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Abstract

We define a property R(Ag, A1) in the partial order £ of computably
enumerable sets under inclusion, and prove that R implies that Ay is
noncomputable and incomplete. Moreover, the property is nonvacu-
ous, and the Ay and A; which we build satisfying R form a Friedberg
splitting of their union A, with A; prompt and A promptly simple. We
conclude that Ay and A; lie in distinct orbits under automorphisms
of £, yielding a strong answer to a question previously explored by
Downey, Stob, and Soare about whether halves of Friedberg splittings
must lie in the same orbit.

1 Introduction

The computably enumerable sets form an upper semi-lattice under Turing
reducibility. Under set inclusion, they form a lattice &, as first noted by
Myhill in [14], and the properties of a c.e. set as an element of £ often
help determine its properties under Turing reducibility. Even before Myhill,
Post had suggested that there should be a nonvacuous property of c.e. sets,
definable without reference to the Turing degrees, which would imply that
the Turing degree of such a set must lie strictly between the computable
degree 0 and the complete c.e. degree 0.

Post’s own attempts to find such a property failed. The properties he
defined turned out to be extremely useful in computability theory, but each
of them — simplicity, hypersimplicity, and hyperhypersimplicity — actually
does hold of some complete set. The existence of a Turing degree between
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0 and 0’ was first proven by completely different means, namely the finite
injury constructions of Friedberg and Muchnik ([6], [13]).

The term “Post’s Program” eventually came to denote the search for an
E-definable property implying incompleteness. Of the properties proposed
by Post, all except hypersimplicity turned out to be definable in £, and other
E-definable properties, such as maximality, were developed and studied in
their own right. Nevertheless, Post’s Program remained unfinished until
1991, when Harrington and Soare ([7]) found a property Q(A) definable in
& such that every A satisfying ) must be both noncomputable and Turing-
incomplete. We give their definition of Q(A):

Q(A): (3C)ac,c(VB € C)(3ED € C)(VS)sce
BN(S—A)=Dn(5-A4) =
( ANDCCT & AN(SNT)=BnN(SNT)] )

Here S C C abbreviates (3S)[SUS = C & SN S = @]. (All variables
represent elements of &, namely c.e. sets.) AU B denotes the union of two
disjoint sets A and B. Also, A Cp, C' abbreviates “A is a major subset of C',”
meaning that A C C' with C' — A infinite such that for every W, if C C W,
then A — W is finite. Since the property of being finite is £-definable, the
statement A C,, C' is £-definable as well.

In this paper we generalize the property Q(A) to an £-definable property
R(Ap, Ay) of two c.e. sets. The statement of R is as follows:

R(Ao, A1) s AgN A =0 &
(3C)(YB C C)(3D C C)(VS C C)(3T) [AO UA Cm C &
[(BN(S=A40)Ud; =(DN(S—4))Uid =
[CCT & (ANSNTIUA = (BOSOT)UAI]”.

This property can be read to say that Ay satisfies the Q-property on A;.
Indeed, the statement R(Ag,0) is equivalent to ()(Ap). In Section 2 we
prove that just as with the Q-property, R(Ag, A1) implies that Ag is not of
prompt degree, and hence not Turing complete in X{. (A set which is not
of prompt degree is said to be tardy, and since Ag satisfies an £-definable
property implying tardiness, we say that Ag is “definably tardy.” Since all
tardy sets are incomplete, we also say that Ag is “definably incomplete.”)
Alternatively, we can interpret R(Ag, A1) in the lattice £/A, where A
is the principal ideal in & generated by A;. (See [15], p. 225.) In this
lattice, C' C4 D is defined to mean C' C DU Ay, and C =4 Dif C' C4 D



and D Cy C. Essentially, R(Ag, A1) says that Q(A4p) holds in £/A, with
containment and equality replaced by C 4 and &~ 4. The only differences are
that we cannot state the properties 49N Ay = @ or A; C C'in £/A, and
that we have left the quantifier (V.S T C') in R(Ao, A1) just as in the original
Q-property, rather than restating it to hold on A;. Choosing not to restate
it makes the R-property slightly stronger, but the stronger version can still
be satisfied.

In Section 3 we construct c.e. sets Ag and A; satisfying R, to show that
the R-property is non-vacuous. Ag and A; will also be noncomputable.
Thus, the following £-definable formula is non-vacuous:

(HAl)[Ao >T 0 & R(A07 Al)]

This formula guarantees that Ag is noncomputable and incomplete, just as
the property Q(A) does for A. (Recall that computability is equivalent to
the property of having a complement in £.)

We then consider Friedberg splittings. Two disjoint c.e. sets By and By
form a Friedberg splitting of B = By U By if for every c.e. W:

W — B is not c.e. — neither W — By nor W — By is c.e.

The sets By and B; are each said to be half of this Friedberg splitting.
The sets Ag and Ay which we construct will have the additional property of
forming a Friedberg splitting of their union.

We use the R-property to show that Ag and Ay cannot lie in the same
orbit under automorphisms of £. (In the argot of this topic, we say that
Ap and Ay are not automorphic. Two sets are automorphic if they lie in
the same orbit.) This will follow because the A; we construct will be of
prompt degree, hence automorphic to a complete set, by another result of
Harrington and Soare in [7].

The orbits of halves of Friedberg splittings have been a subject of interest
for some time, at least since the discovery of the hemimaximal sets. A set is
hemimaximal if it is half of a nontrivial splitting of a maximal set. This is
E-definable, and Downey and Stob proved that the hemimaximal sets form
an orbit (see [3]).

Since the maximal sets themselves form an orbit, and since few orbits
are known in &, this led to the conjecture that if O is any orbit in &, then
the collection of “hemi-O0” sets, i.e. halves of nontrivial splittings of sets
in O, might also be an orbit. Alternatively, it was conjectured that halves
of Friedberg splittings of sets in O might form an orbit. (For the orbit



of maximal sets, these classes coincide, since any nontrivial splitting of a
maximal set is automatically a Friedberg splitting.)

Downey and Stob refuted both conjectures in [5], by producing two Fried-
berg splittings By U By = Co U C of the same set B, which were definably
different in £. Hence By and (Y satisfy different 1-types in the language of
inclusion and cannot be automorphic.

The present result goes a step further. Since Ay is definably tardy, every
set in its orbit must also be tardy, and hence A; must lie in a different
orbit. This is thus the first example of a single Friedberg splitting with
the two halves known to lie in different orbits in £. It is also the first
application of Harrington and Soare’s (J-property to derive results about
Friedberg splittings.

Our notation mostly follows that of [16]. The finite sets form an ideal
F C &, and we write £* for the lattice £/F. (Computability is definable in £
as the property of possessing a complement, and then finiteness is definable,
since a set is finite if and only if all its subsets are computable.) We write
AC* Bif B— Ais finite, and A="Bif AC* Band B C* A.

We use the standard enumeration {W,}.c, of the computably enumer-
able sets, with finite approximations {W, s}se. to each. For the c.e. sets
which we construct ourselves, we will also give finite approximations, usu-
ally writing A = Use, A°. If A and B are both enumerated this way, we
write A\ B={z:(3s)[z € A= B*]},and AN B={z € AN B : (3s)[z €
A® — B*]}. Thus when an element not yet in B enters A, we put it into
A\ B, and if it later enters B, then we put it into A\ B as well.



2 The R-Property

In order to guarantee that the set Ag is not automorphic to a complete set,
we will force it to satisfy the lattice-definable property R defined in Section
1, and prove that this implies tardiness of Ag. Tardiness itself does not
guarantee that a set cannot be automorphic to a complete set, of course,
but satisfaction of R does, since every other set automorphic to Ag must
also satisfy R and therefore must also be tardy, hence incomplete. (A tardy
set must be half of a minimal pair under <7, as shown in [16], and therefore
must be incomplete.) We restate the R-property here:

R(Ap, A1) : AgNA =0 &
(3C) (VB C C)(3D C C)(VS C C)(3T) [AO UA Cn C &
[(BN(S—A40)UAr=(DN(S—A))UA4 =
[CCT & (AgNSNTYUA = (BmSmT)UAl]]}

Theorem 2.1 If Ag and Ay are two c.e. sets such that R(Ag, A1) holds,
then Ag is not of prompt degree.

Proof. The proof is similar to the corresponding result for the @-property
in [7]. Given Ag and Ay, we pick a set C' as specified in R(Ag, 41) and fix
enumerations {A§}sew of Ag and {C*}se,, of C such that Ag C C' N\ Ap.

To prove that a given ¢, is not a promptness function for Ag, we need to
find an infinite c.e. set W; with standard enumeration {W; s}se. satisfying
the tardiness requirement 7.:

[(Vs)pe(s) L > 5] = (Va)(Vs)[x € Wiy —Wiey = A=A 2],

We will prove independently for each e that 7. holds. Having fixed e,
we will assume for the rest of this section that ¢, is total with ¢.(s) > s for
every s, since otherwise 7. is automatically fulfilled. We will build a strong
array {V(a,k),n}k,new;aeu;Xw of c.e. sets with enumerations {V? ,, }se.. The
Slowdown Lemma then gives a computable function f suc%”n 7t{”|7
(o, k) and each n, Wya k) m) = Viewky,n and Viekyn S Wiakyn) = Viak) s
so that no element of Vi, 1, enters Wy, 1)) until it has already entered
Viak),n- Periodically the strategy for a given (o, k) may be injured by a
higher-priority strategy. If this happens while we are enumerating Vi, ) n,
then we give up on Vi, ), and start enumerating Vi, 1y n41. There will exist
an (o, k) which is only injured n times (with n < w), yet receives attention

at for each



at infinitely many stages, and the corresponding Vi, 1 ,, will be infinite and
will be the set which proves satisfaction of 7..

We define the function n({a,k),s) to keep track of which Vi, 1, we
are enumerating at stage s. In particular, if the (a, k)-strategy receives

attention at stage s + 1, then we may add an element to ‘/(Soz—l,—kl>,n((oz,k>,s—|—1)'

To avoid notational chaos, however, we will write V<5a+;> ,, in the construction

and understand V(Sa—l,—kl),n( cY7k>75_|_1%/vf01’ it.

To ensure that one of these Wy (4 1),n) Will satisfy 7, we build a c.e. set
B to which to apply the property E. When we want to preserve Ay | z
from stage s until stage ¢.(s) so as to satisfy 7., we do so by restraining
all elements < x from entering B until stage ¢.(s). The R-property then
prohibits such elements from entering Ag, since if they did, we would then
hold them out of B forever after, thereby contradicting R(Ag, 41).

To apply the R-property, we need to know which c.e. set W; is the D
specified by the property. Of course, we do not have this information, but
our strategy is to use S to cover all the possibilities. Specifically, in the

construction we will split €' into the disjoint union of c.e. sets:

C:U&

1EW

and apply the R-property to each ;, with 9; in the role of S. (Clearly each
S; C C'.) We use each S; to handle the possibility that D = W,.

Of course, the R-property states that the restraints we place on elements
from entering B only affect Ag on SN T N A;. Since R( Ao, A1) also states
that Ag N Ay is empty, we do not need to worry about elements of Ay, for
they can never enter Ag. We are allowed to choose the S, since the matrix
of R applies for all S, and indeed we have already done so above (namely
S =S, for each ¢ in turn). However, we can only guess at the set 7T'.

To determine the index j such that 7" = W; corresponds to the set S
which we choose, we use a I1y guessing procedure, since the conclusion in
the matrix of R is a I19 property. The j for which T' = W; will be the least
J which receives infinitely many guesses under this procedure. (We ensure
that the hypothesis of the matrix holds, by periodically putting all elements
of D*N(S* — Aj) into B®.) Moreover, in the construction, we will subdivide

each S; into the disjoint union of c.e. sets 5; ;:
Si=| ] Sis-
JEW

S; ; is used to handle the possibility that 7' = W}, so we pay attention to .S; ;



each time j is named by the guessing procedure. Thus the S; ; corresponding
to the correct T will receive attention infinitely often.
To simplify the notation, we let the variable o = (7, j) range over w x w,

and define:

D, =W,
So=Si
T, = W;.

We order the elements o of w X w by pulling back the usual order < on w to
w X w via a standard pairing function. Thus each « has only finitely many
predecessors under <.

For each a, let F'(«) be the conjunction of the hypothesis and conclusion
in the matrix of the R-property:

F(a): (BN (Sa—A0))UA; = (Do (Sa — Ag)) U A; & (1)
[CCT,& (AgNS,NT,HUA =(BNS,NT,)UA] (2

Then F(«) is a I19 condition, uniformly in «, so there is a computable total
function g such that F(«) holds just if ¢7'(«) is infinite. We enumerate the
c.e.set Z, = g'(a) by setting 75 = {t < s:¢(t) = a}.

Now we narrow down each T, to a c.e. subset U,, enumerated by:

Us=UTtu{a eTs—C% i a < |75}

Thus, if T, actually is the T corresponding to 5;, then U, will contain all
of T, except certain elements of C'. Hence F(a) will hold with U, in place
of T,,. On the other hand, if F(«) fails, then Z, and U, are both finite.

If F(«) holds, then C' C U,, so Ag C* U, U Ay, because AgU Ay Cp, C.
For the least « such that F(«) holds, our construction of S+ will yield
C —Ap € 5, UA;, with Sg finite for all 3 < a. Hence there will exist a &
such that

C—-—A4,CS,UA U{0,1,...k—1} (3)

Line (3) is a 1y statement, uniformly in & and «, since our definition of S,
will be uniform in «. Therefore, there exists a total function h, such that

(3) holds if and only if 27! (k) is infinite. We define:

h(s) = hy(s)(n), where n = [{t < s:g(t) = g(s)}|

We will enumerate sets Vi, xy, for each a, k and n. For the least o with
Z, infinite and the least & with hZ!(k) infinite, the set Via,ky,n (for some



n) will be the W; required by 7.. Elements of each Viak)n (the “witness
elements” for the requirement 7.) will be denoted U(Sa,k>' Each v€a7k> will
enter V(a,k),n for at most one n.

The Slowdown Lemma (see [16], p. 284) then yields a computable func-
tion f such that, for every (a, k) and every n, Vg 1yn = Wy((a,k),n), and at
every stage s,

(‘/(Soz,k>,n o ‘/(Soz_,kl>,n) N Wf((oz,k),n),s = 0.

When a witness element vfa k) enters Vi, x).n, we will find the stage t?a7k> > s

)

at which vfa y enters Wi ((a,k),n) and restrain (with priority (e, k)) elements
< vfa k) from entering Ag until stage c,oe(tz’a k))' (Recall that 7. assumes

- Rampps 4% Mam)y s
@e to be total.) Thus we will have A, [v< By = A, [v<a7k>. If we
can achieve this for all v}, k) in the (infinite) set Via,k),n for some n, then
the set We((q,r),n) will be the set required by 7. to prove that ¢, is not a
promptness function for Ag.

At stage 0, for all (o, k), we set n((c, k),0) = 0 and V< = (), with

T and t T Also, let every SO = () and let BY = ().

At stage s —|— 1, we first define each SS‘H For each » € C*t! — C'?, find
the least « such that x € U? and put @ into SETL. If there is no such «,
put x into ST, (The c.e. set S, simply collects elements which enter C
without entering any S,. Thus €' =[], Sa-)

Set a = ¢(s), and define:

BS“:BSu{x reC® - Ay & (A< a)fee DF NSH & }

(V6 < B)(Vk < 8)[tis jyd = & 2 v ]l

For each strategy which is injured at stage s + 1, we begin enumerating
a new witness set. To this end, set n((y,k),s +1) = n({y,k),s) + 1 and
SIIIC 1 and tsj’i 1 for each (v, k> satisfying any of the following conditions:

e V> Q.
e y=oaand k > h(s).
e There exists » < k with o € A5t — A3,

: : s+1 s
o There exists § <y with S # S5

There exists 3 < 7 such that UE‘H contains an element > m, where
m = min(B**1 — B%).



For all other (v, k), set n({y,k),s+ 1) = n({y, k), s).
We now define the witness sets at stage s+ 1. For each (8, k) < (a, h(s))
(in the lexicographic order) which was not injured at stage s+ 1:

L If vjg 1y T and (B, k) # (o, h(s)), let v¥T1 and 511 diverge also, with

+1 (B,k) (B,k)
V(ﬁ,k),n = V(ﬁ,k),n

2. If v<5 A(s)
s+1
Eohs >>T

3. Lf Uéﬁ £ 4 but ts T, let vfg% = vfﬁ@, and ask whether the following
ol

s+1 _ 1 s+1 = s
T7 let U(a,h(s» = S8 —I_ 17 Wlth ‘/<oz,h(s)>,n - ‘/<O‘7h(5)>7n and

y e Attt vy e At v
. e (Ut — sty v
Wharsighy || o ( ey AVANE (4)
Y B B

If (4) holds, let V<Sﬁ":k1>

Lk = HLO(E k€ Wrga hym il-

=VinaY {US+1 } and

(Such a ¢t must exist, since Wrg 1)) = Vigkyn-) If (4) fails, then let

s+1 _ s s+1
Vigwyn = Visaym a0d g T-

4. 1f U(Sﬁ,k)i and t?ﬁ,k)i and 99675(t2’57k>) 1< s, then let US+1 T and t5+1>T,

. s+1 _ s
with Vig'ey n = Vi by e

5. 1If v i and t i but either ¢, S(t? k) )1> sor 99675(t2’ﬁ k)) diverges,
s+1 s—|—1 s s+l _ 4s
then let V< By = mG%n, (38 = Vg and t<ﬁ7k> = t<ﬁ7k>.

This completes the construction.
We now use the sets B and S, to prove that requirement 7 is satisfied.

Lemma 2.2 If Zg is finite, then there exists a stage sy such that t (3.%) T for
all s > sy and all k.

Proof. Pick a stage so such that no s > s satisfies g(s) = [, and let

k' = max{h(s) : g(s) = f}. Then for all k > ¥/, U(Sﬁ k>T for all s, and hence

t?ﬁk) 1 for all s. (The construction makes it clear that for any k and s, t?ﬁk)

can converge only if U(Sﬁ k) converges.)



Now suppose & < k' and v<'°’57k> J for all s > sg. This means that we
never execute Step (4) in the construction after stage s, and that the (3, k)
strategy is never injured after stage so. But if t?ﬁk) ever converges after
stage sg, then eventually we must reach Step (4), since we assumed ¢, to
be total. Hence tfﬁ yy must diverge for all s > sq.

Finally, suppose k& < k" and U(ﬁ k) 1 for some sy, > sg. Then U(ﬁ kY will
diverge for all subsequent s, since it Can only be newly defined at a stage s
with g(s) = . Thus t?ﬁk) will diverge for all subsequent s as well. Letting
51 = maXg<p S1x completes the proof. [ ]

Lemma 2.3 I'(«) holds for some «, and for the least such «, there exists

a k such that h3'(k) is infinite.

Proof. First we claim that some Z, must be infinite. Suppose not, so Z,
is finite for all «, and F'(«) fails for all . However, the R-property holds,
so there must be some « for which line (1) fails. Choose the least such a.
Then

(BN (Sq — Ap))UA # (Do N (Se — Ag)) U Ay

Suppose x € BN (S, — Ag). Pick s such that € B! — B*. Now to go
into B*t!, 2 must have been in D5t N SE‘H for some 3. Since z € S,, we
know z ¢ Sg for all 8 # . Hence z € D,, and so

(BN (Sa— Ag)) UA; C (Do (Se— A4g)) U Ay

Therefore, there must be some element x € A} N BN Dy N (S, — Ao).
Assume x is the least such element. Now for every § < a, line (1) must
hold and line (2) must fail, since we chose a to be minimal satisfying the
R-property. Hence for all § < «,

(B N (Sﬁ — Ao)) UA; = (Dﬁ N (Sﬁ — Ao)) U Aj.

Now since every Zg with 3 < « is finite, there is a stage so such that for
all s > sg, ¢g(s) > «, and we may also assume that sg is so large that
x € S0 ND2NC*. (Notice that z € S, forces z € C'.)

Now use Lemma 2.2 to find a stage s; > sg such that:

(Vs > 51) (V8 < a) (V)[£5} o 1]

Since . is total, there must be a stage s > s; such that tfa kY T, and once

we reach this stage s, # must go into B®1 1!, contradicting our assumption

that « ¢ B.

10



Thus, there must be some « such that 7, is infinite. Let a be the least
such. Then every Ug with § < « is finite. Since F(a) holds, we have
C C T,, so by our construction, C' C U,, and by the major subset property,
Ay C* U, U Ay

For this «, we claim that C' — Ay C* S, U Ay. Suppose z € C' — Ap. All
but finitely many such z lie in U, U Ay, as noted above. If z € Ay, we are
done. For each sufficiently large x € €' — Ag — Ay, there exists s such that
x € US — UL, By definition of U?, we must have z ¢ C*. But » € C, so
z € Ot — O for some t > s. Hence x € ST by definition of ST unless
there exists 8 < a with € Ug. But all Ug with 8 < « are finite, by our
choice of a, so all but finitely many of these « lie in S,. Therefore, line (3)
holds for some k, and hZ!(k) is infinite. |

Use Lemma 2.3 to take the lexicographically least («, k) such that F(«)
holds and h;!(k) is infinite. Then there are infinitely many stages s for
which ¢(s) = o and h(s) = k, but only finitely many for which (¢(s), h(s))
precedes (o, k) in the lexicographic ordering. Let so be the least stage with
(9(s0), h(s0)) = (e, k) such that:

o Ak = Aolk, and

e B*|m = Blm, where m = maxUg<,Ug, and

e for all s > sg, (g(s), h(s)) > (a, k) lexicographically, and
° SEO = Sg for all § < a.

The final condition is possible since each Sz C Upg, which is finite for every
b < o. We also let sg < s; < s3 < --- be all the stages s > sg with
(9(5), hls)) = (o K).

Now the (a, k)-strategy is never injured after stage sp, so for every
s > so, n((a, k), sg) = n({a, k), s), and we write n = n({e, k), s0). (Thus n
is the number of times the (a, k)-strategy was injured during the construc-
tion.) Moreover, minimality of sy implies that this strategy was injured
at some stage s < sp such that there is no s_; with s < s_; < sp and
(9(s-1), h(s—1)) = (e, k). Therefore, Viowmm = Véf’k%n is empty.

We claim that the subset Vi, 1y, satisfies requirement 7.. For this we
need:

Lemma 2.4 For this (o, k), and for each y > k, there exists an s such that
the matriz of line () holds of y, (o, k), and s.

11



Proof. Let y > k. If y € AgU A;, we are done. If y € C, then y € T, since
F(a) holds. But Z, is infinite, so T, — C' C U,, and y is in U, — C, hence
in some Ut — CstL

So suppose y € C'— Ag — A;. Now since h; (k) is infinite and y > k,
we know by line (3) that y € S,. But S, C U, C T, by definition of S5*!.
Since y ¢ (BN S, NT,) U Ay by line (2), we know y ¢ B. Thus there is an
s with y € (C*+1 — Bst1)y 0 S5t 0 Ut This proves the Lemma. |

Now Viakyn = Wi(ak)n), and if s’ is the stage at which vf; k) enters

)

!
O

Via,k)m» then tf £ 1> ¢’ by our choice of f from the Slowdown Lemma. Let

! . . .
s = @e(tfa,k))' Then s' < s”, since we assumed ¢, to be increasing.

Lemma 2.5 Vi, 1, is infinite. Moreover, for any element vf; k) of Viaky s

with s' and s" as above, we have:
B [wi, = B0,y and AJT0f =AY 0], 4y

Proof. For each vfa k) with s > sp, Lemma 2.4 guarantees that there will be

a stage at which Step (3) of the construction applies. The first such stage
will be ', since at that stage v<'°’%k> = U(S;,k) will enter Vi, 1y, and tf;M will
be defined. But since ¢, is total, we will eventually reach the stage s > ¢ at

which Step (4) applies, leaving vfg';; undefined. Then at the next s, > s”,

we will define vf;];l = s,, + 1, which is not yet in Vfa”fk%n. Thus, Vi x).n
must be infinite.

Now pick U(S;,k) € Viakym, With s" and s” as above. Since Véf’k%n is
empty, we know that s’ > sg. If s is any stage with s’ < s < s”, then we see
from the definition of B*t! that an element y can only enter B*+! on behalf
of some ~ such that y € Si"’l. But then y € UWS‘H. Since we chose sg to let
B%[m = B[m, we must have v > «. But t< ,k)iv S0y > vfa By = v<5/ by

Soz , a,k)
... s+1 sh st _ ps'y s
definition of B°7". Hence B [v<a7k> =B [v<a7k>.

Having seen that no y < vf; ky can enter B between stages s" and s”, we

)

prove that no such y can enter Ay at those stages either. First, we know
that AQ[k = Ag[k by choice of sg. So suppose k < y < vf; By Now since

vf; k) entered Vi, 1), at stage s, we know by line (4) that

yeASvyeAY vye (U —C*) vye (C® =B Yns: nUs.

If y € ASI, then Agl(y) = Agll(y)7 and if y € Ay, then y ¢ Ay at all.
Therefore, we will assume that y ¢ ASI U Ay and prove that y ¢ ASH.
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If the final clause holds, then y € (C*' — B*')n S NU2'. Hence y ¢ B*",
by the first half of the lemma. If y € ASH, then y ¢ B, since no element that
has entered Ag can later enter B. But then

(AoN Sy NTL)U A # (BNS,NT,) U A

since y is on the left side and not on the right side. (Notice that y € U,
implies y € T,.) This contradicts line (2), which we knows holds because
F(a) holds. Therefore y ¢ Ag".

So suppose the third clause holds, i.e. y € (Ufyl - C’S/). Then y ¢ B*
since B C ¥, and so y ¢ B . Ify e ASH, then we must have y € C'*"~!
since we chose enumerations such that 4g C C' \, Ag. Pick s such that
y € C®—(C* L then s’ < s < s” and y ¢ A5. Now y € Ufyl - Tgl, and by
definition of S we will have y € S2. (Recall that so was chosen so large
that S;O = S for all § < a.) But now y ¢ ASH, since otherwise

(Ag NSy NT)U AL £ (BN Sy, NT,)U Ay
just as in the preceding paragraph. [ |

Hence Vi, ky.n = Wy((a,k),n) is an infinite c.e. set which satisfies the tar-
diness requirement 7.. This completes the proof of Theorem 2.1. [ |
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3 Satisfaction of R

We now prove that the R-property defined in Section 2 is nontrivial. The
theorem establishes several other properties of the sets Ag and A; as well,
in order to yield the corollaries.

Theorem 3.1 There exists a c.e. set A with Friedberg splitting A = Ag U Ay
such that all of the following hold:

1. A is promptly simple of high degree.
2. Ay has prompt degree.
3. R(Ao, A1).
Corollary 3.2 The formula in one free variable Ag:
(3A1)[Ao >7 0 & R(Ag, A1)]

s definable in £ and non-vacuous, and implies that Ag is a noncomputable
incomplete set.

Proof of Corollary. The statement Ay >7 0 is equivalent to the statement
that Ag does not have a complement in £, hence is E-definable. The Ag
and A; constructed in Theorem 3.1 satisfy the matrix, since halves of a
Friedberg splitting must be noncomputable. Finally, Theorem 2.1 shows
that Ag is tardy, hence incomplete. [ |

Corollary 3.3 There exists a Friedberg splitting A = AgU Ay such that Ag
and Ay are not automorphic in the lattice of c.e. sets.

Proof of Corollary. Take the splitting given by Theorem 3.1. If an automor-
phism & of £ satisfied ®(Ag) = Ay, then R(A;, ®(A1)) would have to hold.
By Theorem 2.1, then, A; would be tardy, contradicting the promptness of
Al. |

Proof of Theorem. Let C' be any promptly simple set, with computable enu-
meration C' = {C*}4¢,. Then C is also of prompt degree, so let v and w be
the prompt-simplicity and promptness functions for this enumeration of C,
satisfying for every i:

Wi infinite = (3%s)(3z € Wi, — Wi,_1)[x € CUB)]

W; infinite = (3%s) (3 € Wis — Wi 1)[CVO) 2 £ C*] 2]

14



We construct disjoint sets Ag and A; and auxiliary sets D; and 1} ;, and
set A = Ag U A;. The approximations to A, Ap, and A; at stage s will be
written A%, AJ, and A7, and will be defined so that A® = Aj U A7 C C* for
all s. The construction will satisfy the following requirements for all 7 and

J:

N(i,j) (matriz of R-property) :
[WigC&W]‘QC&C—W]'C.e.&
(Wi ﬂ_(W]‘ — Ao)) UA; = (DZ N (W]‘ — Ao)) U Al] —
(HT)[C CT & (AOQW]‘ ﬂT) UA = (WiﬂW]‘ ﬂT) UAl]
M;  (major subset requirement) :
P (prompt simplicity of A) :
W; infinite = (3s)(Fz € Wi, — Wi 1)z € AV
Q;  (promptness of A1) :
W infinite = (3s)(3x € Wiy — Wi o_1)[AV 2 # AS] 2]
Fi  (Friedberg requirement for Ag) :
Wi \( A infinite — W;N Ay #0
G; (Friedberg requirement for Ay) :
Wi \( A infinite — W;NA; #0

In the requirement N<i7j>, of course, W; plays the role of B and W; the
role of S in the matrix of the R-property. We will construct c.e. sets 71} ; for
each 7 and j, and then refine them to form the T" demanded by each N(Z"])
Once again we order w X w in order type w and write o = (i, j), this time
with:

B, =W;
Da = L/
gz :3//;; } where j = (j', ;")
T, =T, ;

Thus N, says:

[B, CC & SaUSy=C&
(Ba_ﬂ (Sa—Ao))UAl = (Daﬂ(sa—Ao))UAl]
= ANCCT & (AgNS,NTYU A =* (BoN Sy NT)U Aq].

N, is a negative requirement, trying to keep elements from entering Ag
until they can do so without harming the R-property (if ever). All the other
requirements are positive ones, trying to put elements into Ag or A;. There
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are no negative restraints on elements of C entering A;, except that they
cannot already be in Ag.

Each element which we try to put into Ag to satisfy some F, or M,
must receive permission to enter Ag from each N, with o < e. The restraint
function q(z,s) will give the greatest a < e which has not yet given this
permission as of stage s. The priority function p(z,s) keeps track of which
requirement F. or M, wanted z to enter Ag. This can change from stage to
stage, for several reasons. If a higher-priority requirement decides at stage
s+1 that it needs « to enter Ag, then p(z,s+1) < p(z,s). Alternatively, an
F. could find itself satisfied by another z’ € AS"H and no longer need to put
z into Ag, although in this case we leave p(z,s+ 1) = p(z, s) so as not to
disrupt the flow of elements into Ap. Finally, a higher-priority requirement
could make z enter Ai"’l, in which case we define p(z,s+ 1)1, removing z
from the flow of elements into Ag since we need Ag N A4; = §.

We use the Recursion Theorem on our construction of Ag, C', and D, to
define the following T1 statement F'(«) for each a:

(Bo M (Se — Ag))UA; = (DaN (Sy — Ag))UA & B, CC & S,US, =C.

Since F(«) is 119, there is a computable function ¢ : w — w X w such
that F(a) holds if and only if the set Z, = ¢~ !(a) is infinite. We let
7z = g7 Ha) N {0,1,...5 — 1}. Monitoring |Z2| will help us determine
for which « the hypothesis in the matrix of the R-property is satisfied.
For those o for which the hypothesis fails, |Z,| is finite, and N, will only
restrain finitely many elements from entering Ao, since we need not satisfy
the conclusion of the R-property for such an a.

At stage s = 0, we set A = A = (. Also, let all p(z,0) and ¢(z,0)
diverge.

At stage s+ 1, we first define Tg"‘l for each a:

TS =TPu{z € Cstlia < |Z51H).

Next we determine which elements of C**! to add to Aj to create ASt?.
For this, we need movable markers for elements currently in C' — A. Write

Coth— AS = {dgth dstY L dsT)

Ms41

preserving the order of the markers from the preceding stage. (That is, if
d; = df,"'l and df = d;,"’l, then i < j iff ¢/ < j'; and if df"’l € C° and
d;"’l ¢ C* then i < j.)
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For the sake of M., we define
VEH = Ve u{z € Weop — CFH s (Vy < 2)[y € We o UCT)

(For each e, the sets V2 enumerate a c.e. set V.. If C Z W., then V. will be
finite, but if C C W,, then C C V., C W,.)
For each e < s, define the e-state of each dZ‘H at stage s+ 1 to be:

ole, it s+ 1) ={i<e:dit e V)

We order the different possible e-states by viewing them as binary strings.
Find the least ¢+ < s such that there exist e and j with e <1 < j < s
and o(e, it s+ 1) = U(e,d;‘i'l,s +1) and &5t ¢ VH and d;"’l € Vst
For the least such e and the least corresponding j, we say that M. wants
to put into Ag all the elements df"’l, dfj_'ll, . .d;ﬂ, 80 as to give the marker
d; a higher (e + 1)-state at subsequent stages.
Now we consider the requirements F.. For each e < s with W, , N Af =

and for each z such that
€ (W snCoT) — A% — {astt astt L @ty

we say that F, wants to put x into Ag.

We set p(z,s+ 1)1 for all 2 ¢ C' — A®. Otherwise z = dZ‘H for some
k, and p(z,s+ 1) is the least e < k (if any) such that either p(z,s)l=e or
M. or F. wants to put & into Ag. Thus, the function p(z, s+ 1) gives the
priority currently assigned to putting z into Ag. If there is no such e, let

plz, s+ 1)1

We now follow the following steps for each & < s:
1. If p(z,s+ 1)1, then ¢(z,s+ 1) 7 also.

2. Ifp(a, s+1) Ai but ¢(z,s) T, we ask if every o < p(z, s+1) satisfies either
v e SsHLuySst or o ¢ T5HL. 1 so, set g(x, s+ 1) = p(z, s+ 1)+ 1. If
not, then ¢(z,s+ 1)1.

3. If p(z,s+ 1){ and q(z,s) !> p(z,s+ 1), then set g(x,s+ 1) to be the
greatest o < p(z, s+ 1) satisfying all four of the following conditions:
(a) S5t Sstt =,
(b) @ & S,
(c) z e T5H.
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(d) VB < «, either j fails one of the three conditions (a)-(c), or
6= {j)and a = (i,j) with i # 7.
+1

(z,s+1)°
satisfies (a)-(c), then some § < a with the same first coordinate as o

must satisfy (a)-(d).)

Also, enumerate z in D; (For future reference, notice that if «

If there is no such a, set ¢(z,s+ 1) = —1.

4. If p(z,s+ 1) | and ¢(z,s) | with 0 < ¢(z,s) < p(z,s+ 1), we ask
whether z € B;E';S). If so, or if g(z, s) no longer satisfies the conditions
(a)-(d), set g(xz,s + 1) to be the greatest o < ¢(z,s) satisfying the
conditions (a)-(d) above, and let z € D;al,s-l-l)' (If there is no such «a,
let g(z,s+ 1) = —1.) Otherwise, let ¢(z,s+ 1) = ¢q(z, s).

5. If p(z,s + 1) | and ¢(z,s) |= —1, enumerate = € A5t and let
q(z, s+ 1)1

This completes our enumeration of ASH. Next we determine which
elements to add to Ai"’lz

1. Find the least e < s (if any) such that Q. is not yet satisfied and
there is an element z € W,y — W,y for some ¢ < s such that
w(t) > s, and there exists y < z such that y € C*t' — AST! and
yd ALu{dst, .. .d5t} and no F; with i < e wants to put y into
Ag. Put the greatest such y into Ai"’l. This forces Ai"'l[w # Allx,
satisfying Q. permanently. (If there is no such e, do nothing.)

2. Find the least e < s (if any) such that P, is not yet satisfied and there
is an element z € C*T1 N (W, ; — W, ;_1) for some ¢ < s with v(f) > s,
such that @ ¢ {d5T',...d2*'} and no F; with i < e wants to put =
into Ap. If no such z lies in A®° U ASH, then put the least such « into
Ai"’l. This forces 2 € A**!, satisfying P. permanently.

3. Find the least e < s (if any) such that G, is not yet satisfied and there
is an element @ € (W, 41 NCHY) — AST with o ¢ {4571, .. . 4571},
such that no F; with + < e wants to put = into Ag. Put this = into
Ai"’l. This satisfies G, forever.

Let ATl = AS‘H U Ai"’l. This completes the construction.

Lemma 3.4 C — A is infinite.
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Proof. We prove by induction on e that d. = lim; d? exists. Assume that
this holds for all markers d; with ¢ < e, and let sg > e be a stage such that
d® = d; for all ¢ < e. Now each F;, G;, P;, and Q; with j > e cannot
put any of the elements d§,...d; into A; at stage s+ 1, so none of these
requirements ever moves the marker d?. Also, each G;, P;, and Q; with ¢ < e
puts at most one element into A, hence moves the markers at most once.
Let s; > sg be a stage so large that no G;, P;, or Q; with « < e moves any
markers at any stage s > s1.

By the construction, df can only be moved at stage s > s; by a require-
ment M, or F; with ¢ < e. Furthermore, when F; (i < ) moves a marker, it
puts an element into Ag, so it is satisfied at that point. Before then it may
have tried to put finitely many other elements into Ag as well, and any of
them may go into Ag or Ay at a later stage, moving markers in the process.
However, since there are only finitely many such elements, d. is moved only
finitely many times on behalf of F;.

Now My moves d. at most 2°T1 times after stage s;: once to put dgy
into Vp, possibly twice to put dy into Vp, and so on. Once My has finished
moving d., My moves it at most 2° more times, to put markers into Vj.
Similarly, once each M; has moved d, for the last time, M;;; may move it
at most 2°~* more times. Hence we eventually reach a stage s, after which
d. never is moved again. Possibly d22 1, but since C'is infinite and every d;
with 7 < e has already converged to its limit, we know that d’ will be defined
at some stage ¢ > sy. Since it never moves again, this yields d. = lim, d:. m

Lemma 3.5 For each e, the requirements N, P., Q., F., and G. are all
satisfied.

Proof. We proceed by induction on e. Assume the lemma holds for all ¢ < e.
We write a for the pair coded by e, and prove first that A, is satisfied.
Suppose (By N (So — Ag)) U AL = (Dy N (Sy — 4p)) U Ay and B, C C and
S,US, =C. Then F(a) holds and 7, is infinite. The construction of T,
then guarantees that C' C T,. Let G, be the intersection of all those V;
with ¢ < « such that V; is infinite, and let Ta =T,NG,. Thus C C Ta,
since C' C V; whenever V; is infinite.

Sublemma 3.6 For each o and each n < «, there are only finitely many
x € T, such that M,, ever wants to put x into Ag.

Proof. First, if V,, is finite, then M, will only want to put finitely many
elements into Ag. So we may assume that V), is infinite, and hence that
T, CV,.
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If M,, wants to put z into Ag at stage s, then € C* — A°, so x = dJ for
some k. Moreover, there must be an 7 with n < ¢ < k and a j > k such that
o(n,df,s) = o(n,di, s) and di ¢ V7 and d? € V7. Furthermore, d; is the
leftmost marker which any M-requirement wants to put into Ag at stage s,
and n and j satisfy the minimality requirements of the construction.
~ Now if dj ¢ V2, then d} ¢ V,, since €'\, V,, = 0, and hence d} ¢
T,. Therefore we may assume d; € V;>. (This guarantees k& # 7). Then
minimality of n forces o(n,d?,s) > o(n,d;,s), and minimality of j forces
o(n,d;, s) > o(n,dj,s) (since di € V7). Hence there is some m < n such
that o(m,d?,s) = o(m,d;,s) and d} € V3 and dj ¢ V. This forces df € Vin
and dj € V,, (since d} € C* —V2). If V,,, is infinite, then d} ¢ T,. But if
Vi is finite, then d7 lies in the finite set

V= U{Vm :m < n &V, finite}.

Hence we need only find a stage ¢ so large that for every d € V, either d € A}
or M,, wants to put d into Ay at stage t or M,, never wants to put d into
Ag. Then M, will never want to put into Ag any > max(C") with z € T,,.

| |

We will show that the conclusion of A/, holds for Ta:
(AgNSuNT)UA = (BaNSaNT,)UA;.

Once we have established this for all «, clearly R(Ag, A1) itself must hold,
since for each o we can choose another T, which excludes the (finite) differ-
ence set of the two sides and still contains C.

Suppose first that x € Ag NS, N Ta and x ¢ Ay, and assume that z is
sufficiently large that:

o = > |Zg| for every § < a such that Zg is finite, and
e No F; with ¢ < « ever tries to put z into Ap, and
e No M; with ¢ < « ever tries to put z into Ap.

The last condition is possible by Sublemma 3.6. Notice also that the first
condition forces « ¢ T for all § < a with |Z3] finite.

Then for all s, either p(z,s) > « or p(x, s)T. But since z € Ay, we know
that some p(z, s)]. For the least such s we have € C*, and hence z € T7,

since CNT, CT,\ C.
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Now a satisfies conditions (a)-(c) in the construction at stage s, since
F(a) holds and = € S,. So there must exist § = (i,j’) < o = (4, j) which
satisfies (a)-(d) at stage s.

We claim that this § satisfies conditions (a)-(d) at every stage after s as
well. Since z € T, we know that Z is infinite and F(53) holds, by choice of
z. Hence (a) and (c) hold at all subsequent stages. Let ¢ be the first stage
at which ¢(z,t) converged. Then z € C?, and z € Té since C'\y Tz = 0.
By the definition of ¢, we must have had z € SE U SE But « ¢ SE since (b)
holds at stage s, and because s > t, this forces z € 537 so (b) always holds
of 3.

To show that (d) always holds of 3, we choose an arbitrary v < 3 witht
he same first coordinate as . Since § satisfies (d) at stage s, ¥ must fail one
of (a)-(c) at stage s. If v fails (a) or (b) at stage s, then clearly it fails that
same consition at every subsequent stage. Moreover, if v fails (¢) at stage
s, then = ¢ T3, and since z € C?, this forces @ ¢ T,. Thus g will always
satisfy condition (d).

But since @ € Ag, there must also be a stage s’ with ¢(z,s') = —1. Since
(a)-(d) continue to hold of 3, the only way for ¢(z,s’) <  to occur is for
z to enter Bg. (Recall that for all s, either p(z,s) > a or p(z,s)1.) But
Bg = W; = B, since = (i, j") and a = (1, j), so this forces 2 € B,. Hence

(AoN SuNT,)UA; C (BaNSaNT,) U A

Now suppose that x € B, NS, N Ta and = ¢ Ay, and assume z is
greater than max(dp,...d,), and also greater than the greatest finite |Zg]
with 8 < a. (Thus z ¢ T for all such 3.) Now z € C since S, C C, so
at some stage sg, # will enter C' and be given a marker: say z = d;°. So
x € C* and since ¢ € T, this forces z € T7°.

If © ¢ Ao, then we must have z € D,, since (B, N (S, — 4p)) U 41 =
(Do N (S — Ap)) U Ay and = ¢ Ay. (Notice that then z, being in C' — A,
eventually receives some permanent marker dj, with &' > « by choice of
z.) For z to have entered D,, there must have been a stage s; > so with
q(z,81) = v = (1,57, where o = (i,7). (Also, then p(z,s;) |, and since
x ¢ Ay, p(z,s) ] for all s > s;.) But « satisfies conditions (a)-(c) at
all stages s > sg, so by condition (d) on 7, we must have v < a. The
assumption @ ¢ Ag U A; then means that there is some s > sy such that
q(z,s) = q(z,sq) for all s > s5. Let § = ¢(z,s2) <. Then z € Dg — Bg,
and furthermore (3 satisfies the conditions (a)-(d) at all stages s > s;.

Now z € Tj, to satisfy condition (c), so z < |Zg| and § < v < a. If
B = a, then Zg is infinite since F'(«) holds, and if § < a, then Zg must
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be infinite, by our choice of z. Therefore F'(5) holds, and in particular
SzU Sg = C. Now x ¢ Sz by condition (b), so @ € Sz. However, with
x € Dg — Bg, this contradicts F'(3). Hence 2 € Ag, and

(AoN Sy NTL)UA C (BaNSaNT,)UA;.

This completes our proof that A, is satisfied.

Now we continue with the other requirements. Let s be a stage such
that no P;, Q;, F;, or G; with ¢+ < e tries to put any element into Ay or Ay
at any stage after so. (F; is different from the other requirements in that it
may try to put more than one element into Ag. It only stops trying when
one of those elements succeeds in entering Ag. We choose sy so that every
element which F; wants to put into Ag either is in A*° or never enters A.)
Assume also that sg is sufficiently large that d° = d; for every ¢ <e.

Now if W, \( A is infinite, then there must be an z in some W, , — A®
with s > sg and {dp,...d.}. No requirement of higher priority will need
to put this 2 anywhere, except possibly some M;, and according to our
construction, G, does not respect the priority of the requirements M;, so
r € Ai"’l, and G. is satisfied.

Similarly, if W, is infinite, then there must be an # and an s > sg such
that € We, — We,_; and z € C¥) | by prompt simplicity of C'. If this
z is not already in A*(9)=1 then the construction puts it into AT(S), so P.
holds. Also, there must be an = and an s > 5o with € W, ; — W, s_; such
that C*°[ 2 # C™)| 2, by promptness of C'. Thus there is a y < & which
entered C' at some stage ¢ with s < ¢ < w(s). We must have y ¢ A1
since A7t C C*7l. But now y ¢ {d},...d.}, since these markers had
reached their limits by stage so and y only entered C' at stage t. Hence the
construction will put this y into A%, and Aqiu(s)[x # Ajl z, satisfying Q..

Continuing with the induction, we need a sublemma to handle F..

Sublemma 3.7 For this e and for all sufficiently large z, if F. wants to
put x into Ay at some stage, then © € Ag.

Proof. Choose z so large that it satisfies all of the following:
1. 2 > max{|Zs| : f < e & Zp is finite}.
2. No F;, G;, P;, or Q; with ¢ < e ever wants to put x into Ag or Aj.

3. 2 ¢ {do,...d.}.
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Suppose F. wants & to enter Ag at stage so. Then z = dzo for some &
and p(z,sg) < e. Now no G;, P;, or Q; with j > e ever manages to put
into Ay, since F. takes priority over these. (Since z # d., the only way to
have k < e is for  eventually to enter Ag. Hence we may assume k > e.)
Also, for every < e, either z ¢ Ty (if |Zg| < z) or F(B) holds (if Zg is
infinite). Hence there is an sq > sg such that ¢(z,s1)] and ¢(z,s1+1){< e.

Now suppose g(z,s) = 3 for some s > s1 (so § < e). If F'(5) failed, then
Zg would have to be finite, so z ¢ T (since |Z3| < z) and ¢(z,s) would
never equal §. Therefore, F'(3) must hold. Suppose 2 ¢ Ag. If 2 ¢ Sp,
then z € Sg by F(3) and so ¢q(z,s3) < § for some sg > s;. Otherwise
x € Dgn (Sg— Ag) C Bg by F(f), so z € B;ﬁ for some sz > sy, and
hence ¢(z,s3) < . Thus, by induction on § < e, eventually we must have
q(z,s) = —1, and so z € ASH, proving the sublemma. [

Now if W, N\, A is infinite, then F, has infinitely many elements at
its disposal to try to put into Ag. Hence once we find a sufficiently large
x € W, \, 4, we know by the sublemma that this z will eventually enter
Ap, thus satisfying F.. This completes the induction of Lemma 3.5. [ |

Lemma 3.8 The requirements M. are all satisfied by our construction.

Proof. Suppose that C' C W.. To prove that M, holds, we must show
A C* W.. By induction we assume that M; holds for all ¢ < e. Let

c={i<e:CCW}.

Now if i € o, then also C' C V;, so by inductive hypothesis A C* V;, whereas
if i ¢ o (and ¢ < €), then V; is finite. Hence for all but finitely many k& we
have o(e,dy) = o.

Now let V, = Veﬂ( (HVi:ie U}). Then C' C V. But C, being promptly
simple, is noncomputable, so V, \, C' must be infinite. Choose y so large
that no element > y can be held out of A forever by any requirement AN,
with o < e, and let sp be a stage such that C* [y = Cy.

Suppose for a contradiction that Vo.N(C'— A) is infinite. Then there exists
p such that d, ¢ V. with p so large that d, ¢ C*° and with o(e,d,;) = o.
(Hence d, > y.) Let s; be a stage with d)! = d, and a(e,dy, 51) = 0.
Now since V, N\, C' is infinite, there will be a stage s > s; at which some
element » € V~! enters C, and is assigned the marker d; (with ¢ > p since
d¥ = dp). Moreover, we may assume that ¢ is sufficiently large that not
only is dj in V,, but that o(e, dj, s) = o, since every V; withi < eand i ¢ o

y Lgy
is finite. Since di € V, C V¢ and d, ¢ V., M, will want to put d, into Ay
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at stage s, and since d, > y, no negative requirement will keep d, out of
Ap. Possibly d, will be diverted into A; by some requirement G;, P;, or
Q;, since these do not respect the priority of M.. If so, then d, will enter
Ay if not, then d, will enter Ag. Either way, d, enters A, contradicting our
assumption that the marker d, had reached its limit at stage so.

Hence V. N (C' — A) is finite, and A C (C — A)UC C* V. C W.. Thus

M. is satisfied, and the lemma is proven. [ |

Knowing that the requirements are all satisfied, we can easily complete
the proof of the theorem. The construction ensured that Ag N A; = @, and
the conjunction of all the F; and G; implies that Ag U Ay is a Friedberg
splitting of A. (See pp. 181-182 of [16].) The requirements P; together
make A a promptly simple set, by definition, and the Q; together allow A,
to satisfy the Promptly Simple Degree Theorem (Thm. XIII.1.6 of [16]), so
that A; is of prompt degree. To prove that R(Ag, A1) holds, we note that
the requirements M;, along with Lemma 3.4, show that A = Ag U Ay is a
major subset of C. Moreover, given a B = W, and a pair (Sj/,Sju) with
S; U Sjn = C, we have the D; and T, (with o = (7, (j', j”))) constructed
above. If

(BZ' N (S]‘/ — Ao)) UA; = (DZ N (S]‘/ — Ao)) U Ay,

then F'(«) holds. Since A, is satisfied, we know that there exists a 7" with
C' C T such that

(AoN Sy NTYU A =" (B;NS;pNT)U Ay

So we can pick a sufficiently large n,, and let
T'={zcT:z2>n,}U{zecC:2<n,}.

Then €' C T’ and also (AgNS; NT')U A = (B;NS; NT') U Ay, since

S;NC = 0. Thus R(Ao, A1) holds. Finally, since A is a major subset of the
set C'; A must be of high degree (see [10], page 214). ]
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