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Abstract

We survey known results on spectra of structures and on spectra
of relations on computable structures. asking when the set of all highn

degrees can be such a spectrum, and likewise for the set of nonlown

degrees. We then repeat these questions specifically for linear orders
and for relations on the computable dense linear order Q. New re-
sults include realizations of the set of nonlown Turing degrees as the
spectrum of a relation on Q for all n ≥ 1, and a realization of the set
of nonlown Turing degrees as the spectrum of a linear order whenever
n ≥ 2. The state of current knowledge is summarized in a table in the
concluding section.

Keywords: computability, computable model theory, spectrum, relation, linear
order.

1 Introduction

Spectra of structures and spectra of relations are both natural and well-
established topics of study in computable model theory. Logicians have come
to a solid understanding of these notions over the last thirty years, yet many
questions remain open, some of them unsolved more than a decade after
being posed, despite heroic efforts.

The principal focus of this paper is on two specific kinds of possible spec-
tra: spectra which consist of precisely the highn degrees, and spectra which
consist of precisely the nonlown degrees. These are both standard classes in
computability theory, and we will survey these sets of degrees with respect to
two standard theories: the theory of graphs, and the theory of linear orders.
We will recall known results and prove some new ones, to give as complete a
picture as presently possible of the feasibility of realizing these degree classes
as spectra of models of these theories.

At its base, the study of spectra examines the interaction between effec-
tiveness properties of structures and the classical notion of isomorphism be-
tween two structures. For spectra of relations, we wish to measure the extent
to which a classical isomorphism can map a simple subset of the structure to
a complicated one, or vice versa. For spectra of structures, we ask a similar
question about the image of the entire structure under the isomorphism. We
now recall these concepts for the reader.
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The Turing degree of a countable structure M with domain ω is the
Turing degree of its atomic diagram. If the language is finite, this is the join
of the degrees of the different functions fM and relations RM, where f and
R range over all function and relation symbols in the language of M. (We
will assume in this paper that the language is finite, unless otherwise stated.)
By definition, the spectrum of (the isomorphism type of) M is the set of all
Turing degrees of isomorphic copies of M:

Spec(M) = {deg(N ) : N ∼= M}.

(By convention, N must also have domain ω; it is not fair to make N com-
plicated just by choosing its domain to be complicated. We wish to measure
complexity of the functions and relations in N , without interference from a
complex way of naming the elements of N .)

Intuitively, Spec(M) measures the intrinsic difficulty of computing a copy
of M: each degree d in Spec(M) is smart enough to build a structure iso-
morphic to M. Conversely, for d to lie in Spec(M), M must be complicated
enough to allow some way of coding d into a copy of M. As seen in Theorem
1.1 below, the requirement of being “smart enough” is usually the difficult
one when we ask whether d lies in Spec(M); coding is possible in all but
certain trivial cases.

On the other hand, the degree spectrum of a relation R on a computable
structure A is defined as:

DgSpA(R) = {deg(S) : (∃B ≤T ∅)(B, S) ∼= (A, R)}.

The symbol R generally is not in the language of the structure A; indeed, if
it were, then DgSpA(R) would contain only 0.

Again, the intuition we wish to capture by defining the degree spectrum
of R is the question of how complicated we can make the relation R. Of
course, if the definition allowed B to be any isomorphic copy of A, then we
would have much more freedom to increase the complexity of the image S
of R (even if B has domain ω). Restricting the definition to computable
structures B is our way of ruling out such tricks: for a degree d to lie in
DgSpA(R), we must be able to make the image of R have degree d while
keeping the underlying structure computable.

A Turing degree d is low if its jump has the least possible complexity:
d′ = 0′, the jump of the degree 0 of the computable sets. Likewise, it is
lown, for any n ∈ ω, if its n-th jump d(n) has the least possible complexity:
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d(n) = 0(n). (We include here the degenerate case n = 0: the 0-th jump of a
degree is just the degree itself, so 0 is the unique low0 degree.) The concept
was originally intended for the ∆0

2 degrees, for which the jump of greatest
possible complexity is the degree 0′′. More generally, therefore, a degree d is
defined to be high if 0′′ ≤T d′, and highn if 0(n+1) ≤T d(n). Again the case
n = 0 will be considered: the high0 degrees are just the degrees d ≥T 0′.

A valuable result for spectra of structures is the following theorem, proven
in 1986 by Julia Knight:

Theorem 1.1 (Theorem 4.1 in [17]) For all automorphically nontrivial
stuctures S, the spectrum of S is upwards closed under Turing reducibility:
if d ∈ Spec(S) and d ≤T c, then c ∈ Spec(S) as well.

S is automorphically trivial if there is a finite subset of S such that every
permutation of ω which fixes that subset pointwise is an automorphism of
S. Finite structures fit this definition, of course, as does the complete graph
on ω-many vertices, or an almost-complete such graph (missing only finitely
many edges). For these structures, the spectrum is always a singleton, and
if the language is finite, then the one degree in the spectrum must be 0.
Automorphically trivial structures are of little interest to us, therefore; for all
structures we consider, the spectrum will be upwards closed. For relations on
computable structures, it is quite possible for the spectrum not to be upwards
closed; indeed this holds of any definable relation (even of relations definable
by infinitary formulas). However, it was shown by Harizanov and Miller in
[12, Theorem 2.10 & Prop. 3.6] that for relations on either the random graph
or the dense linear order, the spectrum either is upwards-closed or else is
just the singleton {0}. Since our focus will be on relations on these two
structures, we will again only be interested in upwards-closed sets of degrees
as spectra of relations.

It follows that the class of lown degrees is of no direct interest to us, for
any n, since it is not closed upwards. Its complement, on the other hand,
the set of nonlown degrees, is upwards-closed and will be of intense interest.
Our other focus will be the highn degrees, for each n, as this class is also
upwards-closed. (Some definitions of highn require the degree in question to
be ∆0

2. For the sake of upwards-closure, we make no such restriction.)
Each of these classes is a natural candidate to be a spectrum. It is our

intention to give a comprehensive picture of the current state of knowledge
about the existence of spectra of highn degrees and spectra of nonlown de-
grees: for structures in general, for linear orders in particular, for relations
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on computable structures in general, and for relations on the computable
dense linear order in particular. We will therefore cite many known results,
sketching proofs when possible. We also have new results to offer on this
topic, however. Principal among these are the following.

Theorem 5.17 For every n ≥ 1, there exist a structure S, and a relation
R on the computable dense linear order Q, such that Spec(S) and DgSpQ(R)
each contains precisely the highn degrees, i.e. those Turing degrees d with
d(n) ≥T 0(n+1).

Theorem 4.6 For every n ≥ 2, there exists a linear order Ln such that
Spec(Ln) contains exactly the nonlown degrees, and there exists a set Rn

which has this same spectrum when viewed as a relation on the computable
dense linear order.

Theorem 4.8 There exists a relation R1 on the computable dense linear
order Q, such that DgSpQ(R1) contains exactly the nonlow degrees.

We will also generalize each of these results, replacing the target degrees 0(n)

with arbitrary degrees c. Additionally, we prove in Subsection 5.2 that there
exists a set S of Turing degrees which is not the spectrum of any linear order,
but is the spectrum of a relation on the computable dense linear order Q.
This answers a question from [12].

Our computability-theoretic notation is standard; we recommend [25] as
a source. We fix a single computable presentation G of the random graph, to
be used throughout this paper, and likewise a single computable presentation
Q of the countable dense linear order without end points. Since both of these
structures are computably categorical, and since all properties of interest to
us are preserved by computable isomorphism, it makes no difference which
specific computable presentation of either we choose. For details about the
random graph, we recommend [15]. Both of these structures are discussed in
depth in [12] from the point of view of computable model theory.

2 Spectra of Structures

When we ask our questions about structures in general, the answers are
mainly provided by the paper [11], by Goncharov, Harizanov, Knight, McCoy,
Miller, and Solomon. Indeed, they stated the result for spectra of nonlown
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degrees specifically, and extended it to nonlowα degrees, for all successor
ordinals α < ωCK

1 , using the iteration of the jump operator to define the
transfinite jump C(α) of a set C ⊆ ω for such α. Their result is as follows.

Theorem 2.1 (Theorem 6.4 in [11]) For each computable successor or-
dinal α, there is a structure with copies in just the Turing degrees of sets
D such that ∆0

α(D) is not ∆0
α. In particular, for each finite n, there is a

structure with copies in just the nonlown degrees.

Lemma 5.5 of [11] describes a uniform procedure which takes any graph
G and any successor ordinal α, and produces a corresponding structure G∗
such that, for all D ⊆ ω, G has a ∆0

α(D) copy iff G∗ has a D-computable
copy. (This G∗ has other useful properties as well, relating to computability
of isomorphisms, but we do not need those for our purposes in this paper.)
Theorem 2.1 then follows promptly by relativizing a theorem proven inde-
pendently by Slaman and Wehner.

Theorem 2.2 (See [24], [27]) There exists a countable structure S whose
spectrum contains every Turing degree except 0. More generally, for every
set C, there exists a structure SC with

Spec(SC) = {d : d >T deg(C)}.

By [14, Theorem 1.22] (discussed below), we may take S∅(n) to be a graph,
and then the procedure cited above, with α = n+ 1, produces the structure
S∗∅(n) required by Theorem 2.1, whose spectrum is the set of nonlown Turing
degrees.

Despite having six authors, the paper [11] failed to note the simpler appli-
cation of this procedure which proves the analogous result for highn degrees.
We give it here.

Corollary 2.3 (of Lemma 5.5 in [11]) For every n ∈ ω, there exists a
structure H∗

n with

Spec(H∗
n) = {d : 0(n+1) ≤T d(n)}.

Proof. Richter proved in [21] that for every Turing degree c, there is a struc-
ture (indeed a graph) whose spectrum contains exactly the degrees in the
upper cone above c, including c itself. So let Gn be a structure such that
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Spec(Gn) = {d : 0(n+1) ≤ d}, the upper cone above 0(n+1). Then the proce-
dure from Lemma 5.5 of [11], with α = n+ 1, produces a structure Hn = G∗n
which has copies in precisely those degrees d such that d(n) computes a copy
of Gn, i.e. such that 0(n+1) ≤T d(n). So Hn is the structure we need.

So, where Theorem 2.1 used the Slaman-Wehner structure relatived to
∅(n) and the procedure from [11], Corollary 2.3 applies this procedure to
any structure with an upper cone of degrees as its spectrum. We note the
following generalizations, which are immediate.

Proposition 2.4 For every Turing degree c and every n ∈ ω, there exist
countable structures Hc,n and Lc,n with

Spec(Hc,n) = {d : c ≤T d(n)}, Spec(Lc,n) = {d : c <T d(n)}.

3 Spectra of Relations

Turning to spectra of relations on computable structures, we now wish to
prove analogous results about spectra of highn degrees and spectra of nonlown

degrees, The notion of a spectrally universal structure, as defined in [12], will
make this a simple task.

Definition 3.1 A computable model S of a theory T is spectrally univer-
sal for T if for every countable nontrivial model M of T , there exists an
embedding g : M→ S such that

DgSpS(g(M)) = Spec(M).

Theorem 3.2 (Theorem 3.2 of [12]) The computable random graph G is
spectrally universal for the theory of graphs.

Since trivial graphs have spectrum {0}, we immediately get:

Corollary 3.3 Let B be any countable graph. Then there exists a unary
relation R on an arbitrary computable presentation G of the random graph,
such that

DgSpG(R) = Spec(B).
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In concert with results by Hirschfeldt, Khoussainov, Shore, and Slinko in
[14], this yields a far stronger theorem.

Theorem 3.4 ([14], Theorem 1.22) For each nontrivial countable struc-
ture S (in any computable language, finite or infinite), there exists a sym-
metric irreflexive graph with the same spectrum as S.

If the language is finite, this holds for trivial structures as well. Moreover, in
[14] the authors prove the same result for directed graphs, partial orders, lat-
tices, rings, integral domains of arbitrary characteristic, commutative semi-
groups, and two-step nilpotent groups.

The results on graphs from [12] can be summarized as follows.

Theorem 3.5 (Theorem 3.10 of [12]) Let D be any collection of Turing
degrees. The following are equivalent:

(1) D is the spectrum of some countable structure in some finite language.

(2) D is the spectrum of some countable graph.

(3) D is the degree spectrum of some unary relation R on the computable
random graph G.

(4) (∀n ≥ 1) D is the degree spectrum of some n-ary relation on G.

(5) (∃n ≥ 1) D is the degree spectrum of some n-ary relation on G.

This allows us to transfer the results about spectra of structures from
Proposition 2.4 to spectra of relations on G.

Corollary 3.6 For every Turing degree c and every n ∈ ω, there exist unary
relations Hc,n and Lc,n on the computable random graph G such that

DgSpG(Hc,n) = {d : c ≤T d(n)}, DgSpG(Lc,n) = {d : c <T d(n)}.

With this result, we have answered all the questions originally posed for
structures in general. The remainder of this paper is devoted to addressing
the same questions for the specific case of linear orders. As we shall see below,
this has proven to be a significantly more challenging question. However,
we do have most of the same tools involving spectral universality. Just as
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the computable random graph is spectrally universal for graphs, Harizanov
and Miller showed that the computable dense linear order Q is spectrally
universal for linear orders. (Since this linear order is computably categorical,
it makes no difference which computable copy of it one chooses. We write Q
for an arbitrary computable presentation of the countable dense linear order
without end points. The same remarks apply to the random graph.)

Theorem 3.7 (Theorem 2.1 of [12]) This structure Q is spectrally uni-
versal for the theory of linear orders.

Indeed, here the restriction (in Definition 3.1) to trivial structures is unnec-
essary. The only trivial linear orders are the finite ones, and they all have
spectrum {0}, both as structures and as relations on Q under any embedding.

Corollary 3.8 Let A be any countable linear order. Then there exists a
unary relation R on Q such that

DgSpQ(R) = Spec(A).

Not all of Theorem 3.5 carries over readily to linear orders. The authors
of [12] asked whether there is a converse to Theorem 3.7: is every spectrum
of a unary relation on Q also the spectrum of a linear order? For G and
the class of countable graphs, this holds, by Theorem 3.5, but in [12] some
reasons are given why this should be less likely for linear orders. In Section
5 below, we provide a negative answer to this question.

4 Nonlown Degrees and Spectra of Linear Or-

ders

For consideration of nonlown degrees for n ≥ 1, the notion of the shuffle sum
will be essential.

Definition 4.1 Let L0,L1, . . . be (finitely or countably many) linear order
types. The shuffle sum of these orders is L =

∑
q∈Q

Lf(q), where f : Q → ω

is any function such that, for all q1, q2 ∈ Q, and k ∈ ω, q1 <Q q2 implies
k = f(q) for some q ∈ Q with q1 <Q q <Q q2.
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The idea is that we take densely many pairwise-nonoverlapping copies of
these orders Li: in between any copy of Li and any copy of Lj in L, there
will be a copy of every Lk. The same holds to the right and to the left of
each copy of Li, so that no copy of any Li can serve as an “end point.” The
order type of L is uniquely defined and independent of the choice of function
f satisfying the condition in the definition. It also does not depend on the
ordering of the Li’s in the given sequence, or on the number of repetitions of
any Li in this sequence.

4.1 Nonlown Degrees, for n ≥ 2

We begin by considering the classes of nonlown degrees with n ≥ 2. The
following theorem of Downey and Knight from [7] will be key. Essentially it
says that if you can build a linear order with spectrum S, then you can also
build one whose spectrum contains all those degrees whose jumps land in S.
Here η represents the isomorphism type of the usual order on the rational
numbers.

Theorem 4.2 (Lemma 1.2 of [7]) A linear order L has an X ′-computable
copy iff (η+2+η)·L has an X-computable copy. Moreover, both constructions
are uniform in X.

Theorem 4.3 (Ash, Knight [3]) For all sets S, the following are equiva-
lent:

1) S ≤T X
′,

2) there exists a uniformly X-computable sequence of linear orderings
{Dn}n∈ω such that

a) Dn
∼= ω, if n ∈ S,

b) Dn
∼= ω∗, if n /∈ S.

Corollary 4.4 For all families F = {Sk}k∈ω, the following are equivalent:
1) F ≤T X

′′,
2) there exists a uniformly X ′-computable sequence of linear orderings

{Dn,k}n,k∈ω such that
a) Dn,k

∼= ω, if n ∈ Sk,
b) Dn,k

∼= ω∗, if n /∈ Sk,
3) there exists a uniformly X-computable sequence of linear orderings

{Cn,k}n,k∈ω such that
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a) Cn,k
∼= (η + 2 + η) · ω, if n ∈ Sk,

b) Cn,k
∼= (η + 2 + η) · ω∗, if n /∈ Sk.

Now, let F be an X ′′-computable family. By Corollary 4.4, there is an X-
computable sequence of linear orderings {Cn,k}n,k∈ω such that the conditions
(3a) and (3b) hold.

Define Lk(F) = 4+η+3+C0,k+3+C1,k+3+C2,k+3+· · ·+4. Let L(F) be
the shuffle sum of Lk(F), as in Definition 4.1. So L(F) is an X-computable
linear ordering, with F1 = F2 iff L(F1) ∼= L(F2).

Let L be a X-computable linear ordering such that L ∼= L(F). Define:

An = {(x1, x2, . . . , xn) | (∀1 ≤ i < n) Succ(xi, xi+1)} ≤T X
′

Bn = {(z̄1, z̄2) ∈ (An)2 | z̄1 <L z̄2 & (∀z̄ ∈ An)¬(z̄1 <L z̄ <L z̄2)} ≤T X
′′

Here z̄′1 <L z̄
′
2 means xn <L y1, where z̄′1 = (x1, . . . , xn) and z̄′2 = (y1, . . . , yn).

Each (z̄, z̄′) ∈ B4 allows us to build (X ′′-uniformly) each set S of F .
To do so, find z̄ <L z̄0 <L z̄1 <L · · · <L z̄n <L z̄n+1 <L z̄′ such that
(z̄i, z̄i+1) ∈ B3 for any 1 ≤ i ≤ n, and the interval [z̄, z̄0] = {t | xn <L t <L y1}
is dense, where z̄′1 = (x1, . . . , xn) and z̄′2 = (y1, . . . , yn). Now, if there is a pair
(x, y) ∈ A2 such that the interval [z̄n, x] is dense, then set n ∈ S; if there is a
pair (x, y) ∈ A2 such that the interval [y, z̄n+1] is dense, then set n /∈ S (one,
and only one, of this two possibilities always happens). Therefore, F ≤ X ′′.

So, L(F) has an X-computable copy iff F is X ′′-computable. For an
arbitrary Turing degree c, we now apply Wehner’s result from [27, p. 2136],
which was the key to his proof of Theorem 2.2.

Lemma 4.5 (Wehner) For every Turing degree c, there exists a family
F = {F0, F1, . . .} of finite sets such that for any Turing degree d, F has
an enumeration computable in d iff d >T c.

Then it is easy to see that Spec(L(F)) = {d | d′′ >T c}. In case c = 0′′,
Spec(L(F)) contains exactly the nonlow2 degrees. Furthermore, for m ≥ 0,
Spec((η+2+η)m ·L(F)) = {d | d(m+2) >T c} (see for instance Frolov’s work
in [8]). In other words, the following theorem is true.

Theorem 4.6 For every n ≥ 2 and every Turing degree c, there exists a
linear order with spectrum {d : d(n) >T c}. In particular, for each n ≥ 2,
there is a linear order whose spectrum contains exactly the nonlown degrees.

Applying Theorem 3.7 transfers this result to relations on Q.
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Corollary 4.7 For every n ≥ 2 and every Turing degree c, there exists
a unary relation on the computable dense linear ordering Q with spectrum
{d : d(n) >T c}.

We remark that for any family F , the linear ordering L(F) is strongly
η-like. Note that there does not exist a strongly η-like linear ordering whose
spectrum contain exactly all non-zero (i.e., all nonlow0) degrees, because any
low strongly η-like linear ordering has a computable copy, as shown by Frolov
in [8].

4.2 Nonlow1 Degrees

For nonlow degrees, we will be able to prove the analogue of Corollary 4.7, but
not the analogue of Theorem 4.6. That is, our proof will work for relations
on Q, but not for arbitrary linear orders. It remains open whether the set of
nonlow degrees can be the spectrum of a linear order.

Officially the domain of Q is ω. We let < denote the usual less-than
relation on ω, while ≺ will be the computable relation ordering ω densely
without end points. Below, all open or closed intervals refer to the ≺ relation.
References to the “least element” of an interval (a, b) denote the element x
such that x ≤ y for all y with a ≺ y ≺ b. We will often trust the reader to
interpret the explanation properly.

We fix a subset P ⊂ Q which is computable and dense in Q and also
has complement dense in Q. Intuitively, P might be the set of dyadic ra-
tionals, i.e. those with denominator a power of 2. However, no matter what
computable dense order Q we chose, we can always build such a set P : just
enumerate one element from each interval (a, b) into P and another into its
complement.

Theorem 4.8 For every Turing degree c, there exists a unary relation R̃ on
Q with:

DgSpQ(R̃) = {d : d′ >T c}.

Corollary 4.9 There exists a unary relation on Q whose degree spectrum
contains precisely the nonlow Turing degrees.

Proof of Theorem 4.8. For every finite subset F = {n1, · · · , nk} ⊂ ω, with
any order on its elements, and for any elements a ≺ b in Q, we define the
subset U = U(a, b, n1, · · · , nk) ⊂ (a, b) as follows.
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Find the (2k + 2) least elements (under <) of (a, b), and name them so
that

a ≺ u0 ≺ v0 ≺ u1 ≺ v1 ≺ · · · ≺ uk ≺ vk ≺ b.

Enumerate into U all of each closed interval [ui, vi] with i ≤ k. Next, for each
i < k, enumerate into U the ni+1 least elements of the open interval (vi, ui+1).
Finally, enumerate into U all of P ∩ (a, u0) and P ∩ (vk, b) (where P is the
dense co-dense subset defined above). This defines U(a, b, n1, . . . , nk) = U as
a subset of Q, computable uniformly in a, b, k, and n1, . . . , nk. We draw the
form of this U within (a, b) as:

-� ea eb
U doubly

dense︸ ︷︷ ︸ U doubly
dense︸ ︷︷ ︸

uu0 v0u uu1 v1u uu2 · · · uuk vkur r r r︸ ︷︷ ︸
n1

r r r r r︸ ︷︷ ︸
n2

r r r︸ ︷︷ ︸
nk

where the term “doubly dense” means that both U and its complement are
dense in this interval of Q. (In this picture n1 = 4 and n2 = 5.) Below we
will often refer to the ni-subinterval, meaning the interval (ui, vi) containing
exactly ni elements of R. Notice that this U depends not just on F , but even
on the order n1, . . . , nk in which the finitely many elements of F are given.
If F is empty, then U(a, b, F ) contains a single interval [u0, v0], and is doubly
dense in (a, u0) and in (v0, b).

Next we partition Q computably into infinitely many closed intervals
I0, I1, . . . with rational end points. We ensure that for any i 6= j and any k,
there is an m such that the interval I〈k,m〉 lies between the intervals Ii and
Ij. All this can easily be done in a computable fashion, with the end points
ai ≺ bi of each Ii being computable uniformly in i.

We now use again Lemma 4.5 of Wehner, relativized to an arbitrary
degree c, to produce a family F̃ = {F̃0, F̃1, . . .} of finite sets such that for
any Turing degree d, F̃ has an enumeration computable in d iff d >T c. We
may assign an ordering to the elements of each F̃i, and assume without loss
of generality that every possible ordering appears in F̃ . (Just replace each
F̃i by |F̃i|!-many copies of itself, one under each ordering.) We then define
the relation R̃ on Q using this family F̃ : on each interval I〈i,j〉 = (a〈i,j〉, b〈i,j〉)

of Q, we define R̃ to contain precisely the points of U(a〈i,j〉, b〈i,j〉, F̃i), using

the given order on that F̃i. The set of such intervals is dense, so R̃ may be
viewed as the shuffle-sum of intervals of the form U(a, b, F̃i), for all F̃i ∈ F̃
and with all possible orderings of each F̃i included in the shuffle.
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Now suppose that (Q, R̃) ∼= (Q, R). (Since Q is computably categorical,
we need not consider other computable copies of the ground model Q.) We
claim that from an R′ oracle, we can enumerate the family F̃ . To perform
this enumeration, we start by considering all pairs 〈x, y〉 of points in Q. If
x ≺ y and our R′-oracle says that the interval [x, y] ⊂ R, then we begin
enumerating a set F = F〈x,y〉 as follows.

Step 1. First we search for points x′ ≺ v′ ≺ u in Q and an n ∈ ω
such that u � x and [u, x] ⊂ R and [x′, v′] ⊂ R and there are no more than
n points of R in the interval (v′, u). With our R′-oracle we will eventually
find such points, if they exist. We then use the R′-oracle again to determine
exactly how many points of R lie in (v′, u), and enumerate this number into
F . Then we repeat Step 1 with x′ and v′ in place of x and y.

Step 2. Simultaneously (for the same pair of points x and y), we search
for points v ≺ u′ ≺ y′ in Q and an n ∈ ω such that y � v and [y, v] ⊂ R
and [u′, y′] ⊂ R and there are no more than n points of R in the interval
(v, u′). With our R′-oracle we will eventually find such points, if they exist.
We then use the R′-oracle again to determine exactly how many points of R
lie in (v, u′), and enumerate this number into F . Then we repeat Step 2 with
u′ and y′ in place of x and y. (Notice that the repetition instruction applies
each time we run Step 2, so Step 2 will never end; nor will Step 1.)

These two steps, running simultaneously, enumerate the set F = F〈x,y〉,
and doing so for each pair 〈x, y〉 as described therefore enumerates a family
F of sets, uniformly, from our R′-oracle. We claim that F = F̃ . First, the
only nontrivial closed intervals of Q contained in R̃ are those contained in an
interval [ui, vi] from the construction, corresponding to some F̃i′ ∈ F̃ , and so
the same is true of R. Thus the interval [x, y] must lie in one such interval,
and our R′-computable algorithm then finds the end points corresponding to
that ui and vi, locates the next interval [ui−1, vi−1] or [ui+1, vi+1] next to it,
counts the number of points of R between those intervals, and enumerates
that number into F〈x,y〉. Thus F̃i′ ⊆ F〈x,y〉. Moreover, when our process
reaches the interval corresponding to [u0, v0] or [uk, vk], then the doubly-
dense interval which follows ensures that we will never again find any points
to make us enumerate any more numbers into F〈x,y〉. Hence F〈x,y〉 ⊆ F̃i′ ,
and so the two are equal. Thus every set F〈x,y〉 which we enumerate lies in

F̃ . Conversely, for every i′, we will start enumerating F̃i′ as soon as we find
elements x ≺ y in Q from the interval corresponding to the [u0, v0] of I〈i′,0〉,

so the family F we enumerate is precisely F̃ . Therefore, from an R′-oracle,
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we can enumerate F̃ , and Lemma 4.5 shows that deg(R′) >T c.
For the converse, fix some C ∈ c and let D be an arbitrary set such that

D′ >T C. By Lemma 4.5, there is a Turing functional Φ such that ΦD′
(i)

enumerates the i-th set Gi from some listing of the sets of F̃ . Formally,
Gi = {j : ΦD′

(〈i, j〉)↓= 1}, with ΦD′
total. We will use a D-oracle to build a

relationR on Q such that (Q, R̃) ∼= (Q, R). Of course, the key is to use ΦD′
, so

we need to approximate D′, via a D-computable enumeration 〈D′
s〉s∈ω. Write

Gi,s for the set {j : [Φ
D′

s
s (〈i, j〉)↓= 1]} of elements enumerated within s steps

by ΦD′
s . Notice that 〈Gi,s〉s∈ω is not an enumeration of Gi, since Gi,s−Gi,s+1

could be non-empty if D′
s+1 changes below the use of ΦD′

s(〈i, j〉); it is only a
D-computable approximation to Gi. All Gi,0 are empty, and we may assume
that exactly one element enters or leaves exactly one set Gi at each stage
s+ 1.

We build R ≤T D such that (Q, R) ∼= (Q, R̃). By the upward closure of
DgSpQ(R̃) (see [12, Theorem 2.10]), this will complete the proof. We continue
to use the partition of Q into open intervals I0, I1, . . . defined above, with each
Iq = (aq, bq).

At stage t+ 1 = 2s+ 1,we have already defined finitely many intervals Ir
in Q, which we call the existing intervals, each with its own blueprint B(r, t).
Say that s = 〈i, j〉, and consider each of the |Gi,s|!-many possible orderings of
Gi,s. For each possible ordering, and in between each of the existing intervals,
we choose a new interval Iq (with q as small as possible) and define a blueprint
B(q, t + 1) = U(a, b, Gi,s) for Iq under that ordering, which represents our
current intention for the elements of Iq: those in B(q, t+ 1) are intended to
enter R eventually, while the rest of the elements of Iq are intended to enter R.
(Choosing all these new intervals ensures that every Gi under every ordering
appears densely, of course, so that we build a shuffle sum.) We also put new
intervals, one for each possible ordering, to the right of the rightmost existing
interval and to the left of the leftmost, with their own blueprints, in exactly
the same way. All of the new intervals are designated as Gi-intervals, and
will retain this designation throughout the construction. We also determine
the <-least element z in the union of the existing intervals, say z ∈ Ir. We
enumerate z into R (if it lies in B(r, t)) or into R (if not).

At stage t+ 1 = 2s+ 2, let Gi be the unique set such that Gi,s+1 6= Gi,s,
and say Gi,s = {n1 < n2 < · · · < nk}. We allow k = 0 if Gi,s = ∅. The
existing Gi-intervals are all those Gi-intervals which were defined by stage
2s, and which therefore need to be adjusted on account of the change in Gi
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at stage s + 1. (Any Gi-intervals defined at stage 2s + 1 have this change
already built into them.) Each existing Gi-interval Iq has a blueprint B(q, t),
i.e. a subset of Iq containing those elements of Q which are currently planned
to enter R. Only finitely many elements have already been enumerated into
R or R. The blueprint B(q, t) is a subset of Iq isomorphic to U(aq, bq, Gi,s),
with some order on the elements of Gi,s (but not necessarily using the <-least
elements of Iq as the end points of its nj-subintervals, as U(aq, bq, Gi,s) does).

If a new element x entered Gi,s+1, then for each existing Gi-interval Iq,
we change its blueprint so that B(q, t+ 1) is isomorphic to U(aq, bq, Gi,s, x),
with x coming at the right end of the existing order of Iq on Gi,s. Specifically,
we put a new x-subinterval in the new blueprint B(q, t + 1), to the right of
the nk-subinterval, making sure that any element of Iq already in R lies in
B(q, t+ 1), and that no element of Iq already in R lies in B(q, t+ 1). Since
only finitely many elements of Iq have already been enumerated into R or R,
this is simple.

Otherwise, some element y ∈ Gi,s is not in Gi,s+1. Say that the blueprint
B(q, t) was of the form U(aq, bq, n1, . . . , nj, y, nj+2, . . . , nk), and that vj was
the left endpoint of the y-subinterval, and that u is the ≺-least element to the
right of v which is already enumerated into R or R. (If there is no such u in
(v, bq), let u = bq. It will be useful to refer to the diagram of U(a, b, n1, . . . , nk)
on page 13.) We let B(q, t + 1) ∩ (aq, v] = B(q, t) ∩ (aq, v]. In the interval
(v, u), we define a new nj+2-subinterval, then a new nj+3-subinterval, and so
on up to the new nk-subinterval, followed by an interval entirely in B(q, t+1)
(choosing the right end point ≺ u), and then an interval up to bq in which
B(q, t + 1) is doubly dense. Again we ensure that elements already in R lie
in B(q, t+1), and that those already in R do not. This fully defines the new
blueprint B(q, t + 1), which now is isomorphic to U(aq, bq, Gi,s+1) under the
restriction of the ordering from Gi,s to Gi,t+1, completing stage 2s+ 2.

To see that this construction succeeds, consider the evolution of a Gi-
interval Iq. Let n1, . . . , nk be the elements of Gi. There exists a stage s0 with
all ni ∈ Gi,s for all s ≥ s0, and then there exists another stage s1 > s0 such
that for each x ∈ Gi,s0 −Gi, there exists a stage t with s0 < t < s1 for which
x /∈ Gi,t. So the leftmost k subintervals in B(q, s1) will be an n1-subinterval,
an n2-subinterval, and so on, in some order. (Let us assume without loss
of generality that the subintervals come in the order given here.) Let uk be
the right endpoint of the nk-subinterval, and choose the rightmost vk so that
[uk, vk] ⊆ B(q, s). (So vk is the left endpoint of the nk+1-subinterval, if there
is an nk+1 in Gi,s, or else B(q, s) is doubly dense in (vk, bq).) Then at all
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stages s ≥ s1, we will have B(q, s) ∩ (aq, vk] = B(q, s1) ∩ (aq, vk], since no ni

with i ≤ k ever again leaves Gi. Moreover, if there are cofinitely many s with
Gi,s = Gi, then clearly R will be doubly dense in (vk, bq); while if not, then at
infinitely many stages s > s1, the element immediately to the right of nk in
the ordering on Gi,s is removed from Gi,s+1, (since such an element cannot lie
in Gi), and at each of these infinitely many stages, the new blueprint moves
the left endpoint of the doubly dense interval to an element to the left of the
leftmost element � vk which is already in R or R. Clearly, then, R is doubly
dense in (vk, bq), and so this interval Iq has

(Iq,≺, R) ∼= (Iq,≺, U(aq, bq, n1, . . . , nk)).

Moreover, for every Gi and every order on its elements, after the stage s0

described above, new Gi-intervals with that order on the elements of Gi are
added to every gap among the existing intervals at every stage 2〈i, j〉+1 of the
construction. By the preceding argument, each such Gi-interval Iq winds up
isomorphic to (Iq,≺, U(aq, bq, Gi)) with the elements of Gi never changing
their order. So (Q,≺, R) ∼= (Q,≺, R̃), by a back-and-forth argument on
intervals: every Iq on either side can be mapped onto an Ir in the appropriate
gap on the other side, such that Iq and Ir are both Gi-intervals for the same
i and with the same order on the elements of Gi. As argued above, this
completes the proof of Theorem 4.8.

This result is not as strong as Theorem 4.6, because the latter proved
that actual linear orders could have spectra of nonlown degrees, for n > 1,
whereas here we have only shown that a relation on Q can have spectrum of
nonlow1 degrees. (Spectral universality of Q allows spectra of linear orders
to be carried over to spectra of relations on Q, of course, as in Corollary 4.7.)
It would be of interest to examine the spectrum of the linear order given by
restricting ≺ from Q to R̃. The doubly dense intervals now become dense, of
course, and it seems unlikely that any proof similar to this one could show
that the nonlow degrees form the spectrum of this linear order, since we
no longer have any notion of double density. When dealing with relations
on Q, the structure Q itself provides a context which is absent when one
works with linear orders as structures, and in Theorem 4.8 we exploited this
context, using the doubly dense intervals. The following question remains
open.

Question 4.10 Does there exist a linear order whose spectrum (as a struc-
ture) contains just the nonlow degrees?
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If we add the successor relation to the language, then we can prove a
positive answer to this question. By analogy to Theorems 4.2 and 4.3, notice
that a linear order L has an X-computable copy iff the order (η+2+η)·L has
an X-computable copy with X-computable successor relation SL. Moreover,
for all families F of subsets of ω, F ≤T X ′ iff there exists a uniformly X-
computable sequence of linear orders {Cn,k} with uniformly X-computable
successor relations SCn,k

. Using Wehner’s Lemma 4.5 and the techniques of
Subsection 4.1, one can then build a linear order L such that Spec(L, SL)
is exactly the class of all nonlow degrees. (Likewise for each n > 1, there
exists a linear order Ln such that Spec(Ln, SLn) contains exactly the nonlown

degrees.)

4.3 Nonlow0 Degrees

A nonlow0 degree is simply a degree d 6= 0, of course: its 0-th jump d(0) = d
satisfies d(0) >T 0(0) = 0. Theorem 2.2 above showed the existence of struc-
tures with spectrum precisely the nonlow0 degrees, but it remains unknown
whether there exists a linear order with this spectrum. The closest approach
is given in [20].

Theorem 4.11 (Thm. 4.1 of [20], and Chisholm, Downey) There ex-
ists a linear order L whose spectrum contains every noncomputable ∆0

2 degree,
but not the degree 0. Indeed, Spec(L) contains all hyperimmune degrees.

Proof. In [20], the statement about the ∆0
2 degrees is proven. That proof is

easily generalized to show that Spec(L) contains every degree d for which
there exists a degree b with b <T d ≤T b′: one just repeats the construction in
[20], using ∆2-permitting on a B-computable approximation toD (where B ∈
b and D ∈ d), still diagonalizing against the computable linear orders (not
against the B-computable ones). Chisholm and Downey have independently
generalized this further, using hyperimmune permitting, to show that every
hyperimmune degree lies in Spec(L). (These are the degrees of hyperimmune
sets, as defined in [25, V.2.1].) Every degree d which is ∆2 in and above some
b, as described above, is hyperimmune, so this result subsumes the earlier
one.

The order L built in [20], and its precursor in [16], each also has the
properties of being the prime model of its theory, and of being elementarily
equivalent to a computable linear order. Thus the theory of L forms the
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second known answer to a question from [23, p. 454], Rosenstein’s book
Linear Orderings, which closed by asking whether there exists a complete
extension of the theory of linear orderings which has a prime model and a
computable model, but no computable prime model. The first solution to
this question, which used a substantially different construction, was given by
Hirschfeldt in [13].

Barmpalias has suggested that the basic module for the construction of
L in [20] cannot be carried out below a hyperimmune-free degree, leading to
the conjecture that Spec(L) may contain precisely the hyperimmune degrees.
However, it is possible that the entire construction of L can be performed
by other means, and so this remains a conjecture. Moreover, even if this L
does not have all noncomputable degrees in its spectrum, there could still
be another linear order, not computably presentable, which does. On the
other hand, Corollary 5.5 below makes it clear that the construction of such
a linear order could not be generalized to build spectra equal to strict upper
cones above arbitrary Turing degrees c; possibly it could be generalized to
build a spectrum containing such a strict upper cone but not intersecting the
lower cone of degrees ≤T c. The existence of a linear order with spectrum
{d : d >T 0} is a significant open question in computable model theory.

5 Highn Degrees and Spectra of Linear Or-

ders

5.1 High0 Degrees

A high0 degree is just a degree d = d(0) which computes 0(0+1) = 0′. Thus,
a linear order whose spectrum contained just the high0 degrees would have a
least degree in its spectrum, namely 0′. Richter showed this to be impossible.

Theorem 5.1 (Theorem 3.3 of [21]) If L is a linear order and there is a
least degree in Spec(L), then that degree is 0.

Specifically, Richter showed that there must exist a presentation M ∼= L
such that deg(L) ∧ deg(M) = 0. The theorem follows immediately.

In their comparison of spectra for structures with spectra of relations in
[12], Harizanov and Miller repeated Richter’s proof to show the same for
spectra of unary relations on Q.
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Proposition 5.2 (Proposition 2.16 in [12]) If R is a unary relation on
Q such that the degree 0 does not lie in DgSpQ(R), then DgSpQ(R) does not
contain a least degree. Indeed DgSpQ(R) contains a minimal pair of degrees.

The proof in [12] is a straightforward adaptation of Richter’s proof in [21] to
the context of relations on Q. So the situation for the high0 case for linear
orders is clear, both for structures and relations, and also for the general case
of degrees whose 0-th jump computes some fixed degree c.

5.2 High1 Degrees

In [12], Harizanov and Miller proved the following.

Theorem 5.3 (Harizanov & Miller) For every Turing degree c, there ex-
ists a unary relation R on Q whose degree spectrum is {d : c ≤T c′}.
The full result appears as Proposition 2.18 and Corollary 2.19, along with
subsequent remarks, in [12].

On the other hand, Knight showed in [17] that a version of Richter’s
theorem also holds when we consider jumps of degrees of linear orders. The
jump degree of a structure A is the least degree in the set {d′ : d ∈ Spec(A)},
if such a degree exists.

Theorem 5.4 (Knight, Cor. 3.6 in [17]) The only possible jump degree
of a linear order is 0′.

Therefore, there is no linear order whose spectrum contains exactly the high
degrees, and more generally, for any degree c >T 0′, there is no linear order
L with Spec(L) = {d : c ≤T d′}.

These two facts together yield an answer to a question of Harizanov and
Miller from [12, p. 347]. They asked whether the spectrum of an arbitrary
unary relation on Q can always be realized as the spectrum of a linear order.
The relation R above provides a negative answer to the question, for exactly
the reasons detailed here.

Also, Knight’s theorem on jump degrees eliminates most strict upper
cones from being the spectrum of any linear order.

Corollary 5.5 Suppose c is a nonlow Turing degree. Then {d : d >T c}
cannot be the spectrum of a linear order.

Proof. If Spec(L) = {d : d >T c}, then L has jump degree c′, since some
d >T c must have d′ = c′. Theorem 5.4 then shows that c is low.
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5.3 Highn Degrees

For linear orders and the class of highn degrees with n ≥ 2, we have results
from the work in [1] by Ash, Jockusch, and Knight.

Theorem 5.6 (Lemma 2.3 in [1]) For any C ⊆ ω, let L be the shuffle
sum of ω and all (c + 1)-point finite linear orders with c ∈ (C ⊕ C). Then
Spec(L) = {d : deg(C) ≤T d′′}.

The authors of [1] remarked that one can extend this result to get spectra
of the form {d : c ≤T d(2n+2)}, for all n ∈ ω. The more recent technique
described in Theorem 4.2 allows us to extend it also to odd jumps > 2.

Theorem 5.7 For all degrees c and all n ≥ 2, there exists a linear order
with spectrum {d : c ≤T d(n)}.

Proof. Use Theorem 5.6 to get an order L with spectrum {d : c ≤T d′′}.
Then (n− 2) applications of Theorem 4.2 yield Spec((η + 2 + η)(n−2) · L) =
{d : c ≤ (d′′)(n−2)}, as desired.

Corollary 5.8 For all n ≥ 2, there exists a linear order whose spectrum
contains exactly the highn degrees.

Spectral universality of Q enables one to transfer this result immediately
to relations on Q. However, we give a separate construction, in which the
coding of the set C ∈ c into the relation is far more obvious. First we have
three preliminary definitions.

Definition 5.9 For any ordinal of form ωm with m ∈ ω, the standard pre-
sentation of ωm is given by the reverse lexicographic ordering on m-tuples
of naturals. The standard presentation of the ordinal ωω has domain ω<ω,
i.e. all finite strings of naturals, ordered first by length and then with each
subset ωk in the reverse lexicographic order.

For instance, the reverse lexicographic order on ω2 is given by:

〈0, 0〉 ≺ 〈1, 0〉 ≺ 〈2, 0〉 ≺ · · · ≺ 〈0, 1〉 ≺ 〈1, 1〉 ≺ · · · .

Using this order allows us to embed each ωm as the initial segment of ωm+1

by extending each string σ ∈ ωm to σ 〈̂0〉 ∈ ωm+1.
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Definition 5.10 In a linear order (L,≺), every point is a limit point at level
0. A point x ∈ L is a limit point at level k + 1 iff (∀y ≺ x) there is a limit
point z at level k with y ≺ z ≺ x.

Notice that in the standard presentation of any ordinal ωm or ωω, the prop-
erty of being a limit point at level k is computable uniformly in k and m.
In general, this property is uniformly Π0

2k-definable. Also, by our definition,
every limit point at any level k + 1 must also be a limit point at level k.

Definition 5.11 For m ∈ ω, and all computable formulas θ(x, z1, . . . , zm),
the formula

(∃∞zm) · · · (∃∞z1) θ(x, z1, . . . , zm)

is in Infm form, where ∃∞zi abbreviates (∀yi∃zi > yi). (The point is mainly
that the variables yi may not appear in θ.) A set is Infm-definable if it is
definable by a formula in this form.

Every Infm formula is Π0
2m, of course, but we need to know which Turing

degrees contain Inf-definable sets. The answer is provided in [19, Lemma 2]
by Kreisel, Shoenfield, and Wang.

Lemma 5.12 (Kreisel, Shoenfield, Wang) For every m ∈ ω, every Π0
2m-

set R is Infm-definable.

Proof of Lemma. Proofs appear in [19] and [22], but we give one briefly here
as well, proceeding by induction on m. The m = 0 case is trivial, but to
illustrate our approach, we demonstrate the m = 1 case before beginning our
induction. If R = {x : ∀y∃zϕ(x, y, z)}, then let ψ(x, y, z) be the formula

ϕ(x, y, z) & (∀z′ < z) ¬ϕ(x, y, z′).

Then ∀y∃zψ also defines R, and since to each x and y there corresponds at
most one z such that ψ(x, y, z), we see that

R = {x : (∃∞σ)(∀t < lh(σ))ψ(x, t, σ(t))},

which is in Inf1 form as required. (Here σ varies over ω<ω, of course.)
For the inductive step, assume that R = {x : ∀y∃zϕ(x, y, z)} with ϕ

any Π0
2m formula. The procedure above may now fail, since ψ includes

¬ϕ(x, y, z′), which may not be Π0
2m when m > 0. We prove first, there-

fore, that there exists a Σ0
2m+1 formula analogous to ∃zψ(x, y, z) above, with
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at most one witness z for each x and y. We may assume that ϕ itself is of
the form ∀wα(x, y, z, w) with α in Σ0

2m−1, since m > 0. So we have, for fixed
x and y:

∃zϕ(x, y, z) ⇐⇒ ∃z[ϕ(x, y, z) & (∀z′ < z) ¬ϕ(x, y, z′)]

⇐⇒ ∃z[ϕ(x, y, z) & (∀z′ < z)∃w ¬α(x, y, z′, w)]

⇐⇒ ∃τ ∈ ω<ω[ϕ(x, y, lh(τ)) & (∀t < lh(τ)) ¬α(x, y, t, τ(t))]

(think of z as lh(τ))

⇐⇒ ∃σ ∈ ω<ω[ϕ(x, y, lh(σ)) & (∀t < lh(σ))[¬α(x, y, t, σ(t)) &

(∀u < σ(t))α(x, y, t, u)]]

Define β so that the final formula on this list is ∃σ ∈ ω<ω β(x, y, σ).
The point is that τ picks out witnesses w (for each t < lh(τ)) such that
¬α(x, y, t, w), thereby ensuring that z = lh(τ) really is the least witness to
∃zϕ(x, y, z). However, for a given 〈x, y, z〉, there may be more than one such
τ , so we refine the formula to search for a σ (in ωz) which picks out the least
such witness w for each t < z. For each x and y, this σ must be unique (if it
exists at all).

Now let
S = {x : (∃∞ρ)(∀y < lh(ρ))β(x, y, ρ(y))}.

We claim that R = S. (Notice that here ρ(y) is itself in ω<ω, so really ρ
lies in ω<(ω<ω). Nevertheless, this is still a first-order quantifier.) If x ∈ R,
then ∀y∃zϕ(x, y, z), and so for every n we let ρ ∈ (ω<ω)n be defined (for
y < n) by taking ρ(y) to be the σ such that β(x, y, σ) holds. Since we
have such a ρ for every n, we have infinitely many such ρ, and so x ∈ S.
Conversely, we remarked above that for any fixed x and y, there is at most
one σ ∈ ω<ω such that β(x, y, σ) holds, and that this σ has length equal to
the least z such that ϕ(x, y, z) holds. Therefore, for a fixed x ∈ S, any ρ
satisfying the requirements of S is determined by lh(ρ), and indeed all such
ρ are compatible as strings. So, for x ∈ S, the union of all corresponding ρ
gives a total function f : ω → ω such that ϕ(x, y, lh(f(y))) holds for all y.
Therefore x ∈ R.

The final step is to notice that the formula (∀y < lh(ρ))β(x, y, ρ(y)) is
Π0

2m, since β(x, y, σ) is in the form [Π0
2m & ¬Σ0

2m−1 & Σ0
2m−1], as written out

above. (A bounded quantifier may always be pulled across an unbounded one,
although this requires yet more uses of ω<ω.) So by inductive hypothesis
the formula (∀y < lh(ρ))β(x, y, ρ(y)) may be rewritten in Infm form. But
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R = S = {x : (∃∞ρ)(∀y < lh(ρ))β(x, y, ρ(y))}, so R is definable by a formula
in Infm+1 form.

The preceding proof revealed a result about Σ0
2m+1 formulas as well. We

first define the concept.

Definition 5.13 For any m ∈ ω and any formula θ(x) in Infm-form, the
formula

∃yθ(〈x, y〉)
is said to be in Singlem form if, for every x, there exists at most one y such
that θ(〈x, y〉) holds.

So every formula in Singlem form is Σ0
2m+1, and the result from the proof

of Lemma 5.12 is the converse:

Corollary 5.14 For every m ∈ ω, every Σ0
2m+1-formula is equivalent to a

formula in Singlem-form.

Next we need a specific inductive process for building linear orders.

Lemma 5.15 Fix m > 0, and let R(n, x1, . . . xm) be any computable predi-
cate. Let ϕ(n) be the Infm formula

∃∞z1 · · · ∃∞zm R(n, ~z)

and let A = {n : ϕ(n)} be the set it defines. Assume that there exists an
algorithm, uniform in n and in R (that is, in a ∆1-index for R, as in [25,
Definition II.2.1]), which builds for each n a nonempty computable linear
order Ln

m such that Ln
m
∼= ωm if n ∈ A and Ln

m
∼= ωm−1 + · · · + ωm−1 if

n /∈ A. (In the second case, Ln
m may contain any finite number of copies

of ωm−1, and the number of copies may be different for different elements
n /∈ A.) Finally, assume also that we have an algorithm for computing the
left end point of each Ln

m uniformly in n and R.
Then there exists an algorithm, uniform in n and R, which builds for each

n an order Ln
m+1 such that

Ln
m+1

∼=
{

ωm+1, if ∃∞zm+1ϕ(〈n, zm+1〉)
ωm + · · ·+ ωm, if not

Again, in Ln
m+1, any finite number of copies of ωm is allowed, for any n not

satisfying the Infm+1 predicate. Moreover, we may compute the left end point
of Ln

m+1 uniformly in n and R.
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Notice that the proof of this lemma relativizes easily to any oracle C,
using a ∆C

1 -index for R and building a C-computable order Ln
m+1.

Proof. To build Ln
m+1, we define the set

S = {n ∈ ω : ∃∞zm+1ϕ(〈n, zm+1〉)}

and the sets Ax = {n ∈ ω : ϕ(〈n, x〉)}. The lemma gives us algorithms
uniform in n which build computable orders Ln,x

m of order type ωm or ωm−1 +
· · · + ωm−1, depending on whether n ∈ Ax or not. We adjoin these to get
the computable order Ln

m+1 = Ln,0
m + Ln,1

m + · · · , whose left end point is
computable uniformly in n. Then we have

n ∈ S iff ∃∞x(n ∈ Ax) iff ∃∞x(Ln,x
m
∼= ωm) iff Ln

m+1
∼= ωm+1

n /∈ S iff ∃y∀x > y(n /∈ Ax) iff Ln
m+1

∼= ωm + · · ·+ ωm

since in the latter case cofinitely many x have Ln,x
m
∼= ωm−1 + · · ·+ ωm−1.

Lemma 5.16 Let ∃yθ(〈x, y〉) be a formula in Singlem-form defining a set
B. Then there exists an algorithm building computable linear orders Kx

m+1

uniformly in x such that

Kx
m+1

∼=
{
ωm + ωm, if ∃yθ(〈x, y〉)
ωm, if not

Moreover, the left end point of Kx
m+1 is computable uniformly in x.

Proof. For each y ∈ ω we let

Ay = {x ∈ ω : θ(〈x, y〉)}.

Thus Ay is defined in Infm form, uniformly in y, and we can compute a
∆1-index for the corresponding computable predicate, so by Lemma 5.15 we
have algorithms, uniform in y, building orders Lx,y

m such that:

Lx,y
m
∼= ωm iff x ∈ Ay iff θ(〈x, y〉)

Lx,y
m
∼= ωm−1 + · · ·+ ωm−1 iff x /∈ Ay iff ¬θ(〈x, y〉).

Define Kx
m+1 to be the computable order Lx,0

m +Lx,1
m + · · · . (Its left end point

is the left end point of Lx,0
m , which is computable in x by Lemma 5.15.)

Now for each x ∈ B, we have a unique corresponding witness y satisfying
θ(〈x, y〉), so Lx,y

m
∼= ωm and for all z 6= y, Lx,z

m
∼= ωm−1 + · · · + ωm−1. Hence

Kx
m+1

∼= ωm + ωm. On the other hand, for each x /∈ B, Kx
m+1

∼= ωm.
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Now we may extend Theorem 5.3 from the class of the high1 degrees to
the class of highn degrees relative to all possible degrees c.

Theorem 5.17 For every n > 0 and every Turing degree c, there exists a
relation R on the structure Q such that DgSpQ(R) contains precisely those

Turing degrees d such that d(n) ≥T c.

Proof. We do first the case n = 2m (with m > 0). Given a set C in c with
jump C ′, we define a unary relation R on Q as follows. Fix a computable
≺-increasing sequence a0 ≺ b0 ≺ a1 ≺ b1 ≺ · · · in Q such that {aj : j ∈ ω}
is unbounded in Q. (The prototype for this sequence is the set of natural
numbers, ai = 2i and bi = 2i+ 1, as a subset of the rationals.) Our relation
R will contain every closed interval [bi, ai+1]≺ in Q.

Next, for each j, we let Kj be the linear order ωm if j /∈ C ′, and ωm +ωm

if j ∈ C ′. Let gj embed Kj into the interval (aj, bj)≺, so that Image(gj) is
unbounded above in [aj, bj)≺, and so that for every limit point y ∈ Kj at
level 1, gj(y) is the least upper bound in Q of the image of the set of its
predecessors in Kj. Let R = ∪j([aj, bj] ∪ Image(gj)).

Now let (Q, R̃) ∼= (Q, R) via some automorphism f of Q. (Since Q is
computably categorical, we need not worry about other computable copies of
Q; see [12, Lemma 1.6].) Now R̃′′ can compute the functions j 7→ ãj = f(aj)
and j 7→ b̃j = f(bj). Given bj, search first for some ã � b̃j and c̃ � ã with
[b̃j, ã] ⊂ R̃ and (ã, c̃) ∩ R̃ = ∅. This ã must be f(aj). Then b̃j+1 will be the
unique b̃ � ã such that the complement of R̃ is dense in [ã, b̃]≺ but there
exists d̃ � b̃ with [b̃, d̃] ⊂ R̃. All this is definable with two quantifiers over R̃,
so an R̃′′-oracle can compute ã0 and b̃0 (as finitely much information), then
ã1, and so on.

We claim that the set C ′ is 1-reducible to R̃(2m+1) (and hence that C ≤T

R(2m), by [25, Theorem III.2.3(v)]). Indeed, j ∈ C ′ iff Kj ∼= ωm + ωm, so by
our construction above

C ′ = {j : ∃x(x is a level-m limit point of (R̃,≺) & ãj ≺ x ≺ b̃j}.

Thus C ′ is a ΣR̃
2m+1 set, hence ≤1 R̃

(2m+1), forcing R̃(2m) ≥T C. (Notice that

we do require m > 0 in order for this to work, since computing ãj and b̃j
requires an R̃′′-oracle.)

Conversely, suppose that D(2m) ≥T C. Then C ′ ≤1 D
(2m+1), via some

computable function h. Applying Lemma 5.16 relativized to D, we see that
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D computes linear orders Kk, uniformly in k, of type ωm +ωm if k ∈ D(2m+1)

and of type ωm if k /∈ D(2m+1). (Corollary 5.14, relativized to D, allows us to
express D(2m+1) in Singlem-form relative to D, so that Lemma 5.16 may be
applied.) Using the structure Q and the sequence a0 ≺ b0 ≺ a1 ≺ · · · already
built, we may embed each order Kh(j) into the interval [aj, bj)≺ uniformly in
j, with left end point aj and with image having no upper bound in [aj, bj)≺,
and moreover with the image being computable in D. (The image is clearly
c.e. in D, and we may assume that at stage s in the construction of the
embedding, no element ≤ s from Q is chosen to enter the image.) Moreover,
we may ensure that if x ∈ Kj is a limit point at level 1, then its image is the
least upper bound in Q of the image of the set of its predecessors. (This is
essential for the isomorphism from (Q, R) to (Q, R̃), since we built R using
this same rule.) Let R̃ be the union of the images of all these embeddings
with ∪j[bj, aj+1]≺, so R̃ ≤T D.

Then (Q, R) ∼= (Q, R̃) as follows. Every [bj, aj+1]≺ maps to itself via the
identity map. Within (aj, bj)≺ every element of R maps to the corresponding
element of R̃, since the restriction of ≺ to each is the same well-order. Each
element r ∈ R has an immediate successor r′ ∈ R, and similarly in R̃, so
the countable dense linear order (r, r′)≺ maps onto the interval between the
corresponding elements of R̃. We claim that this completes the construction
of the isomorphism from (Q, R) onto (Q, R̃). Every element t /∈ R has an
“immediate R-successor” in R, since (R ∩ (aj, bj)≺,≺) is a well-order, and t
must also have an immediate R-predecessor, because our construction of R
ensured that every increasing sequence of elements of R has a least upper
bound in Q, and that this least upper bound must be either bj or an element
of R. This guarantees that we have defined our map on all elements of (Q, R).
Moreover, our construction of R̃ ensured the same, so every element of (Q, R̃)
lies in the image of our map, making it an isomorphism.

Since R̃ ≤T D, the upwards closure of DgSpQ(R) (see [12, Theorem 2.10])
shows that deg(D) ∈ DgSpQ(R). This proves the result for the high2m case.

For the n = 2m+ 1 case, we need a different strategy on the same struc-
ture Q. We may assume that m > 0, referring to Theorem 5.3 for the case
n = 1. Again, let C be a set in the degree c, with jump C ′. We again define
a computable sequence a0 ≺ b0 ≺ a1 ≺ b1 ≺ · · · with no upper bound in Q.
Each interval [bj, aj+1]≺ is defined to lie in R. In each interval (aj, bj)≺, we
define R to contain a subset Rj with greatest lower bound bj and least upper
bound aj+1 such that if j ∈ C ′, then (Rj,≺) ∼= ωm · ω∗, and if j /∈ C ′, then
(Rj,≺) ∼= ωm · ζ. (Recall that ζ is the order type of the integers Z, often
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written as ω∗ +ω, with ω∗ denoting the order type of the negative integers.)
In doing so, we ensure that for every limit point y of (Rj,≺) at level 1, the
image of y is the least upper bound in Q of the set of its predecessors in Rj.

We claim that DgSpQ(R) = {d : c ≤T d(2m+1)}.
Suppose first that (Q, R) ∼= (Q, R̃), via an isomorphism f . Again, by [12,

Lemma 1.6], we need not consider other copies of Q. An R̃′′-oracle allows us
to compute the images ã0 ≺ b̃0 ≺ ã1 ≺ · · · of the aj and bj under f . Given
ãj, search for d̃ � b̃ � ãj such that [b̃, d̃]≺ ⊂ R̃ and the complement of R̃
is dense in (ãj, b̃)≺, and then b̃j must be this b̃. Then, given b̃j, search for
d̃ � ã � b̃j with [b̃j, ã]≺ ⊂ R̃ and with the complement of R̃ dense in (ã, c̃)≺,
and ãj+1 must be this ã.

Then for any j, we know that j ∈ C ′ iff (Rj,≺) ∼= ωm · ω∗ iff the set of
limit points of R̃ at level m in the interval (c̃j, ãj+1)≺ is a finite set. Let g be

a computable function defined so that ΦR̃(2m)

g(j) is the oracle Turing program

which converges exactly the level-m limit points y of the order (R̃,≺) such
that ãj ≺ y ≺ b̃j. This can be done uniformly in an R̃(2m)-oracle (which
can determine each ãj and b̃j, since m > 0). Then g gives a computable

1-reduction from C ′ to FinR̃(2m)

, so C ′ ≤1 R̃(2m+2), and by [25, Theorem
III.2.3(v)] again, we have C ≤T R̃

(2m+1), as desired.
For the converse, suppose that D(2m+1) ≥T C, so that C ′ ≤1 D

(2m+2) via
some computable function h. We use the original sequence a0 ≺ b0 ≺ a1 ≺
· · · , and build a unary relation R̃ ≤T D on Q as follows. Start by putting all
intervals [bj, aj+1]≺ into R̃. Next, for each j, find the <-least element cj in
the interval (aj, bj)≺ and put a computable copy of ωm · ω∗ into the interval
(aj, cj)≺, with aj as its greatest lower bound and cj as its upper bound and
with each limit point at level 1 being the least upper bound of its predecessors
in R̃. Then let Lj be the D-computable linear order Lh(j)

m+1 given by Lemma
5.15, such that Lj ∼= ωm+1 if h(j) /∈ D(2m+2) and Lj ∼= ωm + · · · + ωm if
h(j) ∈ D(2m+2). (Here we use Lemma 5.12, relativized to D, to express the
complement of D(2m+2) in Infm+1-form relative to D, so that Lemma 5.15
may be applied.) We can embed each Lj into the interval [cj, bj)≺, uniformly
in j, with least upper bound bj, and (using the same trick as in the 2m-case)
so that the image is also D-computable. Moreover, we may ensure again that
if x ∈ Lj is a level-1 limit point, then its image is the least upper bound in
Q of the image of the set of its predecessors in Lj. Let the image of each
Lj under this embedding also be enumerated into R̃. Notice that this still
leaves R̃ ≤T D, so we need only show that (Q, R) ∼= (Q, R̃). But for j ∈ C ′
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we have Lj ∼= ωm + · · ·+ ωm, so

(R̃ ∩ (aj, bj),≺) ∼= ωm · ω∗ + Lj ∼= ωm · ω∗ ∼= (R ∩ (aj, bj),≺)

and for j /∈ C ′

(R̃ ∩ (aj, bj),≺) ∼= ωm · ω∗ + ωm+1 ∼= ωm · (ω∗ + ω) ∼= (R ∩ (aj, bj),≺).

Moreover, R̃ has no upper or lower ≺-bound in any (aj, bj)≺, so indeed
(Q, R) ∼= (Q, R̃), by an argument much the same as in the (2m)-case. Thus
deg(R̃) ∈ DgSpQ(R), and by Theorem 2.10 from [12], d ∈ DgSpQ(R) as well.

Corollary 5.18 For every n > 0, there exists a relation R on the structure
Q, such that DgSpQ(R) contains precisely those Turing degrees d which are

highn-or-above, namely those for which d(n) ≥T 0(n+1).

6 Conclusions and Questions

It seems appropriate to summarize the (new and old) results given in this
article. Here we list possible spectra of graphs and linear orders, and of unary
relations on the computable random graph G and the computable dense lin-
ear order Q. The variable n ranges over all integers ≥ 2, and c is allowed
to be an arbitrary Turing degree. “Y” indicates that all such sets can be
realized as spectra; “N” indicates that no such spectrum can be realized;
and “??” indicates an open question. Results in the first two columns come
from Sections 2 and 3; for the last two columns, we refer to results in this
article. For instance, the“Y(4.6)” on the seventh line in the column “LO’s”
means that for every n ≥ 2 and every degree c with c ≥T 0(n), there exists
a countable linear order with spectrum {d : d(n) >T c}, and that this result
appears as Theorem 4.6 above. (In this case, the result also holds trivially
for degrees c 6≥T 0(n). We have avoided trivial cases in the table.)
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Relations Relations
Spectrum Restrictions Graphs on G LO’s on Q
{d >T 0} Y Y ?? ??
{d′ >T 0′} Y Y ?? Y(4.9)

{d(n) >T 0(n)} Y Y Y(4.6) Y(4.7)
{d >T c} c nonlow Y Y N(5.5) ??
{d >T c} c low Y Y ?? ??
{d′ >T c} c ≥T 0′ Y Y ?? Y(4.8)

{d(n) >T c} c ≥T 0(n) Y Y Y(4.6) Y(4.7)
{d ≥T 0′} Y Y N(5.1) N(5.2)
{d′ ≥T 0′′} Y Y N(5.4) Y(5.3)

{d(n) ≥T 0(n+1)} Y Y Y(5.8) Y(5.18)
{d ≥T c} c 6= 0 Y Y N(5.1) N(5.2)
{d′ ≥T c} c >T 0′ Y Y N(5.4) Y(5.3)

{d(n) ≥T c} c >T 0(n) Y Y Y(5.7) Y(5.17)

Clearly, this table still has some holes to be filled in, and it would be
of interest to know the correct answers to any of the entries marked “??.”
For each such entry involving c, the question is completely open: we have
no proof of realizability or nonrealizability for any degree c (subject to the
restrictions on c in the second column).

The columns for graphs and relations on G reflect the relative ease of
coding information structurally into a graph. However, if we consider the
same question for complements {d : d 6≤T c} of lower cones below arbitrary
degrees c, then some N’s would appear even in those two columns. Of course,
the nonlown degrees can be defined by either of the two conditions d(n) >T

0(n) and d(n) 6≤ 0(n), since these are equivalent. When 0(n) is replaced by an
arbitrary c, however, the conditions need no longer be equivalent. Indeed,
Kalimullin has shown that there exists a degree c computable in 0′′ such that
no graph realizes the spectrum {d : d 6≤T c}, the complement of the lower
cone below c. (Therefore, of course, all columns would have an N in this
row, if we added such a row to the table.) On the other hand, he has also
shown that this degree c cannot be taken to be c.e., nor to be low.

Noting that the theory of graphs is complete (in the sense of [14]) and
that the theory of linear orders is not, we have another question.

Question 6.1 Let T be the theory of linear orders. How many jumps away
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from being complete (for spectra of structures) is T? More specifically:

1. Does there exist an n such that for every graph H with Spec(H) ⊆ {d :
0(n) ≤T d}, there exists a linear order L with {d(n) : d ∈ Spec(L)} =
Spec(H)?

2. Does there exist an n such that for every graph H, there is a linear
order L with {d(n) : d ∈ Spec(L)} = {d(n) : d ∈ Spec(H)}?

3. If (2) fails, then reverse the quantifiers: is it true that for every graph
H, there exists an n and an L with {d(n) : d ∈ Spec(L)} = {d(n) : d ∈
Spec(H)}?

Similar questions apply to relations on Q and the random graph G.

In light of Theorem 5.4, any positive answer to (1) would necessarily have
n > 1. We tentatively conjecture that the answer to (1) is negative, based
on the apparent difficulty of coding isomorphism types of graphs into linear
order types.

Other possible questions involve models of other theories. Of course,
graphs are included here mainly as a universal theory, as justified by the
results in [14]. Boolean algebras are distinguished from linear orders and
from graphs by their possible spectra: it has been known since [6] that if the
spectrum of a Boolean algebra contains a low degree, then it contains the
degree 0, and indeed the same holds for low4 degrees, by results in [26] and
[18]. In the table above, n is allowed to represent any value > 1, because as
far as is known for linear orders and graphs, all answers are the same for all
such values of n. Potentially, Boolean algebras could distinguish values of n
greater than 1 under questions like these – for example, if the result on low4

Boolean algebras fails to extend to lown ones for n > 4.
Recently, three of us (Frolov, Kalimullin, and Miller) have announced the

construction of a field whose spectrum contains exactly the high degrees.
They conjecture that similar constructions can realize the highn degrees for
each n > 1, and [10] is expected to contain results along these lines. It was
already known from [4] that the high0 degrees, and any other upper cone, can
be realized as the spectrum of an algebraic field extension of Q. Algebraic
fields are also known (from [9]) to have jump degrees, and every c ≥T 0′ is
the jump degree of some algebraic field. However, algebraic fields are not
capable of realizing the nonlow0 degrees as a spectrum, and indeed spectra
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of algebraic fields are really just cones of enumeration degrees. These results
generalize easily to spectra of fields of finite transcendence degree over the
prime subfield, and Coles, Downey and Slaman showed in [5] that similar
results hold for spectra of torsion-free abelian groups of rank 1.

We have focused here entirely on arithmetic jumps – that is, restricting to
finitely many iterations of the jump operator. The results in [11] went further,
considering the α-th jump 0(α) for computable ordinals α. It would be natural
to investigate the possibility of extending the above results, particularly for
linear orders, to the hyperarithmetic degrees in this manner.
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