Definable Incompleteness and Friedberg Splittings

Russell Miller*

September 1, 2004

Abstract

We define a property $R(A_0, A_1)$ in the partial order \mathcal{E} of computably enumerable sets under inclusion, and prove that R implies that A_0 is noncomputable and incomplete. Moreover, the property is nonvacuous, and the A_0 and A_1 which we build satisfying R form a Friedberg splitting of their union A, with A_1 prompt and A promptly simple. We conclude that A_0 and A_1 lie in distinct orbits under automorphisms of \mathcal{E} , yielding a strong answer to a question previously explored by Downey, Stob, and Soare about whether halves of Friedberg splittings must lie in the same orbit.

1 Introduction

The computably enumerable sets form an upper semi-lattice under Turing reducibility. Under set inclusion, they form a lattice \mathcal{E} , as first noted by Myhill in [14], and the properties of a c.e. set as an element of \mathcal{E} often help determine its properties under Turing reducibility. Even before Myhill, Post had suggested that there should be a nonvacuous property of c.e. sets, definable without reference to the Turing degrees, which would imply that the Turing degree of such a set must lie strictly between the computable degree $\mathbf{0}$ and the complete c.e. degree $\mathbf{0}'$.

Post's own attempts to find such a property failed. The properties he defined turned out to be extremely useful in computability theory, but each of them – simplicity, hypersimplicity, and hyperhypersimplicity – actually does hold of some complete set. The existence of a Turing degree between

^{*}This article appeared in *The Journal of Symbolic Logic* **67** (2002), pp. 679-696. It is the second chapter of a Ph.D. thesis at the University of Chicago under the supervision of Robert I. Soare, to whom the author is grateful for extensive conversations and suggestions.

 $\mathbf{0}$ and $\mathbf{0}'$ was first proven by completely different means, namely the finite injury constructions of Friedberg and Muchnik ([6], [13]).

The term "Post's Program" eventually came to denote the search for an \mathcal{E} -definable property implying incompleteness. Of the properties proposed by Post, all except hypersimplicity turned out to be definable in \mathcal{E} , and other \mathcal{E} -definable properties, such as maximality, were developed and studied in their own right. Nevertheless, Post's Program remained unfinished until 1991, when Harrington and Soare ([7]) found a property Q(A) definable in \mathcal{E} such that every A satisfying Q must be both noncomputable and Turing-incomplete. We give their definition of Q(A):

$$\begin{split} Q(A): & (\exists C)_{A \subset_{\mathrm{m}} C} (\forall B \subseteq C) (\exists D \subseteq C) (\forall S)_{S \sqsubseteq C} \\ & \left(\begin{array}{c} B \cap (S-A) = D \cap (S-A) \implies \\ (\exists T) [\overline{C} \subset T \& A \cap (S \cap T) = B \cap (S \cap T)] \end{array} \right). \end{split}$$

Here $S \subset C$ abbreviates $(\exists \hat{S})[S \cup \hat{S} = C \& S \cap \hat{S} = \emptyset]$. (All variables represent elements of \mathcal{E} , namely c.e. sets.) $A \sqcup B$ denotes the union of two disjoint sets A and B. Also, $A \subset_{\mathbf{m}} C$ abbreviates "A is a major subset of C," meaning that $A \subset C$ with C - A infinite such that for every W, if $\overline{C} \subset W$, then $\overline{A} - W$ is finite. Since the property of being finite is \mathcal{E} -definable, the statement $A \subset_{\mathbf{m}} C$ is \mathcal{E} -definable as well.

In this paper we generalize the property Q(A) to an \mathcal{E} -definable property $R(A_0, A_1)$ of two c.e. sets. The statement of R is as follows:

$$R(A_0, A_1): A_0 \cap A_1 = \emptyset \&$$

$$(\exists C)(\forall B \subseteq C)(\exists D \subseteq C)(\forall S \sqsubset C)(\exists T) \Big[A_0 \cup A_1 \subset_{\mathbf{m}} C \&$$

$$[(B \cap (S - A_0)) \cup A_1 = (D \cap (S - A_0)) \cup A_1 \implies$$

$$[\overline{C} \subset T \& (A_0 \cap S \cap T) \cup A_1 = (B \cap S \cap T) \cup A_1] \Big].$$

This property can be read to say that A_0 satisfies the Q-property on $\overline{A_1}$. Indeed, the statement $R(A_0,\emptyset)$ is equivalent to $Q(A_0)$. In Section 2 we prove that just as with the Q-property, $R(A_0,A_1)$ implies that A_0 is not of prompt degree, and hence not Turing complete in Σ_1^0 . (A set which is not of prompt degree is said to be tardy, and since A_0 satisfies an \mathcal{E} -definable property implying tardiness, we say that A_0 is "definably tardy." Since all tardy sets are incomplete, we also say that A_0 is "definably incomplete.")

Alternatively, we can interpret $R(A_0, A_1)$ in the lattice \mathcal{E}/\mathcal{A} , where \mathcal{A} is the principal ideal in \mathcal{E} generated by A_1 . (See [15], p. 225.) In this lattice, $C \subseteq_{\mathcal{A}} D$ is defined to mean $C \subseteq D \cup A_1$, and $C \approx_{\mathcal{A}} D$ if $C \subseteq_{\mathcal{A}} D$

and $D \subseteq_{\mathcal{A}} C$. Essentially, $R(A_0, A_1)$ says that $Q(A_0)$ holds in \mathcal{E}/\mathcal{A} , with containment and equality replaced by $\subseteq_{\mathcal{A}}$ and $\approx_{\mathcal{A}}$. The only differences are that we cannot state the properties $A_0 \cap A_1 = \emptyset$ or $A_1 \subseteq C$ in \mathcal{E}/\mathcal{A} , and that we have left the quantifier $(\forall S \sqsubset C)$ in $R(A_0, A_1)$ just as in the original Q-property, rather than restating it to hold on $\overline{A_1}$. Choosing not to restate it makes the R-property slightly stronger, but the stronger version can still be satisfied.

In Section 3 we construct c.e. sets A_0 and A_1 satisfying R, to show that the R-property is non-vacuous. A_0 and A_1 will also be noncomputable. Thus, the following \mathcal{E} -definable formula is non-vacuous:

$$(\exists A_1)[A_0 >_T \emptyset \& R(A_0, A_1)]$$

This formula guarantees that A_0 is noncomputable and incomplete, just as the property Q(A) does for A. (Recall that computability is equivalent to the property of having a complement in \mathcal{E} .)

We then consider Friedberg splittings. Two disjoint c.e. sets B_0 and B_1 form a *Friedberg splitting* of $B = B_0 \sqcup B_1$ if for every c.e. W:

$$W-B$$
 is not c.e. \implies neither $W-B_0$ nor $W-B_1$ is c.e.

The sets B_0 and B_1 are each said to be *half* of this Friedberg splitting. The sets A_0 and A_1 which we construct will have the additional property of forming a Friedberg splitting of their union.

We use the R-property to show that A_0 and A_1 cannot lie in the same orbit under automorphisms of \mathcal{E} . (In the argot of this topic, we say that A_0 and A_1 are not automorphic. Two sets are automorphic if they lie in the same orbit.) This will follow because the A_1 we construct will be of prompt degree, hence automorphic to a complete set, by another result of Harrington and Soare in [7].

The orbits of halves of Friedberg splittings have been a subject of interest for some time, at least since the discovery of the hemimaximal sets. A set is hemimaximal if it is half of a nontrivial splitting of a maximal set. This is \mathcal{E} -definable, and Downey and Stob proved that the hemimaximal sets form an orbit (see [3]).

Since the maximal sets themselves form an orbit, and since few orbits are known in \mathcal{E} , this led to the conjecture that if \mathcal{O} is any orbit in \mathcal{E} , then the collection of "hemi- \mathcal{O} " sets, i.e. halves of nontrivial splittings of sets in \mathcal{O} , might also be an orbit. Alternatively, it was conjectured that halves of Friedberg splittings of sets in \mathcal{O} might form an orbit. (For the orbit

of maximal sets, these classes coincide, since any nontrivial splitting of a maximal set is automatically a Friedberg splitting.)

Downey and Stob refuted both conjectures in [5], by producing two Friedberg splittings $B_0 \sqcup B_1 = C_0 \sqcup C_1$ of the same set B, which were definably different in \mathcal{E} . Hence B_0 and C_0 satisfy different 1-types in the language of inclusion and cannot be automorphic.

The present result goes a step further. Since A_0 is definably tardy, every set in its orbit must also be tardy, and hence A_1 must lie in a different orbit. This is thus the first example of a single Friedberg splitting with the two halves known to lie in different orbits in \mathcal{E} . It is also the first application of Harrington and Soare's Q-property to derive results about Friedberg splittings.

Our notation mostly follows that of [16]. The finite sets form an ideal $\mathcal{F} \subset \mathcal{E}$, and we write \mathcal{E}^* for the lattice \mathcal{E}/\mathcal{F} . (Computability is definable in \mathcal{E} as the property of possessing a complement, and then finiteness is definable, since a set is finite if and only if all its subsets are computable.) We write $A \subseteq^* B$ if B - A is finite, and $A =^* B$ if $A \subseteq^* B$ and $B \subseteq^* A$.

We use the standard enumeration $\{W_e\}_{e\in\omega}$ of the computably enumerable sets, with finite approximations $\{W_{e,s}\}_{s\in\omega}$ to each. For the c.e. sets which we construct ourselves, we will also give finite approximations, usually writing $A = \bigcup_{s\in\omega}A^s$. If A and B are both enumerated this way, we write $A \setminus B = \{x : (\exists s)[x \in A^s - B^s]\}$, and $A \searrow B = \{x \in A \cap B : (\exists s)[x \in A^s - B^s]\}$. Thus when an element not yet in B enters A, we put it into $A \setminus B$, and if it later enters B, then we put it into $A \searrow B$ as well.

2 The R-Property

In order to guarantee that the set A_0 is not automorphic to a complete set, we will force it to satisfy the lattice-definable property R defined in Section 1, and prove that this implies tardiness of A_0 . Tardiness itself does not guarantee that a set cannot be automorphic to a complete set, of course, but satisfaction of R does, since every other set automorphic to A_0 must also satisfy R and therefore must also be tardy, hence incomplete. (A tardy set must be half of a minimal pair under \leq_T , as shown in [16], and therefore must be incomplete.) We restate the R-property here:

$$R(A_0, A_1): A_0 \cap A_1 = \emptyset \&$$

$$(\exists C)(\forall B \subseteq C)(\exists D \subseteq C)(\forall S \sqsubset C)(\exists T) \Big[A_0 \cup A_1 \subset_{\mathbf{m}} C \&$$

$$[(B \cap (S - A_0)) \cup A_1 = (D \cap (S - A_0)) \cup A_1 \implies$$

$$[\overline{C} \subset T \& (A_0 \cap S \cap T) \cup A_1 = (B \cap S \cap T) \cup A_1] \Big]$$

Theorem 2.1 If A_0 and A_1 are two c.e. sets such that $R(A_0, A_1)$ holds, then A_0 is not of prompt degree.

Proof. The proof is similar to the corresponding result for the Q-property in [7]. Given A_0 and A_1 , we pick a set C as specified in $R(A_0, A_1)$ and fix enumerations $\{A_0^s\}_{s\in\omega}$ of A_0 and $\{C^s\}_{s\in\omega}$ of C such that $A_0\subseteq C\searrow A_0$.

To prove that a given φ_e is not a promptness function for A_0 , we need to find an infinite c.e. set W_i with standard enumeration $\{W_{i,s}\}_{s\in\omega}$ satisfying the tardiness requirement \mathcal{T}_e :

$$[(\forall s)\varphi_e(s)\downarrow \geq s] \implies (\forall x)(\forall s)[x\in W_{i,s}-W_{i,s-1} \implies A_0^s\upharpoonright x=A_0^{\varphi_e(s)}\upharpoonright x].$$

We will prove independently for each e that \mathcal{T}_e holds. Having fixed e, we will assume for the rest of this section that φ_e is total with $\varphi_e(s) \geq s$ for every s, since otherwise \mathcal{T}_e is automatically fulfilled. We will build a strong array $\{V_{(\alpha,k),n}\}_{k,n\in\omega;\alpha\in\omega\times\omega}$ of c.e. sets with enumerations $\{V_{(\alpha,k),n}^s\}_{s\in\omega}$. The Slowdown Lemma then gives a computable function f such that for each $\langle \alpha,k\rangle$ and each n, $W_{f(\langle \alpha,k\rangle,n)} = V_{\langle \alpha,k\rangle,n}$ and $V_{\langle \alpha,k\rangle,n} \searrow W_{f(\langle \alpha,k\rangle,n)} = V_{\langle \alpha,k\rangle,n}$, so that no element of $V_{\langle \alpha,k\rangle,n}$ enters $W_{f(\langle \alpha,k\rangle,n)}$ until it has already entered $V_{\langle \alpha,k\rangle,n}$. Periodically the strategy for a given $\langle \alpha,k\rangle$ may be injured by a higher-priority strategy. If this happens while we are enumerating $V_{\langle \alpha,k\rangle,n}$, then we give up on $V_{\langle \alpha,k\rangle,n}$ and start enumerating $V_{\langle \alpha,k\rangle,n+1}$. There will exist an $\langle \alpha,k\rangle$ which is only injured n times (with $n<\omega$), yet receives attention

at infinitely many stages, and the corresponding $V_{(\alpha,k),n}$ will be infinite and will be the set which proves satisfaction of \mathcal{T}_e .

We define the function $n(\langle \alpha, k \rangle, s)$ to keep track of which $V_{\langle \alpha, k \rangle, n}$ we are enumerating at stage s. In particular, if the $\langle \alpha, k \rangle$ -strategy receives attention at stage s+1, then we may add an element to $V_{\langle \alpha, k \rangle, n(\langle \alpha, k \rangle, s+1)}^{s+1}$. To avoid notational chaos, however, we will write $V_{\langle \alpha, k \rangle, n}^{s+1}$ in the construction and understand $V_{\langle \alpha, k \rangle, n}^{s+1}$ for it.

and understand $V_{\langle \alpha,k\rangle,n(\langle \alpha,k\rangle,s+1)}^{s+1}$ for it. To ensure that one of these $W_{f(\langle \alpha,k\rangle,n)}$ will satisfy \mathcal{T}_e , we build a c.e. set B to which to apply the property R. When we want to preserve $A_0 \upharpoonright x$ from stage s until stage $\varphi_e(s)$ so as to satisfy \mathcal{T}_e , we do so by restraining all elements < x from entering B until stage $\varphi_e(s)$. The R-property then prohibits such elements from entering A_0 , since if they did, we would then hold them out of B forever after, thereby contradicting $R(A_0, A_1)$.

To apply the R-property, we need to know which c.e. set W_i is the D specified by the property. Of course, we do not have this information, but our strategy is to use S to cover all the possibilities. Specifically, in the construction we will split C into the disjoint union of c.e. sets:

$$C = \bigsqcup_{i \in \omega} S_i.$$

and apply the R-property to each S_i , with S_i in the role of S. (Clearly each $S_i \subset C$.) We use each S_i to handle the possibility that $D = W_i$.

Of course, the R-property states that the restraints we place on elements from entering B only affect A_0 on $S \cap T \cap \overline{A_1}$. Since $R(A_0, A_1)$ also states that $A_0 \cap A_1$ is empty, we do not need to worry about elements of A_1 , for they can never enter A_0 . We are allowed to choose the S, since the matrix of R applies for all S, and indeed we have already done so above (namely $S = S_i$, for each i in turn). However, we can only guess at the set T.

To determine the index j such that $T = W_j$ corresponds to the set S which we choose, we use a Π_2^0 guessing procedure, since the conclusion in the matrix of R is a Π_2^0 property. The j for which $T = W_j$ will be the least j which receives infinitely many guesses under this procedure. (We ensure that the hypothesis of the matrix holds, by periodically putting all elements of $D^s \cap (S^s - A_0^s)$ into B^s .) Moreover, in the construction, we will subdivide each S_i into the disjoint union of c.e. sets $S_{i,j}$:

$$S_i = \bigsqcup_{j \in \omega} S_{i,j}.$$

 $S_{i,j}$ is used to handle the possibility that $T=W_j$, so we pay attention to $S_{i,j}$

each time j is named by the guessing procedure. Thus the $S_{i,j}$ corresponding to the correct T will receive attention infinitely often.

To simplify the notation, we let the variable $\alpha = \langle i, j \rangle$ range over $\omega \times \omega$, and define:

$$D_{\alpha} = W_i$$

$$S_{\alpha} = S_{i,j}$$

$$T_{\alpha} = W_i$$

We order the elements α of $\omega \times \omega$ by pulling back the usual order < on ω to $\omega \times \omega$ via a standard pairing function. Thus each α has only finitely many predecessors under <.

For each α , let $F(\alpha)$ be the conjunction of the hypothesis and conclusion in the matrix of the R-property:

$$F(\alpha): \qquad (B \cap (S_{\alpha} - A_0)) \cup A_1 = (D_{\alpha} \cap (S_{\alpha} - A_0)) \cup A_1 \&$$

$$[\overline{C} \subset T_{\alpha} \& (A_0 \cap S_{\alpha} \cap T_{\alpha}) \cup A_1 = (B \cap S_{\alpha} \cap T_{\alpha}) \cup A_1]$$

$$(2)$$

s a Π_2^0 condition, uniformly in lpha, so there is a computable total

Then $F(\alpha)$ is a Π_2^0 condition, uniformly in α , so there is a computable total function g such that $F(\alpha)$ holds just if $g^{-1}(\alpha)$ is infinite. We enumerate the c.e. set $Z_{\alpha} = g^1(\alpha)$ by setting $Z_{\alpha}^s = \{t \leq s : g(t) = \alpha\}$.

Now we narrow down each T_{α} to a c.e. subset U_{α} , enumerated by:

$$U_{\alpha}^{s} = U_{\alpha}^{s-1} \cup \{x \in T_{\alpha}^{s} - C^{s} : x < |Z_{\alpha}^{s}|\}$$

Thus, if T_{α} actually is the T corresponding to S_i , then U_{α} will contain all of T_{α} except certain elements of C. Hence $F(\alpha)$ will hold with U_{α} in place of T_{α} . On the other hand, if $F(\alpha)$ fails, then Z_{α} and U_{α} are both finite.

If $F(\alpha)$ holds, then $\overline{C} \subseteq U_{\alpha}$, so $\overline{A_0} \subseteq^* U_{\alpha} \cup A_1$, because $A_0 \cup A_1 \subset_{\mathrm{m}} C$. For the least α such that $F(\alpha)$ holds, our construction of S_{α}^{s+1} will yield $C - A_0 \subseteq^* S_{\alpha} \cup A_1$, with S_{β} finite for all $\beta < \alpha$. Hence there will exist a k such that

$$C - A_0 \subseteq S_\alpha \cup A_1 \cup \{0, 1, \dots k - 1\}$$
 (3)

Line (3) is a Π_2^0 statement, uniformly in k and α , since our definition of S_{α} will be uniform in α . Therefore, there exists a total function h_{α} such that (3) holds if and only if $h_{\alpha}^{-1}(k)$ is infinite. We define:

$$h(s) = h_{g(s)}(n), \text{ where } n = |\{t < s : g(t) = g(s)\}|.$$

We will enumerate sets $V_{(\alpha,k),n}$ for each α , k and n. For the least α with Z_{α} infinite and the least k with $h_{\alpha}^{-1}(k)$ infinite, the set $V_{(\alpha,k),n}$ (for some

n) will be the W_i required by \mathcal{T}_e . Elements of each $V_{(\alpha,k),n}$ (the "witness elements" for the requirement \mathcal{T}_e) will be denoted $v_{(\alpha,k)}^s$. Each $v_{(\alpha,k)}^s$ will enter $V_{(\alpha,k),n}$ for at most one n.

The Slowdown Lemma (see [16], p. 284) then yields a computable function f such that, for every $\langle \alpha, k \rangle$ and every n, $V_{\langle \alpha, k \rangle, n} = W_{f(\langle \alpha, k \rangle, n)}$, and at every stage s,

$$(V^s_{\langle \alpha, k \rangle, n} - V^{s-1}_{\langle \alpha, k \rangle, n}) \cap W_{f(\langle \alpha, k \rangle, n), s} = \emptyset.$$

When a witness element $v_{\langle \alpha, k \rangle}^s$ enters $V_{\langle \alpha, k \rangle, n}$, we will find the stage $t_{\langle \alpha, k \rangle}^s > s$ at which $v_{\langle \alpha, k \rangle}^s$ enters $W_{f(\langle \alpha, k \rangle, n)}$ and restrain (with priority $\langle \alpha, k \rangle$) elements $\leq v_{\langle \alpha, k \rangle}^s$ from entering A_0 until stage $\varphi_e(t_{\langle \alpha, k \rangle}^s)$. (Recall that \mathcal{T}_e assumes φ_e to be total.) Thus we will have $A_0^{t_{\langle \alpha, k \rangle}^s} \upharpoonright v_{\langle \alpha, k \rangle}^s = A_0^{\varphi_e(t_{\langle \alpha, k \rangle}^s)} \upharpoonright v_{\langle \alpha, k \rangle}^s$. If we can achieve this for all $v_{\langle \alpha, k \rangle}^s$ in the (infinite) set $V_{\langle \alpha, k \rangle, n}$ for some n, then the set $W_{f(\langle \alpha, k \rangle, n)}$ will be the set required by \mathcal{T}_e to prove that φ_e is not a promptness function for A_0 .

At stage 0, for all $\langle \alpha, k \rangle$, we set $n(\langle \alpha, k \rangle, 0) = 0$ and $V^0_{\langle \alpha, k \rangle, 0} = \emptyset$, with $v^0_{\langle \alpha, k \rangle} \uparrow$ and $t^0_{\langle \alpha, k \rangle} \uparrow$. Also, let every $S^0_{\alpha} = \emptyset$ and let $B^0 = \emptyset$.

At stage s+1, we first define each S_{α}^{s+1} . For each $x \in C^{s+1} - C^s$, find the least α such that $x \in U_{\alpha}^s$ and put x into S_{α}^{s+1} . If there is no such α , put x into S_{ω}^{s+1} . (The c.e. set S_{ω} simply collects elements which enter C without entering any S_{α} . Thus $C = \bigsqcup_{\alpha < \omega} S_{\alpha}$.)

Set $\alpha = g(s)$, and define:

$$B^{s+1} = B^s \cup \left\{ x: \begin{array}{l} x \in C^s - A^s_0 \ \& \ (\exists \beta \leq \alpha)[x \in D^{s+1}_\beta \cap S^{s+1}_\beta \ \& \\ (\forall \delta \leq \beta)(\forall k < s)[t^s_{\langle \delta, k \rangle} \downarrow \implies x \geq v^s_{\langle \delta, k \rangle}]] \end{array} \right\}$$

For each strategy which is injured at stage s+1, we begin enumerating a new witness set. To this end, set $n(\langle \gamma, k \rangle, s+1) = n(\langle \gamma, k \rangle, s) + 1$ and $v_{\langle \gamma, k \rangle}^{s+1} \uparrow$ and $t_{\langle \gamma, k \rangle}^{s+1} \uparrow$ for each $\langle \gamma, k \rangle$ satisfying any of the following conditions:

- $\gamma > \alpha$.
- $\gamma = \alpha$ and k > h(s).
- There exists x < k with $x \in A_0^{s+1} A_0^s$.
- There exists $\beta < \gamma$ with $S_{\beta}^{s+1} \neq S_{\beta}^{s}$.
- There exists $\beta < \gamma$ such that U_{β}^{s+1} contains an element $\geq m$, where $m = \min(B^{s+1} B^s)$.

For all other $\langle \gamma, k \rangle$, set $n(\langle \gamma, k \rangle, s+1) = n(\langle \gamma, k \rangle, s)$.

We now define the witness sets at stage s+1. For each $\langle \beta, k \rangle \leq \langle \alpha, h(s) \rangle$ (in the lexicographic order) which was not injured at stage s+1:

- 1. If $v^s_{\langle \beta, k \rangle} \uparrow$ and $\langle \beta, k \rangle \neq \langle \alpha, h(s) \rangle$, let $v^{s+1}_{\langle \beta, k \rangle}$ and $t^{s+1}_{\langle \beta, k \rangle}$ diverge also, with $V^{s+1}_{\langle \beta, k \rangle, n} = V^s_{\langle \beta, k \rangle, n}$.
- 2. If $v^s_{\langle \alpha,h(s)\rangle} \uparrow$, let $v^{s+1}_{\langle \alpha,h(s)\rangle} = s+1$, with $V^{s+1}_{\langle \alpha,h(s)\rangle,n} = V^s_{\langle \alpha,h(s)\rangle,n}$ and $t^{s+1}_{\langle \alpha,h(s)\rangle} \uparrow$.
- 3. If $v^s_{\langle \beta, k \rangle} \downarrow$ but $t^s_{\langle \beta, k \rangle} \uparrow$, let $v^{s+1}_{\langle \beta, k \rangle} = v^s_{\langle \beta, k \rangle}$, and ask whether the following holds:

$$(\forall y)_{k \le y \le v_{(\beta,k)}^{s+1}} \begin{bmatrix} y \in A_0^{s+1} \lor y \in A_1^{s+1} \lor \\ y \in (U_{\beta}^{s+1} - C^{s+1}) \lor \\ y \in (C^{s+1} - B^{s+1}) \cap S_{\beta}^{s+1} \cap U_{\beta}^{s+1} \end{bmatrix}$$
(4)

If (4) holds, let $V^{s+1}_{\langle\beta,k\rangle,n}=V^s_{\langle\beta,k\rangle,n}\cup\{v^{s+1}_{\langle\beta,k\rangle}\}$ and

$$t_{\langle \beta, k \rangle}^{s+1} = \mu t [v_{\langle \beta, k \rangle}^{s+1} \in W_{f(\langle \beta, k \rangle, n), t}].$$

(Such a t must exist, since $W_{f(\langle \beta, k \rangle, n)} = V_{\langle \beta, k \rangle, n}$.) If (4) fails, then let $V^{s+1}_{\langle \beta, k \rangle, n} = V^s_{\langle \beta, k \rangle, n}$ and $t^{s+1}_{\langle \beta, k \rangle}$.

- 4. If $v^s_{\langle \beta, k \rangle} \downarrow$ and $t^s_{\langle \beta, k \rangle} \downarrow$ and $\varphi_{e,s}(t^s_{\langle \beta, k \rangle}) \downarrow < s$, then let $v^{s+1}_{\langle \beta, k \rangle} \uparrow$ and $t^{s+1}_{\langle \beta, k \rangle} \uparrow$, with $V^{s+1}_{\langle \beta, k \rangle, n} = V^s_{\langle \beta, k \rangle, n}$.
- 5. If $v^s_{\langle \beta, k \rangle} \downarrow$ and $t^s_{\langle \beta, k \rangle} \downarrow$ but either $\varphi_{e,s}(t^s_{\langle \beta, k \rangle}) \downarrow \geq s$ or $\varphi_{e,s}(t^s_{\langle \beta, k \rangle})$ diverges, then let $V^{s+1}_{\langle \beta, k \rangle, n} = V^s_{\langle \beta, k \rangle, n}, v^{s+1}_{\langle \beta, k \rangle} = v^s_{\langle \beta, k \rangle}$, and $t^{s+1}_{\langle \beta, k \rangle} = t^s_{\langle \beta, k \rangle}$.

This completes the construction.

We now use the sets B and S_{α} to prove that requirement \mathcal{T}_{e} is satisfied.

Lemma 2.2 If Z_{β} is finite, then there exists a stage s_1 such that $t_{\langle \beta, k \rangle}^s \uparrow$ for all $s \geq s_1$ and all k.

Proof. Pick a stage s_0 such that no $s \geq s_0$ satisfies $g(s) = \beta$, and let $k' = \max\{h(s) : g(s) = \beta\}$. Then for all k > k', $v^s_{\langle \beta, k \rangle} \uparrow$ for all s, and hence $t^s_{\langle \beta, k \rangle} \uparrow$ for all s. (The construction makes it clear that for any k and s, $t^s_{\langle \beta, k \rangle}$ can converge only if $v^s_{\langle \beta, k \rangle}$ converges.)

Now suppose $k \leq k'$ and $v_{\langle \beta, k \rangle}^s \downarrow$ for all $s \geq s_0$. This means that we never execute Step (4) in the construction after stage s_0 , and that the $\langle \beta, k \rangle$ strategy is never injured after stage s_0 . But if $t_{\langle \beta, k \rangle}^s$ ever converges after stage s_0 , then eventually we must reach Step (4), since we assumed φ_e to be total. Hence $t_{\langle \beta, k \rangle}^s$ must diverge for all $s \geq s_0$.

Finally, suppose $k \leq k'$ and $v_{\langle \beta, k \rangle}^{s_{1,k}} \uparrow$ for some $s_{1,k} \geq s_0$. Then $v_{\langle \beta, k \rangle}^s$ will diverge for all subsequent s, since it can only be newly defined at a stage s with $g(s) = \beta$. Thus $t_{\langle \beta, k \rangle}^s$ will diverge for all subsequent s as well. Letting $s_1 = \max_{k \leq k'} s_{1,k}$ completes the proof.

Lemma 2.3 $F(\alpha)$ holds for some α , and for the least such α , there exists a k such that $h_{\alpha}^{-1}(k)$ is infinite.

Proof. First we claim that some Z_{α} must be infinite. Suppose not, so Z_{α} is finite for all α , and $F(\alpha)$ fails for all α . However, the R-property holds, so there must be some α for which line (1) fails. Choose the least such α . Then

$$(B \cap (S_{\alpha} - A_0)) \cup A_1 \neq (D_{\alpha} \cap (S_{\alpha} - A_0)) \cup A_1.$$

Suppose $x \in B \cap (S_{\alpha} - A_0)$. Pick s such that $x \in B^{s+1} - B^s$. Now to go into B^{s+1} , x must have been in $D_{\beta}^{s+1} \cap S_{\beta}^{s+1}$ for some β . Since $x \in S_{\alpha}$, we know $x \notin S_{\beta}$ for all $\beta \neq \alpha$. Hence $x \in D_{\alpha}$, and so

$$(B \cap (S_{\alpha} - A_0)) \cup A_1 \subseteq (D_{\alpha} \cap (S_{\alpha} - A_0)) \cup A_1.$$

Therefore, there must be some element $x \in \overline{A_1} \cap \overline{B} \cap D_{\alpha} \cap (S_{\alpha} - A_0)$. Assume x is the least such element. Now for every $\beta < \alpha$, line (1) must hold and line (2) must fail, since we chose α to be minimal satisfying the R-property. Hence for all $\beta < \alpha$,

$$(B \cap (S_{\beta} - A_0)) \cup A_1 = (D_{\beta} \cap (S_{\beta} - A_0)) \cup A_1.$$

Now since every Z_{β} with $\beta \leq \alpha$ is finite, there is a stage s_0 such that for all $s \geq s_0$, $g(s) > \alpha$, and we may also assume that s_0 is so large that $x \in S_{\alpha}^{s_0} \cap D_{\alpha}^{s_0} \cap C^{s_0}$. (Notice that $x \in S_{\alpha}$ forces $x \in C$.)

Now use Lemma 2.2 to find a stage $s_1 \geq s_0$ such that:

$$(\forall s \geq s_1)(\forall \beta \leq \alpha)(\forall k)[t^{s_1}_{\langle \beta, k \rangle} \uparrow].$$

Since φ_e is total, there must be a stage $s \geq s_1$ such that $t^s_{\langle \alpha, k \rangle} \uparrow$, and once we reach this stage s, x must go into B^{s_1+1} , contradicting our assumption that $x \notin B$.

Thus, there must be some α such that Z_{α} is infinite. Let α be the least such. Then every U_{β} with $\beta < \alpha$ is finite. Since $F(\alpha)$ holds, we have $\overline{C} \subseteq T_{\alpha}$, so by our construction, $\overline{C} \subseteq U_{\alpha}$, and by the major subset property, $\overline{A_0} \subseteq^* U_{\alpha} \cup A_1$.

For this α , we claim that $C-A_0\subseteq^*S_\alpha\cup A_1$. Suppose $x\in C-A_0$. All but finitely many such x lie in $U_\alpha\cup A_1$, as noted above. If $x\in A_1$, we are done. For each sufficiently large $x\in C-A_0-A_1$, there exists s such that $x\in U_\alpha^s-U_\alpha^{s-1}$. By definition of U_α^s , we must have $x\notin C^s$. But $x\in C$, so $x\in C^{t+1}-C^t$ for some $t\geq s$. Hence $x\in S_\alpha^{t+1}$ by definition of S_α^{t+1} , unless there exists $\beta<\alpha$ with $x\in U_\beta$. But all U_β with $\beta<\alpha$ are finite, by our choice of α , so all but finitely many of these x lie in S_α . Therefore, line (3) holds for some k, and $h_\alpha^{-1}(k)$ is infinite.

Use Lemma 2.3 to take the lexicographically least $\langle \alpha, k \rangle$ such that $F(\alpha)$ holds and $h_{\alpha}^{-1}(k)$ is infinite. Then there are infinitely many stages s for which $g(s) = \alpha$ and h(s) = k, but only finitely many for which $\langle g(s), h(s) \rangle$ precedes $\langle \alpha, k \rangle$ in the lexicographic ordering. Let s_0 be the least stage with $\langle g(s_0), h(s_0) \rangle = \langle \alpha, k \rangle$ such that:

- $A_0^{s_0} \upharpoonright k = A_0 \upharpoonright k$, and
- $B^{s_0} \upharpoonright m = B \upharpoonright m$, where $m = \max \cup_{\beta < \alpha} U_{\beta}$, and
- for all $s \geq s_0$, $\langle g(s), h(s) \rangle \geq \langle \alpha, k \rangle$ lexicographically, and
- $S_{\beta}^{s_0} = S_{\beta}$ for all $\beta < \alpha$.

The final condition is possible since each $S_{\beta} \subseteq U_{\beta}$, which is finite for every $\beta < \alpha$. We also let $s_0 < s_1 < s_2 < \cdots$ be all the stages $s \geq s_0$ with $\langle g(s), h(s) \rangle = \langle \alpha, k \rangle$.

Now the $\langle \alpha, k \rangle$ -strategy is never injured after stage s_0 , so for every $s \geq s_0$, $n(\langle \alpha, k \rangle, s_0) = n(\langle \alpha, k \rangle, s)$, and we write $n = n(\langle \alpha, k \rangle, s_0)$. (Thus n is the number of times the $\langle \alpha, k \rangle$ -strategy was injured during the construction.) Moreover, minimality of s_0 implies that this strategy was injured at some stage $s \leq s_0$ such that there is no s_{-1} with $s \leq s_{-1} < s_0$ and $\langle g(s_{-1}), h(s_{-1}) \rangle = \langle \alpha, k \rangle$. Therefore, $V_{(\alpha, k), n}^s = V_{(\alpha, k), n}^{s_0}$ is empty.

 $\langle g(s_{-1}), h(s_{-1}) \rangle = \langle \alpha, k \rangle$. Therefore, $V^s_{\langle \alpha, k \rangle, n} = V^{s_0}_{\langle \alpha, k \rangle, n}$ is empty. We claim that the subset $V_{\langle \alpha, k \rangle, n}$ satisfies requirement \mathcal{T}_e . For this we need:

Lemma 2.4 For this $\langle \alpha, k \rangle$, and for each $y \geq k$, there exists an s such that the matrix of line (4) holds of y, $\langle \alpha, k \rangle$, and s.

Proof. Let $y \geq k$. If $y \in A_0 \cup A_1$, we are done. If $y \in \overline{C}$, then $y \in T_\alpha$ since $F(\alpha)$ holds. But Z_α is infinite, so $T_\alpha - C \subseteq U_\alpha$, and y is in $U_\alpha - C$, hence in some $U_\alpha^{s+1} - C^{s+1}$.

So suppose $y \in C - A_0 - A_1$. Now since $h_{\alpha}^{-1}(k)$ is infinite and $y \geq k$, we know by line (3) that $y \in S_{\alpha}$. But $S_{\alpha} \subseteq U_{\alpha} \subseteq T_{\alpha}$ by definition of S_{α}^{s+1} . Since $y \notin (B \cap S_{\alpha} \cap T_{\alpha}) \cup A_1$ by line (2), we know $y \notin B$. Thus there is an s with $y \in (C^{s+1} - B^{s+1}) \cap S_{\alpha}^{s+1} \cap U_{\alpha}^{s+1}$. This proves the Lemma.

Now $V_{\langle \alpha, k \rangle, n} = W_{f(\langle \alpha, k \rangle, n)}$, and if s' is the stage at which $v_{\langle \alpha, k \rangle}^{s'}$ enters $V_{\langle \alpha, k \rangle, n}$, then $t_{\langle \alpha, k \rangle}^{s'} \downarrow > s'$ by our choice of f from the Slowdown Lemma. Let $s'' = \varphi_e(t_{\langle \alpha, k \rangle}^{s'})$. Then s' < s'', since we assumed φ_e to be increasing.

Lemma 2.5 $V_{\langle \alpha,k\rangle,n}$ is infinite. Moreover, for any element $v_{\langle \alpha,k\rangle}^{s'}$ of $V_{\langle \alpha,k\rangle,n}$, with s' and s'' as above, we have:

$$B^{s'} \upharpoonright v_{\langle \alpha, k \rangle}^{s'} = B^{s''} \upharpoonright v_{\langle \alpha, k \rangle}^{s'} \quad and \quad A_0^{s'} \upharpoonright v_{\langle \alpha, k \rangle}^{s'} = A_0^{s''} \upharpoonright v_{\langle \alpha, k \rangle}^{s'}.$$

Proof. For each $v_{\langle \alpha, k \rangle}^s$ with $s \geq s_0$, Lemma 2.4 guarantees that there will be a stage at which Step (3) of the construction applies. The first such stage will be s', since at that stage $v_{\langle \alpha, k \rangle}^s = v_{\langle \alpha, k \rangle}^{s'}$ will enter $V_{\langle \alpha, k \rangle, n}$ and $t_{\langle \alpha, k \rangle}^{s'}$ will be defined. But since φ_e is total, we will eventually reach the stage s'' > s' at which Step (4) applies, leaving $v_{\langle \alpha, k \rangle}^{s''+1}$ undefined. Then at the next $s_m > s''$, we will define $v_{\langle \alpha, k \rangle}^{s_m+1} = s_m + 1$, which is not yet in $V_{\langle \alpha, k \rangle, n}^{s_m}$. Thus, $V_{\langle \alpha, k \rangle, n}$ must be infinite.

Now pick $v_{\langle \alpha,k\rangle}^{s'} \in V_{\langle \alpha,k\rangle,n}$, with s' and s'' as above. Since $V_{\langle \alpha,k\rangle,n}^{s_0}$ is empty, we know that $s' > s_0$. If s is any stage with $s' \leq s < s''$, then we see from the definition of B^{s+1} that an element y can only enter B^{s+1} on behalf of some γ such that $y \in S_{\gamma}^{s+1}$. But then $y \in U_{\gamma}^{s+1}$. Since we chose s_0 to let $B^{s_0} \upharpoonright m = B \upharpoonright m$, we must have $\gamma \geq \alpha$. But $t_{\langle \alpha,k\rangle}^s \downarrow$, so $y \geq v_{\langle \alpha,k\rangle}^s = v_{\langle \alpha,k\rangle}^{s'}$ by definition of B^{s+1} . Hence $B^{s'} \upharpoonright v_{\langle \alpha,k\rangle}^{s'} = B^{s''} \upharpoonright v_{\langle \alpha,k\rangle}^{s'}$.

Having seen that no $y < v_{\langle \alpha, k \rangle}^{s'}$ can enter B between stages s' and s'', we prove that no such y can enter A_0 at those stages either. First, we know that $A_0^{s_0} \upharpoonright k = A_0 \upharpoonright k$ by choice of s_0 . So suppose $k \leq y < v_{\langle \alpha, k \rangle}^{s'}$. Now since $v_{\langle \alpha, k \rangle}^{s'}$ entered $V_{\langle \alpha, k \rangle, n}$ at stage s', we know by line (4) that

$$y \in A_0^{s'} \vee y \in A_1^{s'} \vee y \in (U_{\alpha}^{s'} - C^{s'}) \vee y \in (C^{s'} - B^{s'}) \cap S_{\alpha}^{s'} \cap U_{\alpha}^{s'}.$$

If $y \in A_0^{s'}$, then $A_0^{s'}(y) = A_0^{s''}(y)$, and if $y \in A_1$, then $y \notin A_0$ at all. Therefore, we will assume that $y \notin A_0^{s'} \cup A_1$ and prove that $y \notin A_0^{s''}$.

If the final clause holds, then $y \in (C^{s'} - B^{s'}) \cap S_{\alpha}^{s'} \cap U_{\alpha}^{s'}$. Hence $y \notin B^{s''}$, by the first half of the lemma. If $y \in A_0^{s''}$, then $y \notin B$, since no element that has entered A_0 can later enter B. But then

$$(A_0 \cap S_\alpha \cap T_\alpha) \cup A_1 \neq (B \cap S_\alpha \cap T_\alpha) \cup A_1$$

since y is on the left side and not on the right side. (Notice that $y \in U_{\alpha}$ implies $y \in T_{\alpha}$.) This contradicts line (2), which we knows holds because $F(\alpha)$ holds. Therefore $y \notin A_0^{s''}$.

So suppose the third clause holds, i.e. $y \in (U_{\alpha}^{s'} - C^{s'})$. Then $y \notin B^{s'}$ since $B^{s'} \subseteq C^{s'}$, and so $y \notin B^{s''}$. If $y \in A_0^{s''}$, then we must have $y \in C^{s''-1}$ since we chose enumerations such that $A_0 \subseteq C \searrow A_0$. Pick s such that $y \in C^s - C^{s-1}$; then s' < s < s'' and $y \notin A_0^s$. Now $y \in U_{\alpha}^{s'} \subseteq T_{\alpha}^{s'}$, and by definition of S_{α}^s we will have $y \in S_{\alpha}^s$. (Recall that s_0 was chosen so large that $S_{\beta}^{s_0} = S_{\beta}$ for all $\beta < \alpha$.) But now $y \notin A_0^{s''}$, since otherwise

$$(A_0 \cap S_\alpha \cap T_\alpha) \cup A_1 \neq (B \cap S_\alpha \cap T_\alpha) \cup A_1$$

just as in the preceding paragraph.

Hence $V_{(\alpha,k),n} = W_{f((\alpha,k),n)}$ is an infinite c.e. set which satisfies the tardiness requirement \mathcal{T}_e . This completes the proof of Theorem 2.1.

3 Satisfaction of R

We now prove that the R-property defined in Section 2 is nontrivial. The theorem establishes several other properties of the sets A_0 and A_1 as well, in order to yield the corollaries.

Theorem 3.1 There exists a c.e. set A with Friedberg splitting $A = A_0 \sqcup A_1$ such that all of the following hold:

- 1. A is promptly simple of high degree.
- 2. A₁ has prompt degree.
- 3. $R(A_0, A_1)$.

Corollary 3.2 The formula in one free variable A_0 :

$$(\exists A_1)[A_0 >_T \emptyset \& R(A_0, A_1)]$$

is definable in \mathcal{E} and non-vacuous, and implies that A_0 is a noncomputable incomplete set.

Proof of Corollary. The statement $A_0 >_T \emptyset$ is equivalent to the statement that A_0 does not have a complement in \mathcal{E} , hence is \mathcal{E} -definable. The A_0 and A_1 constructed in Theorem 3.1 satisfy the matrix, since halves of a Friedberg splitting must be noncomputable. Finally, Theorem 2.1 shows that A_0 is tardy, hence incomplete.

Corollary 3.3 There exists a Friedberg splitting $A = A_0 \sqcup A_1$ such that A_0 and A_1 are not automorphic in the lattice of c.e. sets.

Proof of Corollary. Take the splitting given by Theorem 3.1. If an automorphism Φ of \mathcal{E} satisfied $\Phi(A_0) = A_1$, then $R(A_1, \Phi(A_1))$ would have to hold. By Theorem 2.1, then, A_1 would be tardy, contradicting the promptness of A_1 .

Proof of Theorem. Let C be any promptly simple set, with computable enumeration $C = \{C^s\}_{s \in \omega}$. Then C is also of prompt degree, so let v and w be the prompt-simplicity and promptness functions for this enumeration of C, satisfying for every i:

$$W_i \text{ infinite } \implies (\exists^{\infty} s)(\exists x \in W_{i,s} - W_{i,s-1})[x \in C^{v(s)}]$$

 $W_i \text{ infinite } \implies (\exists^{\infty} s)(\exists x \in W_{i,s} - W_{i,s-1})[C^{w(s)} \upharpoonright x \neq C^s \upharpoonright x]$

We construct disjoint sets A_0 and A_1 and auxiliary sets D_i and $T_{i,j}$, and set $A = A_0 \sqcup A_1$. The approximations to A, A_0 , and A_1 at stage s will be written A^s , A_0^s , and A_1^s , and will be defined so that $A^s = A_0^s \cup A_1^s \subseteq C^s$ for all s. The construction will satisfy the following requirements for all i and j:

```
\mathcal{N}_{\langle i,j\rangle} (matrix of R-property):
              [W_i \subseteq C \& W_j \subseteq C \& C - W_j \text{ c.e. } \&
              (W_i \cap (W_j - A_0)) \cup A_1 = (D_i \cap (W_j - A_0)) \cup A_1] \Longrightarrow
              (\exists T)[\overline{C} \subseteq T \& (A_0 \cap W_j \cap T) \cup A_1 =^* (W_i \cap W_j \cap T) \cup A_1]
             (major subset requirement):
             \overline{C} \subset W_i \implies \overline{A} \subset^* W_i
   \mathcal{P}_i
             (prompt \ simplicity \ of \ A):
             W_i \text{ infinite } \implies (\exists s)(\exists x \in W_{i,s} - W_{i,s-1})[x \in A^{v(s)}]
   Q_i
             (promptness \ of \ A_1):
             W_i \text{ infinite } \implies (\exists s)(\exists x \in W_{i,s} - W_{i,s-1})[A_1^{w(s)} \upharpoonright x \neq A_1^s \upharpoonright x]
   \mathcal{F}_i
             (Friedberg requirement for A_0):
              W_i \setminus A \text{ infinite } \implies W_i \cap A_0 \neq \emptyset
  \mathcal{G}_i
             (Friedberg requirement for A_1):
              W_i \searrow A \text{ infinite } \implies W_i \cap A_1 \neq \emptyset
```

In the requirement $\mathcal{N}_{\langle i,j\rangle}$, of course, W_i plays the role of B and W_j the role of S in the matrix of the R-property. We will construct c.e. sets $T_{i,j}$ for each i and j, and then refine them to form the T demanded by each $\mathcal{N}_{\langle i,j\rangle}$. Once again we order $\omega \times \omega$ in order type ω and write $\alpha = \langle i,j\rangle$, this time with:

$$\begin{array}{l} B_{\alpha} = W_{i} \\ D_{\alpha} = D_{i} \\ S_{\alpha} = W_{j'} \\ \hat{S}_{\alpha} = W_{j''} \end{array} \right\} \ \, \text{where} \,\, j = \langle j', j'' \rangle \\ T_{\alpha} = T_{i,j} \\ \mathcal{N}_{\alpha} = \mathcal{N}_{i,j}. \end{array}$$

Thus \mathcal{N}_{α} says:

$$[B_{\alpha} \subseteq C \& S_{\alpha} \sqcup \hat{S}_{\alpha} = C \& (B_{\alpha} \cap (S_{\alpha} - A_{0})) \cup A_{1} = (D_{\alpha} \cap (S_{\alpha} - A_{0})) \cup A_{1}]$$

$$\implies (\exists T) [\overline{C} \subseteq T \& (A_{0} \cap S_{\alpha} \cap T) \cup A_{1} =^{*} (B_{\alpha} \cap S_{\alpha} \cap T) \cup A_{1}].$$

 \mathcal{N}_{α} is a negative requirement, trying to keep elements from entering A_0 until they can do so without harming the R-property (if ever). All the other requirements are positive ones, trying to put elements into A_0 or A_1 . There

are no negative restraints on elements of C entering A_1 , except that they cannot already be in A_0 .

Each element which we try to put into A_0 to satisfy some \mathcal{F}_e or \mathcal{M}_e must receive permission to enter A_0 from each \mathcal{N}_α with $\alpha \leq e$. The restraint function q(x,s) will give the greatest $\alpha \leq e$ which has not yet given this permission as of stage s. The priority function p(x,s) keeps track of which requirement \mathcal{F}_e or \mathcal{M}_e wanted x to enter A_0 . This can change from stage to stage, for several reasons. If a higher-priority requirement decides at stage s+1 that it needs x to enter A_0 , then p(x,s+1) < p(x,s). Alternatively, an \mathcal{F}_e could find itself satisfied by another $x' \in A_0^{s+1}$ and no longer need to put x into A_0 , although in this case we leave p(x,s+1) = p(x,s) so as not to disrupt the flow of elements into A_0 . Finally, a higher-priority requirement could make x enter A_1^{s+1} , in which case we define $p(x,s+1) \uparrow$, removing x from the flow of elements into A_0 since we need $A_0 \cap A_1 = \emptyset$.

We use the Recursion Theorem on our construction of A_0 , C, and D_{α} to define the following Π_2^0 statement $F(\alpha)$ for each α :

$$(B_{\alpha} \cap (S_{\alpha} - A_0)) \cup A_1 = (D_{\alpha} \cap (S_{\alpha} - A_0)) \cup A_1 \& B_{\alpha} \subseteq C \& S_{\alpha} \sqcup \hat{S}_{\alpha} = C.$$

Since $F(\alpha)$ is Π_2^0 , there is a computable function $g: \omega \to \omega \times \omega$ such that $F(\alpha)$ holds if and only if the set $Z_\alpha = g^{-1}(\alpha)$ is infinite. We let $Z_\alpha^s = g^{-1}(\alpha) \cap \{0,1,\ldots s-1\}$. Monitoring $|Z_\alpha^s|$ will help us determine for which α the hypothesis in the matrix of the R-property is satisfied. For those α for which the hypothesis fails, $|Z_\alpha|$ is finite, and \mathcal{N}_α will only restrain finitely many elements from entering A_0 , since we need not satisfy the conclusion of the R-property for such an α .

At stage s=0, we set $A_0^0=A_1^0=\emptyset$. Also, let all p(x,0) and q(x,0) diverge.

At stage s+1, we first define T_{α}^{s+1} for each α :

$$T^{s+1}_\alpha = T^s_\alpha \cup \{x \in \overline{C^{s+1}} : x < |Z^{s+1}_\alpha|\}.$$

Next we determine which elements of C^{s+1} to add to A_0^s to create A_0^{s+1} . For this, we need movable markers for elements currently in C-A. Write

$$C^{s+1} - A^s = \{d_0^{s+1}, d_1^{s+1}, \dots d_{m_{s+1}}^{s+1}\}$$

preserving the order of the markers from the preceding stage. (That is, if $d_i^s = d_{i'}^{s+1}$ and $d_j^s = d_{j'}^{s+1}$, then i < j iff i' < j'; and if $d_i^{s+1} \in C^s$ and $d_i^{s+1} \notin C^s$, then i < j.)

For the sake of \mathcal{M}_e , we define

$$V_e^{s+1} = V_e^s \cup \{x \in W_{e,s+1} - C^{s+1} : (\forall y \le x)[y \in W_{e,s+1} \cup C^{s+1}]\}.$$

(For each e, the sets V_e^s enumerate a c.e. set V_e . If $\overline{C} \not\subseteq W_e$, then V_e will be finite, but if $\overline{C} \subseteq W_e$, then $\overline{C} \subseteq V_e \subseteq W_e$.)

For each $e \leq s$, define the e-state of each d_k^{s+1} at stage s+1 to be:

$$\sigma(e, d_k^{s+1}, s+1) = \{i < e : d_k^{s+1} \in V_i^{s+1}\}.$$

We order the different possible e-states by viewing them as binary strings.

Find the least $i \leq s$ such that there exist e and j with $e < i < j \leq s$ and $\sigma(e, d_i^{s+1}, s+1) = \sigma(e, d_j^{s+1}, s+1)$ and $d_i^{s+1} \notin V_e^{s+1}$ and $d_j^{s+1} \in V_e^{s+1}$. For the least such e and the least corresponding j, we say that \mathcal{M}_e wants to put into A_0 all the elements $d_i^{s+1}, d_{i+1}^{s+1}, \ldots d_{j-1}^{s+1}$, so as to give the marker d_i a higher (e+1)-state at subsequent stages.

Now we consider the requirements \mathcal{F}_e . For each $e \leq s$ with $W_{e,s} \cap A_0^s = \emptyset$ and for each x such that

$$x \in (W_{e,s} \cap C^{s+1}) - A^s - \{d_0^{s+1}, d_1^{s+1}, \dots d_e^{s+1}\}$$

we say that \mathcal{F}_e wants to put x into A_0 .

We set $p(x, s+1) \uparrow$ for all $x \notin C - A^s$. Otherwise $x = d_k^{s+1}$ for some k, and p(x, s+1) is the least $e \leq k$ (if any) such that either $p(x, s) \downarrow = e$ or \mathcal{M}_e or \mathcal{F}_e wants to put x into A_0 . Thus, the function p(x, s+1) gives the priority currently assigned to putting x into A_0 . If there is no such e, let $p(x, s+1) \uparrow$.

We now follow the following steps for each $x \leq s$:

- 1. If $p(x, s+1) \uparrow$, then $q(x, s+1) \uparrow$ also.
- 2. If $p(x,s+1) \downarrow$ but $q(x,s) \uparrow$, we ask if every $\alpha \leq p(x,s+1)$ satisfies either $x \in S_{\alpha}^{s+1} \cup \hat{S}_{\alpha}^{s+1}$ or $x \notin T_{\alpha}^{s+1}$. If so, set q(x,s+1) = p(x,s+1) + 1. If not, then $q(x,s+1) \uparrow$.
- 3. If $p(x, s+1) \downarrow$ and $q(x, s) \downarrow > p(x, s+1)$, then set q(x, s+1) to be the greatest $\alpha \leq p(x, s+1)$ satisfying all four of the following conditions:
 - (a) $S_{\alpha}^{s+1} \cap \hat{S}_{\alpha}^{s+1} = \emptyset$.
 - (b) $x \notin \hat{S}_{\alpha}^{s+1}$.
 - (c) $x \in T^{s+1}_{\alpha}$.

(d) $\forall \beta < \alpha$, either β fails one of the three conditions (a)-(c), or $\beta = \langle i', j' \rangle$ and $\alpha = \langle i, j \rangle$ with $i \neq i'$.

Also, enumerate x in $D_{q(x,s+1)}^{s+1}$. (For future reference, notice that if α satisfies (a)-(c), then some $\beta \leq \alpha$ with the same first coordinate as α must satisfy (a)-(d).)

If there is no such α , set q(x, s + 1) = -1.

- 4. If $p(x,s+1) \downarrow$ and $q(x,s) \downarrow$ with $0 \leq q(x,s) \leq p(x,s+1)$, we ask whether $x \in B_{q(x,s)}^{s+1}$. If so, or if q(x,s) no longer satisfies the conditions (a)-(d), set q(x,s+1) to be the greatest $\alpha < q(x,s)$ satisfying the conditions (a)-(d) above, and let $x \in D_{q(x,s+1)}^{s+1}$. (If there is no such α , let q(x,s+1) = -1.) Otherwise, let q(x,s+1) = q(x,s).
- 5. If $p(x,s+1) \downarrow$ and $q(x,s) \downarrow = -1$, enumerate $x \in A_0^{s+1}$, and let $q(x,s+1) \uparrow$.

This completes our enumeration of A_0^{s+1} . Next we determine which elements to add to A_1^{s+1} :

- 1. Find the least $e \leq s$ (if any) such that \mathcal{Q}_e is not yet satisfied and there is an element $x \in W_{e,t} W_{e,t-1}$ for some $t \leq s$ such that w(t) > s, and there exists y < x such that $y \in C^{s+1} A_0^{s+1}$ and $y \notin A_1^t \cup \{d_0^{s+1}, \ldots d_e^{s+1}\}$ and no \mathcal{F}_i with i < e wants to put y into A_0 . Put the greatest such y into A_1^{s+1} . This forces $A_1^{s+1} \upharpoonright x \neq A_1^t \upharpoonright x$, satisfying \mathcal{Q}_e permanently. (If there is no such e, do nothing.)
- 2. Find the least $e \leq s$ (if any) such that \mathcal{P}_e is not yet satisfied and there is an element $x \in C^{s+1} \cap (W_{e,t} W_{e,t-1})$ for some $t \leq s$ with v(t) > s, such that $x \notin \{d_0^{s+1}, \ldots d_e^{s+1}\}$ and no \mathcal{F}_i with i < e wants to put x into A_0 . If no such x lies in $A^s \cup A_0^{s+1}$, then put the least such x into A_1^{s+1} . This forces $x \in A^{s+1}$, satisfying \mathcal{P}_e permanently.
- 3. Find the least $e \leq s$ (if any) such that \mathcal{G}_e is not yet satisfied and there is an element $x \in (W_{e,s+1} \cap C^{s+1}) A_0^{s+1}$ with $x \notin \{d_0^{s+1}, \ldots d_e^{s+1}\}$, such that no \mathcal{F}_i with i < e wants to put x into A_0 . Put this x into A_1^{s+1} . This satisfies \mathcal{G}_e forever.

Let $A^{s+1} = A_0^{s+1} \cup A_1^{s+1}$. This completes the construction.

Lemma 3.4 C - A is infinite.

Proof. We prove by induction on e that $d_e = \lim_s d_e^s$ exists. Assume that this holds for all markers d_i with i < e, and let $s_0 \ge e$ be a stage such that $d_i^{s_0} = d_i$ for all i < e. Now each \mathcal{F}_j , \mathcal{G}_j , \mathcal{P}_j , and \mathcal{Q}_j with j > e cannot put any of the elements d_0^s , ... d_e^s into A_1 at stage s+1, so none of these requirements ever moves the marker d_e^s . Also, each \mathcal{G}_i , \mathcal{P}_i , and \mathcal{Q}_i with $i \le e$ puts at most one element into A, hence moves the markers at most once. Let $s_1 \ge s_0$ be a stage so large that no \mathcal{G}_i , \mathcal{P}_i , or \mathcal{Q}_i with $i \le e$ moves any markers at any stage $s \ge s_1$.

By the construction, d_e^s can only be moved at stage $s \geq s_1$ by a requirement \mathcal{M}_i or \mathcal{F}_i with $i \leq e$. Furthermore, when \mathcal{F}_i $(i \leq e)$ moves a marker, it puts an element into A_0 , so it is satisfied at that point. Before then it may have tried to put finitely many other elements into A_0 as well, and any of them may go into A_0 or A_1 at a later stage, moving markers in the process. However, since there are only finitely many such elements, d_e is moved only finitely many times on behalf of \mathcal{F}_i .

Now \mathcal{M}_0 moves d_e at most 2^{e+1} times after stage s_1 : once to put d_0 into V_0 , possibly twice to put d_1 into V_0 , and so on. Once \mathcal{M}_0 has finished moving d_e , \mathcal{M}_1 moves it at most 2^e more times, to put markers into V_1 . Similarly, once each \mathcal{M}_i has moved d_e for the last time, \mathcal{M}_{i+1} may move it at most 2^{e-i} more times. Hence we eventually reach a stage s_2 after which d_e never is moved again. Possibly $d_e^{s_2} \uparrow$, but since C is infinite and every d_i with i < e has already converged to its limit, we know that d_e^t will be defined at some stage $t > s_2$. Since it never moves again, this yields $d_e^t = \lim_s d_e^s$.

Lemma 3.5 For each e, the requirements \mathcal{N}_e , \mathcal{P}_e , \mathcal{Q}_e , \mathcal{F}_e , and \mathcal{G}_e are all satisfied.

Proof. We proceed by induction on e. Assume the lemma holds for all i < e. We write α for the pair coded by e, and prove first that \mathcal{N}_{α} is satisfied. Suppose $(B_{\alpha} \cap (S_{\alpha} - A_0)) \cup A_1 = (D_{\alpha} \cap (S_{\alpha} - A_0)) \cup A_1$ and $B_{\alpha} \subseteq C$ and $S_{\alpha} \sqcup \hat{S}_{\alpha} = C$. Then $F(\alpha)$ holds and Z_{α} is infinite. The construction of T_{α} then guarantees that $\overline{C} \subseteq T_{\alpha}$. Let G_{α} be the intersection of all those V_i with $i < \alpha$ such that V_i is infinite, and let $\hat{T}_{\alpha} = T_{\alpha} \cap G_{\alpha}$. Thus $\overline{C} \subseteq \hat{T}_{\alpha}$, since $\overline{C} \subseteq V_i$ whenever V_i is infinite.

Sublemma 3.6 For each α and each $n < \alpha$, there are only finitely many $x \in \hat{T}_{\alpha}$ such that \mathcal{M}_n ever wants to put x into A_0 .

Proof. First, if V_n is finite, then \mathcal{M}_n will only want to put finitely many elements into A_0 . So we may assume that V_n is infinite, and hence that $\hat{T}_{\alpha} \subseteq V_n$.

If \mathcal{M}_n wants to put x into A_0 at stage s, then $x \in C^s - A^s$, so $x = d_k^s$ for some k. Moreover, there must be an i with $n < i \le k$ and a j > k such that $\sigma(n, d_i^s, s) = \sigma(n, d_j^s, s)$ and $d_i^s \notin V_n^s$ and $d_j^s \in V_n^s$. Furthermore, d_i is the leftmost marker which any \mathcal{M} -requirement wants to put into A_0 at stage s, and n and j satisfy the minimality requirements of the construction.

Now if $d_k^s \notin V_n^s$, then $d_k^s \notin V_n$, since $C \searrow V_n = \emptyset$, and hence $d_k^s \notin \hat{T}_\alpha$. Therefore we may assume $d_k^s \in V_n^s$. (This guarantees $k \neq i$). Then minimality of n forces $\sigma(n, d_i^s, s) \geq \sigma(n, d_k^s, s)$, and minimality of j forces $\sigma(n, d_i^s, s) > \sigma(n, d_k^s, s)$ (since $d_k^s \in V_n^s$). Hence there is some m < n such that $\sigma(m, d_i^s, s) = \sigma(m, d_k^s, s)$ and $d_i^s \in V_m^s$ and $d_k^s \notin V_m^s$. This forces $d_i^s \in V_m$ and $d_k^s \notin V_m$ (since $d_k^s \in C^s - V_m^s$). If V_m is infinite, then $d_k^s \notin \hat{T}_\alpha$. But if V_m is finite, then d_i^s lies in the finite set

$$V = \bigcup \{V_m : m < n \& V_m \text{ finite}\}.$$

Hence we need only find a stage t so large that for every $d \in V$, either $d \in A_0^t$ or \mathcal{M}_n wants to put d into A_0 at stage t or \mathcal{M}_n never wants to put d into A_0 . Then \mathcal{M}_n will never want to put into A_0 any $x > \max(C^t)$ with $x \in \hat{T}_{\alpha}$.

We will show that the conclusion of \mathcal{N}_{α} holds for \hat{T}_{α} :

$$(A_0 \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1 =^* (B_\alpha \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1.$$

Once we have established this for all α , clearly $R(A_0, A_1)$ itself must hold, since for each α we can choose another \hat{T}_{α} which excludes the (finite) difference set of the two sides and still contains \overline{C} .

Suppose first that $x \in A_0 \cap S_\alpha \cap \hat{T}_\alpha$ and $x \notin A_1$, and assume that x is sufficiently large that:

- $x > |Z_{\beta}|$ for every $\beta < \alpha$ such that Z_{β} is finite, and
- No \mathcal{F}_i with $i < \alpha$ ever tries to put x into A_0 , and
- No \mathcal{M}_i with $i < \alpha$ ever tries to put x into A_0 .

The last condition is possible by Sublemma 3.6. Notice also that the first condition forces $x \notin T_{\beta}$ for all $\beta < \alpha$ with $|Z_{\beta}|$ finite.

Then for all s, either $p(x,s) \geq \alpha$ or $p(x,s) \uparrow$. But since $x \in A_0$, we know that some $p(x,s) \downarrow$. For the least such s we have $x \in C^s$, and hence $x \in T^s_\alpha$, since $C \cap T_\alpha \subseteq T_\alpha \searrow C$.

Now α satisfies conditions (a)-(c) in the construction at stage s, since $F(\alpha)$ holds and $x \in S_{\alpha}$. So there must exist $\beta = \langle i, j' \rangle \leq \alpha = \langle i, j \rangle$ which satisfies (a)-(d) at stage s.

We claim that this β satisfies conditions (a)-(d) at every stage after s as well. Since $x \in T^s_\beta$, we know that Z_β is infinite and $F(\beta)$ holds, by choice of x. Hence (a) and (c) hold at all subsequent stages. Let t be the first stage at which q(x,t) converged. Then $x \in C^t$, and $x \in T^t_\beta$ since $C \searrow T_\beta = \emptyset$. By the definition of q, we must have had $x \in S^t_\beta \cup \hat{S}^t_\beta$. But $x \notin \hat{S}^s_\beta$ since (b) holds at stage s, and because s > t, this forces $x \in S^t_\beta$, so (b) always holds of β .

To show that (d) always holds of β , we choose an arbitrary $\gamma < \beta$ witht he same first coordinate as β . Since β satisfies (d) at stage s, γ must fail one of (a)-(c) at stage s. If γ fails (a) or (b) at stage s, then clearly it fails that same consition at every subsequent stage. Moreover, if γ fails (c) at stage s, then $x \notin T^s_{\gamma}$, and since $x \in C^s$, this forces $x \notin T_{\gamma}$. Thus β will always satisfy condition (d).

But since $x \in A_0$, there must also be a stage s' with q(x,s') = -1. Since (a)-(d) continue to hold of β , the only way for $q(x,s') < \beta$ to occur is for x to enter B_{β} . (Recall that for all s, either $p(x,s) \geq \alpha$ or $p(x,s) \uparrow$.) But $B_{\beta} = W_i = B_{\alpha}$ since $\beta = \langle i, j' \rangle$ and $\alpha = \langle i, j \rangle$, so this forces $x \in B_{\alpha}$. Hence

$$(A_0 \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1 \subseteq^* (B_\alpha \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1.$$

Now suppose that $x \in B_{\alpha} \cap S_{\alpha} \cap \hat{T}_{\alpha}$ and $x \notin A_1$, and assume x is greater than $\max(d_0, \ldots d_{\alpha})$, and also greater than the greatest finite $|Z_{\beta}|$ with $\beta < \alpha$. (Thus $x \notin T_{\beta}$ for all such β .) Now $x \in C$ since $S_{\alpha} \subseteq C$, so at some stage s_0 , x will enter C and be given a marker: say $x = d_k^{s_0}$. So $x \in C^{s_0}$, and since $x \in T_{\alpha}$, this forces $x \in T_{\alpha}^{s_0}$.

If $x \notin A_0$, then we must have $x \in D_\alpha$, since $(B_\alpha \cap (S_\alpha - A_0)) \cup A_1 = (D_\alpha \cap (S_\alpha - A_0)) \cup A_1$ and $x \notin A_1$. (Notice that then x, being in C - A, eventually receives some permanent marker $d_{k'}$, with $k' > \alpha$ by choice of x.) For x to have entered D_α , there must have been a stage $s_1 \geq s_0$ with $q(x,s_1) = \gamma = \langle i,j' \rangle$, where $\alpha = \langle i,j \rangle$. (Also, then $p(x,s_1) \downarrow$, and since $x \notin A_1$, $p(x,s) \downarrow$ for all $s \geq s_1$.) But α satisfies conditions (a)-(c) at all stages $s \geq s_0$, so by condition (d) on γ , we must have $\gamma \leq \alpha$. The assumption $x \notin A_0 \cup A_1$ then means that there is some $s_2 > s_1$ such that $q(x,s) \downarrow = q(x,s_2)$ for all $s \geq s_2$. Let $\beta = q(x,s_2) \leq \gamma$. Then $x \in D_\beta - B_\beta$, and furthermore β satisfies the conditions (a)-(d) at all stages $s \geq s_2$.

Now $x \in T_{\beta}$, to satisfy condition (c), so $x < |Z_{\beta}|$ and $\beta \le \gamma \le \alpha$. If $\beta = \alpha$, then Z_{β} is infinite since $F(\alpha)$ holds, and if $\beta < \alpha$, then Z_{β} must

be infinite, by our choice of x. Therefore $F(\beta)$ holds, and in particular $S_{\beta} \sqcup \hat{S}_{\beta} = C$. Now $x \notin \hat{S}_{\beta}$ by condition (b), so $x \in S_{\beta}$. However, with $x \in D_{\beta} - B_{\beta}$, this contradicts $F(\beta)$. Hence $x \in A_0$, and

$$(A_0 \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1 \subseteq^* (B_\alpha \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1.$$

This completes our proof that \mathcal{N}_{α} is satisfied.

Now we continue with the other requirements. Let s_0 be a stage such that no \mathcal{P}_i , \mathcal{Q}_i , \mathcal{F}_i , or \mathcal{G}_i with i < e tries to put any element into A_0 or A_1 at any stage after s_0 . (\mathcal{F}_i is different from the other requirements in that it may try to put more than one element into A_0 . It only stops trying when one of those elements succeeds in entering A_0 . We choose s_0 so that every element which \mathcal{F}_i wants to put into A_0 either is in A^{s_0} or never enters A.) Assume also that s_0 is sufficiently large that $d_i^{s_0} = d_i$ for every $i \leq e$.

Now if $W_e \searrow A$ is infinite, then there must be an x in some $W_{e,s} - A^s$ with $s > s_0$ and $\{d_0, \ldots d_e\}$. No requirement of higher priority will need to put this x anywhere, except possibly some \mathcal{M}_i , and according to our construction, \mathcal{G}_e does not respect the priority of the requirements \mathcal{M}_i , so $x \in A_1^{s+1}$, and \mathcal{G}_e is satisfied.

Similarly, if W_e is infinite, then there must be an x and an $s > s_0$ such that $x \in W_{e,s} - W_{e,s-1}$ and $x \in C^{v(s)}$, by prompt simplicity of C. If this x is not already in $A^{v(s)-1}$, then the construction puts it into $A_1^{v(s)}$, so \mathcal{P}_e holds. Also, there must be an x and an $s > s_0$ with $x \in W_{e,s} - W_{e,s-1}$ such that $C^s \upharpoonright x \neq C^{w(s)} \upharpoonright x$, by promptness of C. Thus there is a y < x which entered C at some stage t with $s < t \leq w(s)$. We must have $y \notin A^{t-1}$ since $A^{t-1} \subseteq C^{t-1}$. But now $y \notin \{d_0^t, \dots d_e^t\}$, since these markers had reached their limits by stage s_0 and y only entered C at stage t. Hence the construction will put this y into A_1^t , and $A_1^{w(s)} \upharpoonright x \neq A_1^s \upharpoonright x$, satisfying \mathcal{Q}_e .

Continuing with the induction, we need a sublemma to handle \mathcal{F}_e .

Sublemma 3.7 For this e and for all sufficiently large x, if \mathcal{F}_e wants to put x into A_0 at some stage, then $x \in A_0$.

Proof. Choose x so large that it satisfies all of the following:

- 1. $x > \max\{|Z_{\beta}| : \beta \leq e \& Z_{\beta} \text{ is finite}\}.$
- 2. No \mathcal{F}_i , \mathcal{G}_i , \mathcal{P}_i , or \mathcal{Q}_i with i < e ever wants to put x into A_0 or A_1 .
- 3. $x \notin \{d_0, \ldots d_e\}$.

Suppose \mathcal{F}_e wants x to enter A_0 at stage s_0 . Then $x=d_k^{s_0}$ for some k and $p(x,s_0)\downarrow\leq e$. Now no \mathcal{G}_j , \mathcal{P}_j , or \mathcal{Q}_j with $j\geq e$ ever manages to put x into A_1 , since \mathcal{F}_e takes priority over these. (Since $x\neq d_e$, the only way to have $k\leq e$ is for x eventually to enter A_0 . Hence we may assume k>e.) Also, for every $\beta< e$, either $x\notin T_\beta$ (if $|Z_\beta|< x$) or $F(\beta)$ holds (if Z_β is infinite). Hence there is an $s_1\geq s_0$ such that $q(x,s_1)\downarrow$ and $q(x,s_1+1)\downarrow\leq e$.

Now suppose $q(x,s) = \beta$ for some $s \geq s_1$ (so $\beta \leq e$). If $F(\beta)$ failed, then Z_{β} would have to be finite, so $x \notin T_{\beta}$ (since $|Z_{\beta}| < x$) and q(x,s) would never equal β . Therefore, $F(\beta)$ must hold. Suppose $x \notin A_0$. If $x \notin S_{\beta}$, then $x \in \hat{S}_{\beta}$ by $F(\beta)$ and so $q(x,s_{\beta}) < \beta$ for some $s_{\beta} \geq s_1$. Otherwise $x \in D_{\beta} \cap (S_{\beta} - A_0) \subseteq B_{\beta}$ by $F(\beta)$, so $x \in B_{\beta}^{s_{\beta}}$ for some $s_{\beta} \geq s_1$, and hence $q(x,s_{\beta}) < \beta$. Thus, by induction on $\beta < e$, eventually we must have q(x,s) = -1, and so $x \in A_0^{s+1}$, proving the sublemma.

Now if $W_e \searrow A$ is infinite, then \mathcal{F}_e has infinitely many elements at its disposal to try to put into A_0 . Hence once we find a sufficiently large $x \in W_e \searrow A$, we know by the sublemma that this x will eventually enter A_0 , thus satisfying \mathcal{F}_e . This completes the induction of Lemma 3.5.

Lemma 3.8 The requirements \mathcal{M}_e are all satisfied by our construction.

Proof. Suppose that $\overline{C} \subseteq W_e$. To prove that \mathcal{M}_e holds, we must show $\overline{A} \subseteq^* W_e$. By induction we assume that \mathcal{M}_i holds for all i < e. Let

$$\sigma = \{ i < e : \overline{C} \subseteq W_i \}.$$

Now if $i \in \sigma$, then also $\overline{C} \subseteq V_i$, so by inductive hypothesis $\overline{A} \subseteq^* V_i$, whereas if $i \notin \sigma$ (and i < e), then V_i is finite. Hence for all but finitely many k we have $\sigma(e, d_k) = \sigma$.

Now let $V_{\sigma} = V_e \cap (\bigcap \{V_i : i \in \sigma\})$. Then $\overline{C} \subseteq V_{\sigma}$. But C, being promptly simple, is noncomputable, so $V_{\sigma} \searrow C$ must be infinite. Choose y so large that no element $\geq y$ can be held out of A_0 forever by any requirement \mathcal{N}_{α} with $\alpha \leq e$, and let s_0 be a stage such that $C^{s_0} \upharpoonright y = C \upharpoonright y$.

Suppose for a contradiction that $\overline{V_e} \cap (C-A)$ is infinite. Then there exists p such that $d_p \notin V_e$ with p so large that $d_p \notin C^{s_0}$ and with $\sigma(e,d_q) = \sigma$. (Hence $d_p > y$.) Let s_1 be a stage with $d_p^{s_1} = d_p$ and $\sigma(e,d_p,s_1) = \sigma$. Now since $V_\sigma \searrow C$ is infinite, there will be a stage $s > s_1$ at which some element $x \in V_\sigma^{s-1}$ enters C, and is assigned the marker d_q^s (with q > p since $d_p^{s_0} = d_p$). Moreover, we may assume that q is sufficiently large that not only is d_q^s in V_σ , but that $\sigma(e,d_q^s,s) = \sigma$, since every V_i with i < e and $i \notin \sigma$ is finite. Since $d_q^s \in V_\sigma \subseteq V_e$ and $d_p \notin V_e$, \mathcal{M}_e will want to put d_p into A_0

at stage s, and since $d_p > y$, no negative requirement will keep d_p out of A_0 . Possibly d_p will be diverted into A_1 by some requirement \mathcal{G}_j , \mathcal{P}_j , or \mathcal{Q}_j , since these do not respect the priority of \mathcal{M}_e . If so, then d_p will enter A_1 ; if not, then d_p will enter A_0 . Either way, d_p enters A, contradicting our assumption that the marker d_p had reached its limit at stage s_0 .

Hence $\overline{V_e} \cap (C-A)$ is finite, and $\overline{A} \subseteq (C-A) \cup \overline{C} \subseteq^* V_e \subseteq W_e$. Thus \mathcal{M}_e is satisfied, and the lemma is proven.

Knowing that the requirements are all satisfied, we can easily complete the proof of the theorem. The construction ensured that $A_0 \cap A_1 = \emptyset$, and the conjunction of all the \mathcal{F}_i and \mathcal{G}_i implies that $A_0 \sqcup A_1$ is a Friedberg splitting of A. (See pp. 181-182 of [16].) The requirements \mathcal{P}_i together make A a promptly simple set, by definition, and the \mathcal{Q}_i together allow A_1 to satisfy the Promptly Simple Degree Theorem (Thm. XIII.1.6 of [16]), so that A_1 is of prompt degree. To prove that $R(A_0, A_1)$ holds, we note that the requirements \mathcal{M}_i , along with Lemma 3.4, show that $A = A_0 \sqcup A_1$ is a major subset of C. Moreover, given a $B = W_i$ and a pair $(S_{j'}, \hat{S}_{j''})$ with $S_{j'} \sqcup S_{j''} = C$, we have the D_i and T_{α} (with $\alpha = \langle i, \langle j', j'' \rangle \rangle$) constructed above. If

$$(B_i \cap (S_{i'} - A_0)) \cup A_1 = (D_i \cap (S_{i'} - A_0)) \cup A_1,$$

then $F(\alpha)$ holds. Since \mathcal{N}_{α} is satisfied, we know that there exists a T with $\overline{C} \subseteq T$ such that

$$(A_0 \cap S_{i'} \cap T) \cup A_1 =^* (B_i \cap S_{i'} \cap T) \cup A_1.$$

So we can pick a sufficiently large n_{α} , and let

$$T' = \{x \in T : x \ge n_{\alpha}\} \cup \{x \in \overline{C} : x < n_{\alpha}\}.$$

Then $\overline{C} \subseteq T'$ and also $(A_0 \cap S_{j'} \cap T') \cup A_1 = (B_i \cap S_{j'} \cap T') \cup A_1$, since $S_{j'} \cap \overline{C} = \emptyset$. Thus $R(A_0, A_1)$ holds. Finally, since A is a major subset of the set C, A must be of high degree (see [10], page 214).

References

- [1] P. Cholak; Automorphisms of the Lattice of Recursively Enumerable Sets, Memoirs of the American Mathematical Society 113 (1995), No. 541.
- [2] P. Cholak, R. Downey & M. Stob; Automorphisms of the Lattice of Recursively Enumerable Sets: Promptly Simple Sets, *Transactions of* the American Mathematical Society **332** (1993), 555-569.
- [3] R. Downey & M. Stob; Jumps of Hemimaximal Sets, Z. Math. Logik Grundlagen 37 (1991), 113-120.
- [4] R. Downey & M. Stob; Automorphisms of the Lattice of Recursively Enumerable Sets: Orbits, Advances in Mathematics 92 (1992), 237-265.
- [5] R. Downey & M. Stob; Friedberg Splittings of Recursively Enumerable Sets, Annals of Pure and Applied Logic 59 (1993), 175-199.
- [6] R.M. Friedberg; Two Recursively Enumerable Sets of Incomparable Degrees of Unsolvability, Proc. Nat. Acad. Sci. (USA) 43 (1957), 236-238.
- [7] L. Harrington & R. I. Soare; Post's Program and Incomplete Recursively Enumerable Sets, *Proc. Nat. Acad. Sci. (USA)* 88 (1991), 10242-10246.
- [8] L. Harrington & R. I. Soare; The Δ_3^0 -Automorphism Method and Non-invariant Classes of Degrees, *Journal of the American Mathematical Society* **9** (1996), 617-666.
- [9] L. Harrington & R. I. Soare; Definable Properties of the Computably Enumerable Sets, Annals of Pure and Applied Logic 94 (1998), 97-125.
- [10] C. G. Jockusch, Jr.; Review of Lerman [11], Mathematical Reviews 45 (1973), # 3200.
- [11] M. Lerman; Some Theorems on r-maximal Sets and Major Subsets of Recursively Enumerable Sets, *Journal of Symbolic Logic* **36** (1971), 193-215.
- [12] W. Maass & M. Stob; The Intervals of the Lattice of Recursively Enumerable Sets Determined by Major Subsets, *Annals of Pure and Applied Logic* 24 (1983), 189-212.

- [13] A.A. Muchnik; On the Unsolvability of the Problem of Reducibility in the Theory of Algorithms, *Dokl. Akad. Nauk SSSR*, N.S. **109** (1956), pp. 194-197 (Russian).
- [14] J. Myhill; The Lattice of Recursively Enumerable Sets, *Journal of Symbolic Logic* **21** (1956), 215, 220.
- [15] H. Rogers, Jr.; Theory of Recursive Functions and Effective Computability (Cambridge, MA: The MIT Press, 1987).
- [16] R. I. Soare; Recursively Enumerable Sets and Degrees (New York: Springer-Verlag, 1987).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS 60637

CURRENT ADDRESS:

DEPARTMENT OF MATHEMATICS CORNELL UNIVERSITY ITHACA, NEW YORK 14853 E-mail: russell@math.cornell.edu