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1 Introduction

Computability theory applies a rigorous definition of the notion of an al-
gorithm to determine which mathematical functions can be computed and
which cannot. The main concepts in this area date back to Alan Turing, who
during the 1930’s gave the definition of what is now called a Turing machine,
along with its generalization, the oracle Turing machine. In the ensuing sev-
enty years, mathematicians have developed a substantial body of knowledge
about computability and the complexity of subsets of the natural numbers.
It should be noted that for most of its history, this subject has been known
as recursion theory; the terms computable function and recursive function
are to be treated as interchangeable.

Computable model theory applies the notions of computability theory to
arbitrary mathematical structures. Pure computability normally considers
functions from N to N, or equivalently, subsets of finite Cartesian products
N x --- x N. Model theory is the branch of logic in which we consider a
structure (i.e. a domain of elements, with appropriate functions and relations
on that domain) and examine how exactly the structure can be described in
our language, using symbols for those functions and relations, along with the
usual logical symbols such as negation, conjunction, (3z), and (Vz). To fit
this into the context of computability, we usually assume that the domain
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is N, so that the functions and relations become the sort of objects usually
studied by computability theorists.

In this paper, based on a tutorial at the Second International Workshop
on Differential Algebra and Related Topics on April 12, 2007, we mostly
consider the specific case of a computable field. Our goal is to encourage
the study of computable differential fields, about which relatively little is
known; the use of ordinary fields as examples allows us to demonstrate in a
concrete way how the techniques of computability theory may be applied to
such structures and what sort of results can be derived. Since We include a
selection of results about computable fields, with proofs included or sketched,
to help the reader imagine what corresponding results might or might not
hold for computable differential fields. These results should be assumed to
be folklore unless specific attribution is made. In particular, apart from the
work summarized in Section 6, the author makes no claim to originality.

A related article by the same author appears as [10]. It contains a fur-
ther selection of results about computable fields, mostly disjoint from those
given here, along with a introductory catalogue of standard results from pure
computability theory, mostly without proofs, and a partial analysis, with ex-
amples, of which fields actually are computable. Since it is readily available,
we have elected not to reproduce the same introduction here; rather we refer
the reader to [10] for it. We have made sure to use the same terminology and
notation here that is used there. Rigorous introductions to computability
theory can be found in any standard text on computability, including [8],
[15], and [16].

Many thanks are due to Professors Phyllis Cassidy, Richard Churchill,
Li Guo, William Keigher, Jerry Kovacic, and William Sit, the organizers of
the the Second International Workshop on Differential Algebra and Related
Topics and editors of the conference proceedings volume.

2 Preliminaries

For us the natural numbers include 0; for readability we use the standard
symbol N rather than the logician’s symbol w for the set of natural numbers.
A function f : N — N is said to be computable if there is a Turing machine
which computes f. Specifically, on each input n € N, the program should
eventually halt with output f(n). More generally, we consider partial func-
tions ¢ : N — N, for which (despite the similarity of notation) the domain is



allowed to be any subset of N. We write ¢(n) |, and say that ¢(n) converges,
if n € dom(y); otherwise ¢(n) diverges, written p(n)1.

A subset S C N is said to be computable iff its characteristic function yg
is computable. S is computably enumerable, abbreviated c.e., if it is empty
or is the range of some total computable function f. Intuitively, this says
that there is a mechanical way to list out the elements of S: just compute
f(0), then f(1), etc., and write each one on our list.

Fact 2.1 A set S is computably enumerable iff S is the range of a partial
computable function, iff there is a computable set R such that S = {x :
Jyp - Fyk (x,01,...yx) € R}, iff S is the domain of a partial computable
function.

Fact 2.2 There exists a c.e. set which is not computable.

For the R in Fact 2.1, we need to consider subsets of Cartesian products N¥
as well. For this we use the function

1
ol y) = 5 - (2® +y* + x4 2zy + 3y),

which is a bijection from N? onto N. If 7; and 7, are projections, then both
functions 7; o 85 ' are computable. We use 3, to treat N? as though it were
just N, and then define G3(x,y,2) = Ba(z, f2(y, 2)) and so on. Indeed, the
bijection ( defined by

Blxy,...,xx) = Po(k, Br(x1, ..., 2k))

maps the set N* of all finite sequences of natural numbers bijectively onto N.
This gives us a way of allowing polynomials from N[X] to be the inputs to a
computable function.

We have a computable list of all partial computable functions, which we
usually write as ¢q, 1, . . ., with p.(z) = ¢(e, z) for a fixed universal partial
computable function . Likewise, using Fact 2.1, this yields a computable
list of all computably enumerable sets Wy, W1, ..., with W, = dom(¢p,).

When considering fields, we normally work in a language which includes
the addition and multiplication symbols, regarded as binary functions, and
two constant symbols to name the identity elements, along with all standard
logical symbols. A field F then consists of a set F' of elements (called the
domain of the field, but not to be confused with the separate notion of a
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ring without zero-divisors), with two elements of F’ distinguished as the two
constants, and with two binary functions on F', represented by the symbols
+ and -, all satisfying the standard field axioms.

For a field to be computable, we want to be able to compute the two field
operations in this language. Our notion of computability is defined over N,
so we index the elements of the field using N. Of course, this immediately
eliminates all uncountable fields from the discussion! Section 6 mentions a
possible approach to this problem.

Definition 2.3 A computable field is a field F with domain {ag, ay, ...} and
with two computable total functions f and g such that for all 7,7 € N,

a; +a; =ag;; and  a; - a; = a3

In most of computable model theory one takes N itself to be the domain.
However, we will wish to use the symbols 0 and 1 to refer to the identity
elements of the field (and perhaps 2 to refer to the sum 1+ 1, etc.), so we
use the notation a; to avoid confusion.

In the language of differential fields, we have one or several additional
unary function symbols in the language, representing the differential oper-
ators, and additional axioms which they must satisfy. A computable differ-
ential field therefore should be a computable field in which each differential
operator ¢ is likewise given by a computable total function, say h, such that
d(a;) = an() for all i € N. If there were infinitely many differential operators,
then we would require some sort of uniformity in giving the programs which
compute them all, but in this paper we will stick to finite languages. Mostly
we will be discussing pure fields, since far more is known about algorithmic
question for them; indeed, one of our goals is to inspire further research on
computable differential fields, as we discuss in Section 5.

Notice that it is quite possible for a computable field to be isomorphic to a
field that is not computable. So we should not speak of (the isomorphism type
of) a field as being computable; rather we say that a field (or its isomorphism
type) is computably presentable if it is isomorphic to a computable field.

A standard question for a field F is the existence of a splitting algorithm
for F. A computable field F has a splitting algorithm iff the set of irreducible
polynomials in F[X] is a computable set. (Again, we use 3 as a canonical
translation between N*, i.e. the set of polynomials, and N.)

Kronecker gave a splitting algorithm for QQ itself. In fact, he showed that
every finite extension of Q has a splitting algorithm, using the following.
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Theorem 2.4 (Kronecker [7]; see also [2]) If a field L has a splitting al-
gorithm, then so does L(X) for any X transcendental over L. When x is al-
gebraic over L, again L(x) has a splitting algorithm, but it requires knowledge
of the minimal polynomial of x over L.

In [10] we define fields Ex = Q[\/pn : n € K] and & = Q[\/pn, : n ¢
K], using the c.e. set K from Fact 2.2, and show that £k is computably
presentable, but that the presentation has no splitting algorithm, while &
is not computably presentable. This yields the fact below.

Fact 2.5 There exists a computable field without a splitting algorithm.

We again encourage the reader to consult the early sections of [10], where
most results in this section are expanded and better explained.

3 Transcendence Bases

Every field F has a prime (i.e. smallest) subfield Fy, either Z, for fields of
characteristic p, or Q when the characteristic is 0. The subfield F, always
forms a computably enumerable subset of F, and indeed in positive charac-
teristic it is finite, hence computable. It is natural to ask which field elements
are algebraic over the prime subfield, and to hope for a decision procedure
for this question.

If there exists a computable transcendence basis B for a computable field
F, then we will have a decision procedure for the set of elements algebraic over
Fo. In particular, writing B = {X; : i € I} for an appropriate initial segment
I of N, every x € F will be algebraic over the purely transcendental extension
Fo(Xo, X1,...). So, given an x € F, we search for an n and a finite tuple
Co, - - -, cq of elements of Fy(Xy,...,X,) such that cgz? + -+ + ¢y = 0 in F.
Eventually we must find such a tuple. Then we apply the splitting algorithm
from Kronecker’s Theorem 2.4 for Fy(Xjy,...,X,), and if this polynomial
is reducible, we check which factor has x as a root and repeat the process
with that factor. Eventually we find the minimal polynomial p(X) of x over
Fo(Xo,...). Now z is algebraic iff p(X) € Fo[X]. For each coefficient ¢
in p(X), we may find an expression of ¢ as a quotient of polynomials in
FolXo, .., Xm] for some m. With our splitting algorithm, we may factor
these until the quotient is in lowest terms (up to constants in Fy). Then
c € Fy iff the numerator and denominator of this quotient both have degree



0 as polynomials. If this holds for every coefficient in p(.X), then x is algebraic
over Fy; otherwise not.

We point out that in the foregoing procedure, it is sufficient for B to be
computably enumerable, rather than actually computable. Also, we could
do the same procedure not only for the prime subfield Fy, but for any com-
putably enumerable subfield over which we have a splitting algorithm. So the
question of algebraicity over a (nice) subfield hinges mainly on the existence
of a computable transcendence basis for the field over the subfield. Indeed,
the converse is clear: if we can decide algebraicity of arbitrary elements over
Fo, then we can compute a transcendence basis B, just by going through
all elements ag,aq,... of F and checking whether each a,, is algebraic over
the extension of Fy(Xo, ..., Xx), where the X; are those elements a,, with
m < n which have already been placed in B. If a,, is transcendental over this
extension, we add it to B; otherwise not. This works not just for the prime
subfield, but for any c.e. subfield Fy with a splitting algorithm.

So we ask next whether every computable field F has a computable tran-
scendence basis over its prime subfield Fy, or at least a computably enumer-
able one. Half an answer is found fairly quickly.

Lemma 3.1 Every computable field F has a co-c.e. transcendence basis, i.e.
a transcendence basis whose complement (in the domain of F) is computably
enumerable.

Proof. A co-c.e. set S is built by elimination: one starts with the assump-
tion that S = N, and then runs a computable process under which certain
elements drop out of S (and thus enter S, which is c.e.). In this situation,
we let B be the set of all those a,, € F such that there exist coefficients in
Fo for a polynomial p(Xo, ..., X,) € Fo[Xo, ..., X, such that:

e plag,...,a,) =0; and
e not all coefficients of p(ay, ..., a, 1, X,) equal zero.

This condition is defined by an existential formula (since Fy itself is always
c.e.), and so B is c.e. and B itself is co-c.e. Moreover, B is algebraically inde-

pendent over Fy, since every a,, € B is transcendental over Fy(aq, .. ., a,_1),

and must be a transcendence basis, since every a, ¢ B is algebraic over

Folag, ... ,an—1), hence (by induction) over some subset of B. [ |
Y ) )



In order to build a computable field with no computable transcendence
basis, therefore, we focus on making sure that no transcendence basis is c.e.
Actually, since there are uncountably many transcendence bases (assuming
the transcendence degree is infinite) and only countably many c.e. sets, it
will be easier to ensure that no c.e. set is a transcendence basis.

Theorem 3.2 (Metakides-Nerode) There exists a computable field with
no computably enumerable transcendence basis.

Proof. A full proof of this result was given by Metakides and Nerode in
[9]. Here we sketch the proof. Recall that we can enumerate all c.e. sets
simultaneously as Wy, W1, .... Our goal is to ensure, for each e, that W, will
not be a transcendence basis for F over its prime field 7. We will make F
have infinite transcendence degree over Fy, since otherwise it would certainly
have a computable transcendence basis, and so we need not worry about any
finite set W..

If W, is infinite, our strategy is the following. We start building a com-
putable copy of the purely transcendental extension Q(Xy, X1, ...) of Q, but
slowly — that is, after finitely many steps, we should only have defined finitely
many values in the (infinite) addition and multiplication tables for F. Simul-
taneously, we enumerate all sets W,. If a particular W, is to be a transcen-
dence basis, it must eventually enumerate some element not in the subfield
Fe = Q(Xo,...,Xs). We will watch for this element, and since we have a
splitting algorithm for F,, we will recognize it when it appears. Call it ..
(If no such y, ever appears, then either W, was finite, or W, contained more
than 2e elements of F.. Each of these would ensure that W, is not a tran-
scendence basis, so we need not do anything unless such a y. appears.) When
and if we find such a y., we wish to make it algebraic over Fy, thereby void-
ing W.’s hope of being algebraically independent. To do so, we go through
the infinitely many elements of Q until we find some ¢ € Q such that we
can map Y. to ¢ without disrupting any of the finitely many additions and
multiplcations already defined in F. For instance, if ag is already defined to
be 4,ie. 1+ 141+ 1= ag is already in the addition table, then we should
not map y. to 4, lest the distinct elements y. and ag wind up equal in F.
If we have also already defined v, - y. = as, then gy, should not be mapped
to the negative of (1 + 1), for then ay and as would have to be equal in F.
Fortunately, with only finitely many additions and multiplications defined as
yet, and with infinitely many ¢ € Q to choose from, we will eventually find



some ¢ such that we can define the addition to make y. represent this ¢ in F
without changing any of the existing additions or multiplications. Indeed, a
sufficiently large integer would suffice.

Intuitively, we simply tell W,: “Ha! You thought that this y. was tran-
scendental. Well, it’s really the integer 10*7.” Of course, had W, waited
longer to enumerate ., our addition and multiplication functions might have
precluded the possibility of y. being 10'7, but at any finite stage of the pro-
cess, we will be able to find an integer ¢ sufficiently large that our operations
as so far defined do not give any reason why v, could not equal ¢ in F. So in
fact, in the field F, every infinite c.e. set will intersect the “naturals,” i.e. the
set {(14+---+1) (ntimes):n € N}. Thus we certainly cannot have any
infinite c.e. transcendence basis.

A few points here should be cleared up. First, when we switch and make
some ¥, algebraic, it changes the splitting algorithm of F; for every ¢ > e.
Of course, if we had already put y; into Fy, this change does not make
y; transcendental again, so we do not undo any previous accomplishments.
(If it did, a method called a finite injury priority construction would be
needed here.) Moreover, having made the change, we do know the minimal
polynomial of y. over Fy, so we still know all the splitting algorithms we will
need in the future; we just remember which X, are still transcendental and
which are not.

Second, we claimed that F has infinite transcendence degree over Fy. The
reason for this is that the elements Xy, ..., X5, originally were algebraically
independent over Fy, with transcendence degree (2e 4+ 1), and only the sets
Wo, ..., We_1 can have changed that. Since each of the changes reduces the
transcendence degree by 1, we see that { X, ..., Xa.} still has transcendence
degree at least (e + 1) over Fy. Since this holds for every e, the entire field
F has infinite transcendence degree. This completes our sketch of the proof
of Theorem 3.2. m

4 Algebraic Closures and Rabin’s Theorem

Every countable field has countable algebraic closure, i.e. embeds into a
countable algebraically closed field which is algebraic over the image of the
embedding. If the field is computable, we would like to claim that its alge-
braic closure must also be computable.

Stated naively, the question is easy to answer. A countable algebraically



closed field is characterized by its transcendence degree and its characteristic.
Using splitting algorithms, it is not difficult to build computable fields iso-
morphic to the algebraic closures of Q, of Q(Xo, ..., X,), and of Q(Xj,...),
and the same holds with any Z, in place of Q. So every countable alge-
braically closed field is computably presentable, and therefore the answer to
our original question is clearly affirmative.

In fact, this makes it clear that every countable field has a computable
algebraic closure, even fields, such as the &% from Section 2, which have no
computable presentation at all. This feels wrong to us, and suggests that we
should revise our question. Not only do we want the algebraic closure F to
have a computable presentation, but we also want the original field F to sit
inside F in a nice way. Ideally, we would like F to be a computable subfield
of F. If this fails, a computably enumerable subfield would be the next best
thing. For &%, even that is impossible: the reader is encouraged to prove the
following lemma for herself.

Lemma 4.1 FEvery computably enumerable subfield of a computable field F
is itself computably presentable, indeed in such a way that there is a com-
putable isomorphism from the computable presentation onto the subfield of

F.

The definitive answer to the real question about computable algebraic
closures was given in 1960 by Michael Rabin (see [13]). We give his name to
the type of embedding we wish to consider.

Definition 4.2 Let F and £ be computable fields. A function g : F — &£ is
a Rabin embedding if:

e ¢ is a homomorphism of fields; and
e & is both algebraically closed and algebraic over the image of g; and

e g is a computable function. (More precisely, there is a total computable
h with g(a,) = by for all n, where F has domain {ag,a,...} and €
has domain {bg, b1, ...}.)

Thus & is the algebraic closure of F in a strong way: we actually have F
as a subfield of £, using the computable isomorphism ¢, and that subfield is
computably enumerable, since (the indices of) its elements form the range of
a total computable function. If we cannot compute a transcendence basis for



F, as for the field built in Theorem 3.2, then it is not obvious that a Rabin
embedding of F exists. Indeed, if we are simply given a computable presen-
tation of the algebraic closure of F, there may be no computable embedding
of F into that closure. However, Rabin proved that a Rabin embedding
must exist, essentially by building a computable presentation of it around
the computable field F.

Theorem 4.3 (Rabin [13]) Let F be any computable field.

1. There exists a computable ACF F with a Rabin embedding of F into
F.

2. For every Rabin embedding g of F (into any computable ACF &), the
image of g is a computable subset of £ iff F has a splitting algorithm.

Proof. The heart of the proof of this theorem is the construction of the F and
g required by Part (1). This is extremely involved, and we refer the reader
to [13], where this result appears as Theorem 7. The portion of the theorem
usually quoted is Part (2), which has a very nice and readily understandable
proof.

(=): Assume that the image g(F) is computable within F, and fix any
polynomial p(X) € F[X]. Since g is computable, we can find the polynomial
q(X) € F[X] whose coefficients are the images under g of the coefficients
of p(X). Since F is algebraically closed, we search until we find all roots
r1,...,7rqof g(X) in F, with repetitions allowed, i.e. with d = deg(q). (Roots
of multiplicity > 1 are not a hindrance: when we find a root, we factor it out
of ¢(X) and continue to search for roots of the remaining polynomial.) Thus

¢(X) = (X =r1) - (X = ra).

Now we consider all (2¢ — 2) nontrivial subsets S C {1,...,d}. If any poly-
nomial
ies(X — 1)

has all its coefficients in the image of g, then we have a factorization of
q(X) within the polynomial ring (g(F))[X], and so p(X) was reducible in
F[X]. Conversely, if there is no such S, then p(X) was irreducible. Thus the
computability of the image of g yields a splitting algorithm for F.

(«<=): Now suppose we have a splitting algorithm for F, and fix any = € €.
We search for a polynomial p(X) € F[X] such that its image ¢(X) € £[X]
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under g (just as before) satisfies ¢(z) = 0. Since £ is algebraic over the image
of g, we must eventually find such a p(X). Then use the splitting algorithm
for F to factor p(X) into factors p;(X),...,pr(X) irreducible in F[X], with
images ¢1(X),...,q(X) in £[X] under g. Now x must be a root of one (and
only one) ¢;(X), and z lies in the image of ¢ iff that ¢;(X) is linear. n

A surprising corollary, which we believe appears for the first time in [11],
is the following. Rabin’s Theorem, while not actually required for this result,
simplifies the proof.

Corollary 4.4 Let £ and F be isomorphic computable fields, each algebraic
over its prime field. Then £ has a splitting algorithm iff F does.

So for algebraic fields, the existence of a splitting algorithm depends only on
the isomorphism type, not on the specific computable presentation chosen.

Proof. Fix Rabin embeddings g and h of £ and F into their computable
algebraic closures £ and F. Suppose that £ has a splitting algorithm, so
that Theorem 4.3 shows g(€) to be computable within £, and fix any x € F.
Start enumerating the prime field Fy of F, and search for any polynomial
p(X) € Fo[X] such that the image ¢(X) of p under h satisfies g(z) = 0.
Since F is algebraic over g(F) and F is algebraic over Fy, such a p(X) must
exist. Now the unique isomorphism f from F{ onto the prime field & of £ is
computable, so we may find the image 7(X) € &][X] of p under f. Since &
and F are isomorphic, p(X) has exactly as many roots in F as r(X) hasin &.
Find all deg(r)-many roots in £ of the image of r(X) under g, and check how
many of them lie in ¢g(£), using the computability of g(£). Then enumerate
h(F) until the same number of roots of ¢(X) have appeared in h(F). Now
x € h(F) iff x is one of those roots. Thus F has a splitting algorithm, by
Theorem 4.3. L

5 Computable Differential Algebra

As mentioned in Section 2, a differential field is computable if the underlying
field is computable and all differential operators are defined by computable
unary functions. Of course, just as any field becomes a differential field under
the definition dz = 0, any computable field becomes a computable differen-
tial field under that same definition. Moving past this trivial case, we note
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for every n, there is a computable presentation of the rational function field
Q(Xo, ..., X,) under the partial differential operators 8LX{ The same holds
for the field of algebraic functions in the same indeterminates; these com-
ments simply reflect that differentiation of such functions can be performed
algorithmically.

If we extend to the field Q(Xy, Xi,...) with a countable transcendence
basis, and add all partial differential operators 6LX1-’ the same result holds.
One should note, however, that now we have an infinite language, with count-
ably many function symbols, and so for a computable presentation, we must
require not only that every individual function aixi be computable, but that
they be so uniformly: there should exist a single total computable function
h such that for all i and j, aixi(aj) = ap(;)- When we have only finitely
many ¢, of course, uniform computability is equivalent to the computability
of every single operator.

And what of differentially closed fields? The author is grateful to Michael
Singer for pointing out the following theorem.

Theorem 5.1 (Harrington [5]) The differential closure of a computable
differential field of characteristic 0 is itself computably presentable. So is the
differential closure of a computable differentially perfect field of characteristic

p.

The proof of Harrington’s Theorem also provides a computable embedding
of the original field into the differential closure, such that the closure is dif-
ferentially algebraic over the image of the embedding. Thus, this embedding
is analogous to a Rabin embedding, and its image is c.e. in the domain of
the computable differential closure. For differential fields there is at present
no known analogue of part (2) of Rabin’s Theorem.

Golubitsky and the author have conjectured that the Ritt problem might
play a role for differential fields similar to that of the splitting algorithm for
pure fields. The Ritt problem has several equivalent formulations, including
the following.

Question 5.2 (Ritt Problem) In a computable differential field F, does
there exist an algorithm which, given a finite set of differential polynomaials
over F, determines whether the radical differential ideal generated by those
polynomials is prime?

If we restrict this problem to the case of a computable field with the trivial
derivation, and to polynomials in a single variable, then from the finite set of
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polynomials we can determine a single polynomial generating the same radi-
cal ideal, and primality of the radical ideal is then equivalent to irreducibility
of the single generator (apart from the possibility that the generator f is it-
self a power of a smaller polynomial, which we can check by testing f and
f’ for common factors). So in this sense, the Ritt problem can be seen as
a generalization of the question of existence of a splitting algorithm. Much
more work remains if we hope to justify any claim that this is the “right”
generalization, of course, but the argument above, along with Fact 2.5, does
show that there is no general algorithm for solving the Ritt problem in all
computable differential fields.

Another question is whether the algebraic closure of a computable dif-
ferential field F forms a computable subfield of the computable differential
closure.

Lemma 5.3 Let F be a computable differential field in which all of the
(finitely many) derivations are trivial. Then within the computable presen-
tation of the differential closure € of F given in Theorem 5.1, the algebraic
closure of F is a computable subfield, containing precisely the constants of
&, i.e. those elements v € € such that dv = 0 for all derivations 9.

Proof. For differential algebraists this is immediate, but we give a logician’s
proof. First suppose v € £ is in the algebraic closure of F (which we may
view as a differential subfield of £). Let "', ¢;V* be the minimal (algebraic)
polynomial of v over F. Applying any 4, we get ci0v + 2covév + -+ +
ne,v" " tdv = 0. Hence q(v) - dv = 0, where ¢(V) is an algebraic polynomial
over F of degree < n. But then ¢(v) # 0, so dv = 0.

For the converse, we appeal to model theory. The set of formulas

S = {6V =0 all derivations ¢} U{p(V') # 0 : all nonconstant p(V') € F[V]}

forms an (incomplete) nonprincipal type. Each finite subset of S is satisfiable
by some element of £ which fails to satisfy the entire set. (That is, no finite
subset of S implies all the formulas in S.) But the differential closure of F is
by definition the prime model extension of F, and as a prime model, it must
realize only principal types. This precludes the possibility that any v € £
satisfies all the formulas of .S, and so every v € £ not in the algebraic closure
of F must have dv # 0 for some derivation 4.

For the model theory here, we suggest [1] and [6]. The model-theoretic
definition of differential closure appears on p. 134 of [19]. n
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For a computable differential field F in general, the algebraic closure
will be computably enumerable within the differential closure, because the
condition for = to lie in the algebraic closure is existential: one needs an
algebraic polynomial with coefficients in the image of F for which x is a
root. (The image of F in the differential closure is at least c.e, so we can
search systematically for such a polynomial.) Of course, x always satisfies a
differential polynomial over F. An appropriate notion of splitting algorithm
for differential fields, if one exists, ought to allow us to determine the minimal
polynomial for x and check whether it is algebraic. For more on approaches
to such problems, see the work of Ritt in [14].

6 Local Computability

The foregoing discussion only applied to computable fields. Other countable
fields can be considered if one relativizes the notion of computability to allow
an oracle, and the results from preceding sections would generally carry over
to that case. However, computable model theory has always restricted itself
to countable structures, essentially because the nature of Turing machines
and computations in finite time allows only countably many inputs to such a
machine. The author is enthusiastic about his own current project on locally
computable structures, i.e. mathematical structures, quite possibly uncount-
able, whose finitely generated substructures are all computably presentable
in a uniform way. Details are available in [12], but we offer a summary here.

Let § be any structure. (Feel free to think of S as a differential field.)
A simple cover of S is simply a list of the finitely generated substructures of
S (resp. differential subfields), up to isomorphism, with no attention paid to
any relations between those substructures.

Definition 6.1 A simple cover of S is a (finite or countable) collection 2 of
finitely generated structures Ay, Aj, ..., such that:

e cvery finitely generated substructure of S is isomorphic to some A; € ;
and

e cvery A; € A embeds isomorphically into S.

2 is computable if every A; € 2 is a computable structure whose domain is an
initial segment of N, and uniformly computable if the sequence ((A;, @;))ien,
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where each @, is a finite generating set for A;, can be given uniformly by a
single computable function.

To consider interactions among the distinct finitely generated substruc-
tures of S, we say that a map f : A; — A; lifts to an inclusion B C C within
S, via B and v, if 3 : A; — B and v : A; — C are isomorphisms such that
B=nolf.

Definition 6.2 A cover of S consists of a simple cover A = {Ay, Ay,...}
of S, along with sets ]?j‘ (for all A;, A; € 2A) of injective homomorphisms
f:A; — Aj, such that:

e for all substructures B C C of S, there exist i,7 € N and f € Ifjl and
isomorphisms 3 : A; - B and v : A; — C such that f lifts to the
inclusion B C C via 8 and v; and

e for every ¢ and j and every f € Ifjl, there exist substructures B C C of
S and isomorphisms 3 : A; - B and 7 : A; — C such that f lifts to

the inclusion B C C via (3 and 7.

This cover is uniformly computable if 2 is a uniformly computable simple
cover of § and there exists a c.e. set W such that for all 7,5 € N,

Ifj‘ = {pel A : Bs(e,i,j) € WH.

(Recall the computable bijection 83 : N® — N.) This says that a single
process lists out all embeddings in each I?j‘ simulataneously.
A structure B is locally computable if it has a uniformly computable cover.

If 2 is a computable simple cover, then every embedding of any A; into any
A; is determined by its values on the generators of A;. Since A; must be
finitely generated, all such embeddings are computable, and therefore it is
reasonable to call 2 a computable cover without any further requirements
on the sets IZQ]‘ (Our main reason for considering only the finitely generated
substructures of S, rather than countable ones, is that embeddings among
such structures are always computable.) For a uniformly computable cover,
on the other hand, the sets I?jl play a key role in our development of the
subject, and it should be kept in mind that I ?j‘ need not contain every possible
embedding of A, into A;.
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A cover feels like a category, and it almost is one. If the sets I3 always
contain the identity map, and if (g o f) € I} for every f € I} and g € I},
then the cover actually is a category. Many of the nicer covers can be closed
under these conditions, and therefore can indeed be thought of as categories.

A substantial array of properties exists, which various covers do or do
not satisfy. The field of real numbers has a uniformly computable cover, as
defined above, but does not have one with any of these nice properties. The
field of complex numbers, on the other hand, is perfectly locally computable:
it has a uniformly computable cover satisfying the nicest known properties.
So does every other algebraically closed field. So also does every computable
structure, which is not surprising: a structure which is computable in the
global sense certainly should have nice local-computability properties. In-
deed, for countable structures, perfect local computability is equivalent to
computable presentability.

The goal of local computability, however, is to consider uncountable struc-
tures S, and to give computable (hence countable) descriptions of those struc-
tures. One way to do so is to produce computable structures highly similar
to §. Current work bu Mulcahey and the author has shown that every per-
fectly locally computable structure & has a computable simulation C, i.e. a
computable structure satisfying exactly the same definable properties as S,
and possessing exactly the same types of elements. For instance, if S is a
perfectly locally computable field with an uncountable transcendence basis,
and if S contains an algebraically closed subfield of transcendence degree 3
over Q but no such subfield of transcendence degree 4, then the same holds
of C, except that its transcendence basis is countable. In model-theoretic
terms, C realizes exactly the same finitary types as §, and indeed it can be
made to do so over any finite parameter set from S. (The fact that a tran-
scendence basis is uncountable cannot be expressed in the finitary language
of fields; the fact that it is infinite can be expressed by saying that S realizes
a countable collection of finitary types, namely the n-type of n algebraically
independent elements, for every n € N. Therefore the transcendence basis of
C will also be infinite, but need not be uncountable — and cannot be, since C
itself is countable.)

A perfectly locally computable structure therefore allows ordinary com-
putable search procedures to be performed over any finite parameter set,
such as the collection of coefficients of a polynomial. Consequently, it is
hoped that many results about computable fields will carry over to perfectly
locally computable fields, and likewise for computable differential fields. Lit-
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tle about local computability is yet known; it has only been introduced very
recently, and many basic questions remain open. Nevertheless, the author
sees it as the best hope for applying the classical notion of Turing computa-

tion to uncountable structures, and in particular to uncountable fields and
differential fields.
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