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I N T R O D U C T I O N

In fl], it was shown that the class of fields is a universal class for the general computable model 

theory. In the paper we develop the theory of primitive recursive fields studying the primitive 

recursive copies o f fields and also their primitive recursive categoricitv. We show that in contrast 

to general computability, the class of fields is not primitive recursively universal.

In the series o f papers [2-7] various authors have introduced closely related concepts and 

approaches to primitive recursiveness o f algebraic structures, and to primitive recursive categoricitv. 

In this paper we use the standard notion o f a primitive recursive structure. In particular, we have 

the following:

D e f in it io n  1. A  field F  is primitive recursive if the domain o f F  is a primitive recursive subset 

of w, and each field operation (addition, subtraction, multiplication, and division) is primitive 

recursive.

Note that every field either is finite or contains an infinite finitely generated subfield. In view 

o f [3], every infinite primitive recursive field is isomorphic to a primitive recursive subfield on the 

domain w, i.e., has a fully primitive recursive presentation in terms of [6, 7].
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In [6], different natural classes of structures were examined regarding the existence of primitive 

recursive copies and also regarding primitive recursive categoricitv. Below we give a similar analysis 

for the class o f fields.

1. E X I S T E N C E  O F  P R I M I T I V E  R E C U R S I V E  C O P IE S  

O F  C O M P U T A B L E  F IE L D S

There is no known explicit characterization o f countable fields that have computable copies, and 

there are no grounds to believe that it exists. Such descriptions are known only for some specific 

subclasses. For example, the following result gives a full description of algebraic fields which have 

a computable copy.

T H E O R E M  1 [8]. An algebraic extension F  over a prime field P, either Q  or Fp, has a 

computable copy if and only if the set

I F =  {p  € P[x] : p is irreducible in P[x] & (3a € F )[p (a ) = 0 ] }

F

Adapting the proof to primitive recursion, we can obtain the following description for primitive 

recursively presentable algebraic fields.

T H E O R E M  2. A  computable algebraic extension F  over a prime field P, either Q  or Fp, has 

a primitive recursive copy if and only if the set

I F =  {p  € P[x] : p is irreducible in P[x] & (3a € F )[p (a ) = 0 ] }

is a range of a 1-1 primitive recursive function.

It is easy to see that a computablv enumerable superset of an infinite range o f a 1-1 primitive 

recursive function is itself the range o f some 1-1 primitive recursive function. For the case of 

characteristic 0, therefore, every computablv enumerable set I F is such a range, since over Q  the 

polynomials x +  a  a € Q, always belong to I F.

Q

On the other hand, there are infinite computablv enumerable sets which cannot equal the 

range of any 1-1 primitive recursive function. For example, the graph of a computable permutation 

f  : N  ^  N  is the range r f  a 1-1 primitive recursive function iff f  =  pq- i  for some primitive recursive 

permutations p and q, and by [9], there are computable permutations not having the form pq- i . 

W e can translate these infinite computablv enumerable sets into sets of irreducible polynomials 

over finite prime fields.

C O R O L L A R Y  2. For every prime p, there is a computable algebraic extension o f Fp which 

has no primitive recursive copy.
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The results above will again hold if we replace algebraic fields by fields o f finite transcendence 

degree. Furthermore, the same will be true for each computable field that has a computable 

transcendence base. The general question remains open.

F

recursive field G  =  F?

2. C A T E G O R I C I T Y  O F  P R I M I T I V E  R E C U R S I V E  F IE L D S

This section is devoted to the question o f uniqueness o f primitive recursive copies of primitive 

recursive fields. The next definition is a natural adaptation o f the notion o f a computablv categorical 

structure.

F

either it is finite, or its domain is w and there are isomorphisms f  : G  ^  H  such th at f  and f - i 

are primitive recursive for all primitive recursive copies G  =  F  and H  =  F  on the domain w.

In [8], it was proved that there exist nontrivial structures which are fully primitively recursively 

categorical. Below we show that this is not true for the class of fields. Therefore, we can say that 

the class of fields is not “primitively recursively universal” in the sense o f being able to code an 

arbitrary structure into a field preserving its primitive recursive properties.

T H E O R E M  3. An infinite primitive recursive field cannot be fully primitively recursively 

categorical.

Proof. We F

w

F

By Theorem 1, the set o f polynomials I f is a range of a 1-1 primitive recursive function h.

G H

w satisfying, for each i, the requirement on the ith primitive recursive function f  which savs that 

f i : G  ^  H , i.e.,

f j  is not ад isomorphism from G  onto H.

Consider whatever finite portions o f G  and H  have been constructed so far. To satisfy f j  : G  ^  

H , we add a new element z intо G, which will have a transcendental behavior while we compute the 

value f j ( z ) .  On the other hand, during this computation we add into H  only appropriate roots of 

polynomials enumerated into I f by h. When the computation of f j ( z )  is completed, we will know 

the irreducible polynomial p € I f such th at p ( f  (z ) )  =  0. Then we just need to use h to choose 

a new (not used so far) polynomial q € IF , q =  p, for which it is consistent to declare z to be a 

root o f q. Checking for consistency requires the use o f a splitting algorithm for the prime subfield. 

Therefore, it is important to note that all prime fields have primitive recursive splitting algorithms. 

(This is clear from the splitting algorithms given in (10], for example.)

F

97



Starting with two finite portions G and H  o f G  and H, we will satisfy the following requirement: 

if f j  : G  ^  H  and f j  : H  ^  G  are isomorphisms, then f j  о f j  =  id.

W e do this in two steps.

(1) Compute f j ( x )  for every element x of the finite set H . During this computation we put into 

G  H  G H

Then we can easily extend the mapping into F  for the new elements o f G  and H. The characteristic

w

computation. The finished computation will ensure that for every x € H  the value f j ( x )  lies in the 

G G

(2) Add a new element z into G  and start the computation of f j (z ). While f j (z ) is computed, 

we add into G  new elements from the field closure of G  U { z } ,  and add into H  new elements from 

the field closure of H . This ensures that f ^ z )  lies in the subfield o f H  generated by H . As in Case 1

z F  G

z G  

Then f j  о f j =  id implies th at z =  f j  ( f j (z ) )  is the value r f  some field term over G. Now it 

z F

z

F

a € F

aG and aH as its m ages in G  and H. Now it is possible to adapt the strategy from Case 2 using

a

{a , a2, a3, . . .  }  instead of ordinary rational terms (o f which we would have only a finite supply).
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