
De�nable In
ompleteness and Friedberg SplittingsRussell Miller�September 1, 2004Abstra
tWe de�ne a property R(A0; A1) in the partial order E of 
omputablyenumerable sets under in
lusion, and prove that R implies that A0 isnon
omputable and in
omplete. Moreover, the property is nonva
u-ous, and the A0 and A1 whi
h we build satisfying R form a Friedbergsplitting of their union A, with A1 prompt and A promptly simple. We
on
lude that A0 and A1 lie in distin
t orbits under automorphismsof E , yielding a strong answer to a question previously explored byDowney, Stob, and Soare about whether halves of Friedberg splittingsmust lie in the same orbit.1 Introdu
tionThe 
omputably enumerable sets form an upper semi-latti
e under Turingredu
ibility. Under set in
lusion, they form a latti
e E , as �rst noted byMyhill in [14℄, and the properties of a 
.e. set as an element of E oftenhelp determine its properties under Turing redu
ibility. Even before Myhill,Post had suggested that there should be a nonva
uous property of 
.e. sets,de�nable without referen
e to the Turing degrees, whi
h would imply thatthe Turing degree of su
h a set must lie stri
tly between the 
omputabledegree 0 and the 
omplete 
.e. degree 00.Post's own attempts to �nd su
h a property failed. The properties hede�ned turned out to be extremely useful in 
omputability theory, but ea
hof them { simpli
ity, hypersimpli
ity, and hyperhypersimpli
ity { a
tuallydoes hold of some 
omplete set. The existen
e of a Turing degree between�This arti
le appeared in The Journal of Symboli
 Logi
 67 (2002), pp. 679-696. It isthe se
ond 
hapter of a Ph.D. thesis at the University of Chi
ago under the supervision ofRobert I. Soare, to whom the author is grateful for extensive 
onversations and suggestions.1



0 and 00 was �rst proven by 
ompletely di�erent means, namely the �niteinjury 
onstru
tions of Friedberg and Mu
hnik ([6℄, [13℄).The term \Post's Program" eventually 
ame to denote the sear
h for anE-de�nable property implying in
ompleteness. Of the properties proposedby Post, all ex
ept hypersimpli
ity turned out to be de�nable in E , and otherE-de�nable properties, su
h as maximality, were developed and studied intheir own right. Nevertheless, Post's Program remained un�nished until1991, when Harrington and Soare ([7℄) found a property Q(A) de�nable inE su
h that every A satisfying Q must be both non
omputable and Turing-in
omplete. We give their de�nition of Q(A):Q(A) : (9C)A�mC(8B � C)(9D � C)(8S)S<C� B \ (S � A) = D \ (S �A) =)(9T )[C � T & A \ (S \ T ) = B \ (S \ T )℄ �:Here S < C abbreviates (9Ŝ)[S [ Ŝ = C & S \ Ŝ = ;℄. (All variablesrepresent elements of E , namely 
.e. sets.) A t B denotes the union of twodisjoint sets A and B. Also, A �m C abbreviates \A is a major subset of C,"meaning that A � C with C �A in�nite su
h that for every W , if C � W ,then A �W is �nite. Sin
e the property of being �nite is E-de�nable, thestatement A �m C is E-de�nable as well.In this paper we generalize the property Q(A) to an E-de�nable propertyR(A0; A1) of two 
.e. sets. The statement of R is as follows:R(A0; A1) : A0 \ A1 = ; &(9C)(8B � C)(9D � C)(8S < C)(9T )hA0 [A1 �m C &�(B \ (S �A0))[ A1 = (D \ (S �A0))[ A1 =)[C � T & (A0 \ S \ T ) [A1 = (B \ S \ T ) [A1℄�i:This property 
an be read to say that A0 satis�es the Q-property on A1.Indeed, the statement R(A0; ;) is equivalent to Q(A0). In Se
tion 2 weprove that just as with the Q-property, R(A0; A1) implies that A0 is not ofprompt degree, and hen
e not Turing 
omplete in �01. (A set whi
h is notof prompt degree is said to be tardy, and sin
e A0 satis�es an E-de�nableproperty implying tardiness, we say that A0 is \de�nably tardy." Sin
e alltardy sets are in
omplete, we also say that A0 is \de�nably in
omplete.")Alternatively, we 
an interpret R(A0; A1) in the latti
e E=A, where Ais the prin
ipal ideal in E generated by A1. (See [15℄, p. 225.) In thislatti
e, C �A D is de�ned to mean C � D [ A1, and C �A D if C �A D2



and D �A C. Essentially, R(A0; A1) says that Q(A0) holds in E=A, with
ontainment and equality repla
ed by �A and �A. The only di�eren
es arethat we 
annot state the properties A0 \ A1 = ; or A1 � C in E=A, andthat we have left the quanti�er (8S < C) in R(A0; A1) just as in the originalQ-property, rather than restating it to hold on A1. Choosing not to restateit makes the R-property slightly stronger, but the stronger version 
an stillbe satis�ed.In Se
tion 3 we 
onstru
t 
.e. sets A0 and A1 satisfying R, to show thatthe R-property is non-va
uous. A0 and A1 will also be non
omputable.Thus, the following E-de�nable formula is non-va
uous:(9A1)[A0 >T ; & R(A0; A1)℄This formula guarantees that A0 is non
omputable and in
omplete, just asthe property Q(A) does for A. (Re
all that 
omputability is equivalent tothe property of having a 
omplement in E .)We then 
onsider Friedberg splittings. Two disjoint 
.e. sets B0 and B1form a Friedberg splitting of B = B0 tB1 if for every 
.e. W :W � B is not 
.e. =) neither W � B0 nor W �B1 is 
.e.The sets B0 and B1 are ea
h said to be half of this Friedberg splitting.The sets A0 and A1 whi
h we 
onstru
t will have the additional property offorming a Friedberg splitting of their union.We use the R-property to show that A0 and A1 
annot lie in the sameorbit under automorphisms of E . (In the argot of this topi
, we say thatA0 and A1 are not automorphi
. Two sets are automorphi
 if they lie inthe same orbit.) This will follow be
ause the A1 we 
onstru
t will be ofprompt degree, hen
e automorphi
 to a 
omplete set, by another result ofHarrington and Soare in [7℄.The orbits of halves of Friedberg splittings have been a subje
t of interestfor some time, at least sin
e the dis
overy of the hemimaximal sets. A set ishemimaximal if it is half of a nontrivial splitting of a maximal set. This isE-de�nable, and Downey and Stob proved that the hemimaximal sets forman orbit (see [3℄).Sin
e the maximal sets themselves form an orbit, and sin
e few orbitsare known in E , this led to the 
onje
ture that if O is any orbit in E , thenthe 
olle
tion of \hemi-O" sets, i.e. halves of nontrivial splittings of setsin O, might also be an orbit. Alternatively, it was 
onje
tured that halvesof Friedberg splittings of sets in O might form an orbit. (For the orbit3



of maximal sets, these 
lasses 
oin
ide, sin
e any nontrivial splitting of amaximal set is automati
ally a Friedberg splitting.)Downey and Stob refuted both 
onje
tures in [5℄, by produ
ing two Fried-berg splittings B0 t B1 = C0 t C1 of the same set B, whi
h were de�nablydi�erent in E . Hen
e B0 and C0 satisfy di�erent 1-types in the language ofin
lusion and 
annot be automorphi
.The present result goes a step further. Sin
e A0 is de�nably tardy, everyset in its orbit must also be tardy, and hen
e A1 must lie in a di�erentorbit. This is thus the �rst example of a single Friedberg splitting withthe two halves known to lie in di�erent orbits in E . It is also the �rstappli
ation of Harrington and Soare's Q-property to derive results aboutFriedberg splittings.Our notation mostly follows that of [16℄. The �nite sets form an idealF � E , and we write E� for the latti
e E=F . (Computability is de�nable in Eas the property of possessing a 
omplement, and then �niteness is de�nable,sin
e a set is �nite if and only if all its subsets are 
omputable.) We writeA �� B if B �A is �nite, and A =� B if A �� B and B �� A.We use the standard enumeration fWege2! of the 
omputably enumer-able sets, with �nite approximations fWe;sgs2! to ea
h. For the 
.e. setswhi
h we 
onstru
t ourselves, we will also give �nite approximations, usu-ally writing A = [s2!As. If A and B are both enumerated this way, wewrite A nB = fx : (9s)[x 2 As �Bs℄g, and A& B = fx 2 A\B : (9s)[x 2As � Bs ℄g. Thus when an element not yet in B enters A, we put it intoA nB, and if it later enters B, then we put it into A& B as well.
4



2 The R-PropertyIn order to guarantee that the set A0 is not automorphi
 to a 
omplete set,we will for
e it to satisfy the latti
e-de�nable property R de�ned in Se
tion1, and prove that this implies tardiness of A0. Tardiness itself does notguarantee that a set 
annot be automorphi
 to a 
omplete set, of 
ourse,but satisfa
tion of R does, sin
e every other set automorphi
 to A0 mustalso satisfy R and therefore must also be tardy, hen
e in
omplete. (A tardyset must be half of a minimal pair under �T , as shown in [16℄, and thereforemust be in
omplete.) We restate the R-property here:R(A0; A1) : A0 \ A1 = ; &(9C)(8B � C)(9D � C)(8S < C)(9T )hA0 [A1 �m C &�(B \ (S �A0))[ A1 = (D \ (S �A0))[ A1 =)[C � T & (A0 \ S \ T ) [A1 = (B \ S \ T ) [A1℄�iTheorem 2.1 If A0 and A1 are two 
.e. sets su
h that R(A0; A1) holds,then A0 is not of prompt degree.Proof. The proof is similar to the 
orresponding result for the Q-propertyin [7℄. Given A0 and A1, we pi
k a set C as spe
i�ed in R(A0; A1) and �xenumerations fAs0gs2! of A0 and fCsgs2! of C su
h that A0 � C & A0.To prove that a given 'e is not a promptness fun
tion for A0, we need to�nd an in�nite 
.e. set Wi with standard enumeration fWi;sgs2! satisfyingthe tardiness requirement Te:[(8s)'e(s)#� s℄ =) (8x)(8s)[x 2 Wi;s�Wi;s�1 =) As0 � x = A'e(s)0 � x ℄:We will prove independently for ea
h e that Te holds. Having �xed e,we will assume for the rest of this se
tion that 'e is total with 'e(s) � s forevery s, sin
e otherwise Te is automati
ally ful�lled. We will build a strongarray fVh�;ki;ngk;n2!;�2!�! of 
.e. sets with enumerations fV sh�;ki;ngs2!. TheSlowdown Lemma then gives a 
omputable fun
tion f su
h that for ea
hh�; ki and ea
h n, Wf(h�;ki;n) = Vh�;ki;n and Vh�;ki;n & Wf(h�;ki;n) = Vh�;ki;n,so that no element of Vh�;ki;n enters Wf(h�;ki;n) until it has already enteredVh�;ki;n. Periodi
ally the strategy for a given h�; ki may be injured by ahigher-priority strategy. If this happens while we are enumerating Vh�;ki;n,then we give up on Vh�;ki;n and start enumerating Vh�;ki;n+1. There will existan h�; ki whi
h is only injured n times (with n < !), yet re
eives attention5



at in�nitely many stages, and the 
orresponding Vh�;ki;n will be in�nite andwill be the set whi
h proves satisfa
tion of Te.We de�ne the fun
tion n(h�; ki; s) to keep tra
k of whi
h Vh�;ki;n weare enumerating at stage s. In parti
ular, if the h�; ki-strategy re
eivesattention at stage s + 1, then we may add an element to V s+1h�;ki;n(h�;ki;s+1).To avoid notational 
haos, however, we will write V s+1h�;ki;n in the 
onstru
tionand understand V s+1h�;ki;n(h�;ki;s+1) for it.To ensure that one of these Wf(h�;ki;n) will satisfy Te, we build a 
.e. setB to whi
h to apply the property R. When we want to preserve A0 � xfrom stage s until stage 'e(s) so as to satisfy Te, we do so by restrainingall elements < x from entering B until stage 'e(s). The R-property thenprohibits su
h elements from entering A0, sin
e if they did, we would thenhold them out of B forever after, thereby 
ontradi
ting R(A0; A1).To apply the R-property, we need to know whi
h 
.e. set Wi is the Dspe
i�ed by the property. Of 
ourse, we do not have this information, butour strategy is to use S to 
over all the possibilities. Spe
i�
ally, in the
onstru
tion we will split C into the disjoint union of 
.e. sets:C = Gi2!Si:and apply the R-property to ea
h Si, with Si in the role of S. (Clearly ea
hSi < C.) We use ea
h Si to handle the possibility that D = Wi.Of 
ourse, the R-property states that the restraints we pla
e on elementsfrom entering B only a�e
t A0 on S \ T \ A1. Sin
e R(A0; A1) also statesthat A0 \ A1 is empty, we do not need to worry about elements of A1, forthey 
an never enter A0. We are allowed to 
hoose the S, sin
e the matrixof R applies for all S, and indeed we have already done so above (namelyS = Si, for ea
h i in turn). However, we 
an only guess at the set T .To determine the index j su
h that T = Wj 
orresponds to the set Swhi
h we 
hoose, we use a �02 guessing pro
edure, sin
e the 
on
lusion inthe matrix of R is a �02 property. The j for whi
h T = Wj will be the leastj whi
h re
eives in�nitely many guesses under this pro
edure. (We ensurethat the hypothesis of the matrix holds, by periodi
ally putting all elementsof Ds\ (Ss�As0) into Bs.) Moreover, in the 
onstru
tion, we will subdivideea
h Si into the disjoint union of 
.e. sets Si;j :Si = Gj2! Si;j :Si;j is used to handle the possibility that T = Wj , so we pay attention to Si;j6



ea
h time j is named by the guessing pro
edure. Thus the Si;j 
orrespondingto the 
orre
t T will re
eive attention in�nitely often.To simplify the notation, we let the variable � = hi; ji range over !�!,and de�ne: D� = WiS� = Si;jT� = Wj .We order the elements � of !�! by pulling ba
k the usual order < on ! to! � ! via a standard pairing fun
tion. Thus ea
h � has only �nitely manyprede
essors under <.For ea
h �, let F (�) be the 
onjun
tion of the hypothesis and 
on
lusionin the matrix of the R-property:F (�) : (B \ (S� �A0))[ A1 = (D� \ (S� � A0))[A1 & (1)[C � T� & (A0 \ S� \ T�) [A1 = (B \ S� \ T�) [A1℄ (2)Then F (�) is a �02 
ondition, uniformly in �, so there is a 
omputable totalfun
tion g su
h that F (�) holds just if g�1(�) is in�nite. We enumerate the
.e. set Z� = g1(�) by setting Zs� = ft � s : g(t) = �g.Now we narrow down ea
h T� to a 
.e. subset U�, enumerated by:U s� = U s�1� [ fx 2 T s� � Cs : x < jZs�jgThus, if T� a
tually is the T 
orresponding to Si, then U� will 
ontain allof T� ex
ept 
ertain elements of C. Hen
e F (�) will hold with U� in pla
eof T�. On the other hand, if F (�) fails, then Z� and U� are both �nite.If F (�) holds, then C � U�, so A0 �� U� [ A1, be
ause A0 [A1 �m C.For the least � su
h that F (�) holds, our 
onstru
tion of Ss+1� will yieldC � A0 �� S� [A1, with S� �nite for all � < �. Hen
e there will exist a ksu
h that C �A0 � S� [A1 [ f0; 1; : : :k � 1g (3)Line (3) is a �02 statement, uniformly in k and �, sin
e our de�nition of S�will be uniform in �. Therefore, there exists a total fun
tion h� su
h that(3) holds if and only if h�1� (k) is in�nite. We de�ne:h(s) = hg(s)(n); where n = jft < s : g(t) = g(s)gj:We will enumerate sets Vh�;ki;n for ea
h �, k and n. For the least � withZ� in�nite and the least k with h�1� (k) in�nite, the set Vh�;ki;n (for some7



n) will be the Wi required by Te. Elements of ea
h Vh�;ki;n (the \witnesselements" for the requirement Te) will be denoted vsh�;ki. Ea
h vsh�;ki willenter Vh�;ki;n for at most one n.The Slowdown Lemma (see [16℄, p. 284) then yields a 
omputable fun
-tion f su
h that, for every h�; ki and every n, Vh�;ki;n = Wf(h�;ki;n), and atevery stage s, (V sh�;ki;n � V s�1h�;ki;n) \Wf(h�;ki;n);s = ;:When a witness element vsh�;ki enters Vh�;ki;n, we will �nd the stage tsh�;ki > sat whi
h vsh�;ki enters Wf(h�;ki;n) and restrain (with priority h�; ki) elements� vsh�;ki from entering A0 until stage 'e(tsh�;ki). (Re
all that Te assumes'e to be total.) Thus we will have Atsh�;ki0 �vsh�;ki = A'e(tsh�;ki)0 �vsh�;ki. If we
an a
hieve this for all vsh�;ki in the (in�nite) set Vh�;ki;n for some n, thenthe set Wf(h�;ki;n) will be the set required by Te to prove that 'e is not apromptness fun
tion for A0.At stage 0, for all h�; ki, we set n(h�; ki; 0) = 0 and V 0h�;ki;0 = ;, withv0h�;ki" and t0h�;ki". Also, let every S0� = ; and let B0 = ;.At stage s + 1, we �rst de�ne ea
h Ss+1� . For ea
h x 2 Cs+1 � Cs, �ndthe least � su
h that x 2 U s� and put x into Ss+1� . If there is no su
h �,put x into Ss+1! . (The 
.e. set S! simply 
olle
ts elements whi
h enter Cwithout entering any S�. Thus C = F��! S�.)Set � = g(s), and de�ne:Bs+1 = Bs [ �x : x 2 Cs � As0 & (9� � �)[x 2 Ds+1� \ Ss+1� &(8Æ � �)(8k < s)[tshÆ;ki # =) x � vshÆ;ki℄℄ �For ea
h strategy whi
h is injured at stage s + 1, we begin enumeratinga new witness set. To this end, set n(h
; ki; s + 1) = n(h
; ki; s) + 1 andvs+1h
;ki " and ts+1h
;ki " for ea
h h
; ki satisfying any of the following 
onditions:� 
 > �.� 
 = � and k > h(s).� There exists x < k with x 2 As+10 � As0.� There exists � < 
 with Ss+1� 6= Ss�.� There exists � < 
 su
h that U s+1� 
ontains an element � m, wherem = min(Bs+1 � Bs). 8



For all other h
; ki, set n(h
; ki; s+ 1) = n(h
; ki; s).We now de�ne the witness sets at stage s+1. For ea
h h�; ki � h�; h(s)i(in the lexi
ographi
 order) whi
h was not injured at stage s+ 1:1. If vsh�;ki" and h�; ki 6= h�; h(s)i, let vs+1h�;ki and ts+1h�;ki diverge also, withV s+1h�;ki;n = V sh�;ki;n.2. If vsh�;h(s)i ", let vs+1h�;h(s)i = s + 1, with V s+1h�;h(s)i;n = V sh�;h(s)i;n andts+1h�;h(s)i".3. If vsh�;ki# but tsh�;ki ", let vs+1h�;ki = vsh�;ki, and ask whether the followingholds: (8y)k�y�vs+1h�;ki 24 y 2 As+10 _ y 2 As+11 _y 2 (U s+1� � Cs+1) _y 2 (Cs+1 �Bs+1) \ Ss+1� \ U s+1� 35 (4)If (4) holds, let V s+1h�;ki;n = V sh�;ki;n [ fvs+1h�;kig andts+1h�;ki = �t[vs+1h�;ki 2 Wf(h�;ki;n);t℄:(Su
h a t must exist, sin
e Wf(h�;ki;n) = Vh�;ki;n.) If (4) fails, then letV s+1h�;ki;n = V sh�;ki;n and ts+1h�;ki".4. If vsh�;ki# and tsh�;ki # and 'e;s(tsh�;ki) #< s, then let vs+1h�;ki" and ts+1h�;ki",with V s+1h�;ki;n = V sh�;ki;n.5. If vsh�;ki # and tsh�;ki# but either 'e;s(tsh�;ki)#� s or 'e;s(tsh�;ki) diverges,then let V s+1h�;ki;n = V sh�;ki;n, vs+1h�;ki = vsh�;ki, and ts+1h�;ki = tsh�;ki.This 
ompletes the 
onstru
tion.We now use the sets B and S� to prove that requirement Te is satis�ed.Lemma 2.2 If Z� is �nite, then there exists a stage s1 su
h that tsh�;ki " forall s � s1 and all k.Proof. Pi
k a stage s0 su
h that no s � s0 satis�es g(s) = �, and letk0 = maxfh(s) : g(s) = �g. Then for all k > k0, vsh�;ki " for all s, and hen
etsh�;ki " for all s. (The 
onstru
tion makes it 
lear that for any k and s, tsh�;ki
an 
onverge only if vsh�;ki 
onverges.)9



Now suppose k � k0 and vsh�;ki # for all s � s0. This means that wenever exe
ute Step (4) in the 
onstru
tion after stage s0, and that the h�; kistrategy is never injured after stage s0. But if tsh�;ki ever 
onverges afterstage s0, then eventually we must rea
h Step (4), sin
e we assumed 'e tobe total. Hen
e tsh�;ki must diverge for all s � s0.Finally, suppose k � k0 and vs1;kh�;ki " for some s1;k � s0. Then vsh�;ki willdiverge for all subsequent s, sin
e it 
an only be newly de�ned at a stage swith g(s) = �. Thus tsh�;ki will diverge for all subsequent s as well. Lettings1 = maxk�k0 s1;k 
ompletes the proof.Lemma 2.3 F (�) holds for some �, and for the least su
h �, there existsa k su
h that h�1� (k) is in�nite.Proof. First we 
laim that some Z� must be in�nite. Suppose not, so Z�is �nite for all �, and F (�) fails for all �. However, the R-property holds,so there must be some � for whi
h line (1) fails. Choose the least su
h �.Then (B \ (S� �A0)) [A1 6= (D� \ (S� � A0))[ A1:Suppose x 2 B \ (S��A0). Pi
k s su
h that x 2 Bs+1 �Bs. Now to gointo Bs+1, x must have been in Ds+1� \ Ss+1� for some �. Sin
e x 2 S�, weknow x =2 S� for all � 6= �. Hen
e x 2 D�, and so(B \ (S� �A0)) [A1 � (D� \ (S� � A0))[ A1:Therefore, there must be some element x 2 A1 \ B \ D� \ (S� � A0).Assume x is the least su
h element. Now for every � < �, line (1) musthold and line (2) must fail, sin
e we 
hose � to be minimal satisfying theR-property. Hen
e for all � < �,(B \ (S� �A0))[ A1 = (D� \ (S� �A0))[ A1:Now sin
e every Z� with � � � is �nite, there is a stage s0 su
h that forall s � s0, g(s) > �, and we may also assume that s0 is so large thatx 2 Ss0� \Ds0� \ Cs0 . (Noti
e that x 2 S� for
es x 2 C.)Now use Lemma 2.2 to �nd a stage s1 � s0 su
h that:(8s � s1)(8� � �)(8k)[ts1h�;ki"℄:Sin
e 'e is total, there must be a stage s � s1 su
h that tsh�;ki ", and on
ewe rea
h this stage s, x must go into Bs1+1, 
ontradi
ting our assumptionthat x =2 B. 10



Thus, there must be some � su
h that Z� is in�nite. Let � be the leastsu
h. Then every U� with � < � is �nite. Sin
e F (�) holds, we haveC � T�, so by our 
onstru
tion, C � U�, and by the major subset property,A0 �� U� [ A1.For this �, we 
laim that C � A0 �� S� [A1. Suppose x 2 C � A0. Allbut �nitely many su
h x lie in U� [ A1, as noted above. If x 2 A1, we aredone. For ea
h suÆ
iently large x 2 C � A0 � A1, there exists s su
h thatx 2 U s� � U s�1� . By de�nition of U s�, we must have x =2 Cs. But x 2 C, sox 2 Ct+1 � Ct for some t � s. Hen
e x 2 St+1� by de�nition of St+1� , unlessthere exists � < � with x 2 U�. But all U� with � < � are �nite, by our
hoi
e of �, so all but �nitely many of these x lie in S�. Therefore, line (3)holds for some k, and h�1� (k) is in�nite.Use Lemma 2.3 to take the lexi
ographi
ally least h�; ki su
h that F (�)holds and h�1� (k) is in�nite. Then there are in�nitely many stages s forwhi
h g(s) = � and h(s) = k, but only �nitely many for whi
h hg(s); h(s)ipre
edes h�; ki in the lexi
ographi
 ordering. Let s0 be the least stage withhg(s0); h(s0)i = h�; ki su
h that:� As00 �k = A0�k, and� Bs0�m = B�m, where m = max[�<�U� , and� for all s � s0, hg(s); h(s)i � h�; ki lexi
ographi
ally, and� Ss0� = S� for all � < �.The �nal 
ondition is possible sin
e ea
h S� � U�, whi
h is �nite for every� < �. We also let s0 < s1 < s2 < � � � be all the stages s � s0 withhg(s); h(s)i= h�; ki.Now the h�; ki-strategy is never injured after stage s0, so for everys � s0, n(h�; ki; s0) = n(h�; ki; s), and we write n = n(h�; ki; s0). (Thus nis the number of times the h�; ki-strategy was injured during the 
onstru
-tion.) Moreover, minimality of s0 implies that this strategy was injuredat some stage s � s0 su
h that there is no s�1 with s � s�1 < s0 andhg(s�1); h(s�1)i = h�; ki. Therefore, V sh�;ki;n = V s0h�;ki;n is empty.We 
laim that the subset Vh�;ki;n satis�es requirement Te. For this weneed:Lemma 2.4 For this h�; ki, and for ea
h y � k, there exists an s su
h thatthe matrix of line (4) holds of y, h�; ki, and s.11



Proof. Let y � k. If y 2 A0 [ A1, we are done. If y 2 C, then y 2 T� sin
eF (�) holds. But Z� is in�nite, so T� � C � U�, and y is in U� � C, hen
ein some U s+1� � Cs+1.So suppose y 2 C � A0 � A1. Now sin
e h�1� (k) is in�nite and y � k,we know by line (3) that y 2 S�. But S� � U� � T� by de�nition of Ss+1� .Sin
e y =2 (B \ S� \ T�) [ A1 by line (2), we know y =2 B. Thus there is ans with y 2 (Cs+1 �Bs+1) \ Ss+1� \ U s+1� . This proves the Lemma.Now Vh�;ki;n = Wf(h�;ki;n), and if s0 is the stage at whi
h vs0h�;ki entersVh�;ki;n, then ts0h�;ki #> s0 by our 
hoi
e of f from the Slowdown Lemma. Lets00 = 'e(ts0h�;ki). Then s0 < s00, sin
e we assumed 'e to be in
reasing.Lemma 2.5 Vh�;ki;n is in�nite. Moreover, for any element vs0h�;ki of Vh�;ki;n,with s0 and s00 as above, we have:Bs0�vs0h�;ki = Bs00�vs0h�;ki and As00 �vs0h�;ki = As000 �vs0h�;ki:Proof. For ea
h vsh�;ki with s � s0, Lemma 2.4 guarantees that there will bea stage at whi
h Step (3) of the 
onstru
tion applies. The �rst su
h stagewill be s0, sin
e at that stage vsh�;ki = vs0h�;ki will enter Vh�;ki;n and ts0h�;ki willbe de�ned. But sin
e 'e is total, we will eventually rea
h the stage s00 > s0 atwhi
h Step (4) applies, leaving vs00+1h�;ki unde�ned. Then at the next sm > s00,we will de�ne vsm+1h�;ki = sm + 1, whi
h is not yet in V smh�;ki;n. Thus, Vh�;ki;nmust be in�nite.Now pi
k vs0h�;ki 2 Vh�;ki;n, with s0 and s00 as above. Sin
e V s0h�;ki;n isempty, we know that s0 > s0. If s is any stage with s0 � s < s00, then we seefrom the de�nition of Bs+1 that an element y 
an only enter Bs+1 on behalfof some 
 su
h that y 2 Ss+1
 . But then y 2 U s+1
 . Sin
e we 
hose s0 to letBs0�m = B�m, we must have 
 � �. But tsh�;ki #, so y � vsh�;ki = vs0h�;ki byde�nition of Bs+1. Hen
e Bs0�vs0h�;ki = Bs00�vs0h�;ki.Having seen that no y < vs0h�;ki 
an enter B between stages s0 and s00, weprove that no su
h y 
an enter A0 at those stages either. First, we knowthat As00 �k = A0�k by 
hoi
e of s0. So suppose k � y < vs0h�;ki. Now sin
evs0h�;ki entered Vh�;ki;n at stage s0, we know by line (4) thaty 2 As00 _ y 2 As01 _ y 2 (U s0� � Cs0) _ y 2 (Cs0 �Bs0 ) \ Ss0� \ U s0� :If y 2 As00 , then As00 (y) = As000 (y), and if y 2 A1, then y =2 A0 at all.Therefore, we will assume that y =2 As00 [ A1 and prove that y =2 As000 .12



If the �nal 
lause holds, then y 2 (Cs0 �Bs0 )\Ss0� \U s0� : Hen
e y =2 Bs00 ,by the �rst half of the lemma. If y 2 As000 , then y =2 B, sin
e no element thathas entered A0 
an later enter B. But then(A0 \ S� \ T�) [ A1 6= (B \ S� \ T�) [ A1sin
e y is on the left side and not on the right side. (Noti
e that y 2 U�implies y 2 T�.) This 
ontradi
ts line (2), whi
h we knows holds be
auseF (�) holds. Therefore y =2 As000 .So suppose the third 
lause holds, i.e. y 2 (U s0� � Cs0). Then y =2 Bs0sin
e Bs0 � Cs0 , and so y =2 Bs00 . If y 2 As000 , then we must have y 2 Cs00�1sin
e we 
hose enumerations su
h that A0 � C & A0. Pi
k s su
h thaty 2 Cs � Cs�1; then s0 < s < s00 and y =2 As0. Now y 2 U s0� � T s0� , and byde�nition of Ss� we will have y 2 Ss�. (Re
all that s0 was 
hosen so largethat Ss0� = S� for all � < �.) But now y =2 As000 , sin
e otherwise(A0 \ S� \ T�) [ A1 6= (B \ S� \ T�) [ A1just as in the pre
eding paragraph.Hen
e Vh�;ki;n = Wf(h�;ki;n) is an in�nite 
.e. set whi
h satis�es the tar-diness requirement Te. This 
ompletes the proof of Theorem 2.1.
13



3 Satisfa
tion of RWe now prove that the R-property de�ned in Se
tion 2 is nontrivial. Thetheorem establishes several other properties of the sets A0 and A1 as well,in order to yield the 
orollaries.Theorem 3.1 There exists a 
.e. set A with Friedberg splitting A = A0 t A1su
h that all of the following hold:1. A is promptly simple of high degree.2. A1 has prompt degree.3. R(A0; A1).Corollary 3.2 The formula in one free variable A0:(9A1)[A0 >T ; & R(A0; A1)℄is de�nable in E and non-va
uous, and implies that A0 is a non
omputablein
omplete set.Proof of Corollary. The statement A0 >T ; is equivalent to the statementthat A0 does not have a 
omplement in E , hen
e is E-de�nable. The A0and A1 
onstru
ted in Theorem 3.1 satisfy the matrix, sin
e halves of aFriedberg splitting must be non
omputable. Finally, Theorem 2.1 showsthat A0 is tardy, hen
e in
omplete.Corollary 3.3 There exists a Friedberg splitting A = A0 tA1 su
h that A0and A1 are not automorphi
 in the latti
e of 
.e. sets.Proof of Corollary. Take the splitting given by Theorem 3.1. If an automor-phism � of E satis�ed �(A0) = A1, then R(A1;�(A1)) would have to hold.By Theorem 2.1, then, A1 would be tardy, 
ontradi
ting the promptness ofA1.Proof of Theorem. Let C be any promptly simple set, with 
omputable enu-meration C = fCsgs2!. Then C is also of prompt degree, so let v and w bethe prompt-simpli
ity and promptness fun
tions for this enumeration of C,satisfying for every i:Wi in�nite =) (91s)(9x 2 Wi;s �Wi;s�1)[x 2 Cv(s)℄Wi in�nite =) (91s)(9x 2 Wi;s �Wi;s�1)[Cw(s)�x 6= Cs�x℄14



We 
onstru
t disjoint sets A0 and A1 and auxiliary sets Di and Ti;j , andset A = A0 t A1. The approximations to A, A0, and A1 at stage s will bewritten As, As0, and As1, and will be de�ned so that As = As0 [As1 � Cs forall s. The 
onstru
tion will satisfy the following requirements for all i andj: Nhi;ji (matrix of R-property) :[Wi � C & Wj � C & C �Wj 
.e. &(Wi \ (Wj � A0))[ A1 = (Di \ (Wj �A0)) [A1℄ =)(9T )[C � T & (A0 \Wj \ T ) [A1 =� (Wi \Wj \ T ) [A1℄Mi (major subset requirement) :C � Wi =) A �� WiPi (prompt simpli
ity of A) :Wi in�nite =) (9s)(9x 2 Wi;s �Wi;s�1)[x 2 Av(s)℄Qi (promptness of A1) :Wi in�nite =) (9s)(9x 2 Wi;s �Wi;s�1)[Aw(s)1 �x 6= As1�x℄Fi (Friedberg requirement for A0) :Wi & A in�nite =) Wi \ A0 6= ;Gi (Friedberg requirement for A1) :Wi & A in�nite =) Wi \ A1 6= ;In the requirement Nhi;ji, of 
ourse, Wi plays the role of B and Wj therole of S in the matrix of the R-property. We will 
onstru
t 
.e. sets Ti;j forea
h i and j, and then re�ne them to form the T demanded by ea
h Nhi;jiOn
e again we order ! � ! in order type ! and write � = hi; ji, this timewith: B� = WiD� = DiS� = Wj0Ŝ� = Wj00 � where j = hj 0; j 00iT� = Ti;jN� = Ni;j :Thus N� says: [B� � C & S� t Ŝ� = C &(B� \ (S� � A0)) [A1 = (D� \ (S� �A0))[ A1℄=) (9T )[C � T & (A0 \ S� \ T ) [A1 =� (B� \ S� \ T ) [ A1℄:N� is a negative requirement, trying to keep elements from entering A0until they 
an do so without harming the R-property (if ever). All the otherrequirements are positive ones, trying to put elements into A0 or A1. There15



are no negative restraints on elements of C entering A1, ex
ept that they
annot already be in A0.Ea
h element whi
h we try to put into A0 to satisfy some Fe or Memust re
eive permission to enter A0 from ea
h N� with � � e. The restraintfun
tion q(x; s) will give the greatest � � e whi
h has not yet given thispermission as of stage s. The priority fun
tion p(x; s) keeps tra
k of whi
hrequirement Fe orMe wanted x to enter A0. This 
an 
hange from stage tostage, for several reasons. If a higher-priority requirement de
ides at stages+1 that it needs x to enter A0, then p(x; s+1)< p(x; s). Alternatively, anFe 
ould �nd itself satis�ed by another x0 2 As+10 and no longer need to putx into A0, although in this 
ase we leave p(x; s+ 1) = p(x; s) so as not todisrupt the 
ow of elements into A0. Finally, a higher-priority requirement
ould make x enter As+11 , in whi
h 
ase we de�ne p(x; s+ 1)", removing xfrom the 
ow of elements into A0 sin
e we need A0 \A1 = ;.We use the Re
ursion Theorem on our 
onstru
tion of A0, C, and D� tode�ne the following �02 statement F (�) for ea
h �:(B� \ (S� �A0))[A1 = (D� \ (S� �A0))[A1 & B� � C & S� t Ŝ� = C:Sin
e F (�) is �02, there is a 
omputable fun
tion g : ! ! ! � ! su
hthat F (�) holds if and only if the set Z� = g�1(�) is in�nite. We letZs� = g�1(�) \ f0; 1; : : :s � 1g. Monitoring jZs�j will help us determinefor whi
h � the hypothesis in the matrix of the R-property is satis�ed.For those � for whi
h the hypothesis fails, jZ�j is �nite, and N� will onlyrestrain �nitely many elements from entering A0, sin
e we need not satisfythe 
on
lusion of the R-property for su
h an �.At stage s = 0, we set A00 = A01 = ;. Also, let all p(x; 0) and q(x; 0)diverge.At stage s+ 1, we �rst de�ne T s+1� for ea
h �:T s+1� = T s� [ fx 2 Cs+1 : x < jZs+1� jg:Next we determine whi
h elements of Cs+1 to add to As0 to 
reate As+10 .For this, we need movable markers for elements 
urrently in C �A. WriteCs+1 � As = fds+10 ; ds+11 ; : : :ds+1ms+1gpreserving the order of the markers from the pre
eding stage. (That is, ifdsi = ds+1i0 and dsj = ds+1j0 , then i < j i� i0 < j 0; and if ds+1i 2 Cs andds+1j =2 Cs, then i < j.) 16



For the sake of Me, we de�neV s+1e = V se [ fx 2 We;s+1 � Cs+1 : (8y � x)[y 2 We;s+1 [ Cs+1℄g:(For ea
h e, the sets V se enumerate a 
.e. set Ve. If C 6�We, then Ve will be�nite, but if C � We, then C � Ve � We.)For ea
h e � s, de�ne the e-state of ea
h ds+1k at stage s+ 1 to be:�(e; ds+1k ; s+ 1) = fi < e : ds+1k 2 V s+1i g:We order the di�erent possible e-states by viewing them as binary strings.Find the least i � s su
h that there exist e and j with e < i < j � sand �(e; ds+1i ; s+ 1) = �(e; ds+1j ; s + 1) and ds+1i =2 V s+1e and ds+1j 2 V s+1e .For the least su
h e and the least 
orresponding j, we say that Me wantsto put into A0 all the elements ds+1i ; ds+1i+1 ; : : :ds+1j�1, so as to give the markerdi a higher (e+ 1)-state at subsequent stages.Now we 
onsider the requirements Fe. For ea
h e � s withWe;s \As0 = ;and for ea
h x su
h thatx 2 (We;s \ Cs+1)�As � fds+10 ; ds+11 ; : : :ds+1e gwe say that Fe wants to put x into A0.We set p(x; s + 1) " for all x =2 C � As. Otherwise x = ds+1k for somek, and p(x; s+ 1) is the least e � k (if any) su
h that either p(x; s)#= e orMe or Fe wants to put x into A0. Thus, the fun
tion p(x; s+ 1) gives thepriority 
urrently assigned to putting x into A0. If there is no su
h e, letp(x; s+ 1)".We now follow the following steps for ea
h x � s:1. If p(x; s+ 1)", then q(x; s+ 1)" also.2. If p(x; s+1)# but q(x; s)", we ask if every � � p(x; s+1) satis�es eitherx 2 Ss+1� [ Ŝs+1� or x =2 T s+1� . If so, set q(x; s+ 1) = p(x; s+ 1)+ 1. Ifnot, then q(x; s+ 1)".3. If p(x; s+ 1)# and q(x; s)#> p(x; s+ 1), then set q(x; s+ 1) to be thegreatest � � p(x; s+ 1) satisfying all four of the following 
onditions:(a) Ss+1� \ Ŝs+1� = ;.(b) x =2 Ŝs+1� .(
) x 2 T s+1� . 17



(d) 8� < �, either � fails one of the three 
onditions (a)-(
), or� = hi0; j 0i and � = hi; ji with i 6= i0.Also, enumerate x in Ds+1q(x;s+1). (For future referen
e, noti
e that if �satis�es (a)-(
), then some � � � with the same �rst 
oordinate as �must satisfy (a)-(d).)If there is no su
h �, set q(x; s+ 1) = �1.4. If p(x; s + 1) # and q(x; s) # with 0 � q(x; s) � p(x; s + 1), we askwhether x 2 Bs+1q(x;s). If so, or if q(x; s) no longer satis�es the 
onditions(a)-(d), set q(x; s + 1) to be the greatest � < q(x; s) satisfying the
onditions (a)-(d) above, and let x 2 Ds+1q(x;s+1). (If there is no su
h �,let q(x; s+ 1) = �1.) Otherwise, let q(x; s+ 1) = q(x; s).5. If p(x; s + 1) # and q(x; s) #= �1, enumerate x 2 As+10 , and letq(x; s+ 1)".This 
ompletes our enumeration of As+10 . Next we determine whi
helements to add to As+11 :1. Find the least e � s (if any) su
h that Qe is not yet satis�ed andthere is an element x 2 We;t � We;t�1 for some t � s su
h thatw(t) > s, and there exists y < x su
h that y 2 Cs+1 � As+10 andy =2 At1 [ fds+10 ; : : :ds+1e g and no Fi with i < e wants to put y intoA0. Put the greatest su
h y into As+11 . This for
es As+11 � x 6= At1� x,satisfying Qe permanently. (If there is no su
h e, do nothing.)2. Find the least e � s (if any) su
h that Pe is not yet satis�ed and thereis an element x 2 Cs+1 \ (We;t�We;t�1) for some t � s with v(t) > s,su
h that x =2 fds+10 ; : : :ds+1e g and no Fi with i < e wants to put xinto A0. If no su
h x lies in As [As+10 , then put the least su
h x intoAs+11 . This for
es x 2 As+1, satisfying Pe permanently.3. Find the least e � s (if any) su
h that Ge is not yet satis�ed and thereis an element x 2 (We;s+1 \ Cs+1) � As+10 with x =2 fds+10 ; : : :ds+1e g,su
h that no Fi with i < e wants to put x into A0. Put this x intoAs+11 . This satis�es Ge forever.Let As+1 = As+10 [As+11 . This 
ompletes the 
onstru
tion.Lemma 3.4 C �A is in�nite. 18



Proof. We prove by indu
tion on e that de = lims dse exists. Assume thatthis holds for all markers di with i < e, and let s0 � e be a stage su
h thatds0i = di for all i < e. Now ea
h Fj , Gj , Pj , and Qj with j > e 
annotput any of the elements ds0; : : :dse into A1 at stage s + 1, so none of theserequirements ever moves the marker dse. Also, ea
h Gi, Pi, and Qi with i � eputs at most one element into A, hen
e moves the markers at most on
e.Let s1 � s0 be a stage so large that no Gi, Pi, or Qi with i � e moves anymarkers at any stage s � s1.By the 
onstru
tion, dse 
an only be moved at stage s � s1 by a require-mentMi or Fi with i � e. Furthermore, when Fi (i � e) moves a marker, itputs an element into A0, so it is satis�ed at that point. Before then it mayhave tried to put �nitely many other elements into A0 as well, and any ofthem may go into A0 or A1 at a later stage, moving markers in the pro
ess.However, sin
e there are only �nitely many su
h elements, de is moved only�nitely many times on behalf of Fi.Now M0 moves de at most 2e+1 times after stage s1: on
e to put d0into V0, possibly twi
e to put d1 into V0, and so on. On
e M0 has �nishedmoving de, M1 moves it at most 2e more times, to put markers into V1.Similarly, on
e ea
h Mi has moved de for the last time, Mi+1 may move itat most 2e�i more times. Hen
e we eventually rea
h a stage s2 after whi
hde never is moved again. Possibly ds2e ", but sin
e C is in�nite and every diwith i < e has already 
onverged to its limit, we know that dte will be de�nedat some stage t > s2. Sin
e it never moves again, this yields dte = lims dse.Lemma 3.5 For ea
h e, the requirements Ne, Pe, Qe, Fe, and Ge are allsatis�ed.Proof. We pro
eed by indu
tion on e. Assume the lemma holds for all i < e.We write � for the pair 
oded by e, and prove �rst that N� is satis�ed.Suppose (B� \ (S� � A0)) [A1 = (D� \ (S� � A0)) [A1 and B� � C andS� t Ŝ� = C. Then F (�) holds and Z� is in�nite. The 
onstru
tion of T�then guarantees that C � T�. Let G� be the interse
tion of all those Viwith i < � su
h that Vi is in�nite, and let T̂� = T� \ G�. Thus C � T̂�,sin
e C � Vi whenever Vi is in�nite.Sublemma 3.6 For ea
h � and ea
h n < �, there are only �nitely manyx 2 T̂� su
h that Mn ever wants to put x into A0.Proof. First, if Vn is �nite, then Mn will only want to put �nitely manyelements into A0. So we may assume that Vn is in�nite, and hen
e thatT̂� � Vn. 19



IfMn wants to put x into A0 at stage s, then x 2 Cs�As, so x = dsk forsome k. Moreover, there must be an i with n < i � k and a j > k su
h that�(n; dsi ; s) = �(n; dsj; s) and dsi =2 V sn and dsj 2 V sn . Furthermore, di is theleftmost marker whi
h any M-requirement wants to put into A0 at stage s,and n and j satisfy the minimality requirements of the 
onstru
tion.Now if dsk =2 V sn , then dsk =2 Vn, sin
e C & Vn = ;, and hen
e dsk =2T̂�. Therefore we may assume dsk 2 V sn . (This guarantees k 6= i). Thenminimality of n for
es �(n; dsi ; s) � �(n; dsk; s), and minimality of j for
es�(n; dsi ; s) > �(n; dsk; s) (sin
e dsk 2 V sn ). Hen
e there is some m < n su
hthat �(m; dsi ; s) = �(m; dsk; s) and dsi 2 V sm and dsk =2 V sm. This for
es dsi 2 Vmand dsk =2 Vm (sin
e dsk 2 Cs � V sm). If Vm is in�nite, then dsk =2 T̂�. But ifVm is �nite, then dsi lies in the �nite setV =[fVm :m < n & Vm �niteg:Hen
e we need only �nd a stage t so large that for every d 2 V , either d 2 At0or Mn wants to put d into A0 at stage t or Mn never wants to put d intoA0. ThenMn will never want to put into A0 any x > max(Ct) with x 2 T̂�.We will show that the 
on
lusion of N� holds for T̂�:(A0 \ S� \ T̂�) [A1 =� (B� \ S� \ T̂�) [A1:On
e we have established this for all �, 
learly R(A0; A1) itself must hold,sin
e for ea
h � we 
an 
hoose another T̂� whi
h ex
ludes the (�nite) di�er-en
e set of the two sides and still 
ontains C.Suppose �rst that x 2 A0 \ S� \ T̂� and x =2 A1, and assume that x issuÆ
iently large that:� x > jZ� j for every � < � su
h that Z� is �nite, and� No Fi with i < � ever tries to put x into A0, and� No Mi with i < � ever tries to put x into A0.The last 
ondition is possible by Sublemma 3.6. Noti
e also that the �rst
ondition for
es x =2 T� for all � < � with jZ�j �nite.Then for all s, either p(x; s) � � or p(x; s)". But sin
e x 2 A0, we knowthat some p(x; s)#. For the least su
h s we have x 2 Cs, and hen
e x 2 T s�,sin
e C \ T� � T� & C. 20



Now � satis�es 
onditions (a)-(
) in the 
onstru
tion at stage s, sin
eF (�) holds and x 2 S�. So there must exist � = hi; j 0i � � = hi; ji whi
hsatis�es (a)-(d) at stage s.We 
laim that this � satis�es 
onditions (a)-(d) at every stage after s aswell. Sin
e x 2 T s� , we know that Z� is in�nite and F (�) holds, by 
hoi
e ofx. Hen
e (a) and (
) hold at all subsequent stages. Let t be the �rst stageat whi
h q(x; t) 
onverged. Then x 2 Ct, and x 2 T t� sin
e C & T� = ;.By the de�nition of q, we must have had x 2 St� [ Ŝt�. But x =2 Ŝs� sin
e (b)holds at stage s, and be
ause s > t, this for
es x 2 St�, so (b) always holdsof �.To show that (d) always holds of �, we 
hoose an arbitrary 
 < � withthe same �rst 
oordinate as �. Sin
e � satis�es (d) at stage s, 
 must fail oneof (a)-(
) at stage s. If 
 fails (a) or (b) at stage s, then 
learly it fails thatsame 
onsition at every subsequent stage. Moreover, if 
 fails (
) at stages, then x =2 T s
 , and sin
e x 2 Cs, this for
es x =2 T
 . Thus � will alwayssatisfy 
ondition (d).But sin
e x 2 A0, there must also be a stage s0 with q(x; s0) = �1. Sin
e(a)-(d) 
ontinue to hold of �, the only way for q(x; s0) < � to o

ur is forx to enter B� . (Re
all that for all s, either p(x; s) � � or p(x; s) ".) ButB� = Wi = B� sin
e � = hi; j 0i and � = hi; ji, so this for
es x 2 B�. Hen
e(A0 \ S� \ T̂�) [A1 �� (B� \ S� \ T̂�) [A1:Now suppose that x 2 B� \ S� \ T̂� and x =2 A1, and assume x isgreater than max(d0; : : :d�), and also greater than the greatest �nite jZ�jwith � < �. (Thus x =2 T� for all su
h �.) Now x 2 C sin
e S� � C, soat some stage s0, x will enter C and be given a marker: say x = ds0k . Sox 2 Cs0 , and sin
e x 2 T�, this for
es x 2 T s0� .If x =2 A0, then we must have x 2 D�, sin
e (B� \ (S� � A0)) [ A1 =(D� \ (S� � A0)) [ A1 and x =2 A1. (Noti
e that then x, being in C � A,eventually re
eives some permanent marker dk0 , with k0 > � by 
hoi
e ofx.) For x to have entered D�, there must have been a stage s1 � s0 withq(x; s1) = 
 = hi; j 0i, where � = hi; ji. (Also, then p(x; s1) #, and sin
ex =2 A1, p(x; s) # for all s � s1.) But � satis�es 
onditions (a)-(
) atall stages s � s0, so by 
ondition (d) on 
, we must have 
 � �. Theassumption x =2 A0 [ A1 then means that there is some s2 > s1 su
h thatq(x; s)#= q(x; s2) for all s � s2. Let � = q(x; s2) � 
. Then x 2 D� � B� ,and furthermore � satis�es the 
onditions (a)-(d) at all stages s � s2.Now x 2 T� , to satisfy 
ondition (
), so x < jZ�j and � � 
 � �. If� = �, then Z� is in�nite sin
e F (�) holds, and if � < �, then Z� must21



be in�nite, by our 
hoi
e of x. Therefore F (�) holds, and in parti
ularS� t Ŝ� = C. Now x =2 Ŝ� by 
ondition (b), so x 2 S� . However, withx 2 D� �B� , this 
ontradi
ts F (�). Hen
e x 2 A0, and(A0 \ S� \ T̂�) [A1 �� (B� \ S� \ T̂�) [A1:This 
ompletes our proof that N� is satis�ed.Now we 
ontinue with the other requirements. Let s0 be a stage su
hthat no Pi, Qi, Fi, or Gi with i < e tries to put any element into A0 or A1at any stage after s0. (Fi is di�erent from the other requirements in that itmay try to put more than one element into A0. It only stops trying whenone of those elements su

eeds in entering A0. We 
hoose s0 so that everyelement whi
h Fi wants to put into A0 either is in As0 or never enters A.)Assume also that s0 is suÆ
iently large that ds0i = di for every i � e.Now if We & A is in�nite, then there must be an x in some We;s �Aswith s > s0 and fd0; : : :deg. No requirement of higher priority will needto put this x anywhere, ex
ept possibly some Mi, and a

ording to our
onstru
tion, Ge does not respe
t the priority of the requirements Mi, sox 2 As+11 , and Ge is satis�ed.Similarly, if We is in�nite, then there must be an x and an s > s0 su
hthat x 2 We;s �We;s�1 and x 2 Cv(s), by prompt simpli
ity of C. If thisx is not already in Av(s)�1, then the 
onstru
tion puts it into Av(s)1 , so Peholds. Also, there must be an x and an s > s0 with x 2 We;s �We;s�1 su
hthat Cs� x 6= Cw(s)� x, by promptness of C. Thus there is a y < x whi
hentered C at some stage t with s < t � w(s). We must have y =2 At�1sin
e At�1 � Ct�1. But now y =2 fdt0; : : :dteg, sin
e these markers hadrea
hed their limits by stage s0 and y only entered C at stage t. Hen
e the
onstru
tion will put this y into At1, and Aw(s)1 �x 6= As1�x, satisfying Qe.Continuing with the indu
tion, we need a sublemma to handle Fe.Sublemma 3.7 For this e and for all suÆ
iently large x, if Fe wants toput x into A0 at some stage, then x 2 A0.Proof. Choose x so large that it satis�es all of the following:1. x > maxfjZ�j : � � e & Z� is �niteg.2. No Fi, Gi, Pi, or Qi with i < e ever wants to put x into A0 or A1.3. x =2 fd0; : : :deg. 22



Suppose Fe wants x to enter A0 at stage s0. Then x = ds0k for some kand p(x; s0)#� e. Now no Gj , Pj, or Qj with j � e ever manages to put xinto A1, sin
e Fe takes priority over these. (Sin
e x 6= de, the only way tohave k � e is for x eventually to enter A0. Hen
e we may assume k > e.)Also, for every � < e, either x =2 T� (if jZ� j < x) or F (�) holds (if Z� isin�nite). Hen
e there is an s1 � s0 su
h that q(x; s1)# and q(x; s1+1)#� e.Now suppose q(x; s) = � for some s � s1 (so � � e). If F (�) failed, thenZ� would have to be �nite, so x =2 T� (sin
e jZ�j < x) and q(x; s) wouldnever equal �. Therefore, F (�) must hold. Suppose x =2 A0. If x =2 S� ,then x 2 Ŝ� by F (�) and so q(x; s�) < � for some s� � s1. Otherwisex 2 D� \ (S� � A0) � B� by F (�), so x 2 Bs�� for some s� � s1, andhen
e q(x; s�) < �. Thus, by indu
tion on � < e, eventually we must haveq(x; s) = �1, and so x 2 As+10 , proving the sublemma.Now if We & A is in�nite, then Fe has in�nitely many elements atits disposal to try to put into A0. Hen
e on
e we �nd a suÆ
iently largex 2 We & A, we know by the sublemma that this x will eventually enterA0, thus satisfying Fe. This 
ompletes the indu
tion of Lemma 3.5.Lemma 3.8 The requirements Me are all satis�ed by our 
onstru
tion.Proof. Suppose that C � We. To prove that Me holds, we must showA �� We. By indu
tion we assume that Mi holds for all i < e. Let� = fi < e : C � Wig:Now if i 2 �, then also C � Vi, so by indu
tive hypothesis A �� Vi, whereasif i =2 � (and i < e), then Vi is �nite. Hen
e for all but �nitely many k wehave �(e; dk) = �.Now let V� = Ve\�TfVi : i 2 �g�. Then C � V�. But C, being promptlysimple, is non
omputable, so V� & C must be in�nite. Choose y so largethat no element � y 
an be held out of A0 forever by any requirement N�with � � e, and let s0 be a stage su
h that Cs0�y = C�y.Suppose for a 
ontradi
tion that Ve\(C�A) is in�nite. Then there existsp su
h that dp =2 Ve with p so large that dp =2 Cs0 and with �(e; dq) = �.(Hen
e dp > y.) Let s1 be a stage with ds1p = dp and �(e; dp; s1) = �.Now sin
e V� & C is in�nite, there will be a stage s > s1 at whi
h someelement x 2 V s�1� enters C, and is assigned the marker dsq (with q > p sin
eds0p = dp). Moreover, we may assume that q is suÆ
iently large that notonly is dsq in V�, but that �(e; dsq; s) = �, sin
e every Vi with i < e and i =2 �is �nite. Sin
e dsq 2 V� � Ve and dp =2 Ve, Me will want to put dp into A023



at stage s, and sin
e dp > y, no negative requirement will keep dp out ofA0. Possibly dp will be diverted into A1 by some requirement Gj , Pj , orQj , sin
e these do not respe
t the priority of Me. If so, then dp will enterA1; if not, then dp will enter A0. Either way, dp enters A, 
ontradi
ting ourassumption that the marker dp had rea
hed its limit at stage s0.Hen
e Ve \ (C � A) is �nite, and A � (C � A) [ C �� Ve � We. ThusMe is satis�ed, and the lemma is proven.Knowing that the requirements are all satis�ed, we 
an easily 
ompletethe proof of the theorem. The 
onstru
tion ensured that A0 \A1 = ;, andthe 
onjun
tion of all the Fi and Gi implies that A0 t A1 is a Friedbergsplitting of A. (See pp. 181-182 of [16℄.) The requirements Pi togethermake A a promptly simple set, by de�nition, and the Qi together allow A1to satisfy the Promptly Simple Degree Theorem (Thm. XIII.1.6 of [16℄), sothat A1 is of prompt degree. To prove that R(A0; A1) holds, we note thatthe requirements Mi, along with Lemma 3.4, show that A = A0 t A1 is amajor subset of C. Moreover, given a B = Wi and a pair (Sj0 ; Ŝj00) withSj0 t Sj00 = C, we have the Di and T� (with � = hi; hj0; j 00ii) 
onstru
tedabove. If (Bi \ (Sj0 � A0)) [A1 = (Di \ (Sj0 �A0))[ A1;then F (�) holds. Sin
e N� is satis�ed, we know that there exists a T withC � T su
h that(A0 \ Sj0 \ T ) [ A1 =� (Bi \ Sj0 \ T ) [A1:So we 
an pi
k a suÆ
iently large n�, and letT 0 = fx 2 T : x � n�g [ fx 2 C : x < n�g:Then C � T 0 and also (A0 \ Sj0 \ T 0) [ A1 = (Bi \ Sj0 \ T 0) [ A1, sin
eSj0 \C = ;. Thus R(A0; A1) holds. Finally, sin
e A is a major subset of theset C, A must be of high degree (see [10℄, page 214).
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