS(α)⊕X(ε, ·) ̸= (S ⊕ X)(α)}) < ε

We often write Ψε for the unary functional Ψ(ε, ·). Ψε is not uniform in α .

Taken together, these four items suggest a natural approach for proving Lusin’s Theorem:
if f(x) is given by Φ(S⊕X)(α)

as in (2), and (S ⊕ X)(α) is given in turn by ΨS(α)⊕X
ε , then

composing these two should yield a function

ΓS(α)⊕X = Φ

(
ΨS(α)⊕X

ε

)
which will be continuous by virtue of item (1) and will equal f up to a set of measure
< ε by virtue of item (4).

Of course, many readers will have spotted potential flaws in this argument already,
and it will require a good deal of work to address them. In particular, even for those
X on which Ψ∅(α)⊕X fails to output X(α) , Γ must still give a coherent output, ie a
fast-converging Cauchy sequence. Moreover, the sequences computed by Γ for two
distinct X0 and X1 must converge to the same real number whenever X0 and X1 both
converge to the same input x. Of course, each x is the limit of continuum-many
fast-converging Cauchy sequences, many of which may not be handled correctly by Ψ,
so this appears to be a serious problem. Finally, Lebesgue measure on Cantor space 2N

is used for the statement that almost all X are GL1 , whereas we must use Lebesgue
measure on R, represented as a quotient of the space of all fast-converging Cauchy
sequences, to address Lusin’s Theorem.

Nevertheless, we will overcome these difficulties and give a proof of Lusin’s Theorem
essentially following the outline given above. This will require a reasonable background
in computable analysis and also in the computability-theoretic notion of the jump
operation on subsets of N and its iteration through the countable ordinals. Two
appendices (Sections 10 and 11) are devoted to these two topics, as few readers can be
expected to be closely familiar with both of them. For more extensive presentations,
we suggest [8] for the computable analysis; Kechris [3] for descriptive set theory such
as the preceding characterization of the Borel functions; Soare [6, Chapter III] for the
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basics of the jump; and Ash and Knight [1, Chapters 4–5] for iterating the jump through
the computable ordinals, which generalizes by relativization to all countable ordinals.

When we prove it, Lusin’s Theorem will reappear as Theorem 6.2. It is normally stated
as above, for the real numbers R, but it also applies to Cantor space 2N . Additionally,
there are analogous theorems (for both R and 2N ) using Baire category in place of
Lebesgue measure. Each of these is simpler to prove than Theorem 6.2, and we will use
them as warm-ups, introducing several of the techniques required in the more complex
context of Theorem 6.2 itself. Moreover, these results will demonstrate the connection
between computability and a standard question about these theorems. The question
is, “why does Lusin’s Theorem only yield g = f up to a set of positive measure, with
different functions g for different positive values of ε, when the Baire-category version
gives a single continuous g that equals f everywhere except on a meager set?” This
will be seen to be a direct consequence of the nature of computing X′ from ∅′ ⊕ X
uniformly. A uniform computation is possible on a comeager set of X–values (with
no wrong answers even for the other X , but sometimes with no answer given). Under
Lebesgue measure, some guessing is required, and therefore each uniform computation
will be wrong on some set of positive measure (although at least it will always provide
an answer, albeit occasionally an incorrect one). In some respects this can be seen to
reflect the distinction between the modern notions of generic computability and coarse
computability, as described for instance in Jockush and Schupp [2].

Notation here is standard and follows Soare [6]. In particular, capital Greek letters
such as Φ, Γ, and Ψ denote oracle Turing functionals, and Φ0,Φ1, . . . is a standard
computable enumeration of all such functionals. Sometimes Φe,s is used to denote
the version of the functional Φe that automatically halts after s steps, even if it has no
output yet. We write a, b, q, r, u, v and sometimes ε for rational numbers; a,b, r, x, y
for real numbers; capitals including A, C , X , and Y for elements of Cantor space 2N

(that is, for subsets of N, often used as oracles for a functional); and f , g for functions
mapping 2N → 2N or R → R. Some further notation is described in the appendices
(Sections 10 and 11).
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3 Computing Discontinuous Functions

Section 10 gives background in computable analysis, including our reasons for using
enumerations of Dedekind cuts to name real numbers, rather than fast-converging Cauchy
sequences. Theorem 10.4 shows that it is impossible to compute a discontinuous function
f : R → R just from enumerations of Dedekind cuts for the input x ∈ R. However, if
we allow ourselves more information about x, then it becomes possible.

Definition 3.1 A function f : 2N → 2N is jump-computable if there exists a Turing
functional Φ such that, for every X ∈ 2N , Φ(X′) : N → {0, 1} is the characteristic
function of f(X). Likewise, f : R → R is jump-computable if there exists a Turing
functional Φ such that, for every x ∈ R and every enumeration X = A ⊕ B of the
Dedekind cuts of x, the function

Φ(X′) : (Q× N)2 → {0, 1}

computes an enumeration of the Dedekind cuts of f(x).

More generally, for an ordinal α < ω1 and an oracle set S ⊆ N, f is α–jump S–
computable if there exists Φ such that, for every x ∈ R and every enumeration X of
the Dedekind cuts of x,

Φ(S⊕X)(α)
: (Q× N)2 → {0, 1}

computes an enumeration of the Dedekind cuts of f(x); similarly for functions on 2N .

If α is a countable noncomputable ordinal, then the α-th jump is not well-defined
in general. Section 11 explains how we can choose an oracle S complex enough to
compute the complete diagram of a presentation A of α (ie, a linear order A isomorphic
to (α,∈) whose domain is N). So it is possible to discuss the situation α ≥ ωCK

1 ,
although one must fix an S–decidable presentation A of α . Since we defined the
A–jump C(A) to have C itself as its 0-th column, a functional Φ with oracle (S ⊕ X)(A)

can recover S from that column of the oracle, use it to compute the presentation A, and
thus make sense of the oracle (S ⊕ X)(A) uniformly.

The principal theorem relevant here can be found in Kechris [3]. By Lemma 10.3, for
functions on R, this theorem holds with x and f(x) represented either by fast-converging
Cauchy sequences or by enumerations of Dedekind cuts.
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Theorem 3.2 For every Borel function f : 2N → 2N , there is a Turing functional Φ,
an oracle S ⊆ N, and an S–decidable presentation A of some countable ordinal such
that, for every X ∈ 2N , Φ(S⊕X)(A)

: N → {0, 1} is the characteristic function of f(X).
Similarly, for every Borel function f : R → R, there is a Turing functional Φ, an oracle
S ⊆ N, and an S–decidable presentation A of some countable ordinal such that, for
every enumeration A ⊕ B of the Dedekind cuts of any x ∈ R, Φ(S⊕X)(A)

enumerates the
Dedekind cuts of f(x).

Computable analysts have commonly approached jump-computability the opposite way,
by taking the limit of a computable function:

f(x) = lim
s→∞

ΦX(·, s)

That is, for each s ∈ N, one computes an approximation to f(x), and the actual
value f(x) is the limit of these approximations. As an example, the derivative of a
differentiable function h(x) could be given by letting ΦX be the difference quotient
s · (h(x + 1/s) − h(x)). The Turing functional Φ is readily defined from the functional
and oracle computing h. (The derivative of a computable differentiable function is
not in general computable, so this is often the best that can be done.) The connection
between this method and ours is given by the Transparency Lemma.

Lemma 3.3 (Transparency Lemma (folklore)) A function is jump-computable if and
only if it is the limit of a computable function (in the sense immediately above).

So one could attack Lusin’s Theorem by iterating the limit operation instead of the jump
operation. Our choice to use the jump is dictated mainly because it allows us to apply
the known results of Section 11 on near-uniform continuity of the jump, especially
Theorem 11.4.

4 Results on Cantor Space 2N

Our two main theorems about Borel functions on Cantor space depend heavily on three
lemmas, which are the heart of the connection between computability and Lusin’s
Theorem for 2N . These lemmas are well-known, but due to their importance, we give
the proofs here, at least for the base case α = 1. Understanding them will prepare the
reader for the analogous theorems about functions on R, which are conceptually similar
but more technical. The three analogous lemmas for R all appear in the appendix
(Section 11).

Journal of Logic & Analysis 14:3 (2022)



Effectivizing Lusin’s Theorem 7

Lemma 4.1 Let X ∈ 2N be generic. Then X′ ≡T ∅′ ⊕ X ; indeed, there exists a single
Turing functional Ψ such that, for every generic (or even 1–generic) X ∈ 2N , Ψ(∅′⊕X)

computes the characteristic function of X′ .

More generally, for every oracle set S ⊆ N and every S–decidable presentation A of
a countable ordinal α , there exists some Ψ such that, for all X ∈ 2N that are generic
relative to S , Ψ(S(A)⊕X) computes the characteristic function of (S ⊕ X)(α) . Moreover,
even for non-generic X ∈ 2N (and for every e ∈ N), Ψ(S(A)⊕X)(e) either diverges or
computes correctly whether e ∈ (S ⊕ X)(α) .

Proof We describe here the situation with S = ∅ and α = 1. Given the oracle (∅′⊕X),
the functional Ψ on input e ∈ N asks, for s = 1, 2, . . . in turn:

• whether Φ(X↾s)
e,s (e) halts (using no more of the oracle than the first s bits); and also

• whether there exists any σ ⊇ X↾s and any t such that Φσ
e,t(e) halts.

If the first answer is ever positive, Ψ concludes that e ∈ X′ , while if the second answer
is ever negative, Ψ concludes that e /∈ X′ . Each conclusion is clearly correct (if
ever reached), and for a 1–generic X , one of these conclusions must eventually be
reached. (Notice also that, even for non-generic X , Ψ(∅′⊕X) never gives a wrong answer.
However, it could simply never give an answer.)

For successor α = β + 1, a similar procedure relativized to ∅(β) succeeds. The proof
of the general result uses the uniformity of the above procedure for all β < α .

Our first Lusin-type result follows from Lemma 4.1. This is a standard theorem.

Theorem 4.2 Let f : 2N → 2N be a Borel function. Then f restricts to a continuous
function g whose domain is the (comeager) set G containing all elements of 2N that
are generic relative to S .

Proof Theorem 3.2 yields Φ, S , and A (as described there) such that Φ(S⊕X)(A)

computes f(X) for every X ∈ 2N . Its restriction to G is therefore computed by

ΦΨ(S(A)⊕X)

as witnessed by Lemma 4.1. Since this function is S(A) –computable, it is continuous on
its domain, which contains the comeager set G. (For X /∈ G, either the computation will
output the correct value f(X), or there will exist some input n on which the computation
never halts. As noted above, the computation will never give an incorrect answer, even
for a single n.)
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Now we turn to Lebesgue measure on 2N , for which each basic open set Uσ = {X ∈
2N : σ ⊆ X} has measure 2−|σ| , with the measure extending to all measurable subsets
of 2N in the usual Lebesgue definition. There is an analogue of Lemma 4.1 for Lebesgue
measure, but, perhaps contrary to one’s expectations, it is uniform only for sets of
arbitrarily small measure, not up to a set of measure zero. The following lemma
appears as Theorem 2 of Stillwell [7], but a proof may also be deduced from the (more
complicated) Lemma 11.3 and Theorem 11.4 in the appendices, especially in concert
with the proof of Lemma 4.4 below.

Lemma 4.3 For every oracle set S ⊆ N and every S–decidable presentation A of
a countable ordinal α , there exists some Ψ such that, for each fixed rational ε > 0,
Ψ(S(A)⊕X)(ε, ·) computes the characteristic function of (S ⊕ X)(A) for all X outside a
subset of 2N of measure < ε. Moreover, the computation Ψ(S(A)⊕X)(ε, e) halts for every
X ∈ 2N and every (ε, e), although for X within the set of measure < ε it may output a
value distinct from the “correct” answer χ(S⊕X)(A)(e).

We will write Ψε for the function Ψ(ε, ·), with any oracle. For Lebesgue measure, a
second fact is also necessary.

Lemma 4.4 In Lemma 4.3, the error set described, whose measure is < ε, is the union
of an S–computably enumerable sequence of basic open sets, uniformly in both A and
ε.

Proof First we explain this proof when α = 1 and with S omitted. Now Ψ∅′⊕X
ε is

attempting to compute X′ as described in Lemma 4.3. Whenever Ψ∅′⊕X
ε (e) ↓= 1, it

does so because it has seen the computation ΦX
e (e) converge already, so e ∈ X′ and

this answer is correct. All errors (if any occur for this X ) occur for values e where
Ψ∅′⊕X

ε (e)↓= 0.

To enumerate an error set, therefore, once Ψε has declared that Ψ∅′⊕X
ε (e)↓= 0 for all

X extending some particular τ ∈ 2<N , we watch for any strings ρ ⊇ τ and any t for
which Φρ

e (e)↓. Any time we find such a ρ, we enumerate the basic open set defined by
τ into our error set, knowing that this entire basic open set lies in the error set. Since all
errors are errors of this type (guessing that e /∈ X′ and later being proven wrong), this
list of basic open sets is precisely the error set and thus has measure < ε.

In the general setting, the jump (S ⊕ X)(A) consists of many columns, one for each
point k in the presentation A of the ordinal α . If k represents a successor ordinal
β + 1 in A, then we do the same procedure as above, waiting for Ψε to use its own
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Effectivizing Lusin’s Theorem 9

computation of (S ⊕ X)(β) to declare that e /∈ (S ⊕ X)(β+1) for all X ⊃ τ and then
watching for Φ(S⊕ρ)(β)

e (e) ↓ for each ρ ⊇ τ . Only ε · 2−k−1 of the measure ε of the
error set is allotted to this process, and it certainly enumerates all X for which Ψε gave
the wrong answer about whether some e lies in (S ⊕ X)(β) but gave correct answers to
these questions for all ordinals < β . Now, if in fact Ψε gives a wrong answer for some
e about whether e ∈ (S ⊕ X)(A) , then there is a least element β of α for which it did so,
and for this β , X will belong to a basic open set enumerated into our error set.

Theorem 4.5 Let f : 2N → 2N be a Borel function, and fix ε > 0. Then there exists a
continuous function g : 2N → 2N such that

µ({X ∈ 2N : g(X) ̸= f(X)}) < ε.

Proof The proof is somewhat analogous to that of Theorem 4.2, using Lemmas 4.3 and
4.4. In order to ensure that g is defined on all of 2N (which was impossible in Theorem
4.2), we must provide a value for g(X) even for those X such that Ψ(S(A)⊕X)

ε ̸= (S⊕X)(A) .
The danger here is that for these X , the functional Φ running with the incorrect oracle
Ψ(S(A)⊕X)

ε (ε, ·) may fail to compute a total function, in which case our naive version of
g, namely

ΦΨ(S(A)⊕X)
ε

will fail to map all of 2N into 2N . Therefore it is necessary for us to be able to realize,
at some point during the computation above, that ΨS(A)⊕X

ε fails to compute (S ⊕ X)(A)

correctly. This is exactly the point of Lemma 4.4.

The procedure for Γ begins by starting the naive computation ΦΨ(S(A)⊕X)
ε . If we ever

reach a stage s at which the s-th basic open set (given by a string σs ∈ 2<N such that
the basic open set is {Y ∈ 2N : σ ⊂ Y}) in the enumeration above contains X—ie,
σs ⊂ X—then at that stage we simply end the computation on all inputs: the output is

g(X) = {n ∈ N : Ψ(S(A)⊕X)
ε,s (n)↓= 1}

where Ψε,s indicates that we only run Ψε for s steps. If we never reach such a stage s,
then Γ continues running each computation Ψ(S(A)⊕X)

ε until it halts, as it must, since in
this case, with X not in the error set, this function succeeds in computing f(X). Thus Γ

does indeed compute a function g defined on all of 2N , and thus continuous, differing
from f only on the error set. Notice also that the computation of an index for g is
uniform in the positive rational ε chosen.

Theorems 4.2 and 4.5 are not perfectly analogous. The former yields a single continuous
version of f that may be undefined on a small (ie meager) set of inputs X . The latter
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yields different versions gε for each ε > 0, each of which is continuous on all of 2N

but may differ from f on a small set (ie of measure < ε). The computability-theoretic
difference between working with generic sets and working with Lebesgue measure
accounts for the difference in the corresponding lemmas, and thus may be seen as
explaining the difference between the theorems.

The technique of enumerating the error set, used in Lemma 4.4, will reappear in Section
6, when we address Lusin’s Theorem itself using Lebesgue measure on R.

5 Baire Category on R

Our next step is to address the real line R rather than Cantor space 2N . The difficulty
here lies in representing real numbers x ∈ R, since our fundamental objects are elements
X ∈ 2N and each x ∈ R will be represented by many different X ∈ 2N , each naming a
Cauchy sequence in Q that converges fast to x. (In Section 4, this was not an issue:
each X ∈ 2N simply represented itself!) Indeed, the X ’s representing a single x will
have many distinct Turing degrees.

The first impulse, for addressing this problem, is to switch to Dedekind cuts, since each
x ∈ R is represented by a single strict left Dedekind cut (ie, a nonempty subset of Q,
downward-closed under <, with no greatest element). Unfortunately, these cannot be
used directly as oracles: the analogue of Lemma 10.3 for this system of representation
of real numbers is false. Lemma 10.3 is our compromise, converting fast-converging
Cauchy sequences into enumerations of strict left and right Dedekind cuts (and back)
effectively. This is not a perfect solution, since for a given x the strict left and right cuts
Lx and Rx each have many distinct enumerations, of many Turing degrees. However, as
we now describe, it enables us to use enumerations of these cuts to run oracle Turing
computations in an effective way, so that the output depends only on Lx and Rx (and
thus only on x itself), not on the choice of enumerations of Lx and Rx . Definition 10.1
describes the “canonical” enumeration of each x, which is crucial for the proof of the
next theorem. Our use of Dedekind cuts stems from our lack of any similar notion of a
canonical Cauchy sequence converging fast to x.

The generic real numbers form a comeager subset G of R, where by definition x ∈ R is
generic just if the cut Lx is generic among all downward-closed sets of rational numbers.
Clearly, genericity among such sets rules out having a greatest element, being empty, or
being co-empty, so these sets are all strict left cuts of irrational numbers x. Moreover,
no definable left cut x can be generic in this sense. This set G will be the comeager set
we use to prove the Baire-category version of Lusin’s Theorem.
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Theorem 5.1 Let f : R → R be a Borel function. Then f restricts to a continuous
function g whose domain is the (comeager) set G containing all elements of R that are
generic relative to S .

Proof Once again, Theorem 3.2 yields Φ, S , and A such that, for every x ∈ R
and every enumeration A ⊕ B of the Dedekind cuts of x, Φ(S⊕A⊕B)(A)

enumerates the
Dedekind cuts of f(x). On an enumeration A ⊕ B of x ∈ G, one might hope for it to be
computed by a function along the lines of

ΦΨ(S(A)⊕(A⊕B))

as witnessed by Lemma 4.1. Since this function is S(A) –computable, it would be
continuous on its domain.

Unfortunately, this does not suffice for a proof. This function is only defined on
generic enumerations of cuts, and no matter which x ∈ R one chooses, there will exist
non-generic enumerations of its cuts. Thus, our program above may fail to accept
certain enumerations of x, whereas a computable function must accept all of them. To
rectify this, we give a slightly more involved program, which will succeed in computing
f(x) below an S(A) oracle for every enumeration of each x ∈ R whose left Dedekind cut
Lx forms an S–generic downward-closed subset of Q. We first describe our program
Γ, which “uniformizes” the enumerations A ⊕ B given to it, and then analyze it.

Γ is given the oracle A ⊕ B, along with the fixed set S(A) . At each stage s, it defines

As = A ∩ ({0, . . . , s})2, Bs = B ∩ ({0, . . . , s})2

ls = min{n ∈ N : qn /∈ π1(As ∪ Bs)}and

the greatest (up to length s) initial segment of a fixed computable listing {q0, q1, . . .} of
Q for which the cuts Lx and Rx are fully defined by stage s. Then it runs the program
Φ for s steps on the given input q ∈ Q, using the oracle

ΨS(A)⊕(π1(As)×N)⊕(π1(Bs)×N)
s

and outputs the same value as this program in case it halts, or else goes back and repeats
the same procedure for s + 1. (If, in response to an oracle question from Γ, Ψ fails to
halt within s steps using its own smaller oracle, then again Γ starts its own program
over at s + 1.) This is the entire program for Γ.

In s steps, Ψ can never ask an oracle question about an element > s, so all oracle values
used by Ψ here are exactly as in the canonical enumeration (Lx ×N) ⊕ (Rx ×N) of the
cuts of x. Thus, if Ψ actually gives an answer (on an input e) using its oracle here, that
answer will be identical to the one given by Ψ using that canonical oracle. In case x is
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generic relative to S , it will therefore tell whether e ∈ (S ⊕ (Lx ×N) ⊕ (Rx ×N))(A) or
not. Thus our uniformization to the canonical oracle will have eliminated all uncertainty
introduced by the use of the enumeration (A ⊕ B). Moreover, if ls goes to +∞ as s
increases, then Ψ will ultimately have access to as much of the canonical oracle as it
needs for its computation. Finally, notice that a generic x ∈ R cannot be a rational
number, and therefore every qn ∈ Q lies in Lx ∪ Rx , hence lies in π1(As ∪ Bs) for all
sufficiently large s. Thus, for generic x we automatically have lims ls = +∞, and so Ψ

ultimately computes (correctly) as much of (S ⊕ (Lx ×N)⊕ (Rx ×N))(A) as Φ requires.
In short, for every generic x ∈ R and every enumeration A ⊕ B of the cuts of x, the
program Γ produces the exact same output as Φ(S⊕A⊕B)(A)

, namely an enumeration of
the left and right cuts of f(x), exactly as claimed by the theorem.

Finally, notice that Ψ always uses an oracle that describes (Lx×N)⊕ (Rx×N) correctly:
the only possible problem arises when x is not S–generic, and even then, Ψ never
gives a wrong answer. Therefore, Γ never outputs a wrong answer either: for each
q ∈ Q and each enumeration A ⊕ B of any x ∈ R, if Γ halts and outputs 0 on input
q, then indeed q ∈ Lf(x) ; likewise the output 1 always indicates that q ∈ Rf(x) . For
an x that is not generic relative to S , the program may fail to halt on various inputs
q ∈ Q, in which case that x is not in the domain of the continuous function defined
by Γ. However, non-S–generic real numbers form a meager subset of R, so we have
proven the theorem.

6 Lusin’s Theorem

Now we may approach Lusin’s Theorem. The key lemma, again well-known, is
described in more detail in the second appendix (Section 11), as Corollary 11.5.

Lemma 6.1 There exists a Turing functional Ψε , uniform in the rational ε > 0, such
that for every set S ⊆ N and every fixed S–decidable presentation A of any ordinal
α < ωS

1 (with α–jumps C(A) defined using this presentation), the “error set”

Uε,S,A = {x ∈ R : ΨS(A)⊕Lx⊕Rx
ε ̸= (S ⊕ Lx ⊕ Rx)(A)}

has measure < ε and is an S(A) –effective union of rational open intervals, uniformly in
ε, S , and A. Moreover, for all x, ΨS(A)⊕Lx⊕Rx

ε is total.

Theorem 6.2 (Lusin, 1912) Every Borel-measurable function f : R → R is nearly
continuous.
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Proof As usual, Theorem 3.2 provides Φ, S , and A such that, for every x ∈ R
and every enumeration A ⊕ B of the Dedekind cuts of x, Φ(S⊕A⊕B)(A)

enumerates the
Dedekind cuts of f(x). We wish to construct a Γ, similar to that of Theorem 5.1, that
uses Ψ to compute (S ⊕ Lx ⊕ Rx)(A) from (S(A) ⊕ A ⊕ B), then applies Φ to enumerate
the cuts of f(x). The catch is that now we wish the g computed by Γ to have domain R;
on the other hand, we may allow g(x) ̸= f(x) on the error set Uε,S,A given by Corollary
11.5. We write U = Uε,S,A , having fixed the three parameters, and, using Corollary
11.5, fix an S(A) –computable enumeration of rational open intervals whose union equals
U. We also fix a computable list q0, q1, . . . of all rational numbers, without repetitions.
It will be convenient to assume that the interval of U enumerated at stage s is of the
form (qm, qn) with m, n ≤ s. This is not difficult to arrange, except that we must allow
there to be stages at which no interval is enumerated.

The crucial fact here is the S(A) –computable enumerability of the error set U as a union
of intervals with rational end points. This will allow our Γ to recognize these intervals
as they appear, at which stage it will abandon its hope of computing a function equal to
f within such an interval, and will instead do “damage control” to ensure that it does
actually compute a function (necessarily continuous) on each such interval. As long as
we make these “damage control” functions meet at the end points of their intervals, we
will have continuity everywhere: outside the error set, Γ will compute f(x) successfully,
in exactly the style of Theorem 5.1, since Ψ makes no mistakes outside the error set in
computing (S ⊕ (Lx × N) ⊕ (Rx × N))(A).

It complicates matters, but it is also liberating, to recall that every rational x must lie in
U. (In particular, Ψ will always guess incorrectly about whether the program index e
lies in (S ⊕ A⊕ B)(A), where, for every input, Φe halts as soon as the rational x appears
in π1(A ∪ B).) The complication lies in the fact that, whenever a rational interval
(a, b) is enumerated into the error set, the rational a itself must lie in another interval
of the error set, as must b, causing these intervals ultimately to metastasize into one
long open interval with irrational endpoints, the union of infinitely many overlapping
rational intervals in U. The liberation results from the fact that, as in Theorem 5.1, we
are again free to ignore the difficulty that, for rational x, Lx ∪ Rx omits an element
(namely x itself). Given an enumeration A ⊕ B of the cuts of an arbitrary x ∈ R, we
know that either x will eventually enter the error set (which we can enumerate!) or else
Lx ∪ Rx = Q. As long as x is not yet in the error set, therefore, we are safe in waiting
arbitrarily long for the next rational qn on our list to be enumerated by either A or B. If
x ever does appear in the error set, we switch to damage control on x.

The bulk of our description of the procedure for the functional Γ deals with the rational
intervals (finitely many of them, at each stage s) that currently constitute the error set.
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Once we have settled what to do with them, the procedure on the remainder of R is the
same one already applied several times. So suppose that as of stage s, our enumeration
of U so far consists of rational intervals (a1, b1), (a2, b2), . . . , (as−1, bs−1), with each
bi < ai+1 . By induction we assume that we have assigned values (as defined below) to
all points in the closure Us . This means that we have already determined the finitely
many values g(ai) and g(bi), possibly along with values g(c) at finitely many other
rational c ∈ Us , and that we intend g on Us to be the piecewise linear function that
“connects these dots” within each connected component of Us .

Before we describe the action of Ψ on a particular (A ⊕ B), we explain how it sets the
scene at each stage s + 1. We have a fixed computable enumeration {q0, q1, . . .} of Q,
so suppose that {q0, . . . , qs} is ordered as qj0 < · · · < qjs . These define s + 1 open
intervals (−∞, qi0), (qj0 , qj1), etc, each giving an initial piece of a Dedekind cut: write
Li,s = {qj0 , . . . , qji−1} and Ri,s = {qji , . . . , qjs}. Ψ runs the programs

Φ
S(A)⊕(Li,s×N)⊕(Ri,s×N)
s (qk)

for each i ≤ s and each k ≤ s, giving up after s steps if there is not yet any convergence.
This gives us general constraints on the possible values of f in each interval (qji−1 , qji):
an upper bound (possibly +∞)

ui,s = min{qk : k ≤ s & Φ
S(A)⊕(Li,s×N)⊕(Ri,s×N)
s (qk)↓= 1}

and a lower bound (possibly −∞):

vi,s = max{qk : k ≤ s & Φ
S(A)⊕(Li,s×N)⊕(Ri,s×N)
s (qk)↓= 0}

If the program in question actually computes f on (qji−1 , qji) correctly, then the values
of f there must all lie in (vi,s, ui,s). Thus the set of boxes (qji−1 , qji) × (vi,s, ui,s) may be
viewed as a tentative approximation of the graph of f in the xy–plane. Of course, this
does not take the error set U into account. It could happen that ui,s ≤ vi,s under this
definition, if the interval (qji−1 , qji) is contained within U. Also, two adjacent boxes
(as described above) might have nonintersecting closures, which again would indicate
interference by the error set. Therefore we have only defined ui,s and vi,s here, without
using them as yet.

We now continue stage s + 1 by considering the next interval Is = (as, bs) to appear in
the enumeration of intervals comprising U. We wish to assign g–values to all points
x ∈ [as, ba]. This is the damage-control operation: we have given up on computing f(x)
correctly for these points, and merely hope to make g continuous. Within Is this will be
easy, but we also need to ensure that our chosen values allow g to be continuous at the
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boundary of U, where it interfaces with error-free computations of f . (The boundary of
U is in fact all the rest of R, since U is dense.)

Let Us+1 = ∪i<s[ai, bi]. If Is ⊆ Us (which is decidable from the end points),
we do nothing, since values will have already been assigned to all points in Us at
preceding stages. Otherwise (Is − Us) is a finite union of nonempty open intervals,
and we treat each of its connected components [c, d] separately. First, if any of
the points qj0 , . . . , qjs defined earlier lies in [c, d], then for each such qji satisfying
min(ui,s, ui,s+1) ≥ max(vi,s, vi+1,s), we define:

g(qji) =
min(ui,s, ui+1,s) + max(vi,s, vi+1,s)

2
(In case min(ui,s, ui+1,s) = +∞, g(qji) = max(vi,s, vi+1,s)+1. In case max(vi,s, vi+1,s) =
−∞, g(qji) = min(ui,s, ui+1,s) − 1. If both occur, then g(qji) = 0.)

If qji lies in [c, d] but min(ui,s, ui,s+1) < max(vi,s, vi+1,s), then these bounds create
an inconsistency at qji . In this situation we continue to enumerate U until a rational
interval (r0, r1) containing qji is enumerated into U. (This must occur eventually, as all
rational numbers lie in U.) When this first happens, we define:

g
(

max(r0, c, qji−1) + qji

2

)
=

ui,s + vi,s

2

g
(

qji + min(r1, d, qji+1)
2

)
=

ui+1,s + vi+1,s

2
The argument in the first equation lies below qji but above each of r0 , c, and qji−1 ,
hence within [r0, r1], within the interval where ui,s and vi,s are the upper and lower
bounds, and within [c, d], so it is safe to assign to it this g–value between those bounds;
similarly for the argument in the second equation. (In case qji = c ∈ Us , only the
second equation applies, as in this case the first equation has argument c and g(c) is
already defined. Similarly, if qji = d ∈ Us , only the first equation applies.)

Next, we attend to the end points. If either c or d lies in the closure Us , then it already
has been assigned a g–value. If c /∈ Us , then find the interval (qji−1 , qji) to which it
belongs and define

g(c) =


ui,s+vi,s

2 , if this is defined;
ui,s − 1, if vi,s = −∞ & ui,s ̸= +∞;
vi,s + 1, if ui,s = +∞ & ui,s ̸= −∞;

0, if vi,s = −∞ & ui,s = +∞.

Likewise if d /∈ Us and d ∈ (qjk−1 , qjk ), then define g(d) exactly the same way, using
uk,s and vk,s . The case where c or d actually equals qji for some i ≤ s was already
covered in our first step.
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Now we have defined g on c, on d , and on every qji in between. We finish by
“connecting the dots”: simply define g between each pair of consecutive points among
these by linear interpolation between the g–values of the two points.

It now remains to describe the procedure followed by Γ with a specific enumeration
A ⊕ B of strict Dedekind cuts (of an arbitrary x ∈ R) in its oracle. We use sets As and
Bs and the length ls just as defined in the proof of Theorem 5.1. At stage s + 1, Γ
searches for the least t ∈ N such that either

(1) t > s and lt ≥ s; or
(2) there exist m, n ≤ t+ 1 such that qm ∈ At+1 and qn ∈ Bt+1 and the open interval

(qm, qn) is enumerated into U by stage t + 1.

If condition (2) holds, then by running the instructions above all the way up to the stage
t at which (qm, qn) is enumerated into Ut , we can determine the g–values assigned at
that stage to points in this interval. Of course, at this stage we still only have a finite
approximation to x, but, knowing the finitely many linear pieces of g on this interval,
we can use the approximation given by As and Bs to approximate g(x) in the obvious
way. (Notice that this works even if x itself is rational: the fact that some single rational
never appears in either Dedekind cut does not stop us from computing g(x).)

If condition (1) holds, then from At and Bt we can decide which of the intervals
(qji−1 , qji) defined at stage s + 1 contains x. If ui,s ≤ vi,s , then we do nothing at this
stage, since then this entire interval must eventually enter U. Assuming ui,s < vi,s , we
know that x itself does not lie in Us+1 : condition (1) requires t > s, so if an interval
(qm, qn) containing x had been enumerated into Us+1 , it would have m, n ≤ s (by our
convention for this enumeration), and thus stage s would have satisfied condition (2).
However, we do not want to deal with an x that is too close to either qm or qn . So we
search again, for a stage t′ such that Ut′ contains both an interval (a′m, b′m) that contains
qm and also an interval (a′n, b′n) that contains qn , and such that either

(1a) At′ contains a rational number ≥ b′m , and Bt′ contains a rational number ≤ a′n
(making x ∈ (b′m, a′n)); or

(1b) At′ contains a rational number ≥ a′n or Bt′ contains a rational number ≤ b′m
(making x ∈ Ut′ ).

If (1b) holds, Γ does not converge on any inputs here, because we know that our x will
eventually enter U. If (1a) holds, then Γ halts and outputs 1 for all inputs ≥ ui,s , and
halts and outputs 0 for all inputs ≤ vi,s . (Recall that we have checked that vi,s < ui,s .)
This means that these values will be upper and lower bounds (respectively) for the
real number g(x) ultimately determined by Γ. This completes our description of the
program executed by Γ.
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It remains to show that ΓS(A)⊕A⊕B succeeds in computing a function g : R → R, as
A ⊕ B varies over all enumerations of Dedekind cuts, and then that g(x) = f(x) outside
of the error set U (which we know has measure < ε). Being computed by Γ this way,
g will necessarily be continuous.

To see this, fix any x ∈ R and any enumeration A ⊕ B of the cuts Lx and Rx of x.
Suppose first that x ∈ U. Here we do not claim that g(x) = f(x), but we do show that
ΓS(A)⊕A⊕B computes the same real-number output g(x) regardless of the enumeration of
x. Indeed, since x ∈ U, there is some interval Is0 = (as0 , bs0) with x ∈ Is0 enumerated
into U at some stage s0 . Notice that at every subsequent stage s > s0 , condition (2)
will hold with t = s0 − 1, while condition (1) can only be applied at stage s + 1 if
t > s; thus the instructions for condition (1) will never be followed again. Moreover,
regardless of the choice of enumeration A ⊕ B of Lx and Rx , we will recognize from
stage s0 + 1 onwards that the enumeration of Is0 into U has placed us in condition
(2). Therefore, from stage s0 + 1 on, Γ will always proceed with the computation of
the assigned value g(x), based on the linear functions chosen at stage s + 1 for the
interval of Us containing x. Of course, the computation of these linear functions (with
rational coefficients, no less!) is effective regardless of the enumeration A ⊕ B, and the
end points of the linear function were selected specifically so that no upper or lower
bounds enumerated by Γ at preceding stages could possibly contradict the value g(x)
assigned to any x in the interval, including our specific x. It is also important to note
here that we never assigned contradictory information in the computation of g(x), even
when using condition (1). All rationals enumerated into the lower cut of g(x) were
checked to be less than all rationals enumerated into the upper cut. Moreover, as long as
condition (1) applied, the same rationals were enumerated into each cut independently
of the specific enumeration A ⊕ B. The choice of A ⊕ B only affects the stage at which
the computation permanently switches over to condition (2), which occurs at or before
stage s0 , and the scene-setting procedure included a check that all upper and lower
bounds enumerated for values x in Is0 are consistent with the choice of g(x). Therefore
Γ does compute the same value g(x) independent of the specific enumeration A ⊕ B
of the cuts of x. This is all that we require of Γ on an x ∈ U: the damage-control
procedure succeeded.

The other case occurs when x /∈ U. Now the procedure above never acts on condition
(2). Since every rational number lies in U, it follows that x /∈ Q, so every qm lies in
Lx ∪Rx , and thus the length ls of the approximation As ⊕Bs goes to +∞ as s increases.
Consequently, for every stage s, there does exist some t > s with lt ≥ s.

Now since x /∈ U, Φ does enumerate the cuts of f(x) when it runs with the oracle set
ΨS(A)⊕(Lx×N)⊕(Rx×N) . Therefore, for any specific rational u > f(x) and v < f(x), there
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exists some s0 such that Φ with this oracle enumerates u into the upper cut and v into the
lower cut, in at most s0 steps, using only the initial portion ((Lx↾ s0)×N)⊕ ((Rx↾ s0)×N)
of the oracle of Ψ. But lt → +∞ as t increases, so at every stage ≥ s0 , running Γ with
the oracle A ⊕ B will produce this much of Lx and Rx . Now fix some m, n > s0 such
that x ∈ (qm, qn) but no qk with k < max(m, n) lies in (qm, qn). When we reach stage
s+1 with s = max(m, n), this interval will be the i-th interval in the partition of R (that
is, m = ji−1 and n = ji at this stage), and so the bounds ui,s and vi,s determined at that
stage will have f(x) < ui,s ≤ u and f(x) > vi,s ≥ v. Moreover, since x /∈ U, condition
(1b) must hold (at this and all other stages), and so ui,s and vi,s are enumerated into the
upper and lower cuts of g(x) at that stage if not before, no matter what input A ⊕ B
enumerating the cuts Lx and Rx is used. With v < vi,s and ui,s < u, this makes it clear
that Γ enumerates our original (arbitrary) u and v into the correct cuts. Therefore, on
all inputs A ⊕ B enumerating Lx and Rx , Γ does compute g(x) = f(x) as required.

7 Uniformity

It was not the original purpose of this article to prove anything new. The intention was
to present a new proof of Lusin’s Theorem in real analysis, using known facts from
computability theory and descriptive set theory, and thus to illustrate and illuminate
a connection between the principles used in standard proofs of Lusin’s Theorem and
the principles from computability which make our proof here work. Nevertheless,
certain uniformities and computability results became apparent during the creation of
the proof in Section 6, and in the end we have an effective version of Lusin’s Theorem.
Sometimes new ideas entail new results, even when not intended to do so.

The substantial uniformity in the creation of g from f in our proof of Theorem 6.2
yields the function h that we describe here. Similar uniform versions hold for our
simpler results in Theorems 4.2, 4.5, and 5.1.

Theorem 7.1 There is a computable total function h : Q × N → N such that,
for each fixed α and S and each S–decidable presentation A of α , whenever an
α–jump-computable function f is given by the oracle computation

Φ(S⊕A⊕B)(A)

e

for all enumerations A ⊕ B of the cuts of each x ∈ R, the function g(x) defined by

ΦE(A)⊕S(A)⊕A⊕B
h(ε,e)
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realizes Lusin’s Theorem 6.2 for this f and an arbitrary rational ε > 0. Here E(A) is
the elementary diagram of A, given as a subset of N by a Gödel coding.

That is, the Turing functional for computing g can be determined uniformly from that
for f , uniformly in ε and independently of the level of f in the Borel hierarchy up to α .

By the Padding Lemma (see eg Soare [6, Lemma I.3.2]), h may also be assumed
injective. Of course, h only describes how to determine the program for computing this
g. In order to compute g, one also needs the oracle S(A) and the elementary diagram
E(A) of the linear order A. However, the choice of program for g depends only on ε

and the program given for computing f , not on which S and A are used to compute
f . In fact, not all of the atomic diagram E(A) is required as an oracle; it suffices to
know which elements of (A,≺) are limit points from the left, which is the zero element,
which pairs (m, n) are adjacencies (with m ≺ n and no elements between them), and
whether A itself is a limit ordinal, a successor, or zero. For uniformity, though, even
the finite information, such as knowing which element is the left end point of A, must
be given. Finally, it is not necessary to be given this diagram itself: since an S–oracle is
given, one only needs to know an index for computing this information about A from S .

Nowhere in the proof of Theorem 6.2 did we use the fact that the values f(x) were
finite real numbers (as opposed to ±∞). Indeed, the same proof would work even
if enumerations of improper Dedekind cuts were allowed as outputs. Moreover, the
construction in Theorem 6.2 ensures that the points x where g(x) ̸= f(x) all have g(x)
finite, as they all lie in U, which is the union of intervals on which g is defined to be
finite.

Theorem 7.2 For every Borel-measurable function f : R → R ∪ {±∞} and every
ε > 0, there exists a continuous function g : R → R ∪ {±∞} such that µ({x ∈ R :
f(x) ̸= g(x)}) < ε . Moreover, the value g(x) is infinite only when f(x) is, and all
uniformities described in Theorem 7.1 still hold here.

8 The Causes of Discontinuity

Our proof of Theorem 6.2 emphasizes a remarkable fact about Lusin’s Theorem. Once
the parameters ε, S , and A are fixed, the proof uses the exact same error set Uε,S,A for
every function f it is given. So one may legitimately argue that the non-continuity of
functions f at this level of the Borel hierarchy is the “fault” of the real numbers x in

US,A =
⋂
ε>0

Uε,S,A
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namely, the set of those x ∈ R that are not generalized–α–low relative to S (using the
presentation A of α). In this sense, the functions themselves are not the obstacle: their
non-continuity was caused by our inability to approximate (S ⊕ Lx ⊕ Rx)(A) for those x
in the error intervals.

Proposition 8.1 Fix α , S , an S–decidable presentation of α , and a rational ε > 0.
Then for every α–jump S–computable function f : R → R, the procedure in Theorem
7.1 produces a continuous g such that the set {x ∈ R : f(x) ̸= g(x)} is always contained
within the same open set Uε,S,A ⊆ R of measure < ε, independent of the choice of f .
Indeed, for ε0 ≤ ε1 , we have Uε0,S,A ⊆ Uε1,S,A .

The immediate objection to this proposition is that, just by translating f by a certain
fixed parameter c, one could define a function fc(x) = f(x − c) for which most of
the discontinuities of f move out of Uε,S,A . This is true, but it requires c to be
noncomputable, indeed not S–computable, and so fc does not belong to the class of
functions considered in Proposition 8.1. In fact, Uε,S,A is closed under translation by
S(A) –computable parameters, and under other similar gambits one might concoct.

The more informed objection to the proposition is that it is obvious: there are only
countably many α–jump S–computable functions, so by applying Lusin’s Theorem to
the n-th such function with tolerance ε/2n+1 , we immediately prove the proposition.
This is correct, but the spirit of the proposition is that it was not necessary to slice up
the ε–amount of measure this way: our proof of Theorem 6.2 defined Uε,S,A using
basic computability theory, and then uniformly constructed some continuous g for each
f such that they differed only within Uε,S,A . Probably the best way to express this is
to note that the restriction of every such f to the complement of each Uε,S,A is itself
S(A) –computable and hence continuous on this domain, and that each such domain is
simply a ΠS(A)

1 set of real numbers.

In contrast, however, the restriction of such an f to the complement of US,A (defined
just above) need not be continuous. Analogously, while only measure–0-many real
numbers fail to be generalized-α–low relative to S , no single Turing functional can
compute (S ⊕ X)(α) from S(α) ⊕ X for all but measure–0-many X . As an example of
a 2–jump-computable function f such that no restriction of f to a set D ⊆ R of full
measure is continuous on the domain D, consider:

f(x) =
∑

e∈(Lx⊕Rx)′

1
2e

The set (Lx⊕Rx)′ is c.e. relative to (Lx⊕Rx), hence uniformly decidable using the oracle
(A ⊕ B)′′ whenever (A ⊕ B) enumerates the cuts of x. Thus f is 2–jump-computable.
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However, from any enumeration of the cuts of f(x), one can compute (Lx ⊕ Rx)′ ,
uniformly in x and in the choice of enumeration. Therefore, by the last part of Lemma
11.3, the restriction of f to an arbitrary set of full measure cannot possibly be an
S–computable function, no matter what oracle set S one chooses. Then one adapts
Theorem 10.4 to functions on subdomains within R to show that this restriction cannot
be continuous.

9 Computing Continuous Functions

When Lusin’s Theorem is applied to a function f that is already continuous, it holds
trivially: just take g = f . One might ask whether the procedure given in Section
6 reflects this. The immediate answer is that it does not: if f is continuous but is
presented to us as an α–jump-computable function, applying the procedure there will
often produce a g that, while satisfying the requirements of Lusin’s Theorem, is not in
fact equal to f , not even up to a set of measure 0. For future investigation, we conjecture
that this is inherent: no uniform procedure (as in Theorem 7.1) instantiating Lusin’s
Theorem can also succeed in making g = f when f is itself continuous.

However, if we ask the same question restricted entirely to continuous functions
f : R → R, then it is possible to produce a procedure for computing the function from a
procedure for α–jump-computing it. (In general a stronger oracle is required, though.)
This situation could plausibly arise: for example, perhaps we can only determine a
jump-computation for a solution f to some differential equation under certain initial
conditions, although such an f , being differentiable, must be continuous.

Theorem 9.1 Let α be a countable ordinal and A an S–decidable presentation of α .
Then there exists a computable total injective function h : N → N such that, whenever

f = Φ
((S⊕A⊕B)(A))
e : R → R

is an α–jump S–computation of a continuous f , we have a 0–jump S(A+1) –computation:

Φ
(S(A+1)⊕A⊕B)
h(e) = f

Here A+ 1 is the presentation of the ordinal α+ 1 with dom(A+ 1) = dom(A)∪{k},
where the number k = min(N− dom(A)) is adjoined to A as a new greatest element.

Proof Where in Theorem 6.2, the rational numbers were a hindrance to be handled by
error sets, here instead they serve as our guide. For every q ∈ Q, the left and right cuts
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Lq and Rq are computable uniformly in Q, so (S ⊕ Lq ⊕ Rq)(A) is S(A) –computable,
uniformly in q, and an (S ⊕ Lq ⊕ Rq)(A+1) oracle can decide the set:

D = {(a, b, u, v) ∈ Q4 : (∀q ∈ [a, b]) v < f(q) < u}

The elements of D are “boxes” (a, b) × (v, u) in R2 within which the graph of f
(restricted to (a, b)) must lie. Now for any x ∈ R and any enumeration A ⊕ B of the
cut of x, we get an S(A+1) –computable enumeration of:

Ex = {(u, v) ∈ Q2 : (∃a ∈ p1(A))(∃b ∈ p1(B)) (a, b, u, v) ∈ D}

By continuity there are boxes in D with u − v arbitrarily small, and so the projections
p3 and p4 of Ex are the right and left cuts Rf(x) and Lf(x) . Thus we have a computation
of f below an S(A+1) –oracle, whose program is uniform in the index e.

10 Appendix: Computable functions on R

Turing computability normally applies to functions from N, the set of all nonnegative
integers, into itself. By fixing a computable bijection between N and Q, we may equally
well consider functions Q → Q, or Q → N, or N → Q. We also use a standard
computable bijection ⟨m, n⟩ mapping N× N onto N, and similarly for Q.

We write a, b, q, r, u, v and sometimes ε for rational numbers, and a,b, r, x, y for real
numbers. Real numbers correspond bijectively to Dedekind cuts under their usual
definition: nonempty downward-closed proper subsets of Q with no greatest element.
For our purposes, this definition must be adapted slightly.

Definition 10.1 The Dedekind cut of x ∈ R is the pair (L,R), where L = {q ∈ Q :
q < x} and R = {q ∈ Q : q > x}. In particular, if x ∈ Q, then x /∈ L ∪ R. We also
define generalized Dedekind cuts to include the pairs (∅,Q) and (Q, ∅), corresponding
to −∞ and +∞, in addition to the proper Dedekind cuts defined above.

An enumeration of a generalized Dedekind cut (L,R) is a set that, when expressed as a
join A ⊕ B, satisfies π1(A) = L and π1(B) = R, where π1(⟨q, n⟩) = q is the projection
map. The canonical enumeration of (L,R) is the join (L ⊕ N) ⊕ (R ⊕ N).

It is natural to regard A and B as subsets of Q× N, so that an oracle for A ⊕ B allows
us to list out the elements in the projections of A and B, and thus to enumerate both the
lower cut and the upper cut of the real x.

We can now give a definition of computability for functions on R using Dedekind cuts,
instead of the usual fast-converging Cauchy sequences, to represent real numbers.
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Definition 10.2 For each subset S ⊆ N, a function f : R → R is S–computable if
there exists a Turing functional Φ such that, whenever X is an enumeration of the
Dedekind cut of any x ∈ R, ΦS⊕X is the characteristic function of an enumeration of
the Dedekind cut of f(x).

It is equivalent, and often simplifies matters, to have ΦS⊕X be a partial function from Q
into {0, 1}, understanding {q : ΦS⊕X(q)↓= 0} and {q : ΦS⊕X(q)↓= 1} to be the left
and right Dedekind cuts of f(x), respectively. In this case, if f(x) itself is rational, then
ΦS⊕X(f(x)) never halts.

The possibility that L ∪ R omits an element of Q is the reason for considering
enumerations of cuts. If we had simply taken L as an oracle, rather than an enumeration
of (L,R), then for rational q, the characteristic function of the interval [q,+∞) would
have been computable; similarly with R and the interval (−∞, q]. On the other hand,
if we had required the cut of a rational y to include y itself on one side or the other,
then functions such as f(x) = x2 − 2 would not be computable. (For that f , given an
enumeration of the cuts of x =

√
2, Φ would never be able to place the rational 0 with

certainty on either side of the cut of f(
√

2).)

Classically it is standard to express Definition 10.2 using fast-converging Cauchy
sequences instead of Dedekind cuts. (A Cauchy sequence ⟨qn⟩n∈N converges fast to
x = limn qn if, for every n, |qn − x| < 2−n .) Readers will understandably be baffled
at first by our choice to use enumerations of Dedekind cuts as inputs and outputs of
functions, rather than following tradition. We request forbearance: in our view, this is
the simplest way to prove Theorems 5.1 and 6.2, because (as suggested in Definition
10.1) it affords a canonical enumeration of the Dedekind cuts of each x, whereas in
general no Cauchy sequence converging fast to x is identified as the canonical such
sequence. Were it not for the simplification of the proofs of these theorems, we would
gladly use the traditional definition, which has proven appropriate for all work so far in
computable analysis.

Definition 10.1 makes Definition 10.2 equivalent to the usual definition of computable
functions on R. The next lemma proves this, by showing that we can pass effectively
between the different methods of representing real numbers.

Lemma 10.3 There exist Turing functionals converting each of the following represen-
tations of real numbers x into the other:

• An arbitrary enumeration of a Dedekind cut for x in Q.
• An arbitrary Cauchy sequence that converges fast to x.
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Proof The lemma states that, for example, there exists a Turing functional Υ such that,
whenever A ⊕ B is an enumeration of the Dedekind cuts in Q for some real number
x, ΥA⊕B will be a Cauchy sequence converging fast to the same x. Indeed, given
an enumeration A ⊕ B of the cut of some x, on input n, Υ searches for ⟨a, s⟩ ∈ A
and ⟨b, t⟩ ∈ B with b − a < 1/2n−1 . For the first such pair of pairs to be found, it
outputs qn = (a + b)/2 as the n-th term. Since x ∈ (a, b), this qn is strictly within
1/2n of x, so ⟨qn⟩n∈N converges fast to x. (This is the definition of fast convergence:
|qn − x| < 1/2n .) Conversely, given any Cauchy sequence ⟨qn⟩n∈N converging fast to
x, the set{

⟨a,m⟩ ∈ Q× N : a < qm − 1
2m

}
⊕
{
⟨b, n⟩ ∈ Q× N : b > qn +

1
2n

}
enumerates the Dedekind cuts of x.

With Lemma 10.3 it is clear that the well-known theorem of Weihrauch holds for the
functions of Definition 10.2.

Theorem 10.4 (Weihrauch [8]) A function f : R → R is continuous if and only if
there exists a set S ⊆ N such that f is S–computable in the sense of Definition 10.2.

11 Appendix: Approximating the Iterated Jump

In this appendix we describe known concepts and results that may be unfamiliar to
readers outside computability theory, and also describe the precise version of the iterated
jump used in this article. By definition, the jump, or Turing jump, A′ of a set A ⊆ N is
the relativization of the Halting Problem to the set A:

A′ = {e ∈ N : ΦA
e (e) halts}

Here Φ0,Φ1, . . . is the standard enumeration of all Turing functionals, that is, of all
programs for Turing machines endowed with an arbitrary “oracle set” of natural numbers.
One writes ΦA

e for the partial function from N into N computed by the e-th such
program when using the set A as its oracle. We refer the reader to Soare [6, Chapter
III] for full definitions. The set ∅′ is essentially the Halting Problem itself, and just as
∅′ is not computable, so likewise A is always strictly below A′ in Turing reducibility:
A <T A′ , by which we mean A ≤T A′ but A′ ̸≤T A. (It is not completely obvious that
one can compute A using an A′–oracle, but the proof is not difficult.)

The jump operator is simply the function A 7→ A′ , sending each subset of N to its
jump, and thus mapping the power set P(N) into itself. This map is injective but not
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surjective, and it preserves Turing reductions but can fail to preserve non-reductions:
the implication

A ≤T B =⇒ A′ ≤T B′

always holds, but its converse can fail. Since the jump operator maps P(N) into itself,
it is natural to iterate it. We write A(k+1) for the jump of A(k) , with A(0) = A, thus
defining all finite jumps of each set A.

However, this is not the end of the iteration. For ω , the first infinite ordinal, the ω -th
jump A(ω) of a set A is a sort of union of all the preceding jumps of A:

A(ω) = {⟨n, k⟩ ∈ N2 : n ∈ A(k)}

One views the k-th jump of A (for each k) as being coded into A(ω) as the k-th
column, under the usual computable bijection from N2 onto N mapping the ordered
pair (n, k) ∈ N2 to its code number ⟨n, k⟩ ∈ N. Clearly no finite jump A(k) can compute
A(ω) , since if it could, it would then compute the (k+ 1)-st column A(k+1) , contradicting
the fundamental property of the jump operator. We view A(ω) as a natural “next” jump,
in the sense of ordinals, after all finite jumps have been built. (To be clear: the set ω is
actually just the set N, but now viewed as an ordinal.)

Nor yet is this the end of the process. One now continues through successor ordinals
as before, with A(ω+1) = (A(ω))′ and so on. At subsequent limit ordinals λ, it is not
always as obvious as for ω exactly how to define the λ-th jump, but we can do so if
given a computable presentation of the ordinal λ—that is, a computable linear ordering
≺ of the domain N such that (N,≺) is isomorphic to λ as a linear order. (Later we
will assume that in the order ≺, the successor and limit relations are computable as
well.) Then we can define the k-th column of A(λ) to represent the α-th jump A(α) ,
where k ∈ N is mapped to α ∈ λ by the isomorphism from (N,≺) onto λ. This gives
a reasonable notion of A(λ) , except that it depends on the choice of the presentation
≺ of λ. With proper use of ordinal notations, one can now define the set A(α) for all
ordinals α with computable presentations, and, although the actual set depends on the
notation chosen. its Turing degree does not.

Church and Kleene knew that there must be a countable ordinal with no computable
presentation, and the least such ordinal is now known as ωCK

1 . Iterating the jump to
A(ωCK

1 ) and beyond requires presentations of noncomputable ordinals. In the work in
this article, we are generally able to use as oracle a (noncomputable) set S capable
of giving presentations of noncomputable countable ordinals. Of course, for each S
there is a least countable ordinal ωS

1 which has no S–computable presentation (and it
then follows that no ordinal > ωS

1 has any S–computable presentation either). On the
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other hand, every countable ordinal is isomorphic to some linear order on N, just by the
definition of countability, and so, for every countable α , there is some oracle set S such
that α < ωS

1 , ie such that α has an S–computable presentation. (Again, we will need a
slightly stronger presentation of α , with successors and limits known, but with the right
oracle this can also be assumed. In fact, Spector showed that S itself can give such a
presentation.)

Thus we have (sketchily) described the iterated notion of the jump operator. Having
done so, we will now give formal definitions for use in this article.

Definition 11.1 A presentation A of a nonzero ordinal α < ω1 is a linear order
A = (D,≺) isomorphic to (α,∈), whose domain D is a coinfinite subset of N and
whose least element is the number 0 in N. The presentation A is S–decidable if S can
compute the complete diagram of A.

A presentation is normally called S–computable if S can compute its atomic diagram.
We will need more than just that here, and we could be more precise (as above) about the
exact information we require S to compute: the successor function on A, the existence
of a greatest element in A, and the unary relations on A of having no immediate
predecessor and of being the least or the greatest element of A. Demanding that
S compute the complete diagram is overkill, but keeps the definition simple. The
requirement that D be coinfinite is unusual in computable structure theory, but helpful
for our purposes here: we will need it when α is a successor, in order to have a location
in which to code one more jump.

It is important to notice that, for every nonzero k ∈ D, the substructure Bk with domain
{j ∈ D : j ≺ k} is a presentation of an ordinal βk < α , and that each β < α is
isomorphic to βk for some unique k ∈ D. Moreover, S can compute the complete
diagram of each Bk , uniformly in k .

Definition 11.2 For a presentation A of a nonzero ordinal α < ω1 , the A–jump C(A)

of a set C ⊆ N is the subset of N containing those codes ⟨k, n⟩ for pairs (k, n) such
that either

• k ∈ dom(A) and n ∈ C(Bk) ; or
• A has a ≺–greatest element j and k is the least number > j in D and:

(∀n ∈ N)
[
⟨k, n⟩ ∈ C(A) ⇐⇒ Φ

(
C(Bj)

)
e (e)↓

]
The ordinal α = 0 has only one presentation A0 , with empty domain, and we define
C(A0) = N× C for every set C ⊆ N.
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So, for k ∈ D, the k-th column of C(A) is simply the set C(Bk) , meaning that for every
β < α , the β -th jump of C (under the presentation Bk ) appears as the k-th column. If
α is a limit ordinal, all other columns are empty, but for a successor ordinal α = β + 1,
with j the greatest element of A, the k-th column of C(A) (for to the least number k > j
in D) presents the α-th jump of C (under the presentation A). With D coinfinite, such
a column does exist and is found using the diagram of A.

Notice that the 0-th column {n : ⟨0, n⟩ ∈ C(A)} of C(A) is just the set C itself, for every
presentation A of any ordinal, because 0 is always the least element of the presentation.
This gives us a uniform way to recover C from C(A) , independent of the presentation.

When α = m is finite, C(A) is not literally the same set as the jump C(m) discussed
above, but for our purposes in computability they are equivalent: one column of C(A)

actually is the set C(m) , all others are computable from C(m) , and we have a 1–reduction
from the k-th column to C(m) uniformly in k . More generally, for a presentation A of a
successor α = β + 1, one can view C(A) as the jump of C(Bj) , where j is the greatest
element in A: this essentially says that the α-th jump is the jump of the β -th jump.
(C(Bj) itself also appears inside C(A) , just as the β -th jump is 1–reducible to the α-th
jump.) The uniformity of Definition 11.2 across finite and infinite ordinals will simplify
our arguments below.

The key property used in this article is that, for a fixed oracle set S , “most” sets A satisfy
(S ⊕ A)′ ≤T S′ ⊕ A, and that this reduction is uniform for most of those sets A. It is
impossible for this to hold for all A (and in particular for A = S′ ), but it does hold for
all 1–generic sets A, as seen the proof of Lemma 4.1 above. For Lebesgue measure
on 2N , Theorem 2 of Stillwell [7] proves that a Turing reduction A′ ≤T ∅′ ⊕ A exists
for measure–1-many sets A. It is not uniform on any set of full measure. (That is, no
single functional Φ suffices, even up to a set of measure 0.)

Since we wish to address functions on R as well as on 2N , we need a more specific
theorem, using only (strict) Dedekind cuts L ⊕ R of real numbers as our oracles. Since
the set of all such cuts has measure 0 under Lebesgue measure on Cantor space (viewed
here as 2(Q⊕Q) ), we must re-prove the result of [7] for our own measure, namely
Lebesgue measure on R.

The first lemma is a warm-up for the main theorem, demonstrating the basic technique.
Fix a computable enumeration q0, q1, . . . of all rationals in the interval (0, 1). We write
Lx for the strict left Dedekind cut of a real number x, and Rx for its strict right cut.
For each a = qj and b = qk in Q such that 0 ≤ a < b ≤ 1 and every qi ∈ (a, b) has
i > max{j, k}, we define the binary strings λa,b and ρa,b each to have length l , where l
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is least with ql ∈ (a, b), and set:

λa,b(i) =
{

1, if qi ≤ a
0, if qi ≥ b

and ρa,b(i) = 1 − λa,b(i) =
{

1, if qi ≥ b
0, if qi ≤ a

Thus the real numbers x in the open interval (a, b) are precisely those x such that λa,b

is an initial segment of Lx (viewed as an infinite binary string) and ρa,b is an initial
segment of Rx . (These strings are examined further at the end of the proof of Theorem
11.4.) For intervals (a, b) where some qi ∈ (a, b) has i < j or i < k , it is possible to
divide the interval into finitely many subintervals with the property required above,
effectively, and to consider a string λ⊕ ρ for each subinterval.

Lemma 11.3 For every rational ε > 0, there exists a Turing functional Ψε such that
for every S ⊆ N:

µ
(
{x ∈ (0, 1) : ΨS′⊕Lx⊕Rx

ε = (S ⊕ Lx ⊕ Rx)′}
)
> 1 − ε

Moreover, there is a computable function h mapping each ε > 0 to an index h(ε) ∈ N
such that Φh(ε) = Ψε . So this process is uniform in ε, although when ε = 0, no Ψ

suffices.

Proof Given an e ∈ N, ΨS′⊕Lx⊕Rx
ε searches for a rational number r ∈ [0, 1], a finite

initial segment σ ⊂ S , and a finite collection (a0, b0), . . . , (am, bm) of disjoint open
rational subintervals of (0, 1) and a stage s such that:

• (∀i ≤ m) Φσ⊕λai,bi⊕ρai,bi
e,s (e)↓

•
∑

i≤m(bi − ai) > r
• there do not exist a number t , a τ ⊂ S , and finitely many disjoint rational

intervals (c0, d0), . . . , (cn, dn) within (0, 1) such that
∑

i≤n(di − ci) ≥ r + ε
2e+1

and (∀i ≤ n) Φτ⊕λai,bi⊕ρai,bi
e,t (e)↓

The S′–oracle allows Ψε to recognize the truth or falseness of the final statement for any
specific r , while the first two statements are decidable. For the r that is found, we have
r < µ

(
{y ∈ (0, 1)ΦS⊕Ly⊕Ry

e (e)↓}
)
≤ r + ε/2e+1 . (This also makes it clear why such

an r must exist: arbitrarily much of the measure of this set can be covered by finitely
many initial segments of oracles Lx ⊕ Rx .) Now Ψε examines the Lx ⊕ Rx –portion of
its oracle. If, for some i ≤ m, λai,bi ⊕ ρai,bi ⊆ Lx ⊕ Rx , then it outputs 1, since such an
x will lie in one of the intervals (ai, bi). For all other x it outputs 0, meaning that it
thinks that ΦS⊕Lx⊕Rx

e (e)↑ . This output 0 may be wrong for certain values x, but only
for ε/2e+1 –many. Since this holds for every e, incorrect outputs can only occur for at
most ε–much of the interval (0, 1). Moreover, it is clear that this procedure is uniform
in ε > 0.
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Lemma 11.3 clearly can be repeated for all intervals (n, n + 1) with precision ε/4|n|+1 ,
uniformly in n ∈ Z, to make it hold on all of R. Finally, we will need to know that this
lemma holds not only for the jump operator, but for all iterations and relativizations of
it. Here is the full result.

Theorem 11.4 There exists a Turing functional Ψε , uniform in the rational ε > 0,
such that for every set S ⊆ N and every fixed S–decidable presentation A of any ordinal
α < ωS

1 (with α–jumps C(A) defined using this presentation), the “error set”

Uε,S,A = {x ∈ [0, 1] : ΨS(A)⊕Lx⊕Rx
ε ̸= (S ⊕ Lx ⊕ Rx)(A)}

has measure < ε and is an S(A) –effective union of rational open intervals, uniformly in
ε, S , α , and A. Moreover, for all x, ΨS(A)⊕Lx⊕Rx

ε is total.

Proof We give the procedure of Ψε on an input ⟨k, e⟩, using the presentation A of α ,
whose complete diagram Ψε can compute using its S–oracle.

For elements k ∈ D = dom(A), the program runs in a highly recursive manner,
computing the k-th column of its output using (finitely much information from) those
columns whose numbers i satisfy i ≺ k (according to the diagram of A). Since A

is well-ordered by ≺, this procedure is well-founded and will eventually halt. On
input ⟨k, e⟩ with k ∈ D, the program checks whether k is 0 or a limit point in A.
For k = 0, it uses its oracle to decide whether e ∈ S ⊕ Lx ⊕ Rx and outputs the
answer. For a limit point k , it decodes e = ⟨k′, e′⟩ and runs itself on this pair, since
⟨⟨k′, e′⟩, k⟩ ∈ (S⊕Lx ⊕Rx)(A) just if ⟨k′, e′⟩ ∈ (S⊕Lx ⊕Rx)(A). If k is a successor, then
the program finds the immediate predecessor i of k under ≺, using the diagram of A,
and attempts to determine whether ΦI

e(e)↓, where I is the i-th column of the program’s
own output. This requires running the program itself many times, recursively, but only
on finitely many inputs (and only on pairs ⟨i′, e′⟩ with i′ ⪯ i). The procedure is the
same as in Lemma 11.3: the program runs until it has found a finite set of some measure

r of initial segments λa,b ⊕ ρa,b that will cause Φe(e) with oracle Ψ
S(Bi)⊕λa,b⊕ρa,b
ε to

halt, and has been told by the oracle S(A) that the oracles of this form that cause Φe(e)

to halt have total measure at most r + ε/2k+e+2 . Here we are using Ψ
S(Bi)⊕λa,b⊕ρa,b
ε as

an approximation to (S ⊕ Lx ⊕ Rx)(Bi) , which is the actual content of the i-th column I .
The approximation is not always correct; below we will consider the measure of the set
on which it is incorrect, but for now the important point is that it does always give an
output, instead of diverging. Finally, Ψε determines whether Lx ⊕ Rx begins with any

of the finitely many strings λa,b ⊕ ρa,b that were found to make ΦΨ
S(Bi)⊕λa,b⊕ρa,b
ε

e (e) halt.
If so, it outputs 1, while if not, it outputs 0.
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For elements k /∈ D, the program checks whether any j < k is the greatest element of
A, and if so, whether k is the <–least number in D greater than that j. If not, then
it immediately outputs 0. If so, then it runs in a similar manner to the program in
Lemma 11.3, recursively using the column J = {⟨ j, n⟩ : n ∈ N} of its own output. For
definiteness we specify that on input ⟨k, e⟩ (with k /∈ D) it uses a tolerance of ε/2k+e+2

to approximate J′ .

Since ≺ well-orders A, it is readily seen (by induction on columns whose numbers lie
in D, ordered according to ≺) that this program halts on every input ⟨k, n⟩ with k ∈ D.
If α is a successor, the same proof then applies to the k /∈ D determined above, and
for all other k /∈ D it halted immediately. So the program Ψε with arbitrary oracle
S(A) ⊕ Lx ⊕ Rx always computes a total function. Next we consider the set Uε,S,A of
those Lx on which it fails to compute (S ⊕ Lx ⊕ Rx)(A) . This can happen in many ways.
For the very first jump, when k1 is the second-to-left point of A, the computation on
input ⟨k, e⟩ will be incorrect on a set of x of measure < ε/22+k1+e , and so the set of
those x for which there is an error anywhere in this column has measure < ε/2k1+1 .
For the second jump, in column number k2 , there are two reasons the computation
could be incorrect: either x lies in the set of measure <

∑
e ε/22+k2+e = ε/21+k2 on

which the approximation goes wrong, or else the approximation was using an incorrect
version of (S⊕Lx ⊕Rx)(Bk1 ) from column k1 . However, we already counted those x for
which the k1 column was incorrect, so the reals x added to the set Uε,S,A on account of
column k2 have total measure < ε/21+k2 . Similarly, for every x in Uε,S,A , either there
is some ≺–least k ∈ D such that the computation for x goes wrong in column number
k , or else α is a successor and the computation went wrong in column k = min(D).
Therefore, the total measure of Uε,S,A is at most(∑

k∈D

ε

21+k

)
+

ε

21+min(D)
≤

∑
k∈N

ε

21+k = ε.

The foregoing paragraph already essentially explained how we can uniformly enumerate
the open set Uε,S,A from an S(A) –oracle. Those x in Uε,S,A for which the first column k1

was incorrect all have ΨS(A)⊕Lx⊕Rx
ε (e) = 0 for some e such that eventually Φ(S⊕Lx⊕Rx)

e (e)
halted. With the S(A) –oracle we can run both of these computations with arbitrary
strings of the form λa,b ⊕ ρa,b in place of Lx . When we find any λa,b ⊕ ρa,b and e
for which Ψε(e) gave 0 but ΦS⊕λa,b⊕ρa,b

e (e)↓, we enumerate the open interval (a, b) of
R into Uε,S,A (since all x there have λa,b ⊕ ρa,b ⊆ Lx ⊕ Rx ). For column k2 , we do

the same, using ΨS′⊕Lx
ε to compute the oracle for the computation Φ(S⊕Lx⊕Rx)

(Bk1
)

e (e); if
it does so incorrectly, then this x was already enumerated at the previous step, while
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if it does so correctly, then we will enumerate x into Uε,S,A just if Φ(S⊕Lx⊕Rx)
(Bk1

)

e (e)

halts and Ψ(S(A)⊕Lx⊕Rx)
(Bk1

)

ε (e) = 0. Likewise, every x ∈ Uε,S,A will eventually be
enumerated by this process, because some finite initial segment λ⊕ ρ ⊆ Lx ⊕ Rx must
have been adequate to cause both of these events to occur, and we will eventually find
that segment (which must be of the form λa,b ⊕ ρa,b , with a = max(λ−1(1) ∪ {0}) and
b = min(λ−1(0) ∪ {1})) and enumerate x into Uε,S,A .

Finally we discuss the situation of isolated points in Uε,S,A . The strings λa,b ⊕ ρa,b

(and their substrings) are not the only possible initial segments of oracles Lx ⊕ Rx : the
other possibility occurs when x itself is equal to the rational number qj , in which case
qj /∈ Lx and qj /∈ Rx . Initial segments λ⊕ ρ of such strings still satisfy the property
min(λ−1(0)) ≤ max(ρ−1(0)), but they are allowed to have at most one j < |λ| for
which λ(qj) = ρ(qj) = 0 (with ρ(i) = 1 − λ(i) for all other i).

Intuitively (and by definition), all rational numbers qj should lie in the error set Uε,S,A .
However, our enumeration so far could have omitted some rationals. To include them
(thus showing that Uε,S,A is indeed open), notice that for each qj , we can effectively
find the indices c and d of two other relevant functionals:

• ΦS(A)⊕Lx⊕Rx
c halts just if Lx contains some rational > qj (that is, just if x > qj )

• ΦS(A)⊕Lx⊕Rx
d halts just if Rx contains some rational < qj (that is, just if x < qj )

Φc will contribute an error interval to Uε,S,A of the form (qj, q) for some rational q > qj ,
and Φd will contribute one of the form (r, qj). Therefore, including qj itself in Uε,S,A

keeps it open, as now the entire interval (r, q) is contained in Uε,S,A . So, along with the
error intervals previously enumerated into Uε,S,A , we also enumerate the interval (r, q)
defined here for this qj , noting that r and q were computed effectively from j. We do
the same for every other rational qj in Q as well. Thus Uε,S,A is still S(A) –effectively
open, and the countably many new points do not change its measure.

As mentioned above, it is easy to repeat this process for all intervals [n, n + 1]. We
record this as our final corollary.

Corollary 11.5 There exists a Turing functional Ψε , uniform in the rational ε > 0,
such that for every set S ⊆ N and every fixed S–decidable presentation A of any ordinal
α < ωS

1 (with α–jumps C(A) defined using this presentation), the “error set”

Uε,S,A = {x ∈ R : ΨS(A)⊕Lx⊕Rx
ε ̸= (S ⊕ Lx ⊕ Rx)(A)}

has measure < ε and is an S(A) –effective union of rational open intervals, uniformly in
ε, S , α , and A. Moreover, for all x, ΨS(A)⊕Lx⊕Rx

ε is total.
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