
Orbits of Computably Enumerable Sets:
Avoiding an Upper Cone

Russell Miller∗

September 3, 2007

Abstract

We investigate the orbit of a low computably enumerable set un-
der automorphisms of the partial order E of c.e. sets under inclusion.
Given an arbitrary low c.e. set A and an arbitrary noncomputable
c.e. set C, we use the New Extension Theorem of Soare to construct
an automorphism of E mapping A to a set B such that C 6≤T B. Thus,
the orbit in E of the low set A cannot be contained in the upper cone
above C. This complements a result of Harrington, who showed that
the orbit of a noncomputable c.e. set cannot be contained in the lower
cone below any incomplete c.e. set.

1 Introduction

The computably enumerable sets form an upper semi-lattice under Turing
reducibility. Under set inclusion, they form a lattice E , as first noted by
Myhill in [13], and the properties of a c.e. set as an element of E often
help determine its properties under Turing reducibility and vice versa. The
E-definable property of maximality, for instance, enabled Martin to charac-
terize the high c.e. degrees as those which contained a maximal set ([11]),
and other E-definable properties discovered by Harrington and Soare imply
Turing completeness, Turing incompleteness, and non-lowness (see [7] and
[9]).

∗This article is the fourth chapter of a Ph.D. thesis at the University of Chicago under
the supervision of Robert I. Soare.

1

The study of E often focusses on automorphisms of the lattice and the
orbits of c.e. sets under those automorphisms. We say that two c.e. sets are
automorphic if they lie in the same orbit. Again, the Turing-degree properties
of a set often yield insight into the orbit of the set. Harrington and Soare
have shown (in [8]) that the orbit of a noncomputable c.e. set must contain
a set of high degree, and the same paper proves Harrington’s theorem that
the orbit of a noncomputable c.e. set cannot be contained in the lower cone
{B ∈ E : B ≤T A} below any c.e. set A (unless A is Turing-complete, of
course). On the other hand, Wald showed in [19] that the orbit of a low
c.e. set must intersect the lower cone below any given promptly simple set
C. (This result fails to hold for certain non-prompt sets C, however, by a
result of Downey and Harrington.)

In this paper we use the Turing-definable property of lowness to avoid an
upper cone. Specifically, our main theorem is:

Theorem 1.1.1 For every low c.e. set A and every noncomputable c.e. set
C, there exists an automorphism of E mapping A to a set B such that
C 6≤T B.

Thus, the orbit of A cannot be contained in the upper cone above C.
The main tool for proving this result is the New Extension Theorem of

Soare, as stated in [18]. The lowness of A allows us to predict with fair
certainty (i.e. with only finitely many incorrect guesses) which elements of
any given c.e. set will eventually enter A and which will stay in its complement
A.

Much of the machinery in this paper is identical to that used in [8], [18],
and [19]. We have deliberately tried to keep our notation and intuitions the
same as in those papers whenever possible, in order that readers familiar with
the constructions in those papers will find it easier to follow this one. One
noticeable distinction is the use of Kα, which was defined in [8] (equation
(14), p. 625) to mean precisely the opposite of its meaning in [18], [19], and
the present paper. Caveat lector!

All sets mentioned in this paper will be c.e. unless specifically stated
otherwise. (Complements, of course, need not be c.e.)

2

2 Construction

2.1 Defining e-States on a Tree

To prove Theorem 1.1.1, we must construct an automorphism of E . By a
result of Soare (in [17], XV.2.6), it suffices to construct an automorphism of
E∗, the quotient of E by the ideal of finite sets. Thus we must map every
c.e. set Ue to some other c.e. set Ûe in such a way that unions and intersections
are preserved up to finitely many elements. Ordinarily we would employ an
e-state construction for this purpose, where by the e-state of an element x
at stage s we simply mean

{i < e : x ∈ Ui,s}

and the general e-state of x is

{i < e : x ∈ Ui}.

(Thus, for instance, the 4-state 0101 indicates that an element lies in U1 and
U3, but not in U0 or U2.) The corresponding e-state for sets Ûe in the range
of the automorphism would be defined in exactly the same way. We have a
copy of ω, denoted by ω̂, containing the elements of sets in the range, and
we write x̂ to stand for such an element.

To ensure that the map be onto, we would use a second enumeration
V0, V1, . . . of all c.e. sets and make sure that for each e there is a c.e. set V̂e

which maps to Ve. This gives rise to an additional e-state, that with respect
to the sets V̂e, and the full e-state of x would be 〈σ, τ〉 where σ is the e-state
relative to the sets Ue and τ is the e-state relative to the sets V̂e. We would
then need to create our automorphism in such a way that for every full e-state
(relative to sets in the domain) which contained infinitely many elements x,
the corresponding full e-state (relative to the sets Ûe and Ve in the range)
contained infinitely many elements x̂, and conversely. (For details, see [17],
XV.4.3.)

In the present theorem, however, we have additional negative require-
ments Qe to ensure that the image of A under the automorphism does not
lie in the upper cone above C. These requirements follow the Sacks preser-
vation strategy for B, the image of A, and are stated below, after we define
the necessary machinery. (A description of the Sacks preservation strategy
in a simpler situation is given in [17], VII.3.1.)

3

In order to construct the automorphism while respecting the negative
requirements, we must make guesses about which e-states really do contain
infinitely many elements. Since elements can move from one e-state to an-
other between stages, the number of elements in a given e-state fluctuates.
Some e-states accumulate more and more elements, and wind up in the end
with infinitely many; we say that such e-states are well-resided. For other
e-states, there are infinitely many elements which enter that state at some
stage but only finitely many which remain there for good. These e-states
are well-visited, but not well-resided. (The well-resided states are also con-
sidered to be well-visited.) Finally, an e-state which is not well-visited has
only finitely many elements that ever enter that state. We write K to rep-
resent the set of well-resided e-states, M to represent the set of well-visited
e-states, and N to represent the set of e-states which are well-visited but not
well-resided. Thus K = M−N .

Our guesses about these possibilities for each e-state lead us to employ a
tree construction. Each node α of the tree T at level e will represent a guess
about which e-states are well-visited and which of those are well-resided.
Indeed, the c.e. sets we build will depend on our guesses: for each α ∈ T
with |α| ≡ 1 (mod 5), we will have a set Uα. Therefore, we will not speak
of e-states, but rather of α-states, which are just e-states relative to the sets
Uα �1, Uα �6, Uα �11, . . . Uα. The true path f through T will correspond to the
correct guesses, and the collection {Uα : α ⊂ f & |α| ≡ 1 (mod 5)} will
include every c.e. set We (up to finite difference).

We will use Mα to denote the set of α-states which α believes to be well-
visited. The set containing those states which α believes to be well-visited
but not well-resided will be partitioned into two subsets Bα tRα, according
to the method which α believes is used to remove elements from those states.
Also, for each α we write

eα = max{k ∈ ω : 5k < |α|}.

Therefore, if β = α− is the immediate predecessor of α in T , then the set
Uα is defined if and only if eα > eβ. We also have the sets Vα on the ω̂-side
which ensure that the automorphism is onto. Then êα is defined by

êα = max{k ∈ ω : 5k + 1 < |α|},

and the set Vα is defined if and only if êα > êβ. (For the purposes of this
paper, we could use a modulus smaller than 5, but we will adhere to the
usage in previous papers.)

4

T will contain a unique node ρ of length 1, and we will ensure that Uρ = A.

The set Ûρ which we build will be the image of A under the automorphism, so
this is the set B for which we must worry about the negative restraints. We
will often speak of A-states and B-states. These terms refer to full α-states
which exclude Uρ and Ûρ, respectively. If x is in an A-state at stage s, then
x /∈ As, and if x̂ is in a B-state at stage s, then x̂ /∈ Bs.

We think of the sets Uα as being “red” sets, containing elements x ∈ ω,
by which we mean that the elements x are enumerated in these sets by
a player called “RED.” The other player in the game, “BLUE,” tries to
match the moves of RED by moving his own elements x̂ (from the other
copy ω̂ of ω) among the sets Ûα, so that the map taking Uα to Ûα will
be an automorphism. Again, to ensure surjectivity of this map, RED will
also play sets Vα containing the elements x̂ ∈ ω̂, so that every computably
enumerable set is represented (up to finite difference) by at least one Vα

along the true path, and it will be up to BLUE to build corresponding sets
V̂α of the elements x ∈ ω. Ultimately BLUE’s goal is that each full α-state
on the ω-side should contain infinitely many elements x if and only if the
corresponding full α-state on the ω̂-side contains infinitely many elements x̂.

In light of this RED/BLUE dichotomy, the class Nα of α-states which are
well-visited but not well-resided will be partitioned into disjoint subclasses
Rα and Bα. The latter contains every state which is emptied out by BLUE,
i.e. such that cofinitely many of the elements which enter that state eventually
leave the state because they are enumerated into some other blue set. (Here
we include B as a blue set.) Rα contains every state which is emptied
out by RED. Of course, an α-state ν can be emptied out by both players,
since there could be infinitely many elements enumerated into a red set and
infinitely many others enumerated into a blue set. Such states are assigned
to either Rα or Bα (but not both!) according to which player empties out
the corresponding γ-state, where γ ⊆ α is the least predecessor of α such
that the γ-state corresponding to ν is not well-resided.

2.2 Definitions

To the extent possible, we take our definitions straight from [8] and [19]. One

change is the use of the superscript 0, so that (for instance) M0
α and M̂0

α

will replace MA
α and M̂B

α .
To define the tree T , we need the formal definition of an α-state.

5

Definition 2.2.1 An α-state is a triple 〈α, σ, τ〉 where σ ⊆ {0, . . . , eα} and
τ ⊆ {0, . . . , êα}. The only λ-state is ν−1 = 〈λ, ∅, ∅〉. If 0 /∈ σ, then we call
the state an A-state or a B-state.

As in [19], we define our tree T with a specific node ρ at level 1, since
the corresponding c.e. sets U0 and Û0 are A and B. Also, here we specify the
sets Ui and Vi. Pick some i such that Wi = A, and define:

U0,s = Wi,s

Ue,s = We,s for all e > 0
Ve,s = We,s for all e.

Definition 2.2.2 We define the tree T as follows:
Let the empty node λ be the root of T and ρ the unique node at level 1,

defined as follows:

M0
λ = M̂0

λ = ∅ M0
ρ = M̂0

ρ = {〈ρ, ∅, ∅〉, 〈ρ, {0}, ∅〉}
R0

λ = B0
λ = ∅ R0

ρ = B0
ρ = ∅

kλ = −1 kρ = −1
eλ = −1 eρ = 0
êλ = −1 êρ = −1

For every β ∈ T with β 6= λ, we put α = β̂〈M0
α,R0

α,B0
α, kα〉 in T (and

write β = α−) providing the following conditions hold:
(i) β is consistent (as defined in Definition 2.2.5 below),
(ii) M0

α is a set of A-α-states, R0
α ∪ B0

α ⊆M0
α, and R0

α ∩ B0
α = ∅,

(iii) M0
α�β ⊆M0

β,
(iv) [eα = eβ & êα = êβ] =⇒ M0

α = M0
β,

(v) R<α
α =dfn {ν ∈M0

α : ν�β ∈ R0
β} ⊆ R0

α,
(vi) B<α

α =dfn {ν ∈M0
α : ν�β ∈ B0

β} ⊆ B0
α,

(vii) Rα
α =dfn R0

α −R<α
α 6= ∅ =⇒ |α| ≡ 3 mod 5,

(viii) Bα
α =dfn B0

α − B<α
α 6= ∅ =⇒ |α| ≡ 4 mod 5,

(ix) kα ∈ ω.

In addition, each α ∈ T has associated dual sets M̂0
α, R̂0

α, and B̂0
α which

are determined from M0
α, B0

α and R0
α by

M̂0
α = {ν̂ : ν ∈M0

α} (1)

R̂α
α =dfn {ν̂ : ν ∈ Bα

α} (2)

B̂α
α =dfn {ν̂ : ν ∈ Rα

α} (3)

6

Also, α has associated integers eα and êα (depending only on |α|) defined by

eα = max{k ∈ ω : 5k < |α|} êα = max{k ∈ ω : 5k + 1 < |α|}.

We identify the finite object 〈M0
α,R0

α,B0
α, kα〉 with an integer under some

effective coding, so that we may regard T as a subtree of ω<ω. Therefore the
partial order on T will be denoted by ⊆. We write α <L γ to denote that α
is to the left of γ on the tree, i.e. that there exists δ ∈ T and m < n in ω
with δ̂m ⊆ α and δ̂n ⊆ γ.

The consistency required by part (i) above is defined as follows.

Definition 2.2.3 A node α ∈ T is R0-consistent if

(∀ν0 ∈ R0
α)(∃ν1)[ν0 <R ν1 & ν1 ∈M0

α], (4)

The node α is R̂0-consistent if

(∀ν̂0 ∈ R̂0
α)(∃ν̂1)[ν̂0 <R ν̂1 & ν̂1 ∈ M̂0

α], (5)

If α is both R0-consistent and R̂0-consistent, then we say that α is
R-consistent ; otherwise α is R-inconsistent. (The definition of <R is given
in Definition 2.2.7 below.)

Definition 2.2.4 A node α ∈ T , with β = α−, is M-consistent if

eα > eβ =⇒
(∀ν0 ∈M0

α)(∀ α-states ν1)[(ν0 <B ν1 & ν1�β ∈M0
β) =⇒ ν1 ∈M0

α].

Definition 2.2.5 The node α is consistent if it is both R-consistent and
M-consistent.

Notice that we can compute uniformly for any α whether it is consistent or
not, since there are only finitely many α-states.

The superscript “0” in M0
α, etc. is intended to make clear that we are

only concerned with A-states (and B-states, in the dual). After all, U0 = A,
so any A-state ν = 〈α, σ, τ〉 will have σ(0) = 0 (as defined below). Similarly,
σ̂(0) = 0 for B-states ν̂.

In Subsection 2.4 we will approximate the true path f through T by a
uniformly computable sequence of nodes {fs}s∈ω. A node α will lie on f
if and only if α is the leftmost node at level |α| in T such that α ⊆ fs

7

for infinitely many s. The nodes of the true path are the only nodes for
which we ultimately need the construction to work, but since all we have
is an approximation to the true path, we must follow the dictates of that
approximation at each stage. Each element x (x̂) will be assigned to a given
node α(x, s) (α(x̂, s)) at each stage. The node α(x, s) may be redefined at
stage s + 1 to equal an immediate successor of α(x, s). Moreover, if the true
path moves to the left of α(x, s), then α(x, s) may be redefined so that α(x, s+
1) <L α(x, s) or so that α(x, s + 1) is a predecessor of α(x, s). However,
α(x, s + 1) will never move back to the right of α(x, s). The construction
will ensure that α(x) = lims α(x, s) exists and that cofinitely many x wind
up being assigned to nodes on f , with the finitely many remaining ones all
being assigned to nodes to the left of f .

We use the elements assigned to node α and its successors at stage s to
help build Uα, writing:

Sα,s = {x ∈ ω : α(x, s) = α}

Ŝα,s = {x̂ ∈ ω̂ : α(x̂, s) = α}

Rα,s = {x ∈ ω : α ⊆ α(x, s)}

Yα,s =
⋃
t≤s

Rα,t.

The duals R̂α,s and Ŷα,s are defined similarly. Each of these sets is com-
putable. However, in the limits, only Yα is even c.e.:

Sα = {x ∈ ω : α(x) = α}

Rα = {x ∈ ω : α ⊆ α(x)}

Yα =
⋃
t

Rα,t.

We now give the formal definition of the α-state of an element x ∈ ω or
x̂ ∈ ω̂. In general we will only be interested in ν(α, x, s) when α ⊆ α(x, s),
but the definition applies for any α ∈ T .

Definition 2.2.6 (i) The α-state of x at stage s, ν(α, x, s), is the triple
〈α, σ(α, x, s), τ(α, x, s)〉 where

σ(α, x, s) = {eβ : β ⊆ α & eβ > eβ− & x ∈ Uβ,s},

8

τ(α, x, s) = {êβ : β ⊆ α & êβ > êβ− & x ∈ V̂β,s}.

(ii) The final α-state of x is ν(α, x) = 〈α, σ(α, x), τ(α, x)〉 where σ(α, x) =
lims σ(α, x, s) and τ(α, x) = lims τ(α, x, s).

The α-state of an element x̂ ∈ ω̂ is defined similarly, with Ûβ,s in place of

Uβ,s and Vβ,s in place of V̂β,s.
For each α ∈ T we define the following classes of A-α-states

E0
α = {ν : (∃∞x)(∃s)[x ∈ As ∩ (Sα,s −

⋃
{Sα,t : t < s}) & ν(α, x, s) = ν]}

and F0
α = {ν : (∃∞x)(∃s)[x ∈ Rα,s & ν(α, x, s) = ν & x /∈ As]}.

Thus E0
α consists of states well visited by elements x when they first enter

Sα and F0
α of those states well-visited by elements at some stage while they

remain in Rα, so E0
α ⊆ F0

α. For each α ∈ T , M0
α represents α’s “guess” at

the true F0
α such that if α ⊂ f then M0

α = F0
α. For α ⊂ f we shall achieve

M0
α = F0

α by ensuring the following properties of M0
α,

E0
α ⊆M0

α, (6)

(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈M0
α, (7)

and RED causes enumeration of x so that

ν1 = ν(α, x, s + 1) then ν1 ∈M0
α],

(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈M0
α (8)

and BLUE causes enumeration of x so that

ν1 = ν(α, x, s + 1) then ν1 ∈M0
α].

(Here (a.e. x) denotes “for almost every x.”) Two main constraints on
BLUE’s moves will be (6) and (8). Clearly, (6), (7), and (8) guarantee

F0
α ⊆M0

α. (9)

During Step 1 of the construction in Subsection 2.4 we shall move elements
x ∈ Rα−,s into Sα,s+1 whenever possible in order to ensure

M0
α ⊆ E0

α. (10)

9

Hence, by (9), (10), and E0
α ⊆ F0

α we will have, for α ⊂ f ,

M0
α = F0

α = E0
α. (11)

On the ω̂-side we have dual definitions for the above items by replacing
ω, x, Uα, V̂α by ω̂, x̂, Ûα, Vα respectively. These dual items will be denoted by
ν̂(α, x̂, s), Ŝα, R̂α, Ŷα, Ê0

α, F̂0
α, and M̂0

α. We write hats over the α-states, e.g.
ν̂1 = ν̂(α, x̂, s), to indicate α-states for elements x̂ ∈ ω̂. (In fact, though,
an α-state on either side consists only of the node α, a subset of {e0, . . . eα},
and a subset of {ê0, . . . êα}, so it is acceptable to write ν1 = ν̂(α, x̂, s), or
ν̂ ∈M0

α, as we shall need to do in certain situations.) We shall ensure

M̂0
α = {ν̂ : ν ∈M0

α}, (12)

which implies by (11) that the well visited α-states on both sides coincide.
Having said that every α ∈ T should have an associated set M0

α such
that M0

α = F0
α if α ⊂ f , we note that although this is the property we want

M0
α to have, we cannot simply define M0

α to be α’s guess at F0
α because that

definition would be circular. (The definition of F0
α depends on Uα, and the

construction of Uα in Subsection 2.4 will depend on M0
α.) Rather we must

define here a certain set F0+
β which depends only on β, and then let M0

α be

α’s guess at F0+
β so that M0

α = F0+
β (= F0

α) for α ⊂ f .
Fix α ∈ T such that eα > eβ for β = α−. Define the r.e. set Zeα =

⋃
s Zeα,s

where
Zeα,s+1 =dfn {x : x ∈ Ueα,s+1 & x ∈ Yβ,s}. (13)

Define the α-state function ν+(α, x, s) exactly as for ν(α, x, s) in Defini-
tion 2.2.6 but with Zeα,s in place of Uα,s.

Define

F0+
β = {ν : (∃∞x)(∃s)[x ∈ Yβ,s & ν+(α, x, s) = ν & x /∈ As]}, (14)

k+
β = min{y : (∀x > y)(∀s) (15)

[[x ∈ Yβ,s & ν+(α, x, s) = ν1] =⇒ ν1 ∈ F0+
β]}.

If eα > eβ we also define F̂0+
β = {ν̂ : ν ∈ F0+

β }. (Note that Zeα and hence

F0+
β and k+

β depend only upon β, not α, and thus α can make guesses M0
α

and kα for F0+
β and k+

β .)

10

If êα > êβ we first define F̂0+
β and k+

β using the duals of (14) and (15)

(with Ŷβ,s, Vêα , Ẑêα , and ν+(α, x̂, s) in place of Yβ,s, Ueα , Zeα , and ν+(α, x, s),
respectively), and then we define F0+

β = {ν : ν̂ ∈ F0+
β }. (Note that there is

no k̂+
β , only k+

β .)

Every α ∈ T will have associated items M0
α and kα such that M0

α = F0+
β

and kα = k+
β for α ⊂ f . We allow x to enter Yα only if x > kα. If eα = eβ

and êα = êβ we define F0+
β = F0

β , F̂0+
β = F̂0

β , and k+
β = kβ. If

(∃x)(∃s)[x ∈ Yα,s & ν(α, x, s) /∈M0
α] (16)

then we say that α is provably incorrect at all stages t ≥ s and we ensure
that α 6⊂ f .

Definition 2.2.7 Given α-states ν0 = 〈α, σ0, τ0〉 and ν1 = 〈α, σ1, τ1〉.
(i) ν0 ≤R ν1 if σ0 ⊆ σ1 and τ0 = τ1.
(ii) ν0 ≤B ν1 if τ0 ⊆ τ1 and σ0 = σ1.
(iii) ν̂0 ≤R ν̂1 if τ̂0 ⊆ τ̂1 and σ̂0 = σ̂1.
(iv) ν̂0 ≤B ν̂1 if σ̂0 ⊆ σ̂1 and τ̂0 = τ̂1.
(v) ν0 <R ν1 (ν0 <B ν1) if ν0 ≤R ν1 (ν0 ≤B ν1) and ν0 6= ν1, and

similarly for ν̂0 <R ν̂1 and ν̂0 <B ν̂1.

The intuition is that if x is in α-state ν0 = ν(α, x, s) and ν0 <R ν1

(ν0 <B ν1) then RED (BLUE) can enumerate x in the necessary U sets (V̂
sets) causing ν1 = ν(α, x, s+1). For ν̂0 and ν̂1 the role of σ and τ is reversed

because on the ω̂-side BLUE (RED) plays the Û sets (V sets), and hence

[ν0 <R ν1 ⇐⇒ ν̂0 <B ν̂1] & [ν0 <B ν1 ⇐⇒ ν̂0 <R ν̂1]. (17)

To construct an automorphism we must show for α ⊂ f that

K̂0
α = {ν̂ : ν ∈ K0

α}. (18)

To achieve (18) note that unlike E0
α and F0

α, K0
α is Π0

3 not Π0
2 so α cannot

guess at K0
α directly but only at a certain Σ0

2 approximation N 0
α to M0

α−K0
α.

We divide N 0
α into the disjoint union of sets R0

α and B0
α which correspond

to those ν ∈ N 0
α which α believes are being emptied by RED and BLUE

respectively.

11

To define R0
α and B0

α fix α ∈ T , let β = α−, and assume that R0
γ, B0

γ and

their duals R̂0
γ, B̂0

γ have been defined for all γ ⊂ α. We decompose R0
α into

the disjoint union,
R0

α = Rα
α tR<α

α , where (19)

R<α
α =dfn {ν ∈M0

α : ν�β ∈ R0
β}, and (20)

Rα
α =dfn R0

α −R<α
α . (21)

Note that R<α
α is determined by R0

β, β ⊂ α, but Rα
α may contain new

elements and for α ⊂ f it has the meaning described below in (23). Likewise,
let B0

α = Bα
α t B<α

α , where B<α
α is defined as in (20) but with B0

β in place of
R0

β.

If |α| 6≡ 3 mod 5 define Rα
α = B̂α

α = ∅. If |α| ≡ 3 mod 5 we let M0
α = M0

β

(since α-states are β-states because eα = eβ and êα = êβ), we define the Π0
2

predicate,

F (β, ν) ≡ (∀x)[[x > |β| & x ∈ Yβ] =⇒ ν(α, x) 6= ν], (22)

and we allow Rα
α 6= ∅ with the intention that for α ⊂ f ,

Rα
α = {ν : ν ∈M0

α − (R<α
α ∪ B<α

α) & F (β, ν)}. (23)

In (3) we defined

B̂α
α = {ν̂ : ν ∈ Rα

α}. (24)

Similarly, if |α| 6≡ 4 mod 5 define R̂α
α = Bα

α = ∅. If α ≡ 4 mod 5 we allow

R̂α
α 6= ∅ (using the duals of (19)–(23) where e.g. in the dual of (22) we use

Ŷβ in place of Yβ), and we recall from (2) the definition

R̂α
α = {ν̂ : ν ∈ Bα

α}. (25)

At most one of Rα
α and R̂α

α is nonempty so by (2), (3), and (23),

Rα
α ∩ Bα

α = ∅ & ((Rα
α ∪ Bα

α) ∩ (R<α
α ∪ B<α

α) = ∅), (26)

and hence
R0

α ∩ B0
α = ∅. (27)

If α ⊂ f then ν ∈ R0
α implies F (α−, ν) and hence

(∀ν ∈ R0
α)(∀x ∈ Yα)(∀s)[ν(α, x, s) = ν =⇒ (∃t > s)[ν(α, x, t) 6= ν]].

(28)

12

It will be BLUE’s responsibility to change the α-state of x if ν(α, x, s) ∈ B0
α

and x ∈ Rα. However, B0
α∩R0

α = ∅ so if ν(α, x, s) = ν ∈ R0
α then BLUE can

wait for RED to change the α-state of each x to meet (28), by restraining x
from entering any blue set until we reach a stage t > s such that ν(α, x, s) <R

ν(α, x, t).

Definition 2.2.8 Given β ⊆ α ∈ T and an α-state ν0 = 〈α, σ0, τ0〉 or a set
Cα of α-states,

(i) ν0�β = 〈β, σ1, τ1〉 where we define σ1 = σ0 ∩ {0, . . . , eβ} and we define
τ1 = τ0 ∩ {0, . . . , êβ},

(ii) ν1 � ν0 (read “ ν0 extends ν1”) if ν0�β = ν1,
(iii) Cα�β = {ν�β : ν ∈ Cα}.
(iv) Given a finite set of α-states {〈α, σi, τi〉 : i ∈ I}, we define their

union ∪{〈α, σi, τi〉 : i ∈ I} =dfn 〈α, σ, τ〉, where σ = ∪{σi : i ∈ I} and
τ = ∪{τi : i ∈ I}.

2.3 The New Extension Theorem

Soare developed his New Extension Theorem (NET) to simplify the process
of constructing automorphisms. Using the NET, one can divide the con-
struction into three distinct parts and concentrate on each separately, rather
than having to satisfy all three simultaneously. The idea is that in building
an automorphism which maps A to B, at each stage s + 1 we can consider
three classes of elements of ω: those elements x which are still in As+1; those
x which enter A at stage s + 1; and those x which were already in As. (On
the ω̂ side, we have the same three classes: x̂ ∈ Bs+1, x̂ ∈ Bs+1 − Bs, and
x̂ ∈ Bs.) Indeed, the NET constructs the automorphism on the third class
itself, leaving only two types of element for us to worry about.

In the construction of the tree T in the preceding section, we defined the
sets M0

α, M̂0
α, etc. for each α ∈ T . In [8], a similar construction required the

inclusion of A-states as well as A-states in Mα. With the New Extension
Theorem, however, we need only consider A- and B-states. The NET requires
that for each α on the true path, M0

α = M̂0
α and N 0

α = N̂ 0
α . Together, these

will guarantee that

K0
α = M0

α −N 0
α = M̂0

α − N̂ 0
α = K̂0

α

so that the well-resided A-α-states correspond precisely to the well-resided
B-α-states.

13

The second class of elements contains those x which enter A at stage
s + 1, and those x̂ entering Bs+1. The New Extension Theorem requires us
to record the α-state of each such x at stage s, as a sort of snapshot of its
status at the moment it enters A, and similarly for each x̂ that enters B. We
define for each α:

GA
α = {ν ∈M0

α : (∃∞x)(∃s)[x ∈ As+1 − As & ν(α, x, s) = ν]}

ĜB
α = {ν̂ ∈ M̂0

α : (∃∞x̂)(∃s)[x̂ ∈ Bs+1 −Bs & ν̂(α, x̂, s) = ν̂]}.

Thus GA
α contains those A-α-states such that infinitely many elements x are

in that state at the moment of entering A, and similarly for ĜB
α . The NET

then requires that for each α on the true path, the α-states in GA
α must

correspond precisely to those in ĜB
α .

If we can accomplish these two conditions, then the New Extension Theo-
rem guarantees that the third part of the automorphism construction can be
carried out as well, and therefore that there exists an automorphism mapping
each Uα (α ⊂ f) to the corresponding Ûα.

Theorem 2.3.1 (New Extension Theorem, Soare [18]) Given a com-
putable priority tree T as defined above with infinite true path f , suppose
that each of the collections {Uα}α⊂f and {Vα}α⊂f contains every computably
enumerable set, up to finite difference. If for each α ⊂ f we have:

(T1) K0
α = K̂0

α, and

(T2) GA
α = ĜB

α ,

then there exists an automorphism of E mapping Uα to Ûα for each α ⊂ f .

It is left to us to satisfy our own requirements for Uρ and Ûρ, namely that
Uρ = A (which we have already ensured, simply by arranging our enumera-

tion of the c.e. sets to begin with A) and that Ûρ does not lie in the upper
cone above C (which is the hard part).

Definition 2.3.1 The true path f ∈ [T] is defined by induction on n. Let
β = f � n be consistent. Then f � (n + 1) is the <L-least α ∈ T , α ⊃ β, of
length m = n + 1 such that:

(i) m ≡ 1 mod 5 =⇒ M0
α = F0+

β & kα = k+
β ,

14

(ii) m ≡ 2 mod 5 =⇒ M̂0
α = F̂0+

β & kα = k+
β ,

(iii)

m ≡ 3 mod 5 =⇒
[Rα

α = {ν : ν ∈M0
α − (R<α

α ∩ B<α
α) & F (β, ν)}

& B̂α
α = {ν̂ : ν ∈ Rα

α}],

(iv)

m ≡ 4 mod 5 =⇒
[R̂

α

α = {ν̂ : ν̂ ∈ M̂0
α − (R̂<α

α ∪ B̂<α
α) & F̂ (β, ν)}

& Bα
α = {ν : ν̂ ∈ R̂α

α}],

(v) unless otherwise specified in (i)–(iv), M0
α, R0

α, B0
α, kα, and their duals

take the values M0
β, R0

β, B0
β, kβ, and their duals, respectively.

(If β were inconsistent, it would be a terminal node and the true path
would end at β. We will show in Lemmas 3.2.9 and 3.2.11, however, that
this cannot be the case.)

For a consistent β = f�n, F0+
β is just a finite set of states and k+

β is an
integer, so clearly α exists. Note that each of the conditions in Definition 2.3.1
is Π0

2. Hence, there is a computable collection of c.e. sets {Dα}α∈T such
that α ⊂ f iff |Dα| = ∞. Fix a simultaneous computable enumeration
{Dα,s}α∈T,s∈ω.

We impose the following positive requirements, for all α ∈ T , all α-states
ν, and all i ∈ ω, to ensure that GA = ĜB:

P〈α,ν,i〉 : ν ∈ GA
α =⇒ |{x̂ : (∃s)[x̂ ∈ Bat s+1 ∩ Ŷα,s & ν̂(α, x̂, s) = ν]}| ≥ i

Clearly each P〈α,ν,i〉 will only put finitely many elements into B. Indeed,
since P〈α,ν,i−1〉 has higher priority than P〈α,ν,i〉, each P〈α,ν,i〉 will only require
that a single element enter B.

The negative requirementsQe are the standard ones for the Sacks strategy
for avoiding an upper cone:

Qe : C 6= {e}B.

15

To satisfy these, we define the length functions l(e, s) and restraint functions
r(e, s) (as in [17] VII.3.1):

l(e, s) = max{x : (∀y < x)[{e}Bs
s (y)↓= Cs(y)]}

r(e, s) = max{u(Bs; e, x, s) : x ≤ l(e, s)}.

In the construction, we will restrain (with priority e) all elements < r(e, s)
from entering B at stage s. Thus we will preserve the computation {e}B(y)
for every y ≤ l(e, s), including y = l(e, s) itself. If lims l(e, s) = ∞, then C
would be computable, contrary to hypothesis. Moreover, for each e, l(e, s)
will be nondecreasing as a function of s, except at the finitely many stages
s at which Ne is injured, i.e. at which Bs+1� (r(e, s) + 1) 6= Bs� (r(e, s) + 1).
Therefore, there exists a finite limit l(e) = lims l(e, s). Then the computation
{e}B(l(e)) must either diverge or converge to a value distinct from C(l(e)).
Hence Qe will be satisfied.

If A were an arbitrary set, then it would be extremely difficult, perhaps
impossible, to satisfy the requirements Qe. The difficulty would be that if
all the elements x in some A-α-state ν enter A, then we have to put all the
elements x̂ from the corresponding B-α-state ν̂ into B, probably violating
some requirement Qe in the process. Each time this happened, we could
allow finitely many elements x̂ to remain in ν̂ rather than entering B, but
if it happened infinitely often, then ν̂ would be a well-resided state and ν
would not be.

The assumption that A is low allows us to avoid this difficulty. We use
a variation of Robinson’s Trick (see [14]), as expressed in Soare’s Lowness
Lemma in [18], to predict which elements x in the A-α-state ν will eventually
enter A. Our prediction may be wrong, but if all elements in ν eventually
enter A, then the prediction will only be wrong on finitely many of those
elements. A corresponding finite number of elements x̂ may have to stay in ν̂
rather than entering B, but that is acceptable, since then ν̂ will lie in N̂ 0

α , just
as ν lies in N 0

α . Essentially Robinson’s Trick gives us believable evidence that
certain elements x will never enter A, and we use this knowledge to ensure
that the requirements Qe will not prevent us from matching up A-states and
B-states.

Recall Definition 2.2.3, which stated that a node α ∈ T is R-consistent if
it satisfies both of the following:

(∀ν0 ∈ R0
α)(∃ν1)[ν0 <R ν1 & ν1 ∈M0

α]; (29)

16

(∀ν̂0 ∈ R̂0
α)(∃ν̂1)[ν̂0 <R ν̂1 & ν̂1 ∈ M̂0

α]. (30)

Lowness of A allows us to ensure that every α on the true path is
R-consistent. Without lowness, the equation for R0 would be impossible,
since states could be emptied out into A with no advance warning to us.

BLUE will ensure that α is R-consistent for α ⊂ f by waiting to enu-
merate x in any blue sets until RED has enumerated x in some red set. Now
(3), (17), and (29) imply for α ⊂ f that

(∀ν̂0 ∈ B̂0
α)(∃ν̂1)[ν̂0 <B ν̂1 & ν̂1 ∈ M̂0

α]. (31)

By repeatedly applying (31) BLUE can achieve ν̂1 ∈ M̂0
α − B̂0

α, namely

(∃ function ĥα)[ĥα : B̂0
α → (M̂0

α − B̂0
α) & (∀ν̂ ∈ B̂0

α)[ν̂ <B ĥα(ν̂)]]. (32)

(The function ĥ is called the target function.)

It will be BLUE’s responsibility to move any element x̂ ∈ R̂α for which
ν̂(α, x̂, s) = ν̂0 ∈ B̂0

α to the target state ν̂1 = ĥα(ν̂0) so that BLUE can achieve

(∀x̂ ∈ R̂α)(∀s)[ν̂(α, x̂, s) ∈ B̂0
α =⇒ (∃t > s)[ν̂(α, x̂, t) ∈ M̂0

α − B̂0
α]], (33)

and hence BLUE will cause every state ν̂0 ∈ B̂0
α to be emptied. To achieve

(33) on R̂α it suffices to achieve the following on Ŝγ for each γ ⊇ α,

(∀x̂ ∈ Ŝγ)(∀s)[ν(γ, x̂, s) ∈ B̂0
γ =⇒ (∃t > s)[ν(γ, x̂, t) ∈ M̂0

γ − B̂0
γ]]. (34)

(For BLUE to achieve (34) from the hypothesis of (33) there is a subtle

but crucial point. Suppose ν0 ∈ R0
α, so ν̂0 ∈ B̂0

α. Hence ν̂ ′0 ∈ B̂0
γ for all

γ ⊃ α such that ν̂ ′0 � α = ν̂0. Now for every x̂ in region R̂α such that

ν̂(α, x̂, s) = ν̂0 ∈ B̂0
α, BLUE is required by (33) to enumerate x̂ in blue

sets to achieve ν̂(α, x̂, t) = ν̂1 >B ν̂0 for some t > s. However, if x̂ ∈ Ŝγ,s

for some γ ⊃ α then BLUE can only make γ-legal moves, i.e. BLUE must
ensure that ν̂(γ, x̂, s) ∈ M̂0

γ. Hence, on the γ-level if ν̂ ′0 = ν̂(γ, x̂, s) and

ν̂ ′0 � α = ν̂0 ∈ B̂0
α then ν0 ∈ R0

α so ν ′0 ∈ R0
γ and BLUE needs a γ-target

ν̂ ′1 >B ν̂ ′0 for x̂, not merely an α-target ν̂1 >B ν̂0. To obtain this γ-target
ν̂ ′1, BLUE can hold some y ∈ Sγ in γ-state ν ′0 until RED is forced to cause
ν(α, y, t) = ν1 >R ν0, for some t > s, and hence ν(γ, y, t) = ν ′1 >R ν ′0, thus
ensuring that γ is R-consistent and giving a target γ-state ν̂ ′1 for x̂. This
action may have to be repeated for each of the infinitely many γ ⊇ α even

17

for those γ <L f . Hence, (33) constitutes a very strong BLUE constraint on

the entire downward cone R̂α. This procedure for producing an appropriate
target j-state ν̂ ′1 for j > e when an e-state ν̂0 is emptied is taken from the
effective automorphism machinery in [17, Chapter XV], and [16], where it
also plays a central role.)

We often refer to the dual of (32) which asserts

(∃ function hα)[hα : B0
α → (M0

α − B0
α) & (∀ν ∈ B0

α)[ν <B hα(ν)]], (35)

and which enables us to achieve the dual of (34), namely

(∀x ∈ Sγ)(∀s)[ν(γ, x, s) ∈ B0
γ =⇒ (∃t > s)[ν(γ, x, t) ∈M0

γ − B0
γ]]. (36)

Finally, we have ensured

(∀γ ⊂ f)(∀ν0 ∈M0
γ)[(∃<∞x)[x ∈ Yγ & ν(γ, x) = ν0] (37)

=⇒ (∃α)γ⊂α⊂f [{ν1 ∈M0
α : ν1�γ = ν0} ⊆ R0

α ∪ B0
α]].

To check (37) fix γ ⊂ f and ν0 ∈ M0
γ. Now Yγ =∗ ω since γ ⊂ f , so if the

hypothesis of (37) holds then we can choose b such that

(∀x ∈ ω)[x > b =⇒ ν(γ, x) 6= ν0].

Choose α ⊂ f such that α ⊃ γ, |α| > b and |α| ≡ 3 mod 5. Consider any
ν1 ∈ M0

α such that ν1� γ = ν0. If ν1 /∈ R<α
α ∪ B<α

α then F (α−, ν1) holds so
ν1 ∈ Rα

α by (23), and hence ν1 ∈ R0
α by (19).

2.4 Construction

To parallel the construction in [8], the steps presented in this section will be
denoted as Steps 0–5 and 0̂–5̂ for the construction, with final Steps 10, 1̂0, and
11 at which we define fs+1 and other necessary items. (In the construction
in [8], Steps 10 and 1̂0 were substeps of Step 11. We have separated the
two because the actions in our Step 11 must be performed at every stage,
whereas the action in our Steps 10 and 1̂0 must not be performed unless the
preceding steps do not apply.) Steps 1̂–5̂ and 1̂0 are the obvious duals to
Steps 1–5 and 10, and will not be stated. There is no dual of Step 11.

Our construction is as follows:

Stage s = 0. For all α ∈ T define Uα,0 = Vα,0 = Ûα,0 = V̂α,0 = ∅, and

define m(α, 0) = 0. Define Yλ,0 = Ŷλ,0 = ∅, and f0 = ρ. Define every

18

Qα
ν,i,0 = ∅ and every marker Γα

ν,i,0 to be unassigned. Define A0 = B0 = ∅. Let
l(e, 0) = r(e, 0) = 0 for every e.

Stage s+1. Find the least n < 11 such that Step n applies to some x ∈ Yα,s

and perform the intended action. If there is no such n, then find the least
n < 11 such that Step n̂ applies to some x̂ ∈ Ŷα,s, and perform the indicated
action. Having completed that, apply Step 11, and go to stage s + 2.

(In Steps 0–5 and 0̂–5̂ we let α ∈ T , α 6= λ, be arbitrary, let β = α−, and

let x ∈ Yλ,s (x̂ ∈ Ŷλ,s) be arbitrary.)
The sets {Ãs}s∈ω represent a given computable enumeration of A, from

which we will derive our own enumeration {As}s∈ω to satisfy the New Ex-
tension Theorem. Being low, the set A has semi-low complement, and we let
h be a computable function (as in XI.3.5 of [17]) such that limt h(j, t) is the
characteristic function of the set

{j : Wj ∩ A 6= ∅}.

(Semilowness of A implies that this set is computable in ∅′. Indeed, the
following construction requires only semilowness of A, not actual lowness of
A.)

Step 0 (Moving elements into A).

Substep 0.1 (Enumerated elements.) If x ∈ (Yλ,s ∩ Ãs+1)− (Yλ,s−1 ∩ Ãs),

(0.1.1) Where ν(α(x, s), x, s) = ν, add to LG a new pair 〈β, ν̂ � β〉 for every
β ⊆ α(x, s),

(0.1.2) Enumerate x into As+1, and

(0.1.3) Designate every Γ-marker attached to x as unassigned.

Substep 0.2 (Assigning a Γ-marker to an x believed not to go into A.) In
the following, to challenge x with regard to marker type j (= 1, 2, 3) and
α-node ν means to do the following:

(i) Where i is the least number such that the marker Γj,α
ν,i is currently

unassigned, enumerate x into Qj,α
ν,i .

(ii) Find the least t such that either

19

(a) h(qj,α
ν,i , t)↓= 1 or

(b) x ∈ Ãt.

In case (a), assign marker Γj,α
ν,i to x and ignore (iii)-(v). In case (b),

(iii) If j = 1 or 2, add to LG a pair 〈β, ν̂ � β〉 for every β ⊆ α(x, s); if j = 3,
add a pair 〈β, ν̂ � β〉 for every β (α(x, s);

(iv) Enumerate x into As+1 immediately; and

(v) Designate every Γ-marker attached to x as unassigned.

Then Substep (0.2) consists of repeating the following three instructions:

(0.2.1) If some element x is to be moved into some Yα in A-state ν by Step 1
or 2, then challenge x with regard to marker type 1 and α-state ν.

(0.2.2) If some element x is to be put into A-state ν by one of Steps 1–5 or
11C, then challenge x with regard to marker type 2 and α-state ν.

(0.2.3) If there is some element x such that, as a result of x being enumerated
into Ueα and/or the action of Steps 1–5 or 11C, ν+(x, α) will become
equal to A-state ν, then challenge x with regard to marker type 3 and
α-state ν.

We repeat these instructions until none of these three challenges described
enters case (b) (that is, none of them causes an element to enter As+1).

Step 0̂. (Moving elements into B.)
Find the first unmarked pair 〈α, ν̂0〉 in LG satisfying all of the following:
(0̂.1) For some k, P〈α,ν0,k〉 is not satisfied;

(0̂.2) α is consistent;
(0̂.3) there exist elements ŷ0 < ŷ1 < ŷ2 < · · · < ŷ2k such that for each

i ≤ 2k, both of the following hold:

(∃t ≤ s)[ŷi ∈ Rα,t & ν̂(α, ŷi, t) = ν̂0], and

ŷi /∈ Bs or (∃t < s)[ŷi ∈ Bat t+1 & ν̂(α, ŷi, t) 6= ν̂0];

(0̂.4) ŷ2k > 2 · 〈α, ν0, k〉;
(0̂.5) ŷ2k > r(e, s) for every e ≤ 〈α, ν0, k〉;

20

(0̂.6) ν̂(α, ŷ2k, s) = ν̂0.

Action. Enumerate ŷ2k into Bs+1. (Notice that by (0̂.6), ŷ2k /∈ Bs.) Also,
mark the first unmarked copy of 〈α, ν̂0〉 on LG.

Step 1. (Prompt pulling of x from Rβ to Sα to ensure M0
α ⊆ E0

α.) Suppose
〈α, ν1〉 is the first unmarked entry on the list Ls such that the following
conditions hold for some x, where ν1 = 〈α, σ1, τ1〉,

(1.1) x ∈ Rβ,s − Yα,s, and α is R-consistent;
(1.2) x > kα and x > |α|;
(1.3) x is α-eligible (i.e., ¬(∃t)[x ≤ t ≤ s & ft < α]);
(1.4) ¬[α(x, s) <L α];
(1.5) x > m(α, s);
(1.6) ν(β, x, s) = ν1�β;
(1.7) eα > eβ =⇒ ν+(α, x, s) = ν1.

Action. Choose the least x corresponding to 〈α, ν1〉, and do the following.
(1.8) Mark the α-entry 〈α, ν1〉 on Ls.
(1.9) Move x to Sα.
(1.10) If eα > eβ and eα ∈ σ1 then enumerate x in Uα,s+1.

(1.11) If êα > êβ and êα ∈ τ1 then enumerate x in V̂α,s+1. (Hence,
ν(α, x, s + 1) = ν1. Also ν1 ∈M0

α because 〈α, ν1〉 ∈ L implies ν1 ∈M0
α.)

Step 2. (Move x from Sβ to Sα so Yα =∗ ω.) Suppose there is an x such
that

(2.1) x ∈ Sβ,s,
(2.2) x > |α| and x > kα.
(2.3) x is α-eligible,
(2.4) x < m(α, s),
(2.5) α is the <L-least γ ∈ T with γ− = β satisfying (2.1)–(2.4).

Action. Choose the least pair 〈α, x〉 and
(2.6) move x from Sβ to Sα.

(In Step 2 we need (2.4) so Yα will not grow while α is waiting for another
prompt pulling under Step 1.)

Step 3. (For α M-inconsistent to ensure α 6⊂ f .) Suppose for α ∈ T there
exists x > kα such that,

(3.1) eα > eβ,
(3.2) x ∈ Sα,s,
(3.3) ν(α, x, s) = ν0 ∈M0

α,

21

(3.4) (∃ν1)[ν0 <B ν1 & ν1�β ∈M0
β & ν1 /∈M0

α].

Action. Choose the least such pair 〈α, x〉 and,

(3.5) enumerate x in V̂δ,s+1 for all δ ⊂ α such that eδ ∈ τ1. (This action
causes ν(α, x, s+1) = ν1. Hence, α is provably incorrect at all stages t ≥ s+1
so α 6⊂ f .)

Step 4. (Delayed RED enumeration into Uα.) Suppose x ∈ Rα,s and
(4.1) eα > eβ,
(4.2) x /∈ Uα,s,
(4.3) x ∈ Zeα,s =dfn Ueα,s ∩ Yβ,s−1.

Action. Choose the least such pair 〈α, x〉 and,
(4.4) enumerate x in Uα,s+1.

Step 5. (BLUE emptying of state ν0 ∈ B0
α.) Suppose for α ∈ T there exists

x such that either Case 1 or Case 2 holds.

Case 1. Suppose
(5.1) ν(α, x, s) = ν0 ∈ B0

α, say ν0 = 〈α, σ0, τ0〉,
(5.2) x ∈ Sα,s,
(5.3) α is a consistent node.

Action. Choose the least such pair 〈α, x〉. Let ν1 = hα(ν0) >B ν0, where hα

is a target function satisfying (35). Write ν1 = 〈α, σ1, τ1〉.
(5.4) Enumerate x into V̂δ for all δ ⊆ α such that êδ > êδ− and also

eδ ∈ τ1 − τ0. (Hence, ν(α, x, s + 1) = ν1.)

Case 2. Suppose that (5.1) holds and
(5.5) x ∈ Sγ,s where γ− = α, and
(5.6) γ is not a consistent node.

Action. Perform the same action as in Case 1 to achieve ν(α, x, s+1) = ν1.

(In (5.6) note that γ ∈ T implies (5.3) for α = γ− since inconsistent
nodes are terminal, so hα exists in Case 2. Note in Step 5 Case 2 that the
enumeration may not be γ-legal, since possibly ν(γ, x, s + 1) /∈M0

γ, but this
will not matter because we shall prove that γ 6⊂ f if γ is inconsistent. Hence,
it only matters that the enumeration is α-legal, i.e. ν(α, x, s) ∈M0

α.)

Step 10. (Filling Yλ.) Choose the least x < s such that x /∈ Yλ,s. Put x in
Sλ.

Step 11. (Defining fs+1, m(α, s + 1), Ls+1, Yλ,s+1, and Bs+1.)

22

Substep 11A. (Defining fs+1.) First we define δt by induction on t for
t ≤ s+1. Let δ0 = ρ (as given in Definition 2.2.2, the definition of T). Given
δt, let v ≤ s be maximal such that δt ⊆ fv if such a v exists, or let v = 0
otherwise. (Let {Dγ,v}γ∈T,v∈ω be the simultaneous recursive enumeration
specified on page 15.) Choose the ≤L-least α ∈ T such that α− = δt and
Dα,s+1 6= Dα,v if α exists, and define δt+1 = α. If α does not exist, define
δt+1 = δt. Finally, define fs+1 = δs+1.

Substep 11B. (Defining m(α, s + 1), Ls+1, and their duals.) For each α ⊆
fs+1, if every α-entry 〈α, ν〉 on Ls and every α-entry 〈α, ν̂〉 on L̂s is marked
we say that the lists are α-marked and we

(11.1) define m(α, s + 1) = m(α, s) + 1, and

(11.2) add to the bottom of list Ls (L̂s) a new (unmarked) α-entry 〈α, ν〉
(〈α, ν̂〉) for every such α and every ν ∈ M0

α. Let the resulting list be

Ls+1(L̂s+1).
If the lists are not both α-marked then let m(α, s + 1) = m(α, s),

Ls+1 = Ls, and L̂s+1 = L̂s.

Substep 11C. (Emptying Rα to the right of fs+1.) For every α such that
fs+1 <L α, initialize α, by removing every x ∈ Sα,s (x̂ ∈ Ŝα,s), and putting x

in Sδ (x̂ in Ŝδ) for δ = α ∩ fs+1 (where α ∩ fs+1 denotes the longest γ such
that γ ⊆ α and γ ⊆ fs+1).

For each x ∈ Yλ,s+1 such that x /∈ As+1, let α(x, s + 1) denote the unique

γ such that x ∈ Sγ,s+1, and similarly for x̂ ∈ Ŷλ,s+1−Bs+1. If x ∈ As+1, then
α(x, s + 1) diverges; likewise for x̂ ∈ Bs+1.

Define the length function l(e, s+1) and the restraint function r(e, s+1)
for stage s + 1 as follows:

l(e, s + 1) = max{x : (∀y < x)[{e}Bs+1

s+1 (y)↓= Cs+1(y)]}

r(e, s + 1) = max{u(Bs+1, e, x, s + 1) : x ≤ l(e, s + 1)}.

(Here u represents the standard use function for relative Turing machines.)
This completes stage s + 1 and the construction.

Remark 2.4.1 Notice that the only step which can put elements into B = Ûρ

is Step 0̂. All of Steps 1-5 and their duals are dedicated toward the A/B part
of the game. Steps 1̂, 3̂, and 5̂ may put elements x̂ into certain sets Ûα

in order to change ν̂(α, x̂, s + 1). In Steps 1̂ and 5̂, however, this can only

23

happen when the desired ν̂(α, x̂, s + 1) is a B-state, so we are not required to
put x̂ into B. Also, Step 3̂ never applies with β = λ because ρ, the unique
node at level 1 of T , is M-consistent by definition 2.2.4. Thus these steps
never require any x̂ to enter B.

3 Proof of the Theorem

We now prove that the preceding construction satisfies Theorem 1.1.1. In
§3.1, we verify the restrictions of certain tree properties to A and B. In
§3.2, we use these tree properties to verify the correctness of M0, M̂0, N 0,
and N̂ 0, thus guaranteeing that KA = K̂B. Finally, in §3.3, we use this
verification to check that GA = ĜB.

3.1 Tree Properties

The construction of [8] is designed to ensure that certain properties of the
tree T (the tree properties) hold automatically for every α = β+ on the true
path:

1. Mα = F+
β ,

2. M̂α = F̂+
β and

3. kα is a correct guess.

Since our construction employs the New Extension Theorem, we need
only verify the correctness of the restrictions of these properties to A- and
B-states. The New Extension Theorem takes care of the A/B aspect of the

game, and we handle the GA/ĜB aspect in Steps 0 and 0̂, which we have
added to the original construction of [8].

To help handle the GA/ĜB game, however, our construction defined the
first level of the tree artificially, so that it contains only the node ρ. Therefore
we must give special proofs of the tree properties (restricted to A and B) for
ρ.

(We will assume that A is infinite and coinfinite, for otherwise A would
be computable and would itself witness that the orbit of A is not contained
in the upper cone above the noncomputable set C.)

Lemma 3.1.1 Mρ = F+
λ .

24

Proof. By Step 10, every element x of ω eventually enters Yλ. (Lemma 3.2.6
below implies that Step 10 acts infinitely often. The proofs of the lemmas
of subsection 3.2 do not rely on the lemmas of this subsection at all.) Every
element of the infinite set A eventually enters some As by Step 0, and no
element of the infinite set A ever does. Thus, there are infinitely many x such
that for some s, x ∈ Yλ,s and x ∈ As, and there are infinitely many x such
that for some s, x ∈ Yλ,s and x /∈ As, so F+

λ = {〈ρ, ∅, ∅〉, 〈ρ, {0}, ∅〉} = Mρ.
(In particular, then, M0

ρ = F0+
λ .)

Lemma 3.1.2 M̂0
ρ = F̂0+

λ .

Proof. M̂0
ρ contains 〈ρ, ∅, ∅〉, which is the only possible B-ρ-state. By Step

10, every element x̂ of ω̂ eventually enters Yλ. As noted in Remark 2.4.1,
only Step 0̂ ever puts any elements into Û0, and it waits to do so until such
elements are already in Yλ. Thus, 〈ρ, ∅, ∅〉 ∈ F̂0+

λ , so F̂0+
λ = M̂0

ρ.

Lemma 3.1.3 No element of A or B remains permanently in a non-well-
resided ρ-state. (Thus, the guess kρ = −1 is correct.)

Proof. If x ∈ A (x̂ ∈ B), then x (x̂) will remain permanently in the ρ-state
ν = 〈ρ, ∅, ∅〉, which we have just seen is well-visited. To see that this state is
well-resided, we must note that A and B are infinite. We assumed this for
A. For B, we note that by Remark 2.4.1, Step 0̂ is the only step to put any
elements into B, and for each 〈α, ν, i〉, it puts at most one element ŷ into B,
with ŷ > 2 · 〈α, ν, i〉. Hence B must be infinite.

This completes the verification of the restricted versions of the tree prop-
erties for ρ. It remains to see that Lemmas 3.1.2 and 3.1.3 hold for all states,
not just B-states. This will be the very last line in the verification of The-
orem 1.1.1, once we have proven that B is infinite. Since all Dα, |α| > 1,
are defined as in Definition 2.3.1, these properties hold automatically for all
α ⊇ ρ with α on the true path f :

1. M0
α = F0+

β (where β = α−),

2. M̂0
α = F̂0+

β , and

3. kα is the upper bound for the set of all x ∈ A and x̂ ∈ B that remain
permanently in non-well-visited α-states.

25

3.2 Verification that M0 = M̂0, and N 0 = N̂ 0

For purposes of parallelism, we arrange our Lemmas 3.2.1–3.2.12 to match
Lemmas 5.1 through 5.12 of [8] and [19]. All twelve of these lemmas have
duals, which we will not state or prove except when the proof of the dual
requires a distinct technique, principally in Lemma 3.2.11, which yields a nice
insight into the construction and the reasons why Theorem 1.1.1 actually
holds.

Of course, our lemmas hold for the A/B game, whereas in [8] they held
for the entire universe of elements. Also, our first Lemma matches Lemma
5.0 of [19].

Lemma 3.2.0 (i) If the A-state ν lies in E0
α, then there exists an infinite

set {xi}i∈ω ⊆ A such that

(∀i)[lims Γ1,α
ν,i,s = xi & (∃s)[xi ∈ Sα,s − Yα,s−1 & ν(α, xi, s) = ν]].

(ii) If the A-state ν lies in F0
α, then there exists an infinite set {xi}i∈ω ⊆ A

such that

(∀i)[lims Γ2,α
ν,i,s = xi & (∃s)[xi ∈ Rα,s & ν(α, xi, s) = ν]].

(iii) If the A-state ν lies in F0+
α , then there exists an infinite set {xi}i∈ω ⊆ A

such that

(∀i)[lims Γ3,α
ν,i,s = xi & (∃s)[x ∈ Rα,s & ν+(α, xi, s) = ν]].

Proof. All of these proofs are similar; we therefore give just the proof for (i),
which serves with appropriate modifications for the other two.

Assume by induction that we have found elements x0, x1, . . . xi−1 as re-
quired in (i), and let t be a stage by which

(a) lims Γ1,α
ν,i′,s = Γ1,α

ν,i′,t′ for all t′ ≥ t and i′ < i; and

(b) lims h(q1,α
ν,i , s) = h(q1,α

ν,i , t′) for all t′ ≥ t.

If h(q1,α
ν,i , t) = 0, then at every stage t′ > t, every x which enters Sα,t′+1 in

α-state ν enters At′+1 immediately, by Substep 0.2. This contradicts ν ∈ E0
α.

Hence h(q1,α
ν,i , t) = 1, and Q1,α

ν,i ∩ A 6= ∅, so some y ∈ A eventually goes into

Q1,α
ν,i . When this y enters Q1,α

ν,i , it has Γ1,α
ν,i assigned to it (since y does not

26

go into A), and since y never enters A this marker is permanently assigned
to y. Substep (0.2.1) of the construction indicates that this y satisfies the
conditions in part (i) of the Lemma.

Since only finitely many Γ1,α
ν markers may be attached to a given y, the

set {xi}i∈ω, where xi is the y to which marker Γ1,α
ν,i is permanently assigned,

must be infinite.

The construction makes the following lemma clear. (When, e.g., Step 1
of the construction applies to a node α and an element x, we will sometimes
say, “Step 1α applies to x.”)

Lemma 3.2.1 At stage s + 1,
(i) if x enters Rα, α 6= λ, then Step 1 or Step 2 applies to α and x;
(ii) if x moves from Sα to Sδ then one of the following steps must apply

to x: Step 1δ with δ <L α or δ− = α; Step 2δ with δ− = α; or Substep 11Cα,
so fs+1 <L α;

(iii) if x ∈ Sα,s is enumerated in a set Uα at stage s + 1 then Step 1 or
Step 4 must apply to x;

(iv) if x ∈ Sα,s is enumerated in a set V̂α then Step 1, Step 3, or Step 5
must apply to x.

Lemma 3.2.2 (True Path Lemma) The true path f = lim infs fs.

Proof. This is clear from the definition of fs in Step 11A and from the choice
of the sets Dα.

Lemma 3.2.3 For all α ∈ T ,
(i) f <L α =⇒ Rα = ∅,
(ii) α <L f =⇒ Yα =∗ ∅,
(iii) α ⊂ f =⇒ Y<α =dfn

⋃
{Yδ : δ <L α} =∗ ∅.

Proof. Part (i) holds because Substep 11C sets Sα,s+1 = ∅ whenever fs+1 <L

α. For part (ii), if α <L f , pick an s such that α <L ft for all t ≥ s. Then
Yα = Yα,s =∗ ∅. Finally, for part (iii), if α ⊂ f , then Y<α ⊆ {0, 1, . . . s},
where s is a stage such that ft ≮L α for all t ≥ s.

In Lemma 3.2.4, since it is now possible for an element x to disappear from
the game by being enumerated into A (or B, in the dual lemma), we must
slightly modify the statement of (iv) from [8] by restricting x to elements of
A (and x̂ to B, in the dual), as shown:

27

Lemma 3.2.4 For every α ∈ T such that α 6= λ, if β = α−, then
(i) Yα \ Yβ = ∅ and Yα ⊆ Yβ,
(ii) For each x there is at most one s such that x ∈ Rα,s+1 −Rα,s,

(iii) Uα \ Yα = V̂α \ Yα = ∅, and
(iv) If α ⊂ f , then

(∃vα)(∀x ∈ A)(∀s ≥ vα)[x ∈ Rα,s =⇒ (∀t ≥ s)[x ∈ Rα,t]]

(and correspondingly with B in the dual).

Proof. Part (i) follows from Lemma 3.2.1(i).
For (ii), we note from Lemma 3.2.1(ii) that if x ∈ Rα,t − Rα,t+1, then

x ∈ Sδ,t+1 for some δ, and either δ <L α, or α was initialized at stage t + 1.
In the former case, x can never re-enter Rα (by 3.2.1(ii), again). If α was
initialized, then δ = ft+1 ⊂ α, and x could only return to Rα by applications
of Step 1 or Step 2. However, we know that x < t by Step 10 (since x ∈ Rα,t),
so the restrictions (1.3) and (2.3) in Steps 1 and 2 rule out the return of x
to Rα.

For (iii), any of Steps 1, 3, 4 and 5 can put an x into some Uα,s+1 or

V̂α,s+1, but each of them either requires x ∈ Yα,s or puts x ∈ Yα,s+1.
Finally, (iv) assumes α ⊂ f , so by Lemma 3.2.3(iii), Y<α is finite. Let vα

be a stage so large that fs <L α only if s < vα, and also that every y ∈ Y<α

never again either enters or leaves Rα. (By Part (ii) of this lemma, each of
the finitely many y ∈ Y<α enters Rα at most once.) Lemma 3.2.1(ii) makes
it clear that the only way for any x ∈ A to leave Rα at any stage is for it to
enter Y<α or for fs+1 <L α. Neither of these can occur at any stage s > vα,
by our choice of vα.

Lemma 3.2.5 For all x ∈ A:
(i) α(x) = lims α(x, s) exists, and

(ii) x is enumerated in at most finitely many r.e. sets Uγ, V̂γ, and hence
for α = α(x),

ν(α, x) =dfn lims ν(α, x, s) exists.

(Similarly with B in the dual.)

Proof. Lemma 3.2.1(ii) gives the conditions under which α(x, s+1) 6= α(x, s)
can occur. Let γ = f�x be the initial segment of the true path with length
x, and choose s > vγ with fs�x = γ. Substep 11C forces either α(x, s) <L γ

28

or α(x, s) ⊆ γ. (It is impossible for γ (α(x, s) since |γ| = x.) Moreover,
Substep 11C will never apply to x after stage s.

Now Steps 1 and 2 can only move x into Sα if x > |α|. Also, each α
has only finitely many predecessors in T , and x cannot be moved back and
forth among these predecessors infinitely often because of Lemma 3.2.4(ii).
Therefore, if α(x, s + 1) 6= α(x, s) occurs infinitely often, then there must be
infinitely many stages at which either α(x, s + 1) <L α(x, s). However, there
is no infinite sequence {δ1 <L δ2 <L δ3 <L . . .} in T with every |δi| < x. This
proves part (i).

Part (ii) follows from (i) because α(x, s) eventually converges to some
α(x), and there are only finitely many possible α(x)-states. Once x leaves
some α(x)-state, it can never return to that state, because the sets Uγ and

V̂γ which we enumerate are c.e. Moreover, x will never be enumerated in any

Uγ or V̂γ unless γ ⊆ α(x).

Lemma 3.2.6 If the hypotheses of some Step 0–5, or 0̂–5̂ remain satisfied,
then that step eventually applies. Also, each of Steps 10 and 1̂0 applies
infinitely often.

Proof. If Steps 10 and 1̂0 never applied after some stage s0, then there would
only be finitely many elements x and x̂ in Yλ and Ŷλ, to which the steps
preceding Step 10 would apply at every stage after s0. Each of these steps
performs some action when applied, either moving an x or an x̂ into a new
Sα or enumerating it into some Uα, Vα, Ûα, or V̂α. However, such actions can
only occur finitely often for any given x or x̂, by Lemma 3.2.5, so eventually
Step 10 or Step 1̂0 must apply, providing a new element x or x̂. In order
for Step 10 or 1̂0 to apply, the hypotheses of all the other steps must be
unsatisfied. This proves the lemma.

Lemma 3.2.7 If α ⊂ f , ρ (α, and β = α− then
(i) (∀γ <L f)[m(γ) =dfn lims m(γ, s) < ∞],
(ii) m(α) =dfn lims m(α, s) = ∞,
(iii) E0

α ⊇M0
α = F0+

β ,

(iv) Ê0
α ⊇ M̂0

α = F̂0+
β , and

Proof. For part (i), we note that for each γ <L f , Substep 11B can only
apply finitely often. Hence lims m(γ, s) must be finite.

29

Turning to (ii), we let α and β be as given in the lemma. The definition

of the true path (Definition 2.3.1) yields M0
α = F0+

β and M̂0
α = F̂0+

β . By
Substep 11B, m(α, s) is nondecreasing as a function of s; we claim that
it increases infinitely often. Otherwise there would exist a stage s0 with
m(α, s) = m(α, s0) for all s ≥ s0.

Claim: Every α-entry 〈α, ν1〉 on L (〈α, ν̂1〉 on L̂) is eventually marked.
As in [19], we modify the proof of this claim in the non-dual case, since

it is now possible for elements to leave the game before they can enter Sα.
We will use Lemma 3.2.0(iii) to guarantee a supply of elements {xi}i∈ω that
remain in A because their Γ3-tags are never removed.

If some entry 〈α, ν1〉 on L were never marked, then no more α-entries
would ever be added to L after 〈α, ν1〉. Choose a stage s1 large enough
that neither any α-entries on L nor any entry on L preceding 〈α, ν1〉 is ever
marked after stage s1, that Y<α,s1 = Y<α (using Lemma 3.2.3), and that
Yα,s1�m(α, s0) = Yα�m(α, s0). Now requirement (2.4) prevents Step 2 from
enumerating any x > m(α, s0) into Rα after stage s1, and Step 1 will never
again put any x into Rα because by (1.8), that would involve marking an
unmarked α-entry on L.

We have ν1 ∈ M0
α because 〈α, ν1〉 ∈ L. Also M0

α = F0+
β , since α ⊂ f .

Hence Lemma 3.2.0(iii) applied to β provides an infinite collection of elements
{xi}i∈ω ⊂ A. By the choice of s1 all but finitely many xi satisfy (1.1)–(1.7).
(Satisfying (1.5) uses the assumption that lims m(α, s) is finite.) Thus, some
such xi is moved to Sα under Step 1 at some stage s + 1 > s1, and the entry
〈α, ν1〉 is then marked, contrary to hypothesis. This establishes the claim for
L.

With the claim, we see that Substep 11B will apply to α at some stage
s > s1, forcing m(α, s) > m(α, s− 1).

(The proof of (ii) in the dual case is simpler, because we never enumerate

any element of Ŝβ,s into B.)
(iii) now follows (and (iv) similarly) because for any ν1 ∈M0

α, (ii) forces
infinitely many entries 〈α, ν1〉 to be added to L, and for each to enter, all
previous such entries must have been marked. The only way for an entry to
be marked is for an x in α-state ν1 to enter Sα, and if this happens infinitely
often, then ν1 ∈ E0

α.

Lemma 3.2.8 α ⊂ f =⇒

(i) Rα =∗ Yα ∩ A =∗ Yλ ∩ A = A; and

30

(ii) Yα is infinite. (And similarly for the dual lemma, with B for A.)

Proof. By Lemma 3.2.6(i) Step 10 must eventually put every element x ∈ ω
into Yλ. By induction we may assume that Rβ =∗ Yβ ∩ A =∗ A and Yβ is
infinite, for β = α−. By Lemma 3.2.7 m(α) = ∞, and m(γ) < ∞ for all
γ <L α with γ− = β.

Now by Lemma 3.2.3, Y<α =∗ ∅. Also, cofinitely many of the elements
x ∈ (Yβ − Yα) ∩ A will eventually enter Sβ. Therefore, cofinitely many such
x will satisfy (2.1)–(2.5) at some stage, and will be moved to Sα by Step 2.
Once there, cofinitely many of them will remain in Rβ forever, by Lemma
3.2.4(iv).

Part (ii) follows immediately from part (i), since A is infinite (as is B, in
the dual case).

The proof of the dual case is nearly the same, except that to see that Ŷα

is infinite, we must observe that since Ŷβ is infinite, infinitely many elements

will enter Ŝβ via Step 1̂ or Step 2̂. By the above reasoning, cofinitely many

of these must eventually enter Ŝα.

Lemma 3.2.9 α ⊂ f =⇒ α is M-consistent.

Proof. Let α ⊂ f and β = α−. Assume for a contradiction that α is not
M-consistent. Then eα > eβ and there exist ν0 ∈ M0

α and ν1 /∈ M0
α such

that ν0 <B ν1 and ν1� β ∈ M0
β. By Definition 2.2.2, α is a terminal node

on T , so Sα,s = Rα,s for all s. Thus, by Lemma 3.2.4(iv), for some vα, no
x ∈ Svα,s ∩ A later leaves Sα.

By Lemma 3.2.7, ν0 ∈ E0
α. Thus, by Lemma 3.2.0(i), we have an infinite

set {xi}i∈ω ⊆ A such that

(∀i)(∃s)[xi ∈ Sα,s+1 − Sα,s & ν(α, xi, s + 1) = ν0].

Let x be any such xi with x > kα and the corresponding s > vα.
Now Steps 1 and 2 cannot move x at any stage t > s, since they could

only act to move x to a different region Sγ. Since x ∈ A, Step 0 will never
change the α-state of x. Thus, Step 3α must eventually apply to x at some
stage t + 1 > s + 1, moving x from ν0 either to ν1, or to some other state
ν ′1 such that ν0 <B ν ′1 and ν ′1 � β ∈ M0

β and ν ′1 /∈ M0
α. But x > kα = k+

β ,
so Equation 15 and Lemma 3.2.7 provide the desired contradiction. (We say
that α is provably incorrect at all stages v ≥ t + 1.) Thus α 6⊂ f .

31

In the dual, there is no need to appeal to an analogue of Lemma 3.2.0(i),
since we do not need x̂ ∈ B. We simply note that since α ⊂ f , we have
ν̂0 ∈ M̂0

α = Ê0
α, so there will be infinitely many x̂ > kα and s > v̂α available

to us with x̂ ∈ Ŝα,s+1 − Ŝα,s and ν̂(α, x̂, s + 1) = ν̂0. As with x above, Step 3̂
must eventually move each such x̂ into some α-state ν̂1 with ν̂0 <B ν̂1. Since
α is inconsistent, x̂ cannot enter B at any stage t > v̂α so ν̂1 /∈ M̂0

α. Again,
this forces α 6⊂ f .

Lemma 3.2.10 If α ⊂ f then
(i) M̂0

α = {ν̂ : ν ∈M0
α},

(ii) M0
α = F0

α = E0
α, and

(iii) M̂0
α = F̂0

α = Ê0
α.

Proof. Fix α ⊂ f , and let β = α−. Now (i) holds by the definition of M̂0
α.

By induction we may assume (ii) and (iii) for β. We know E0
α ⊆ F0

α by their
definitions, and M0

α ⊆ E0
α by Lemma 3.2.7. Thus, to prove (ii) and (iii) it

suffices to prove F0
α ⊆M0

α, and F̂0
α ⊆ M̂0

α.

Case 1. eα = eβ and êα = êβ.
Then M0

α = M0
β. Also F0

α ⊆ F0
β since Yα ⊆ Yβ. Finally, M0

β = F0
β by

the inductive hypothesis (ii) for β. Hence,

F0
α ⊆ F0

β = M0
β = M0

α,

so (ii) holds for α. Likewise, F̂0
α ⊆ M̂0

α, so (iii) holds for α.
Before considering Case 2 we need a technical sublemma.

Sublemma. If eα > eβ, ν2 = 〈α, σ2, τ2) ∈ F0+
β , and ν1 = 〈α, σ1, τ2〉, where

σ1 = σ2 − {eα}, then ν1 ∈ F0+
β also.

Proof. Suppose ν2 ∈ F0+
β . Then ν3 = ν2 � β ∈ F0

β , and F0
β = E0

β by the
inductive hypothesis (ii) for β. Hence, by the definition of E0

β ,

(∃∞x)(∃s)[x ∈ Yβ,s − Yβ,s−1 & ν(β, x, s) = ν3].

However, for each such x and s, we have x /∈ Zeα,s (by the definition of Zeα,s)
so ν+(α, x, s) = ν1. Hence, ν1 ∈ F0+

β by the definition of F0+
β in (14). This

proves the Sublemma.

32

Case 2. eα > eβ.

We prove F0
α ⊆M0

α and its dual F̂0
α ⊆ M̂0

α in the next five claims. (The
proof of Case 3, êα > êβ, is entirely dual and will be omitted.)

Claim 1. F0
α ⊆M0

α.

Proof. Suppose ν1 ∈ F0
α. Let ν1 = 〈α, σ1, τ1〉. Then

(∃∞x)(∃s)[x ∈ Yα,s & ν(α, x, s) = ν1]. (38)

Note that Yα,s ⊆ Yβ,s and ν(α, x, s) ≤R ν+(α, x, s) because Uα,s ⊆ Zeα,s.
First suppose

(∃∞x)(∃s)[x ∈ Yα,s & ν+(α, x, s) = ν1]. (39)

Then ν1 ∈ F0+
β by definition of F0+

β because Yα,s ⊆ Yβ,s, and F0+
β = M0

α

since α ⊂ f .
If (39) fails, then for almost every x in (38), ν+(α, x, s) = ν2 >R ν1, so

ν2 = 〈α, σ2, τ1〉 where eα /∈ σ1 and σ2 = σ1 ∪ {eα}. Now ν2 ∈ F0+
β since

Yα,s ⊆ Yβ,s, so ν1 ∈ F0+
β = M0

α by the Sublemma.

Claim 2. F̂0
α ⊆ M̂0

α.

Proof. We establish Claim 2 by the next three claims which are the duals of
(6), (7), and (8).

Claim 3. Ê0
α ⊆ M̂0

α.

Proof. Assume ν̂1 ∈ Ê0
α. Hence,

(∃∞x̂)(∃s)[x̂ ∈ Ŝα,s+1 − Ŷα,s & ν̂(α, x̂, s + 1) = ν̂1].

For every such x̂ and s, x̂ must have entered Ŝα,s+1 under Step 1̂ or Step 2̂.

If Step 1̂ applied then we marked an entry 〈α, ν̂1〉 on L̂s so ν̂1 ∈ M̂0
α by the

definition of L̂ in Step 11. If Step 2̂ applied then x̂ /∈ Ûα,s+1 because x̂ /∈ Ûα,s

by Lemma 3.2.4(iii) and no enumeration takes place at stage s + 1 under
Step 2̂. Hence, eα /∈ σ1, where ν1 = 〈α, σ1, τ1〉.

Let ν3 = ν1� β. Now ν̂3 ∈ F̂0
β = M̂0

β so ν3 ∈ M0
β = F0

β and thus either

ν1 ∈ F0+
β or ν2 ∈ F0+

β where ν2 = 〈α, σ1 ∪ {eα}, τ1〉. But if ν2 ∈ F0+
β then

ν1 ∈ F0+
β by the Sublemma. In either case ν1 ∈ F0+

β = M0
α, so ν̂1 ∈ M̂0

α.

33

Claim 4. If x̂ ∈ Ŷα,s, ν̂1 = ν̂(α, x̂, s) ∈ M̂0
α, s > vα of Lemma 3.2.4(iv), and

RED causes enumeration of x̂ so that ν̂2 = ν̂(α, x̂, s + 1) then ν̂2 ∈ M̂0
α.

Proof. Suppose this enumeration occurs. Then ν̂1 <R ν̂2 so ν1 <B ν2 by (17).

Now ν1 ∈ M0
α since ν̂1 ∈ M̂0

α. But α is M-consistent by Lemma 3.2.9, so

ν2 ∈M0
α, and hence ν̂2 ∈ M̂0

α.

Claim 5. If x̂ ∈ Ŷα,s, ν̂1 = ν̂(α, x̂, s) ∈ M̂0
α, s > vα of Lemma 3.2.4(iv),

and BLUE causes enumeration of x̂ so that ν̂2 = ν̂(α, x̂, s + 1) then either

ν̂2 ∈ M̂0
α or ν̂2 is a B-state.

Proof. Suppose x̂ ∈ Ŷα,s and BLUE causes this enumeration at stage s + 1,

so ν̂1 <B ν̂2. Since s > vα, x̂ ∈ R̂α,s ∩ R̂α,s+1. Hence, either Step 1̂, Step 3̂,
Step 5̂, or Step 0̂ applies to x̂ at stage s + 1 for some γ ⊇ α. Assume that ν̂2

is not a B-state. (Thus Step 0̂ cannot have applied.) If Step 1̂γ or Step 5̂γ

applies then ν̂3 = ν̂(γ, x̂, s + 1) ∈ M̂0
γ so ν̂2 = ν̂3� α ∈ M̂0

α. (Here Step 5̂γ

means Step 5̂ Case 1 for x̂ ∈ Ŷγ,s or Step 5̂ Case 2 for x̂ ∈ Ŷδ,s where γ = δ−.)
If Step 3̂γ applies, then γ) α (since α is M-consistent and γ is not) and

ν̂3 = ν̂(γ−, x̂, s + 1) ∈ M̂0
γ− by (3.4) so ν̂2 = ν̂3�α ∈ M̂0

α. This completes the
proof of Claim 5.

Claim 2 now follows, since for any ν̂ ∈ F̂0
α − Ê0

α,

(∃∞x̂)(∃s)[x̂ ∈ R̂α,s & ν̂(α, x̂, s) = ν̂ & ν̂(α, x̂, s− 1) 6= ν̂].

(Notice that F̂0
α contains only B-states, by definition.)

This completes the proof of Case 2, and that of Lemma 3.2.10.

Lemma 3.2.11 α ⊂ f =⇒ α is R-consistent.

Proof. To prove R0-consistency of α, assume for a contradiction that α ⊂ f
and α is not R0-consistent. Choose ν1 ∈ R0

α such that for all ν2 ∈ M0
α,

ν1 ≮R ν2. Being inconsistent, α is a terminal node on T , so Sα,s = Rα,s for all
s. Thus, by Lemma 3.2.4(iv), there exists a stage vα such that Sα,s∩A ⊆ Sα,t

for every s and t with t ≥ s ≥ vα.
Now ν̂1 ∈ R̂0

α ⊆ M̂0
α = Ê0

α by Lemma 3.2.10. Therefore Lemma 3.2.0(i)
yields an infinite set {xi}i∈ω ⊆ A such that

(∀i)(∃s)[xi ∈ Sα,s+1 − Yα,s & ν(α, xi, s + 1) = ν1].

34

Let x be any such xi with the corresponding s > vα. Now Step 0 will not
apply to x at any stage t > s + 1 because x ∈ A. Steps 1 and 2 would both
remove x from Sα, which is impossible at any stage t > vα. By Lemma 3.2.9,
α must be M-consistent, so Step 3 will never apply. Also, Step 5 does not
apply to R0-inconsistent nodes such as α. Therefore, if x is to be removed
from state ν1 as required by F (β, ν1), then Step 4 must act, enumerating x
into some red set Uγ with γ ⊆ α. Since this happens for infinitely many
elements x, and there are only finitely many α-states ν with ν1 <R ν, one
of those states ν must lie in F0

α, hence in M0
α, by Lemma 3.2.10(iii). This

contradicts R0-inconsistency.
To prove R̂0-consistency of α, assume for a contradiction that α ⊂ f

and α is not R̂0-consistent. Choose ν̂1 ∈ R̂0
α such that for all ν̂2 ∈ M0

α,
ν̂1 ≮R ν̂2. Being inconsistent, α is a terminal node on T , so Ŝα,s = R̂α,s for
all s. Thus, by the dual of Lemma 3.2.4(iv), there exists a stage vα such that
Ŝα,s ∩B ⊆ Ŝα,t for every s and t with t ≥ s ≥ vα.

Now ν̂1 ∈ R̂0
α ⊆ M̂0

α = Ê0
α by the dual of Lemma 3.2.10. Therefore there

exist infinitely many elements x̂ such that

(∃s)[x̂ ∈ Ŝα,s+1 − (Bs ∪ Ŷα,s) & ν̂(α, x̂, s + 1) = ν̂1].

Take any such x̂ > kα for which the corresponding s > vα. Step 0 does
not apply to the ω̂-side, and Steps 1̂ and 2̂ would both remove x̂ from Ŝα,
which is impossible at any stage t > vα. By the dual of Lemma 3.2.9, α must
be M-consistent, so Step 3̂ will never apply. Steps 5̂ and 0̂ do not apply
to R̂0-inconsistent nodes such as α. Therefore, if x̂ is to be removed from
state ν̂1 as required by F̂ (β, ν̂1), then Step 4̂ must act, enumerating x̂ into
some red set Vγ with γ ⊆ α. Since this happens for infinitely many elements
x̂, and there are only finitely many α-states ν̂ with ν̂1 <R ν̂, one of those
states ν̂ must lie in F̂0

α, hence in M̂0
α, by the dual of Lemma 3.2.10(iii). This

contradicts R̂0-inconsistency.

We remark that while the two halves of the preceding proof appear quite
similar, the similarity is deceptive. In fact, the proof of R0-consistency, de-
pends on the lowness of A, which guided the proof of Lemma 3.2.0. On the
other hand, in the proof of the dual R̂0-consistency, we used instead the fact
that inconsistent nodes do not require any elements to be enumerated into
any blue sets, including B itself. This works in the present situation be-
cause the only external requirements for the construction of B are negative

35

requirements, namely the Qe of the Sacks preservation strategy. (The posi-
tive requirements stem from the automorphism construction itself, not from
any properties which we demand of B.) Herein lies the connection between
lowness of A and the ability of A to avoid an upper cone.

Lemma 3.2.12 If α ⊂ f and ν1 ∈ B0
α, then

{x : x ∈ Yα & ν(α, x) = ν1} =∗ ∅.

Proof. Fix α ⊂ f and ν1 ∈ B0
α. Let vα be as in Lemma 3.2.4(iv). Assume for a

contradiction that x ∈ Rα,s for some s > vα and that for all t ≥ s, γ = α(x, t),
and ν1 = ν(α, x, t). Now γ ⊇ α and α ∈ T , so by the Definition 2.2.2 (vi) of
T we have ν ′1 ∈ B0

γ for all ν ′1 ∈M0
γ such that ν ′1�α = ν1.

Case 1. If γ is R-consistent, then Lemma 3.2.6 guarantees that Step 5
Case 1 will apply to x and γ at some stage t + 1 > s, so that ν ′1 =
ν(γ, x, t), ν ′2 = ν(γ, x, t + 1), ν ′1 <B ν ′2, and ν ′2 ∈ M0

γ − B0
γ. Hence

ν2 = ν ′2�α ∈M0
α − B0

α, and ν(α, x, t + 1) = ν2 >B ν1.

Case 2. Otherwise there will be a stage t + 1 > s at which Step 5 Case 2
applies to x and δ = γ− ⊇ α. Hence ν(α, x, t + 1) = ν2 >B ν1 as in Case 1
but with δ in place of γ.

In the dual case, we note that the state ν̂ ′2 might possibly be a B-state.

If so, then ν̂2 would not lie in M̂0
α. However, in that case ν̂2 would also be a

B-state, so ν̂2 6= ν̂1.

Lemma 3.2.13 For every α ⊂ f , M0
α = M̂0

α and N 0
α = N̂ 0

α.

Proof. Lemma 3.2.10(i) gives the result for M. Moreover, since α ⊂ f , we

know that R0
α = B̂0

α and B0
α = R̂0

α (see Definition 2.3.1). To prove N 0
α = N̂ 0

α ,
therefore, we need only show that for each A-α-state ν in M0

α,

ν ∈ B0
α ∪R0

α ⇐⇒ {x ∈ ω : ν(α, x) = ν} is finite,

and similarly for ν̂ ∈ B̂0
α ∪ R̂0

α.
Suppose ν ∈ R0

α. Then F (β, ν) must hold, where β = α−. Therefore, by
(22), only finitely many x ∈ Yβ remain permanently in the α-state ν. Since

β ⊂ α ⊂ f , we know that Yβ =∗ ω, so ν ∈ N 0
α . The proof for ν̂ ∈ R̂0

α is
analogous.

36

Now let ν ∈ B0
α and suppose ν(α, x) = ν. We know there exists a node γ

and a stage s0 such that x ∈ Sγ,s for all s ≥ s0. Since α ⊂ f , Rα is cofinite,
so we may assume that γ ⊇ α. Let ν1 = ν(γ, x) be the permanent γ-state of
x, and suppose that s1 ≥ s0 is such that ν(γ, x, s) = ν1 for all s ≥ s1. Then
ν1�α = ν, and ν1 is an A-state. By part (vi) of Definition 2.2.2, ν1 ∈ B0

γ. If
γ is a consistent node, then by Lemma 3.2.6, there will eventually be a stage
s ≥ s1 at which Case 1 of Step 5 applies, so x will be moved into some other
γ-state ν2 >B ν1 at stage s1. If γ is inconsistent, then again x will change
γ-states at some stage s ≥ s1 at which Case 2 of Step 5 applies. In either
case, this contradicts our assumption that ν(γ, x) = ν1. Thus there are only
finitely many x which reside permanently in the α-state ν, forcing ν ∈ N 0

α .

For ν̂ ∈ B̂0
α, the dual proof holds for all x̂ ∈ B. If x̂ ∈ B, then clearly ν̂

is not the final α-state of x̂, since every state in B̂0
α is a B-state. Therefore

again ν̂ ∈ N̂ 0
α .

Now suppose ν ∈ N 0
α , i.e. ν is a well-visited but non-well-resided α-state.

In the construction, the only steps at which an element x may be moved out
of ν are Steps 0, 1, 4, and 5. (Step 3 never applies to α, by Lemmas 3.2.9
and 3.2.11.) If Step 5γ applies (for some γ ⊇ α), then ν ∈ B0

α, by part (vi) of
Definition 2.2.2. Since α ⊂ f , Step 1 can only move elements in Rα to regions
Sγ, where α ⊂ γ (except for finitely many elements), and when it does so, it

enumerates them only into Uγ or V̂γ, leaving the α-state unchanged. Step 0
could move infinitely many elements into A, but by Lemma 3.2.0, there must
also be infinitely many elements from A in the state ν, since ν ∈M0

α = E0
α.

Therefore, suppose Step 4 changes the α-state of cofinitely many of the
elements in state ν. By definition of kα = k+

β , the finitely many elements not
moved can never enter Yβ. Hence F (β, ν) holds. Since ν ∈ M0

α and α ⊂ f ,
part (iii) of Definition 2.2.2 forces ν ∈ R0

α ∪ B0
α.

Finally, for the dual case ν̂ ∈ N̂ 0
α , the same argument holds, except that

Step 0̂ could move an element out of ν̂. If cofinitely many of the elements
which enter state ν̂ are so moved, then according to Step 0, cofinitely many
elements in the corresponding state ν on the ω-side must have entered A.
This contradicts Lemma 3.2.0. so there must be infinitely many elements in
ν̂ which are not moved into B by Step 0̂.

Lemma 3.2.14 {Uα : α ⊂ f} and {Vα : α ⊂ f} each forms a skeleton for
the collection of all c.e. sets. (That is, for every e there exist γ ⊂ f and
δ ⊂ f such that We =∗ Uγ =∗ Vδ.)

37

Proof. Steps 4 and 4̂ accomplish this, since Rα =∗ ω and R̂α =∗ ω̂ for all
α ⊂ f . The only exception is the set A = U0, which is covered by Substep
(0.1).

3.3 Verifying that GA = ĜB.

Our proof that GA = ĜB follows the same ideas as in section 1.3.3 of [19].
First, however, we need to show that all requirements are satisfied.

Lemma 3.3.1 Every requirement Qe is satisfied. (Hence C 6≤T B.)

Proof. Each positive requirement P〈α′,ν′,j〉 puts at most one element into
B, so (by induction) there exists a stage s0 so large that no P〈α′,ν′,j〉 with
〈α′, ν ′, j〉 ≤ e puts any elements into B at any stage ≥ s0. Notice also, by
the remark at the end of the construction, that only Step 0̂ ever puts any
elements into B, and that it respects all higher-priority negative requirements
Qi when doing so.

Now suppose that Qe fails, i.e. C = {e}B. Then lims l(e, s) = ∞, and
we can use this fact to compute C. Given x, find a stage s ≥ s0 such that
l(e, s) > x. As in [17], Theorem VII.3.1, we must then have

{e}Bs
s (x) = {e}B(x) = C(x),

since by our choice of s0, the initial segment of Bs used in this computation
will never again be changed.

This contradicts the noncomputability of C. Hence Qe must be satisfied.

Lemma 3.3.2 For every e, lims r(e, s) exists and is finite.

Proof. The proof follows the proof of Lemma 2 in [17] VII.3.1 exactly. Lemma
3.3.1 yields an x such that C(x) 6= {e}B(x). Taking the least such x, we
choose a stage s0 so large that:

• The functions {e}Bs
s and Cs converge to their correct values on every

argument < x, for every s ≥ s0;

• Cs0(x) = C(x); and

• No higher-priority requirement P〈α,ν,i〉 puts any element into B at any
stage s ≥ s0.

38

If {e}Bt
t (x) ↓ for some t ≥ s0, then the same computation converges to the

same value at all stages s > t, so r(e, t) = r(e, s) for all s > t. Otherwise
{e}Bt

t (x)↑ for all t ≥ s0, leaving r(e, s) = r(e, s0) for all s ≥ s0.

To show that GA = ĜB, we will prove the following two lemmas:

Lemma 3.3.3 For any node α and α-state ν1, LG contains infinitely many
pairs 〈α, ν̂1〉 if and only if ν1 ∈ GA

α .

Proof. Such a pair is added to LG exactly when Step 0 enumerates some
x ∈ ν1 into A. Moreover, no step except Step 0 ever puts any elements into
A. Thus, LG contains infinitely many such pairs if and only if infinitely many
x ∈ ν1 are enumerated into A; that is, if and only if ν1 ∈ GA

α .

Lemma 3.3.4 For any node α ⊂ f and α-state ν1, LG contains infinitely
many pairs 〈α, ν̂1〉 if and only if ν̂1 ∈ ĜB.

Proof. To show the “if” part of this statement, we assume that infinitely
many elements x̂ enter B while in α-state ν̂1, and observe that

1. We do not move any element x̂ in α-state ν̂1 into B except when re-
quired to do so in Step 0̂ by some pair 〈γ, ν̂ ′1〉 in LG with α ⊆ γ and
ν̂1 = ν̂ ′1 � α; and that

2. When Step 0̂ does require such an x̂ to enter B, we mark the corre-
sponding pair 〈γ, ν̂ ′1〉, so for infinitely many x̂ in α-state ν̂1 to enter B,
there must be infinitely many such pairs in LG; and that

3. Therefore there must be infinitely many pairs 〈α, ν̂1〉 in LG, since when-
ever we add a 〈γ, ν̂ ′1〉, we also add a 〈α, ν̂1〉 for each α ⊆ γ.

To show the “only if” part, suppose that for a given α and ν, LG contains
infinitely many pairs 〈α, ν̂〉. We claim that for every k, the requirement
P〈α,ν,k〉 is satisfied.

To see this, assume by induction that P〈α,ν,k−1〉 is satisfied, and notice that
we can find a stage s0 so large that LG contains at least k pairs 〈α, ν̂〉 at stage
s0 and that for all s ≥ s0 and all e ≤ 〈α, ν, k〉, r(e, s) = r(e, s0). By Lemma
3.3.3, ν ∈ GA

α . Therefore ν ∈ M0
α, and by Lemmas 3.2.13 and 3.2.10(iii),

ν̂ ∈ M̂0
α = F̂0

α. If P〈α,ν,k〉 remained unsatisfied forever, then the definition of

F̂0
α would guarantee that there must exist distinct elements ŷ0, ŷ1, ŷ2, · · · ŷ2k

39

and a stage s > s0 at which these elements satisfy conditions (0̂.4)–(0̂.6).
Now α is consistent, by Lemmas 3.2.9 and 3.2.11, and P〈α,ν,k〉 would not be

satisfied at stage s, so by Step 0̂ of the construction, the element ŷ2k would
have to enter B from state ν̂ at stage s + 1.

Since ν ∈ GA
α , we know that the hypothesis of P〈α,ν,k〉 is satisfied for

every k. Since the requirements themselves are all satisfied, we conclude
that ν̂ ∈ ĜB

α .

With this result we can finally extend Lemmas 3.1.2 and 3.1.3 to B-states.
Since A is infinite, GA

α is non-empty for each α ⊂ f , so ĜB
α is also non-empty,

forcing B to be infinite. Therefore the ρ-state 〈ρ, {0}, ∅〉 is well-resided, so

F̂+
λ = M̂ρ. Also, since the only well-visited ρ-state is well-resided, the guess

kρ = −1 is correct.

Lemmas 3.3.3 and 3.3.4 together show that GA = ĜB. Lemma 3.3.1 shows
that C 6≤T B. Along with Lemmas 3.2.13 and 3.2.14 and Theorem 2.3.1, this
completes the proof of Theorem 1.1.1.

References

[1] P. Cholak; Automorphisms of the Lattice of Recursively Enumerable
Sets, Memoirs of the American Mathematical Society 113 (1995), No.
541.

[2] P. Cholak, R. Downey & M. Stob; Automorphisms of the Lattice of
Recursively Enumerable Sets: Promptly Simple Sets, Transactions of
the American Mathematical Society 332 (1993), 555-569.

[3] R. Downey & M. Stob; Jumps of Hemimaximal Sets, Z. Math. Logik
Grundlagen 37 (1991), 113-120.

[4] R. Downey & M. Stob; Automorphisms of the Lattice of Recursively
Enumerable Sets: Orbits, Advances in Mathematics 92 (1992), 237-265.

[5] R. Downey & M. Stob; Friedberg Splittings of Recursively Enumerable
Sets, Annals of Pure and Applied Logic 59 (1993), 175-199.

[6] R.M. Friedberg; Two Recursively Enumerable Sets of Incomparable De-
grees of Unsolvability, Proc. Nat. Acad. Sci. (USA) 43 (1957), 236-238.

40

[7] L. Harrington & R. I. Soare; Post’s Program and Incomplete Recursively
Enumerable Sets, Proc. Nat. Acad. Sci. (USA) 88 (1991), 10242-10246.

[8] L. Harrington & R. I. Soare; The ∆0
3-Automorphism Method and Non-

invariant Classes of Degrees, Journal of the American Mathematical So-
ciety 9 (1996), 617-666.

[9] L. Harrington & R. I. Soare; Definable Properties of the Computably
Enumerable Sets, Annals of Pure and Applied Logic 94 (1998), 97-125.

[10] W. Maass & M. Stob; The Intervals of the Lattice of Recursively Enu-
merable Sets Determined by Major Subsets, Annals of Pure and Applied
Logic 24 (1983), 189-212.

[11] D.A. Martin; Classes of Recursively Enumerable Sets and Degrees of
Unsolvability, Z. Math. Logik Grundlag. Math. 12 (1966), 295-310.

[12] A.A. Muchnik; On the Unsolvability of the Problem of Reducibility in
the Theory of Algorithms, Dokl. Akad. Nauk SSSR, N.S. 109 (1956),
pp. 194-197 (Russian).

[13] J. Myhill; The Lattice of Recursively Enumerable Sets, Journal of Sym-
bolic Logic 21 (1956), 215, 220.

[14] R. W. Robinson; The Inclusion Lattice and Degrees of Unsolvability
of the Recursively Enumerable Sets, PhD. Thesis, Cornell University
(1966).

[15] H. Rogers, Jr.; Theory of Recursive Functions and Effective Computabil-
ity (Cambridge, MA: The MIT Press, 1987).

[16] R. I. Soare; Automorphisms of the Recursively Enumerable Sets, Part
I: Maximal Sets, Annals of Mathematics (2) 100 (1974), 80-120.

[17] R. I. Soare; Recursively Enumerable Sets and Degrees (New York:
Springer-Verlag, 1987).

[18] R. I. Soare; Extensions, Automorphisms, and Definability, to appear.

[19] K. Wald; Automorphisms and Noninvariant Properties of the Com-
putably Enumerable Sets, PhD. Thesis, University of Chicago (1999).

41

Department of Mathematics
Cornell University
Ithaca, New York 14853

E-mail: russell@math.cornell.edu

42

