
Computable Differential Fields

Russell Miller

(joint work with Alexey Ovchinnikov, Dmitry Trushin)

Differential algebra is the study of differential equations from a purely algebraic
standpoint. The differential equations studied are polynomials in a variable Y
and its derivatives δY, δ(δY ), . . ., with coefficients from a specific field K which
admits differentiation on its own elements via the operator δ. Such a field K
is known as a differential field : it is simply a field with one or more additional
unary functions δ on its elements, satisfying the usual properties of derivatives:
δ(x + y) = (δx) + (δy) and δ(x · y) = (x · δy) + (y · δx). It is therefore natural
to think of the field elements as functions, and standard examples include the
field Q(X) of rational functions in one variable under differentiation d

dX , and the

field Q(t, δt, δ2t, . . .) with a differential transcendental t satisfying no differential
equation over the ground field Q. Additionally, every field becomes a differential
field when the operator δx = 0 is adjoined; we call such a differential field a
constant field, since an element whose derivative is 0 is commonly called a constant.

Although the natural examples are fields of functions, the treatment of differ-
ential fields regards the field elements merely as points. There are strong con-
nections between differential algebra and algebraic geometry, with such notions as
the ring K{Y } of differential polynomials (namely the algebraic polynomial ring
K[Y, δY, δ2Y, . . .], with each δiY treated as a separate variable), differential ideal,
differential variety, and differential Galois group all being direct adaptations of the
corresponding notions from field theory. Characteristically, these concepts behave
similarly in both areas, but the differential versions are often a bit more compli-
cated. In terms of model theory, the theories ACF0 and DCF0 (of algebraically
closed fields and differentially closed fields, respectively, of characteristic 0) are
both complete and ω-stable with effective quantifier elimination, but ACF0 has
Morley rank 1, whereas DCF0 has Morley rank ω.

Just as the algebraic closure F of a field F (of characteristic 0) can be defined as
the prime model of the theory ACF0 ∪∆(F ) (where ∆(F ) is the atomic diagram

of F ), the differential closure K̂ of a differential field K is normally taken to be

the prime model of DCF0 ∪ ∆(K). This K̂ is unique up to isomorphism over

K, but not always minimal: it is possible for K̂ to embed into itself over K (i.e.
fixing K pointwise) with image a proper subset of itself. This has to do with

the fact that some 1-types over K are realized infinitely often in K̂, so that the
image of the embedding can omit some of those realizations. As a prime model,
the differential closure realizes exactly those 1-types which are principal over K,
i.e. generated by a single formula with parameters from K. It therefore omits the
type of a differential transcendental over K, since this type is not principal, and
so every element of K̂ satisfies some differential polynomial over K. On the other
hand, the type of a transcendental constant, i.e. an element x with δx = 0 but
not algebraic over K, is also non-principal and hence is also omitted, even though
such an element would be “differentially algebraic” over K.
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The goal of the current work in computable differential fields, by the speaker
and two co-authors, is to adapt the two fundamental theorems from computable
field theory to computable differential fields. These two theorems, each used very
frequently in work on computable fields, are the following.

Theorem 1. (Kronecker’s Theorem (1882); see [5] or [2])

(1) The field Q has a splitting algorithm. That is, the set of irreducible poly-
nomials in Q[X], commonly known as the splitting set of Q, is decidable.

(2) If a computable field F has a splitting algorithm, so does the field F (x),
for every element x algebraic over F (within a larger computable field).

(3) If a computable field F has a splitting algorithm, then so does the field
F (t), for every element t transcendental over F .

(The algorithms in Parts II and III are different, and no unifying algorithm exists.)

Theorem 2. (Rabin’s Theorem (1960); see [7])

(1) Every computable field F has a Rabin embedding, i.e. a computable field
embedding g : F → E such that E is a computable, algebraically closed
field which is algebraic over the image g(F ).

(2) For every Rabin embedding g of F , the image g(F ) is Turing-equivalent to
the splitting set SF of F .

For differential fields, the analogue of the first part of Rabin’s Theorem was
proven in 1974 by Harrington, who showed that for every computable differential
field K, there is a computable embedding g of K into a computable, differentially
closed field L such that L is a differential closure of the image g(K). Harrington’s
proof used a different method from that of Rabin, and therefore did not address the
question of the Turing degree of the image. Indeed, the first question to address,
in attempting to adapt either of these theorems for differential fields, is the choice
of an appropriate analogue for the splitting set SF in the differential context.

Kronecker saw the question of reducibility of a polynomial in F [X] simply as
a natural question to ask. With twentieth century model theory, we understand
better the reasons why it is important. Specifically, every irreducible polynomial
p(X) ∈ F [X] generates a principal type over the theory ACF0 ∪ ∆(F ), and
every principal type is generated by a unique monic irreducible polynomial. (More
exactly, the formula p(X) = 0 generates such a type.) On the other hand, no
reducible polynomial generates such a type (with the exception of powers p(X)n

of irreducible polynomials, in which case p(X) generates the same type). So the
splitting set SF gives us a list of generators of principal types, and every element
of F satisfies exactly one polynomial on the list. Moreover, since these generating
formulas are quantifier-free, we can readily decide whether a given element satisfies
a given formula from the list or not. Thus, a decidable splitting set allows us to
identify elements of F very precisely, up to their orbit over F .

From model theory, we find that the set TK of constrained pairs over a dif-
ferential field K plays the same role for the differential closure. A pair (p, q) of
differential polynomials from K{Y } is constrained if p is monic and irreducible
and of greater order than q (i.e. for some r, p(Y ) involves δrY nontrivially while
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q(Y ) ∈ K[Y, δY, . . . , δr−1Y ]) and, for every x, y ∈ K̂, if p(x) = p(y) = 0 and
q(x) 6= 0 6= q(y), then there exists h ∈ K{Y } such that either h(x) = 0 6= h(y)
or h(y) = 0 6= h(x). This says that, if x and y both satisfy the pair (p, q), then

the differential fields K〈x〉 and K〈y〉 which they generate within K̂ must be iso-
morphic, via an isomorphism fixing K pointwise and mapping x to y. This is
sufficient to ensure that the formula p(Y ) = 0 6= q(Y ) generates a principal type
over DCF0 ∪ ∆K, and conversely, every principal type is generated by such a
formula with (p, q) a constrained pair. With this background, we may state our
results, first addressing Rabin’s Theorem and then Kronecker’s.

Theorem 3. For every embedding g of a computable differential field as described
by Harrington in [3], the image g(K) is Turing-computable from the set TK . So too

is algebraic independence of finite tuples from K̂, and also the function mapping
each x ∈ K̂ to its minimal differential polynomial over K. However, there do exist
such embeddings g for which TK has no Turing-reduction to g(K).

Theorem 4. Let K be a computable nonconstant differential field, with z ∈ K̂.
Then TK〈z〉 is Turing-computable from TK .

So the middle part of Kronecker’s Theorem holds. We believe that we also have
a proof for constant fields, and for the third part, but this remains to be checked.

Conjecture 5. Let K be a computable differential field, and z an element dif-
ferentially transcendental over K within some larger comptuable differential field.
Then TK〈z〉 is Turing-computable from TK .

It remains to determine whether the set TQ of constrained pairs over the con-
stant differential field Q is decidable; we regard this as the most important question
currently open in this area of study. A positive answer would likely give us a much
better intuition about the structure of various simple differentially closed fields,
well beyond any current understanding. It would also be desirable to make the
failure of the second part of Rabin’s Theorem more precise, by finding sets which
are always equivalent to the Rabin image g(F ), and by finding sets which are
always equivalent to TK .
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