The V3-Theory of R(<, Vv, A) is Undecidable

Russell G. Miller Andre O. Nies
Department of Mathematics Office 592

Cornell University Department of Computer Science

Ithaca NY 14853 University of Auckland

Private Bag 92019
Auckland, NZ

Richard A. Shore
Department of Mathematics
Cornell University

Ithaca NY 14853

March 21, 2006

Abstract

The three quantifier theory of (R, <7), the recursively enumerable degrees un-
der Turing reducibility, was proven undecidable by Lempp, Nies and Slaman [1998].
The two quantifier theory includes the lattice embedding problem and its decidabil-
ity is a long standing open question. A negative solution to this problem seems out
of reach of the standard methods of interpretation of theories because the language
is relational. We prove the undecidability of a fragment of the theory of R that
lies between the two and three quantifier theories with <7 but includes function
symbols.

Theorem: The two quantifier theory of (R,<,V,A), the r.e. degrees
with Turing reductbility, supremum and infimum (taken to be any total
function extending the infimum relation on R) is undecidable.

The same result holds for various lattices of ideals of R which are natural extensions
of R preserving join and infimum when it exits.

The first author was partially supported by a VIGRE Postdoctoral Fellowship under NSF grant
number 9983660 to Cornell University. The third author was partially supported by NSF Grant DMS-
0100035. The authors offer their thanks to the referee for several helpful comments.

1 Introduction

A major theme in the study of degree structures of all types has been the question of
the decidability or undecidability of their theories. This is a natural and fundamental
question that is an important goal in the analysis of these structures. It also serves as
a guide and organizational principle for the development of construction techniques and
algebraic information about the structures. A decision procedure implies (and requires) a
full understanding and control of the first order properties of a structure. Undecidability
results typically require and imply some measure of complexity and coding in the struc-
ture. Once a structure has been proven undecidable, it is natural to try to determine
both the extent and source of the complexity. One the one hand, one wants to determine
the degree of the theory. On the other hand, one strives to find the dividing line be-
tween decidability and undecidability in terms of fragments of the theory. The first has
frequently brought with it considerable information about second order properties such
as definability and automorphisms. The second requires the most algebraic information
and development of construction techniques.

Our interest here is in R, the r.e. degrees under Turing reducibility, and some natural
extensions of this structure, but, for the sake of comparison, we also discuss D and
D(L 0'), the Turing degrees of all sets and the ones below 0'. For D; D(< 0') the results
came fairly early. The first paper on the structure D of the Turing degrees as a whole,
Kleene-Post [1954], developed the finite extension method (essentially Cohen forcing for
one quantifier formulas of arithmetic) and proved that all finite partial orderings can be
embedded in both D and D(<L 0'). As these structures are partial orderings, this suffices
to show that the one quantifier (3) theories are decidable. (An existential sentence is
true in either structure if and only if it is consistent with the theory of partial orders, or
equivalently, if there is a partial order with a domain of size the number of variables in
the formula.)

Once the embedding problem is settled, the next level of algebraic questions about the
structures concern extension of embeddings. The first example here is density (or, from
the other side minimal covers). A long development of construction techniques building
on Spector’s original construction [1956] of a minimal degree essentially by forcing with
recursive trees lead to Lachlan’s [1968] result that every countable distributive lattice is
isomorphic to an initial segment of D. This coding of distributive lattices is sufficient
to get the undecidability of the theory as Lachlan [1968] notes. Combining these initial
segment techniques with the finite extension method, Simpson [1977] showed that the
theory of D is recursively isomorphic to Th?*(N), true second order arithmetic.

Finding the dividing line between decidability and undecidability required Lerman’s
[1971] result that every finite lattice (not just the distributive ones) is isomorphic to an
initial segment of D. On one hand, combining this with the finite extension method
solved the extension of embedding problem in such a way that it gave the decidability of
the two quantifier (V3) theory of D (Shore [1978] and Lerman [see 1983, Appendix AJ).

(By the extension of embedding problem we mean determining for which partial orders

X C Y does every embedding of X" into D have an extension to one of }.) The ability
to code all finite lattices also sufficed for Schmerl (see Lerman [1983, Appendix A]) to
prove that the three quantifier (V3V) theory of D is undecidable.

A similar analysis of D(< 0') was then carried out first by a significant elaboration
of the construction techniques to get enough initial segments results below 0’ to give
undecidability (Epstein [1979] and Lerman). Lerman then proved the full analog that
every finite (even recursive) lattice is isomorphic to an initial segment of D(< 0') (Lerman
[1983, ch. XII]). This immediately gives the undecidability of the three quantifier theory.
Then these results were extended and combined with extension of embedding results
below an arbitrary r.e. degree (Lerman and Shore [1988]) to get the decidability of the
two quantifier theory. They were also used to show (Shore [1981]) that the theory of
D(L 0) is recursively isomorphic to true first order arithmetic.

The road has been much longer for the analysis of the r.e. degrees, R. It began with
the finite injury (or 0’) priority method of Friedberg [1957] and Muchnik [1956] that pro-
duced incomparable r.e. degrees and so an embedding of the simplest nontrivial Boolean
algebra. The method sufficed to embed all finite (even countable) partial orderings (Sacks
[1963]) and so decide the one quantifier theory of R in the same way that Kleene and
Post’s work decided that of D and D(< 0'). As the r.e. degrees are dense (by the infinite
injury (or 0”) methods of Sacks [1964]), the next steps in the analysis could not follow the
path laid out for D. Many years of development of construction techniques and algebraic
information ensued. Lachlan’s monster (or 0" injury) methods were eventually used by
Harrington and Shelah [1982] to prove that R is undecidable. The degree of its theory,
as by now one should expect, is also that of true first order arithmetic (Harrington and

Slaman; Slaman and Woodin; Nies, Shore and Slaman [1998]).

The situation for these three degree structures is summarized in the following table:

R D D(<0)
3 Dec Dec Dec
V3 ? Dec Dec

VdY | Undec | Undec Undec
Th | TR(N) | Th*(N) | Th(N)

This leaves us with determining the boundary line between decidability and undecid-
ability for R. Once again, a long hiatus and much work on other developments led to
the undecidability of the three quantifier theory by Lempp, Nies and Slaman [1998]. The
extension of embedding problem was solved by Slaman and Soare [2001] but the question
of the decidability of the two quantifier theory of R remains open. A major obstacle
is the lattice embedding problem of determining which finite lattices can be embedded
in R. Despite some forty years of effort by many researchers on both embedding and
nonembedding results, this question is still unsolved. The best result to date is Lerman
[2000] which shows that the question for an important class of lattices is of degree at most

0”. Even if the lattice embedding problem is shown to be decidable, there are further
difficulties related to Lachlan’s [1966] nondiamond result that there is no embedding of
the four element Boolean algebra into R that preserves both 0 and 1.

Thus we remain a long way from the decidability of the two quantifier theory of K.
On the other hand, the methods used to prove undecidability of other degree structures,
interpretation of theories with simple fragments known to be undecidable, cannot work
for the two quantifier theory of R with just <7, or even any extension by relation symbols,
since the most we can code into this fragment is the validity (perhaps in all finite models)
of an V3 sentence in a finite relational language but this problem is always decidable.
(The point here is that, since the language is relational, any such sentence with n variables
is satisfiable if and only if it is satisfiable in some structure of size at most n. As there are
only finitely many such structures, this question is decidable. The basic result is classical
(Bernays and Schonfikel [1928] and Ramsey [1930]). Its application to interpretations in
structures such as R is pointed out in Shore [1999, p. 179].)

The only hope for an undecidability result at the two quantifier level then is to add
function symbols. One would then try to interpret some theory with function symbols or,
more directly, to code register machines. (The coding of register machines is at the basis
of much of the work on undecidability of various severely restricted quantification classes
of formulas as in Borger, Gradel and Gurevich [1997].) The natural function on R is the
join operator V. However, it is uniformly locally finite, i.e. the closure of any finite set
is finite with size bounded by a fixed recursive function of the cardinality of the starting
set and so cannot, on its own, be used to generate the infinite (or at least unbounded)
structures need for coding even register machines. The next thing to try in terms of
the known structural work on R is the infimum operator A. This has the advantage
that finitely generated substructures can be infinite (Lerman, Shore and Soare [1984]).
The obvious problem with this approach is that not every pair of r.e. degrees has an
infimum and so A is not a total function on R as is required. We can, of course, consider
total extensions of the partial infimum relation but would not want the undecidability
to be an artifact of our (perhaps perverse) choice of extension. Our solution is to prove
undecidability in a sufficiently uniform way so that the proof is independent of the choice
of extension. This we do for our main result.

Theorem 1.1 For any total extension A of the partial infimum relation on R, the two
quantifier (Y3) theory of R(<,V,A) is undecidable.

Now it is routine to eliminate V by replacing it with its definition (as least upper
bound) at the expense of adding one quantifier. Thus, for example, Vo, y3z(x Vy > 2) is
equivalent to Va, y3zVw(x,y < w — w > z). This translation shows that the Y3-theory of
R(<L, V) is reducible to the V3V-theory of R(<). The same would be true of A (as greatest
lower bound) were it a total infimum function, i.e. Ya,y3z(x Ay < z) would be equivalent
to Va,ydzVw(z,y > w — w < z). This needn’t be true for arbitrary extensions of the
partial infimum relation on R but the care that we take with our coding to guarantee

4

that it works for all extensions allows us to argue that the V3 sentences of R(<,V, A) that
witness undecidability can, in fact, be replaced uniformly by equivalent V3V sentences
of R(<) so that the previous best result on undecidability is also a consequence of our
proof.

Corollary 3.1 (Lempp, Nies and Slaman [1998]): The three quantifier (Y3¥) theory of
R(L) is undecidable.

We will give the details of the proof in Section 3, once we explain the specific coding
of register machines that we employ. As essentially similar codings of register machines
can easily be carried out in lattices, the usual interpretation of lattices in D as initial
segments shows that our main result also holds for the degrees as a whole and those

below 0.

Corollary 3.2 For any total extension N of the partial infimum relation on D (D(< 0')),
the two quantifier (¥Y3) theory of D (D(L 0')) with <, V and A is undecidable.

As for R, the arguments here also imply the previous result that the V3V theories of
these structures are undecidable. At least in case of D, the boundary here is very fine as
Jockusch and Slaman [1993] have proven that the ¥3 theory of D(<, V) is decidable.

A new corollary of our proof of undecidability is one for the (lattice) structure Z(R)
of ideals of R with V and A. Here both operations are naturally total on the structure.
IV J is the ideal generated by I'U.J, i.e. the downward closure of {aVb|a € [& b€ J},
and I A J is the ideal I N J. This structure is an interesting one that has been studied,
for example, by Calhoun [1993], Lerman and Calhoun [2001] and Nies [2003]. Also of
interest are the structures Z,,(R) for n > 4 of the X0 ideals of R (those ideals I such that
{e| deg(W.) € I'}is X¥) which are each lattices with the same operations as Z(R). (Note
that by standard index set results Z,(R) is trivial for n = 1,2: If an ideal I of R does not
contain 0" (but does contain 0) then by Yates’ representation theorem [1966] (see Soare

[1987 XTI, 1.3) applied to K, the complete 11 set is of the form {k | ‘v’e(WJEe(]k) € I)} for

some recursive f and so I must be at least ¥9. On the other hand, the class of X9 ideals
is not closed under V, as can be seen by considering a high degree h and a splitting of
h into two low degrees a, b. The principal ideals generated by a and b are X3 but their
join is the one generated by h which is ¥ but not X3.) Each of these lattices (Z(R) and
Z.(R) for n > 4) is a natural extension of R in the sense that the natural embedding
taking a degree in 'R to the principal ideal it generates is an embedding that preserves
order and join as well as infimum when it is defined.

Corollary 3.3 The two quantifier (¥3) theory of Z(R) (Z,(R) for n > 4), the lattice of
(X,) ideals of R, with C, V and A is undecidable.

Once again, after we have the details of the coding in place, an algebraic analysis
shows that the principal ideals generated by the degrees doing the coding in R perform
the same job in Z(R). As both V and A are total functions on Z(R), their routine
elimination as described above gives the undecidability of the three quantifier theory.

Corollary 3.4 The three quantifier (Y3V) theory of Z(R) (Z,,(R) for n > 4), the lattice
of (¥,) ideals of R, with just C is undecidable.

We also remark that similar algebraic observations show that we can characterize the
degrees of the theories of these ideal structures. Indeed the ideas of Nies, Shore and

Slaman [1998] would have sufficed as well.

Corollary 3.5 The theory of Z(R) is recursively isomorphic to that of true second order
arithmetic and that of 7,,(R) to that of true first order arithmetic for each n > 4.

2 Coding Register Machines

In this section we will explain the algebraic aspects of our codings and derive the main
theorem, assuming these codings can be interpreted in R. The next section will provide
the proofs of the corollaries about other degree structures. The final section will supply
the recursion theoretic arguments to show that the structures described here can be
realized in the r.e. degrees.

We begin with a standard description of the k-register machines of Shepherdson and
Sturgis [1963] and Minsky [1961] and their representation in predicate logic as in Nerode
and Shore [1997, I11.8] or Borger, Gradel and Gurevich [1997, 2.1]).

A k-register machine consists of k many storage locations called registers. FEach
register contains a natural number. There are only two types of operations that these
machines can perform in implementing a program. First, they can increase the content
of any register by one and then proceed to the next instruction. Second, they can
check if any given register contains the number 0 or not. If so, they go on to the next
instruction. If not, they decrease the given register by one and can be told to proceed to
any instruction in the program. Formally, we define register machine programs and their
execution as follows:

A k-register machine program [is a finite sequence Iy,..., [;, [;y1 of instructions
operating on a sequence of numbers 1, ..., z, where each instruction [, for m < ¢, is
of one of the following two forms:

(i) @;:=a; + 1 (replace z; by x; + 1)

(ii) If ; # 0, then ; := @; — 1 and go to j. (If #; # 0, replace it by #; — 1 and proceed
to instruction /;.)

It is assumed that after executing some instruction [, the execution proceeds to
I 11, the next instruction on the list, unless [, directs otherwise. The execution of such
a program proceeds in the obvious way on any input of values for x1,...,x) (the initial
content of the registers) to change the values of the x; and progress through the list of
instructions. The final instruction, [;1, is always a halt instruction. Thus, if ;4 is
ever reached, the execution terminates with the current values of the z;. In general, we
denote the assertion that an execution of the program [is at instruction [, with values
ni,...,n, of the variables by I,,,(n1,...,ng).

The standard translation of a register machine M describes the action of M by a
system of universal axioms in the language of one unary function s thought of as the
successor function on N. For technical reasons peculiar to our later coding in R, we want
to use distinct domains [); with least elements 0; and successor functions s; for each
register. In our application, these sets and operations will be defined from parameters
in R. For now, we describe the axioms needed in predicate logic with additional k-ary
relations P, corresponding to the instructions [,,,.

For each instruction [,,, 1 < m <, include an axiom of the appropriate form:

(i) Polxe, ... xk) = Poga(@r, oo @img, si(2), Tigay o ooy k).
(i1) Pu(2q, .oy 2im1,0, 2541, . ooy @) = Prga(@r, .oy 2o, 00241, o0y T8)
A Pm(xlv' . -751?i—175i(y)7$i+17- . l'k) — Pj(xlv' s Ti—1, Yy Tig1y - e ,l’k).

(Note that being a successor is equivalent to being nonzero.)

Let P(I) be the finite set of universal axioms corresponding in this translation to reg-
ister program [. It is easy to prove that, program [halts on input (ny,...,ny) if and only
if the sentence Fi(ny,...,ng) = Pi(s™(0),...5™(0)) — Jay, ..., Jop[Prpr (2, ... 2p)] 18
a logical consequence of P(I). More specifically for our purposes, the machine halts if
and only if Fi(ni,...,ng) is true in every model of P([) in any class of structures that
contains ones isomorphic to the standard model (where each s; on D; is isomorphic to
the standard successor function s on N) with all possible recursively enumerable k-ary
relations P, on Dy x -+ x Dy. (Validity implies truth in all the structures in our class
and if [fails to halt, the standard interpretation of the predicates as the r.e. relations
Ln(ny,...,ng) gives a structure of the required form in which F(ni,...,ng) is false.)
As it is a classical fact (Shepherdson and Sturgis [1963]; Minsky [1961]) that the halt-
ing problem for 2-register machine programs is r.e. complete, it suffices to code all such
standard models with binary predicates to get undecidability.

As usual for interpretations, we now want to provide formulas A;(q, z), 1,,(4, ,y)
and terms o,(q, x) of R(<,V,A) defining, for each choice of parameters ¢, sets D; (i =
1,2), binary relations P, on Dy x Dy (1 < m < ¢4 1) and unary functions s; on D,
(1 = 1,2). We take ¢; and ¢y to be the interpretations of 0 in Dy and Dy respectively.
We now interpret our formulas P(I) — F(nq,...,nx) in the usual way. We relativize
the quantifiers to the appropriate domain, i.e. Ja;(...) becomes Jx,;(A;(q,) A...) and

7

Va(...) becomes Va,(A;(¢,2) —...). We then replace occurrences of s;(x;) by 0;(¢, ;)
and ones of P, (21, x2) by I1,,(q, x1, x2). We indicate this translation by *. We also need
a correctness condition © that says that ¢; € D; and the o; define functions on the D;:
A (G q1) N Ao(dg2) N Ve (A(G x1) = A1(q o1(x1)) A Vaa (DG, x2) = Ax(q, oa(x2)).
The class of sentences of R(<,V, A) that we want will then be those of the form Y¢[© —
(P(I)" — F})] where I ranges over programs for 2-register machines.

As long as the class of structures given by all choices of parameters ¢ includes ones
isomorphic to the standard model with all possible r.e. relations as the P,,, truth in R
for this class of sentences will be undecidable. It is clear that to get these sentences to be
V3 ones it is sufficient to get quantifier free definitions (A; and II,,) of the domains and
relations (and the worst that would work would be equivalent ¥; and II; definitions).
As long as there are realizations of the D; as a uniformly low independent set of degrees
in R, we can define arbitrary r.e. relations on them from parameters in a quantifier free
form by using the following special case of Lemma 7.1 of Nies, Shore and Slaman [1998]:

Lemma 2.1 (Nies, Shore and Slaman [1998]) If (a;) is a uniformly r.e. independent set
with Ga; low and S is any r.e. set then there are u,v such that S ={i:u <a; Vv}.

If we assume, for example, that D; = {gs;4: : J € w} (identified with N in the obvious
way) for some independent set of degrees g; with g, low, then we can apply the lemma
to the set of degrees {gs; V gory1 @ J, k € w} with S, = {(J, k) : P.(j,k)} for any r.e.
relation P, to provide parameters u,,,v,, such that the formula u,, < z; V 22 V v,,
defines the isomorphic copy of P, on D; x Dy and can be taken as the desired quantifier
free II,,. Thus the source of all our concerns is providing a quantifier free definition
from parameters of a uniformly r.e. independent set (g;) with a term of R that gives the
successor relation on them. (Once we have such a set we can pick out the even and odd
parts using the same lemma (or exact pairs) and then take the successor functions on
each of these two disjoint sets to be simply the two-fold iteration of the original successor
function.)

The two known methods for constructing independent sets definable from parameters
are essentially those of Harrington and Shelah [1982] and Slaman and Woodin (see Nies,
Shore and Slaman [1998]). The sets they defined from parameters are as follows:

e HS(r,b,c) = {g <r:gis maximal s.t. gV b % c}

e SW(r,p,q)={g <r:gisminimal s.t. gV p > q}.

Here the elements g; of the sets typically constructed are uniformly r.e. and inde-
pendent while r is taken to be their effective sum and can be made low. Thus the only
problem is that the definitions of these sets requires a universal quantifier. We could
reduce this to a quantifier free definition by requiring that they define the same set G,
for then

¢ G(r,b,c,p,q)={g<r:gvp>q&gVvb¥c}

As a technical convenience that simplifies the construction we note that if we have an
HS set (g;) defined from parameters r,b and ¢ then we can weaken the conditions corre-
sponding to the definition of the SW set to require only that, for each ¢, g, V p > q
and, for any w <g. if wVp>q then w=g, This clearly suffices to show that
G(r,b,c,p,q) = HS(r,b,c). (That HS(r,b,c) € G(r, b, ¢, p, q) follows from the con-
dition that g;Vp > qfor each g; € HS(r, b, ¢). To see that G(r, b, c,p,q) € HS(r, b, c),
consider any w € G(r,b,c,p,q). By the maximality condition on HS(r, b, c) there is
a g;€ HS(r,b,c) such that w <g,. Now our weakened requirements guarantee that
w = g, as required.) Thus we wish to show that there are parameters r, b, ¢, p, q such
that the set G =(g; : ¢ € w) they define is uniformly r.e. and independent with a low
sum.

In addition, we want to define a successor function on these degrees. Actually, we
define one on the gy; taking gy; to gi;42 and so our required domain will be these
degrees. (Again they can be defined from parameters using the lemma as described
above but in fact our construction will also build a degree f; such that D = {g,.}ic. =
{x:xeG&x <f, Vx=g,}.) We use the effective successor structure from Shore
[1981] employed in Nies, Shore and Slaman [1998]. This calls for the construction of
additional parameters eq, ey, fy, f; such that, for ¢ € w, (g2 Veo) AMfy = goiy1 and (gaiy1 V
e;) Afi = goipa. We can then define the desired successor function on D by s(gy) =
(((g2i V eo) ANfy) Ver) Ay =gaiqa. The required result is then the following:

Theorem 2.2 There are r.e. sels R, B,C, P,Q, Eo, Er, Fo, i, (H; : i € w) and (G < i €
W) with B = ©Gi; Hy = GG Fo = BCGoppr and Fy = ©Gapsy such that (for all i and
W)

1. G; £r H,.

2. R is low.

3. HW <7y G;and) <¢ W @ P then G; <o W.

4. W <7 Rand C £2 WV B then (I5)W <7 Gi.

5. C 47 G;V B.

6. Q <r G;VP.

7. deg(Glaip1) = deg(Gai & Eo) A deg(Fy).

8. deg(Glyiy2) = deg(Gaip1 B Er) A deg(Fy).

The proof of this theorem is given in the final section.

Note that as the structures required for the undecidability are coded by parameters
such that all the infima needed to define o; exist in R, the structures coded in R(<,V, A)
include all the ones needed for the undecidability for any (total) extension A of the partial
infimum relation on R. Thus the construction of r.e. degrees r, b, c,p,q, ey, e, f, fi as
described above suffices to prove our main result (Theorem 1.1) that the two quantifier
theory of R(<,V,A) is undecidable for any total extension A of the infimum relation.

We now turn to establishing the corollaries mentioned in the Introduction.

3 Applications to Other Structures

We first show that our codings provide a new proof of Lempp, Nies and Slaman’s result
that the V3V theory of R(<) is undecidable. We need to find a translation of the sentences
Vq© — (P(I)" — Fy)] of R(<,V,A) into V3V ones of R(<L) which preserve truth in
R. Note first that the definitions A; and II,, of the domains D; and predicates P,
use < and V but not A. Our only use of the infimum operation is in the definitions
o; of the terms representing the successor operations on the D;. In our translation
these terms are defined by composition from the successor function s on D ={gy;} =
{x:x€eG&x <f, Vx=g,} given by s(g2) = (((g2: V eo) ANfy) Ver) Afi =goqe. Our
primary task then is to eliminate the uses of s in our formulas.

We begin with the correctness condition © which for s says that Vo € D(s(z) € D),
i.e. (((g2Veo)Afo) Ve)Af, € D. Weusetheset D ={goiy1} = {x:x € G&x <fy} as
well and break up the condition into the conjunction of two similar assertions: Vx €
D((x Ve) Afy € D) and Vx € D((x V e;) Afy € D). The first is replaced by
(Vx € D)(Jy € D)(y < x Ve, f)o&(vx € D)(Vy,z€ D)(y,z<xVe,fy—y=z)and
the second by the analogous statement switching D with D and e, fy, with e;,f;. We
can now eliminate V from this sentence at the expense of one additional quantifier in
the usual way to get our Iy correctness condition O in the language of R(<). The
first one becomes (¥x € D)(Vu)(Jy € D)[Vv(v>x,e, = v>u) =y < u,f]&(Vx €
D)(Vy,z € D)(Vu)[¥v(v > x,e, - v >1u) = ((y,z <u,f,) =y = 2z))] and the second
is analogous.

Our typical sentence on the list of ones showing undecidability now looks like ‘v’q_[é) —
(P(I)* — Fy)]. Our next task is to eliminate the uses of s (and so A) in these for-
mulas. We might as well view P([)* — FJ as a single ¥; sentence in <,V,s. Our
correctness condition O says that for each r € D there is a unique v € D and w € D
such that (v <rVe,fy)&(w <vVeyf). We can use this property to replace each
instance of an application of s. We proceed by an induction on the complexity of
terms. Suppose our formula is of the form Jry(F, s(rg)). (Note that ¢ necessarily
includes a clause rg € D.) We replace this with the sentence Ir¥(Jvy € I_))(EIWO €
D)[(vy<r Ve fy) & (wo< voVer, f1) & (¥, wo/s(rg))]. (We use the notation wo/s(ro)

10

to indicate that we have substituted wq for the term s(rg) in the ambient formula.) As-
suming the correctness condition O, this is clearly equivalent to the original Irp(T, s(ro)).
We can now proceed inductively to eliminate all occurrences of s and produce a ¥ for-
mula in <,V equivalent under the assumption © to our original Irp(T, s(rg)). We can
now apply the dual procedure to the one used to eliminate V from II; formulas in <,V
to get a Xy formula W(7) in just < equivalent to (P(I)* — Fy). We then have our new
family of formulas V¢[® — W([I)] which are V3V and whose validity in R is undecidable

as required to prove Corollary 3.1.

Corollary 3.1 (Lempp, Nies and Slaman [1998]): The three quantifier (Y3¥) theory of
R(L) is undecidable.

Next, we consider D and D(< (). First note that it is straightforward to construct A)
lattices with top r, individual elements b, ¢, p, q, €g, €1, fo, f1 and a family of independent
(even minimal) elements g; satisfying all the algebraic facts required in Theorem 2.2 and
additional elements u and v defining any fixed r.e. subset of the g; as in Lemma 2.1.
We can now use the standard embedding theorems from Lerman [1983] to realize these
lattices as initial segments of D or D(<L 0'). Our arguments for undecidability now work
just as well in these structures and so we have the analogous results.

Corollary 3.2 For any total extension N of the partial infimum relation on D (D(< 0')),
the two quantifier (¥Y3) theory of D (D(L0')) with <, V and A is undecidable.

Finally, we turn our attention to the lattices Z(R) (Z,(R), n > 4) of (¥,) ideals of
R with vV and A. Recall that the operations V and A are defined in the usual way for
structures of ideals (I'VJ is the ideal generated by IUJ and I AJ is the ideal INJ) and
are both total operators on Z(R) and Z,(R) for n > 4.

Corollary 3.3 The two quantifier (V3) theory of Z(R) (Z,(R), n > 4), the lattice of
(X)) ideals of R, with V and N is undecidable.

Proof. We claim that the principal ideals generated by the degrees constructed to satisfy
Theorem 2.2 and Lemma 2.1 have all the required properties in Z(R) that the degrees
themselves had in R. The crucial fact is the quantifier free definability of the set {g;}
as G(r,b,c,p,q). We denote the principal ideal generated by a degree x by (x) and
want to establish the corresponding facts in Z(R). Consider any ideal I C (r) such
that (q) CIV (p) and (c) € IV (b). The first assumption tells us that there is an e € I
such that q < e V p while the second guarantees that ¢ £ e V b. Thus e is one of the g,
and so (g;) € I. On the other hand, if h € I then (by our second assumption again) ¢
% h Vv g ,Vb. The HS maximality property of g; then guarantees that h v g; < g; and so
I C(g,) as required.

11

The other facts needed from Theorem 2.2 are that (g2i11) = [(82:) V (e0)] A (fo) and
the analogous one for (gg;42). These follow immediately from the trivial general facts
about Z(R) (Z,(R), n > 4) that, for all degrees x,y, (x Vy) = (x)V (y) and, if x Ay
exists, (x Ay) = (x) A(y). The only other algebraic fact needed is that the principal
ideals given by the degrees constructed for Lemma 2.1 have the analogous property in
Z(R). This too follows immediately from the first trivial fact.

The same arguments work for Z,(R) for n > 4. O

As remarked above, when V and A are total functions the two quantifier theory with
<, V and A is reducible to the three quantifier theory with just C and so we also have
proven Corollary 3.4.

Corollary 3.4 The three quantifier (Y3VY) theory of Z(R) (Z.(R), n > 4), the lattice of
(X)) ideals of R, with just C is undecidable.

We now explain how similar considerations characterize the theories of these struc-
tures of ideals.

Corollary 3.5 The theory of Z(R) is recursively isomorphic to that of true second order
arithmetic and that of 7,,(R) to that of true first order arithmetic for each n > 4.

Proof. Consider the effective successor models {gs; : i € w} in R with the relevant
parameters as constructed here. Asremarked above the effective successor models defined
by the ideals (g2;) = {a <r g} generated by the relevant degrees are definable in the
same way in Z(R) (Z,(R), n > 4), using the analogous successor function. We begin by
noting that we could add parameters to define additional relations of the form supplied
by Lemma 2.1. We want to choose ones that define a structure for arithmetic on one
subset of the set D = {(g;)} of ideals. We let Dy, = {(gsit2x) : ¢ € w} for & < 3 and
define the required relations for order, addition and multiplication on Dy. We begin with
parameters that pick out the relations Sy = {{(gsi), (8si+2k)} : ¢ € w} for 1 <k <3 that
identify the corresponding elements of Dy and Dj;. We can then define, for example,
the natural ordering on Dy by parameters that pick out {{(g2i+1),(8242)} : ¢ < j}
and similarly plus and times by picking out {{(g2i+1), (82j+2), (82%+3)} : ¢ +J = k} and
{{(g2i+1), (82j+2), (82k+3)} 11+ j = k}. One can then say that the structure so defined is
a model of arithmetic in the usual way.

The problem now is to find a nonempty definable class C of structures in Z(R) (Z,,(R)),
containing the structure defined above, such that every structure in C is isomorphic to the
standard model of arithmetic. C will be defined by saying that there exist parameters
lo, and If, (i = 0,1), Iy, I, etc. (corresponding to the parameters e;, f;, b, ¢,... in
our construction on degrees), and an ideal .Jy serving as 0 in the model of arithmetic,
satisfying a conjunction of correctness conditions. (Notice that here we cannot assume
or require that these parameters be principal ideals.)

12

We use the effectiveness of the successor function. As is argued in Shore [1981] or
Nies, Shore and Slaman [1998], we can generate all representatives of degrees in each
element J; = s%(Jy) of the structure, uniformly in 7, in a way that is effective in < and
V on degrees, beginning with representatives of the degrees in the ideals Jy, I, and If,

(i=0,1).

deg(We) € s(Jo) = dea(Wy) € (((Jo V o) A I)V Toi) A I,
< (3b,c,d)[deg(Ws) € Jo & deg(W,) € I, & deg(Wy) € I, &
deg(Wb D Wc) € [fo &EWe=rWo,aW.aW,; & deg(Wk) € [fl].

Now all statements here are ¥, (including the Turing equivalence, since n > 4), because
all these ideals are in Z,,(R). By iterating, we derive a ¥, formulation of “deg(W.) €
s'(Jo)” uniformly in .

The independence of the defined set G(Iy, Ip, Ic, Ip, Iq) can also be guaranteed by a
correctness condition saying that for each element of the defined set there is something
above all the others but not above it. Thus the ideal generated by all the J; will not
contain any elements of G(Iy, I, I¢, Ip, 1) other than the J;. So as usual, if we require of
our model that every proper initial segment have a maximal element (all in the ordering
defined on the structure) then we have picked out precisely the standard models. Once
we have defined this class of standard models of arithmetic, we have guaranteed that
each theory is at least as complicated as true first order arithmetic. As each Z,(R) is
arithmetical, this completely characterizes the complexity of their theories. For Z(R)
we simply note that the independence of the J; guarantees that every subset is uniquely
determined by the ideal it generates and so quantification over Z(R) codes full second
order quantification over each standard model of arithmetic picked out by our definition.
As Z(R) is itself defined in second order arithmetic, its theory is equivalent to that of
true second order arithmetic as required. O

Corollary 3.6 Form > n >4, the ideal lattices T,,,(R) and I,,(R) are not elementarily
equivalent, nor is any of them elementarily equivalent to I(R).

Proof. Let S C w be a ¥,,1-complete set. The sentence ¥ which we build to distinguish
the lattice Z,,,(R) from Z,(R) will say that there exists a standard model of arithmetic
encoded in the lattice by parameters I¢,, It,, etc., such that some element of the lattice
can use this model to compute S. The existence of a standard model requires only the
existence of a set of parameters satisfying the conditions given in the preceding proof.
In the rest of the sentence, we say that there exists an element I in the lattice such that
for every 1,
1€ 85 «— J; C [,

where J; = s°(Jp) is the ideal corresponding to 7 in the specified standard model. (Thus
I codes the set S in this model.) To say “i € S” in the language of lattices, we use the
standard model given by the parameters and the X, 1, definition of S.

13

In Z,,(R), by the preceding results, we have a standard model of arithmetic on certain
ideals {J; : ¢ € w}. Let Jg be the ideal consisting of finite joins dy V --- VvV d,, with each
d; € J;, for some i; € S. We claim that Jg lies in Z,,,(R):

{e: (p)(Fio, .. .1y € S)[deg(We) € Vi, Jyj]} =
{e: (Tp,io, .. 1p, ko, ... k) (VI < p)[i; € S & deg(Wy,) € st (Jp) & W, <r "o Wi}
As noted above, Sil(Jo) is a X,,-1deal uniformly in ¢. Thus Jg is indeed a ¥,,-ideal, and

Z.(R) (and Z(R)) satisfy ¢.

Now suppose that we have parameters in Z,(R) defining a standard model of arith-
metic on ideals {J; : ¢ € w}, and that I € Z,(R) is a (not necessarily principal) ideal
with {7 : J; C I} = S. Then there would be a ¥, formula 6 defining {e : deg(W,) € I},

so we would have

€S <= J;CI +— (Vac J)acl] « (Ve)deg(W.) € s'(Jo) = 0(e)].
This is impossible for the ¥, ;-complete set S, since the rightmost formula is II,,14.
Therefore the sentence ¢ fails in Z,(R), whereas it holds in Z,,,(R) and in Z(R).]

4 Construction

To prove our required technical result on degrees, Theorem 2.2, it suffices to construct
r.e. sets satisfying the requirements of the following Theorem:

Theorem 4.1 There exist sets G; (1 € w), P, Q, B, C, Ey, E1, and R = &G, satisfying

the following requirements for all e, 1, 5, k, and = in w and all computable functionals

Q, ¢, AT, and V:

14

Requirements:
Di@ . GZ 7£ QHi, where HZ = @k;ﬁi Gk
Low: [(375) OF(@)[s])] — OR(a)]

)

Mijax: Wy=T% = [AMF =@ = (30) G; =0"]

Noo: W, =0F — [(3T) C =TYEB or (Fk)(3A) W, = A%
,Pi,\IJ . C 75 \I/G’@B
Ry (IZ)Q = =58P,

Lattice requirements: (Here Fo = @) Gapyr and Fy = B Gapya.)

Tai : Gaiv1 <1 G @ Ep

Taig1 Gaiva <1 Gaiy1 @ By

Uezi: PG2iPE — oI total = O <7 Gyiypy
Uegivr 2 OV — 0 total = 5 <1 Gy

(Here and afterwards, the notation “[s]” at the end of a term or equation indicates
that we refer to the approximation at stage s of each set, oracle and function used there.
Thus, for example, the hypothesis of the requirement L, is that there are infinitely
many stages s at which ®*(z) converges.)

As in Nies, Shore and Slaman [1998], we begin by choosing an effective ordering of all
the D-, M-, N-, P-, R-, and U-requirements, in order type w, such that for all 7 and j:

e R, precedes every D, q and every U.; in the ordering (i.e. R; has higher priority
than D; o and U. ;); and

e both R; and R; precede every M, ;a r.

(The requirements 7; are global requirements and will not be given a priority rank
or placed on the tree. The requirements Lg, will play a role in priority arguments, as
described below, but they also are not placed on the tree.)

This ordering yields a specific priority order on the N-requirements, which we write
as Ny, V1, ..., defining e; and ®; so that A; denotes N, ¢,. Next we construct a tree

15

T. Each node on the tree will have a specific requirement assigned to it, will play a
particular strategy to attempt to satisfy that requirement, and will have one immediate
successor for each possible outcome of the requirement. For brevity, if the requirement
D; o 1s assigned to a node «, we will call o a D; g-node, and also a D-node; similarly
with all other requirements. Below, we name the outcomes for each type of node and
explain how the construction works to select one of the outcomes and satisfy the node’s
requirement.

We view the tree T' as growing upwards from a root node. The relation < will
represent higher priority: o < 3 if « is to the left of 3 on T or a C 3, i.e. exactly when
« has higher priority than 3. To define T" and determine which requirement is assigned
to each node p € T', we need the following definition.

Definition 4.2 Let p € T. Each requirement is either active along p (via a single node
C p), or satisfied along p (again via a single node C p), or neither, according to the
following inductive definition. (Notice that a requirement cannot be both active and
satisfied along the same node.)

If p is the empty string, then no requirement is active or satisfied along p. Otherwise,
let n = p~, the immediate predecessor of p.

If a D-, M-, N-, R-, or U-requirement is assigned to 1, then every requirement active
or satisfied along 7 via some (3 is also active or satisfied (respectively) along p via f.
Also, the requirement assigned to 7 is active along p via n (if it is an A-requirement and
p =1n"(00)) or satisfied along p via n (otherwise).

If is a P; y-node, then we must consider the successors of n separately.

o If p =0 (f) or p = n’(w), then every requirement active or satisfied along 7 via
some (3 is also active or satisfied (respectively) along p via 3, and P,y itself is
satisfied along p via 7.

e Otherwise, according to our definition below of the successors of n, p = n"(«;) for
some [€ w such that A} is active along 1 via some a. We then define this A} to
be satisfied along p via a, and every N-requirement active or satisfied along a via
some 3 C « to be active or satisfied (respectively) along p via the same 3. All
other N-requirements are neither active nor satisfied along p. (In particular, N-
requirements which were active or satisfied along n but not along « will be injured
by the action we take at node p and hence are neither active nor satisfied along p.)
Requirements of types other than A" which were active or satisfied along 7 via any
[remain active or satisfied (respectively) along p via 3, and P; ¢ itself is satisfied
along p via n.

With this definition, we assign to p the requirement of highest priority that is neither
active nor satisfied along p. The immediate successors of p depend on the type of require-
ment assigned. For each possible outcome y of p as defined below, we add an immediate
successor p"(y) of p to T.

16

The possible outcomes of each node, and their meanings, are as follows:

o If pis a D, g-node, then the two possible outcomes for p, in order, are f < w. The
node p finds a witness element w;, as in a Friedberg-Muchnik construction, waits
for the witness to be realized, and then attempts to put it into ;. The outcome
w holds while we wait for the witness element to be realized. If it is never realized,
then it never enters (;, so the requirement is satisfied. If it is realized at some stage,
then we preserve the convergence of the computation QH"(w;) 1= 0 by initializing
all nodes > p, and attempt to enumerate the witness element into &;, by allowing
it to enter the pinball machine associated with the satisfaction of the - and 7-
requirements, starting at node p. Each - and P-node below p periodically allows
elements (“balls”) to pass its gate, thereby giving those elements its permission to
enter their target sets. Other elements may be assigned to the witness as traces and
targeted for sets Fy, Eq, or G;_1,Gi s, ... to satisfy the T-requirements. Assuming
that p is on the true path, w; will eventually pass every gate below p and enter G,
at which point we switch to the outcome f. This represents a “finite win” for the
requirement D; o, since we have now satisfied Gi(w;) +* QH’(pr)

D-nodes (and M-nodes, described below) do injure the negative requirements Lg
by enumerating elementsinto E. At certain stages a requirement Lg , may initialize
cofinitely many nodes on T' in order to preserve the computation ®f(z). Also, each
time the node p is initialized by another node (as opposed to being initialized
by an L-requirement), it loses some priority vis-a-vis the L-requirements. This
guarantees that even if p is to the right of the true path and enumerates infinitely
many elements into R, it will only injure each L-requirement finitely often.

o If pis a U, ;node, then the possible outcomes of p are:

Po <pr<pz<--,

ordered as given. The outcome p, represents a restraint of length r placed on G;& Fy
and Fy (or on G; & Fy and Fy, depending on the parity of i) as in the pinball-style
constructions for lattice embeddings in Lerman [1973] and related works. A “ball
targeted for (G;” is a number which some D- or M-node « would like to put into
(;, and will be named w’,. The node p acts as a gate in the pinball machine. For
every a D p, every ball w’, must wait at gate p until the ball can enter G; without
injuring the requirement U, ;. Occasionally such an o may also want to put a ball
¢/ into the set E; (for 5 = 0 or 1), and again the gate p will make that ball wait
until the enumeration will not injure ¢, ;. If the hypothesis of U, ; is satisfied, then
the restraints will drop to 0 infinitely often; if not, then they will converge to a
finite limit, and every node above that outcome will have the correct guess about
the limit, hence will only use witnesses large enough not to injure that restraint.

o If p is an Ry-node, then the only possible outcome is co. At each p-stage, we

extend the functional =% being built by R;. The only possible injury to this

17

construction occurs when some My, ; » y-node wishes to enumerate an element into
Q, for reasons described below. Fach M-node enumerates at most one element x
after its last initialization, and any M-node D p will enumerate its = into () only
after ensuring that some change in G & P will allow p to redefine Efkeap(x) = 1.

If pis an M, ; A v-node, then the possible outcomes are
f < oo <w.

We have some control over the enumeration of W, using the hypothesis W; = T,
and this in turn affects the hypothesis AY¥" = Q. The outcome w denotes a non-
expansionary stage for the latter hypothesis, meaning that the length of agreement
between W; and T is not sufficient for us to guarantee any increase in the length
of agreement between AYs®F and (). If there are cofinitely many nonexpansionary
stages, then M, ; » v will be satisfied.

On the other hand, if the length of agreement between W;[s] and T [s] has in-
creased sufficiently to enable a longer length of agreement [between AY:%[s] and
Q[s] to be computed, we call s + 1 a p-expansionary stage, and we attempt to
extend our functional ©, to compute G; from W, on the domain [, setting the use
GZVJ (y)[s + 1] = AWs®P(y)[s] and preserving the equality of these uses, as described
below. If we succeed, the outcome is co. If there are infinitely many p-expansionary
stages and we succeed in extending O, at every one, then the true path will contain
p(0).

If, at some p-expansionary stage s+ 1, we cannot extend O, as above, then we will
be able to achieve a finite win, denoted by the outcome f. Some number, which we
designate as x,, must have entered G; since the last p-expansionary stage r+1, with
no change to W;[AWs%(z,)[r] up until stage s (since such a change would allow us

to redefine @ZVJ (7,)[s+1]). We attempt to enumerate z, into Q to make AWs®F £ Q.
since the absence of any W;-change ensures that AY:%F(z,)[s] = 0. (Recall that
the use #, matches the use A.) We will preserve this finite win by initialization,
imposing sufficient restraints on P and G; to prevent W; from changing, since
W, = Y.

Before enumerating x, into (), however, we must ensure that this enumeration will
not injure any higher-priority Ry-node 3, since such a 3 builds a functional =5 with
the intention that Eg:eap = (). When we enumerate z, into () at a later stage ¢t +1,

therefore, we will want to enumerate fg:eap(xp)[t] into P, allowing (3 to redefine its
functional at the next Jy-stage. On the other hand, if fg:eaP(xp) < \Wi®P(z)[4,

then this enumeration would allow A"i(z,)[t + 1] to change as well, which would

destroy our diagonalization. For k # ¢, we avoid this problem by first enumerating
an element w’; = fg:eap(xp)[s] into the set Gy, which allows 3 to increase the £3,-
k

, must

use without permitting any change in ©,. (Of course, this takes time, since w

18

proceed through the pinball machine, starting at p, before entering GG.) When we
finally enumerate z, into () at a stage ¢t + 1, our P-enumerations at that stage will

allow for changes in Egj(xp)[t + 1] while maintaining A% (2,)[t + 1] 1= 0.

The requirement R; is also assigned to some (3; C p, and the strategy above would
not work for it, since any G;-enumeration after stage s could allow a change in
W, = Y%[s], hence in AYs%F(z,)[s], ruining our diagonalization. (P-enumerations,
which could also ruin the diagonalization, are discussed below.) Fortunately, we do
not need any (7;-enumeration, because the ball x, was chosen at a stage s+ 1 when
it had just entered G, itself. 3; will have increased the use fgieap(xp)[s] to be large,
hence > A% (z J[s]. (Recall that any change in this A-use between stages r and s
would have allowed us to extend the functional 0, so that Q)" (x,) = Gi(z,)[s+1].)
Therefore, we make no further GG;-enumerations, but simply enumerate fgi@P(ajp) [s]
into P at the stage { + 1 when x, enters (). 3; will then be able to redefine
Egieap(xp) = 1 at the next [3;-stage, as required.

It is important in the preceding construction that we keep the use GZVJ (x) equal to
MWBP () at each stage. If the A-use became larger, then a number > vaj(xp)[r]
which entered W; between stages r and s might leave AV:97 (2) > fgieap(xp)[s] SO
that the P-enumerations would destroy our diagonalization against AW/®F = (),
without letting us redefine O} (z,)[s+1] = 1. So we must ensure that P} A\Ws%(z)
is preserved for every a which might eventually play the role of z,, i.e. any ball w%
(with p"(c0) C v) targeted for G,.

To make this happen, we refuse to allow any ball w® to enter the pinball ma-
chine (the preliminary step to entering ;) if its entry into (; could create a P-
enumeration which might upset the strategy for a higher-priority w%. In particular,
if p*(c0) C a, then «a thinks that the expansionary outcome of p holds, and so «
refuses to release any ball w® into the pinball machine until w* € dom(G)ZVJ), that
is, until the A\-use on all numbers < w* has been chosen and guaranteed by agree-
ment between W; and T (In particular, the A\-use of all balls from higher-priority
nodes v has been chosen by then.) If w* does enter 7y, then the Ry-node 3 C o

will subsequently choose the use fgk®P(w§) to be large, hence larger than the A-use

of any ball wi from any node v < «. This use fgk®P(w§) may subsequently be
enumerated into P by some other M-node, but it will not change P| AWJ@P(wQ) for
any v < «. Thus, it will not injure the strategy of any M-node of higher priority
than «.

The same is true for any trace for wk: the COI’I’GS[)OHdiH R—node will choose the
a g
k

=-use of the trace to be large after the trace enters its target set, hence after w?”

was released, hence after wi entered dom(G)ZVJ). So this =-use will also be greater
than AWJ@P(wQ) and can safely be enumerated into P. Therefore, we define every
trace to be certified automatically. Only witness balls chosen by D- and M-nodes
must wait for certification.)

19

We will say that w® is certified when it has entered the domains of all such @ZVJ—
functionals (for all p with p"(c0) C «), and we require all balls targeted for any
G, (whether from D-nodes, from M-nodes, or traces for other balls) to be certified
before moving through the pinball machine. If a is on the true path, then the
expansionary outcome p*(co) does hold, and so the domain of @ZVJ will eventually
grow large enough to include w”*. Thus no ball from a node on the true path will
be forced to wait forever before entering the pinball machine.

If p is an N, g-node, then the possible outcomes of p are oo and w, ordered with
0o < w. The outcome w denotes a nonexpansionary stage, i.e. a stage at which the
length of agreement between W, and ®% has not increased, so that we wait without
taking any action. oo represents the outcome of an expansionary stage; if we have
infinitely many such stages, then N, ¢ goes about the business of trying to build
I', to compute C' from W, & B. As described below, this process can be injured by
lower-priority P-nodes, making this a 0"”’-construction.

If p is a P-node, let K be the finite set of higher-priority A-requirements which p
may injure:

K = {k : N}, is active along p via some ay} = {ko < ky < -+ k,}.
Then the set of possible outcomes of p is the following, ordered as given:

f<ak0<ak1<---<akn<w.

For P-nodes p, we attempt to achieve a finite win by choosing a witness z,, waiting
for WE¥%B(2,)[s] |= 0 at some stage s, and then putting z, into C, so as to force
C # w998 The outcome f denotes our success in doing so, with the construction
initializing nodes = p at stage s to preserve (G; @ B)[¢%%P(2,)[s]. The outcome
w denotes that we are waiting for this convergence to occur. (If we wait forever,

then P; ¢ will be satisfied.)

However, an N, g-node a C p may object to letting z, enter (', since this would
disrupt its own computation of C' from W, & B via its functional I',. The easiest
way around this difficulty is to enumerate the current use v"V<%8(z,)[s] into B,
thereby allowing a to change the value of IV<®P (2) to 1. However, we can only
do this if YVe¥B(z,) > % ®B(2)[s], since otherwise the change in B would ruin
the convergence W< B (2)[s] = 0 and leave P; y still unsatisfied.

To handle this issue, we check in turn with each requirement N}y = N, ¢, active
at p via one of the ay, starting with the lowest-priority one N}, and working down
to the highest-priority one Nj,. If ’yZek@B(Zp) > 9B (2)[s], then N} does not
object to the entry of z, into C, and we continue with the next-higher-priority N-
requirement. Otherwise, we wait until the next p-stage, offering W, [’yZﬂk@B(ZP)[S]

the opportunity to change (for technical reasons having to do with Lemma 5.15).

20

If no such W, -change occurs, we then enumerate ’)/Zek@B(Zp)[S] into B[s + 1],
destroying both of the computations FZZ;’“ ®B(Zp)[8] and WEPB (2 [s]. In this case
we make the outcome ay eligible at stage s. In doing so, we give up our hope of a
finite win for p with the current realization of z,, and also disrupt the computations
ng‘el ®B(Zp)[8] for every [> k. This procedure will result in a win for p if we repeat
it infinitely often, since in that case WP (2) must diverge. For the node a4, each
time we make such a B-enumeration, we take a further step in the construction of a
functional A, x. If p*(ay) lies on the true path, then the functional A, ; will receive
such attention infinitely often and will compute W,, from G;, thereby satisfying
Ni. Hence we say that N is satisfied via o along nodes D p"(ax), meaning that
oy, does not actively try to protect its functional I',, at such nodes, since p has
constructed A, to satisfy A} instead. This outcome is described in more detail

on page 28, in Subcase 3 of the construction for P-nodes.

While the outcome aj does satisfy Ny, it also disrupts the functionals T, for all
[> kin K, without doing anything to build A-functionals for the requirements V.
Those requirements all have lower priority than A}, and are immediately reassigned,
in the same order, to p"(ax), its immediate successors, their immediate successors,
and so on until each has been assigned to another node o on each path through
p*{ag). Thus, along every path through p*(az), each such A now is assigned to
a new a D p, with the assurance that the requirement N} will never destroy the
functional T', the way it destroyed T',,. By induction, therefore, each N; will be
reassigned to higher nodes only finitely often along any fixed path through the tree.

The Nj-requirements which are active along a; emerge with their I'-functionals
unscathed by p. These nodes all have higher priority than A} (i.e. have j < k), so

will have
We, @B W, ®B

Yoy | (20) < (2)[s]-
Therefore the numbers enumerated into B by p will not injure the functionals T',;.

The outcome ay leaves N}, satisfied, not active, and, assuming inductively that
all higher-priority N-requirements remain either active forever or satisfied forever
along the true path, NV, will remain satisfied forever there as well.

The P-node also functions as a gate in the pinball machine, temporarily restraining
balls targeted for sets G;. When z, is realized at a stage s, the restraint will
keep balls < % %B(z)[s] from entering (7;, thereby protecting the convergence of
USPB (2)[s]. (In the finite-win situation, of course, the source nodes for all such
balls are initialized when z, enters C. If the true path passes through p*(ay), then
this restraint becomes arbitrarily large, but drops back to 0 each time we destroy
the convergence of W¥®B(>).} At other stages, for the sake of Lemma 5.15, we
wish to ensure that the only balls which enter the set R = @;G; are balls entering
(;, so we restrain balls targeted for sets ; with j # 7. Since N assumes that
W., = ®% this restraint will ensure that any change in W,, at these stages can be

21

traced to a change in (G;, allowing us to redefine the functional Ai’k on the element
which entered W,, , as Ny requires. These retraints are also set to 0 periodically, at
stages s when a change in W,, would allow us to increase the use ’y;/zek 69B(Zp)[s +1]
to be > %8B (2 J[s]. Such a change in W., would let us move closer to the finite-
win situation and would lead to initialization of the node p*(ay), so there is no
reason to protect We, at such stages. Thus no ball will be restrained forever by

any P-node on the true path.

This completes our description of the outcomes of nodes on T" and the meaning
attached to each.

Construction. As in Nies, Shore, and Slaman [1998], each stage s 4+ 1 of the con-
struction consists of (at most) s substages, along with two steps which are executed at
the end of every stage. At each substage ¢ < s, only one node p € T', of length ¢, will be
eligible to act, and that p will then designate at most one of its immediate successors in
T to be eligible to act at the following substage. (Alternatively, p may refuse to make any
of its successors eligible.) The empty node is always eligible to act at substage 0 of any
stage. The choice of which nodes are eligible to act corresponds to our approximation at
stage s of the true path through T, i.e. the path ¢ such that for each p C g, the successor
of p along ¢g denotes the ultimate outcome of the strategy played by p to satisfy the
requirement assigned to it. g(n) will be the leftmost node of length n which is eligible to
act at infinitely many stages.

To initialize a strategy means to make all its parameters undefined and all functionals
which it constructs completely undefined. At stage 0, we initialize every node. At each
subsequent substage we initialize every node which lies to the right of any node eligible
to act at that substage. Occasionally the construction will instruct us to initialize other
nodes as well, but each node on the actual true path will only be initialized finitely often.

A number is large if it is greater than every other number seen thus far in the con-
struction. By convention, our functionals are built so that, for any fixed oracle, the use
function is strictly increasing.

At stage s + 1 and substage ¢ < s, let p be the node of T eligible to act at this stage
and substage. If we have just completed substage s — 1, or if an eligible node refuses to
make any of its successors eligible to act at the next substage, then we proceed to the
final steps of the stage, which describes which balls are allowed to move on the pinball
machine at that stage. We then terminate the stage.

Let s” + 1 be the last stage at which p was initialized, and let s’ + 1 be the most
recent stage > s” + 1 at which p was eligible to act. (If there has been no such stage since
s"+ 1, we take s’ = s”.) The action of p depends on the type of requirement assigned to
it.

If p is a D; g-node, we proceed in the style of Friedberg and Muchnik.

22

. If no witness element w; is currently defined, then pick a large witness element w/,
and target it for G;. (Thus, for every gate a C p on the pinball machine, this w;
will be greater than the restraint currently maintained by that gate. If p is on the
true path, then w; will be large enough that every such o will eventually allow w;
to pass its gate.) We also choose a large number e/, where j is 0 if 7 is odd and 1 if
i is even, and target it for ;. The ball €/ serves as a trace for wy, for the sake of
requirement 7;_;. We then initialize every requirement 2 p and end this substage,

with no node eligible to act at the next substage.

. If w! is currently defined but either Qi (w?)1 [s] or Qi (w!) |# 0[s], then continue
with the next substage, making p"(w) eligible to act at that substage. (Recall that
H; = @pz; Gi. In this case we say that w; has not yet been realized.)

CIf w; is currently defined and QH"(w;) 1= 0[s], we check whether w; is certified at
stage s. By definition, w; is certified at stage t if for every node o C p such that a
requirement M, ;A v is assigned to o and 0" (o0) C p, we have w; € dom(@ZVJ)[t’],
where ¢/ + 1 is the greatest o-expansionary stage < {.

(It is important to note that this definition of certified only applies to balls chosen
by D- and M-nodes, not to their traces. Every trace, whether targeted for £; or
for a set G, is automatically certified and enters the pinball machine immediately
upon being chosen by Instruction 4.4.)

It w; is not certified at stage s, then we initialize all nodes 2 p (so they will
never injure the computation QH’(w;)[S]) and terminate this substage, with no
node eligible to act at the next substage.

Cf w; is currently defined and certified and QH"(w;)iz 0[s], we let w; and e; enter
the pinball machine, following Instruction 4.3 below. We then initialize all nodes
2 p and end this substage, with no node eligible to act at the next substage.

It w; has entered the pinball machine, but has not yet entered G, we end this
substage, with no node eligible to act at the next substage.

I w; has already been enumerated into G; by stage s, then end this substage,
making p"(f) eligible to act at the next substage.

Instruction 4.3 (Entering the Pinball Machine) The gates of the pinball machine
are precisely the P-nodes and the U-nodes. If a ball entering the pinball machine at stage
s+ 1 has subscript p, we call p the source node for that ball. p will be either a D-node
or an M-node.

o [f there is no gate a C p, then we enumerate €l into Ej[s+1] and w!, into G;[s+1].
(Notice that every ball which enters the pinball machine, either from a D-node or
an M-node, is already certified, hence allowed to enter its target set.)

23

o [fthere is a gate o C p, then we drop w; to the greatest such o, and drop e]é to the
greatest gate 0 C « to which a requirement U, o4, ts assigned. If there is no such
o, then we enumerate ei into Ej[s + 1] and appoint a new trace or traces for w;,
following Instruction 4.4.

Instruction 4.4 (Assigning Traces) At stage s+ 1, if the ball wg is waiting at a P-
gate, we assign a large trace ey (if i is odd) or ey (if © is even). If it is waiting at a
Ue 2-gate o, we follow these directions:

o [f1 is even and 1 > 0, then we assign a new trace eé, chosen large and targeted for
Ey1. This ball starts at gate .

o Ifiisodd andi # 2k+1, then we assign a new trace wg_l, chosen large and targeted
for Gi_1, and this trace is assigned its own trace eé targeted for Ei. Fach of these
two balls starts at gate «. (Since i — 1 # 2k, this will not threaten the restraint
imposed by Ue 2.) The trace wg_l is immediately considered certified.

o [f1=2k+1, then the ball wé is not assigned any traces at this gate. Instead, wé
passes gate o immediately and drops to the greatest gate o/ C o to which either a
P-requirement or a requirement U with k' + 1 # 1 is assigned. We then follow
these same instructions with o in place of a. If there is no such node o, then wé
enters Gi[s + 1]. In this case we check whether wj was a trace for another ball. If
so, then we follow these same instructions for that ball at the gate at which it is
currently waiting.

o [f1 =0, then the ball wé waits at gate o but is not assigned any traces.

To create traces for a ball wé wailing at a U, 2p11-gate o, we follow the analogous
directions, with the special case occurring when 1 = 2k + 2. The ball wp and the one or
two traces defined above together}constitute a block, with lead ball wi. Any previously
existing blocks which contained wj; become undefined.

The point of this process is that (barring initialization of «), at any subsequent a-
stage at which the restraint r at gate o is less than wg, all the balls in the block will be
able to pass gate a simultaneously. For instance, in the case where o is a U, 2541-gate,
either no ball in the block is targeted for Fy (if ¢ is odd) or none of them is targeted for
Glaks1 @ Fy (if 7 is even and j # 2k + 2). As noted above, the case ¢ = 2k + 2 is an
exception, but then the ball wé is targeted for Gogaa, allowing Gopio to compute CI)fl, SO
Ue 241 will still be satisfied. Finally, if ¢ = 0 then no 7-requirement applies to G, so no
trace is required. Therefore the entire block will be able to drop down to the next gate of
the pinball machine simultaneously without violating requirement ¢, 54;1. If more than
one block of balls is waiting at a gate, we allow the block with highest-priority subscript
to pass first; if several blocks have the same subscript, then the one with the largest lead
ball goes first, since the larger lead ball will be a trace for the smaller lead ball.

24

If p is an Ry-node, we extend the functional =, it builds. If s’ = s”, then Z+7[s'41]
is empty, and we let y = —1; otherwise we let y = max(dom(EfkeaP))[s’ + 1]. We check
whether there is any « < y such that ZG+%7(2)[s] does not converge to Q(x)[s]. If there
is no such x, we define Efkeap(y + 1)[s+ 1] = Q(y + 1)[s] with large use. If there is, then

for each such x we act as follows:

o If » has entered Q[s] since &', then it must have done so on behalf of an M-node
above p, and this node will have enumerated an element into P, allowing us to
redefine ZG%%F (z)[s + 1] = 1. We do so, since now Q(x)[s] = 1, and we leave the
use of the computation unchanged.

o If Q(x)[s] = Q(x)[s'], then there must have been a change in G & P since stage

s'+1 on the use of the computation Efkeap(x)[s’—l— 1]. Therefore, we simply redefine

EGkOF (2)[s +1] = Q(x)[s]. If either € Gi[s] — Gi[s'] or & = x, for some M j 4 v-
node a D p such that w*® € Gy[s] — G1[s'] (as defined below), then we choose the
use of this computation to be large. Otherwise, we retain the previous use.

Ry, has only one outcome, namely oo, and we end this substage, making p*(co) eligible
to act at the next substage.

If pis an M;;ay-node, then there may be a witness element z, already defined,
which we will use to try to make A":%F £ Q. We will also ask whether the stage s + 1
is p-expansionary, defined as follows. Let

m(p,s) = max{y < s : (Ve <) T (e) 4= W;(a)[s]}

I(p,s) = max{z < s: (Vo < 2) A% (2) | = Q(x)[s] with use < m(p,s)}.

The stage s+ 1 is p-expansionary if p is eligible to act at s + 1 and [(p, s) > {(p, 1) for
every ¢t with s” < ¢ < s at which p was eligible to act. Thus, we are considering not the
actual length of agreement between AY:97[s] and Q[s], but rather that portion of the
length of agreement which we can guarantee by putting sufficient restraint on W; @ P. Of
course, we cannot restrain W; directly, but we achieve this purpose by putting restraint
on (7; and noting that the use of A"i%F[s] is less than the length of agreement between
T [s] and W;[s]. We define r 4 1 to be the greatest p-expansionary stage such that
§" < r < s. (If there has been no such stage, then s’ = s”, and we set r = s".)

L. If 2, € Q]s], then we end this substage, making p"(f) eligible to act at the next
substage. (This preserves any finite win we may have achieved through Substep 6
at a previous stage since s”.)

2. If s+ 1 is not p-expansionary and z, is not defined, then we end this substage,
making p*(w) eligible to act at the next substage.

25

3. If s +1 is p-expansionary but no witness element z, existed at stage r 4+ 1, then
we check whether there exists 2 € dom(@ZVJ)[r + 1] such that € G;[s] — G;[r] and
W;[s] has not changed on the use (QZV](J})[T] since stage r.

(a) If there is no such x, then we extend dom(@ZVJ)[S + 1] up to l(p,s) — 1 by
defining O} ()]s + 1] = Gy(x)[s], with use 8,7 (2)[s + 1] = A\W®P(2)[s],
for each x for which @ZVJ(J})[S] is not already defined. (Possibly this defines
@ZVJ(J})[S +1] # @ZV](J})[T + 1] for certain x, but only if W;[s] has changed on
the use of the computation at r.) We make p*(c0) eligible to act at the next
substage, and end this substage.

(b) If some x € dom(@ZVJ)[r + 1] has entered G;[s] since stage r, without any
corresponding W;-change as above, we choose z, be the least such x. For each
k # i such that some 3, C p is an Ry-node, we set wh = fg:eap(xp)[s] and
assign to it a large trace elp targeted for the set F;, where [= 0 if k is odd and
[= 1if k is even. In order to preserve (W; & P)[A\Wi®F(z,)[s], we initialize
all nodes above p and end this substage, with no successor eligible to act at
the next substage.

4. If z, is defined and no balls with subscript p are currently on the pinball machine,
but some ball w’; is defined and has not yet entered the machine, then for the least
such k, we check whether w’; is certified at stage s (using the same definition as for
D-nodes, from page 23). If so, then we allow w’; and its trace to enter the machine
at node p, in accordance with Instruction 4.3; if not, we do nothing. In either case
we end this substage, with no successor eligible to act at the next substage.

5. If z, is defined and some ball w’; has entered the pinball machine but is not yet
in Gy, then we end this substage, with no successor eligible to act at the next
substage.

6. If x, is defined but not in Q[s], and every ball w’; currently defined has entered
G'k[s], then we enumerate x, into Q[s 4+ 1]. For every k such that some 3y C p is
an Rj-node, we enumerate fg:eap(xp)[s] into P[s+ 1]. We initialize every node D p

and terminate this substage, with no node eligible to act at the next substage.

(The initializations when x, was defined guarantee that either AWs®(z) |= 0 #
Q(z,)[s] or W; has changed in such a way that W; # Y. Each possibility yields a
finite win on requirement M, ;s . For each k # i, the enumerations of w? into Gy

guarantee that fg: PP (2,)[s] has been chosen large since x, was defined. Also, before

x, was chosen as z,, it entered (&;, and at the next 3;-stage t + 1, fgieap(xp)[t + 1]
was chosen large. Since AWi9(z,) has not changed since before x, entered G,
our P-enumerations at this stage do not affect the convergence AYs%%(z) |= 0[s].
Moreover, now each [y (including k = ¢) will be allowed to redefine Egj@P(%) =1
at the next Jy-stage, since now Q(x,)[s + 1] =1.)

26

If p is an N, g-node, we define the length of agreement for p at this stage by:

l(p.s) = max{a : (Vy < 2)®"(y) 4= W.(y)[s]}-

The stage s 4 1 is p-expansionary if p is eligible to act at s and {(p, s) > (p,t) for every
t with s” < ¢ < s at which p is eligible to act.

If s+ 1 is not p-expansionary, we end this substage, with p*(w) eligible to act at
the next substage. Otherwise, for each y < {(p,s) for which FZVG@B(y)[S] is undefined,
let TWVB(y)[s + 1] = C(y)[s]. To define the use v}"*®F(y)[s 4 1], we ask if any of the
following apply:

o 7B (y)[s' + 1] was not defined; or

o 1,"9P(2)[s' + 1] € B[s] for some z < y (which happens if some P-node 2 p"(c0)

has enumerated it into B in order to allow v}"*®5(z)[s' 4 1] to increase); or

e for some z < y, some node 2 p*(oo) in T has requested that ’)/ZVSGBB(Z)[S/ + 1] be
increased.

If so, we choose ’yZVe@B(y)[S + 1] to be large. If none of the conditions applies, then

apparently no node above p has tried to destroy the functional I, so we set ’yZVe@B(y)[S +

1] = VZVS@B(y)[S’ + 1], in order to keep ’yZVe@B(y) from approaching oco. We then make

p (o) eligible to act at the next substage, and end this substage.

If p is a P; y-node, we first check if any balls with subscripts D p are presently waiting
at any gate below gate p. If so, then we end this substage, with no successor eligible to act
at the next substage. Otherwise p continues to try to satisfy P; g, and any N-requirement
active along p may be injured by the action of p. Let

K = {k : N}, is active along p via some ay}.

Define e; and @ such that N}, = N, g,, and for brevity write Iy for the function
We, ©B

Ia, [s], the current version of the functional being built by ay, (k € K'), with associated
use function v, = ’yZek@B [s]. We will also define a restraint r(p, j, k,s + 1) associated

to each k € K, denoting the restriction which p places on elements targeted for G;.
(Restraining G}, coupled with the expansionary outcome of ay, will help ensure that W,
does not change, or else will ensure that if it does change, we can trace the source of the
change to some set other than (7;.) The restraint finally enforced by p on such elements

will be
r(p s +1) = maxr(p, j. ks +1).
EK

(Any restraint r(p, j, k, s + 1) which is not mentioned is assumed to retain its value from
stage s’ 4 1, or is reset to 0 if p"(ax) was initialized at or since stage s’ + 1.)

27

Subcase 1: If no witness z, is presently defined for P; y, then pick a large number =z
and designate it as the witness element z, for P;y. Let p"(w) be eligible to act at the
next substage, and end this substage.

Subcase 2: 1f z, € C|s], then let p"(f) be eligible to act at the next substage, and end
this substage.

Subcase 3: If z, ¢ C[s] and p enumerated any elements into B at stage s’ + 1 (using
Subcase 6(b)), then we set ks-l—l = kg If1, Wep1 = Wegr, and e = e . and redefine the
same functional A ; Foir which we extended at that stage (using the notation from Subcase
6(b) below):

A% ugpls 1] = Wl wgp[s]

pvks-l-l
If this involves adding any axioms to Ap,fsz’ we choose the use to be large. (Sublemma
5.17 will ensure that our redefinition of A j is allowed.) We also set r(p, 1, Egyt, s+1) =
o (v 1 (%0))[s], which (along with the restraints set at stage s'+1) guarantees that aj_ |

will preserve W, [ZVS@B(,)[s] until the next p-stage. We then end this substage, with

p <a,;s+1> eligible to act at the next substage. (This is the stage where we complete the
business begun in Subcase 6(b) at stage '+ 1. Between s+ 1 and s, any ball targeted for
(7; can pass gate p without injuring the outcome A\ since our B-enumeration at stage
s’ + 1 already destroyed the convergence of W¥%F (>)[s/]. Also, this is the only subcase
in which p*(ag_,) is made eligible. If p"(ax) is on the true path, then after stage s” we

will cycle forever from Subcase 4 to 5 to 6 to 3 and back to 4, with]Nfs-l—l = k infinitely
often and]Nfs-l—l < k only finitely often, and in Subcases 6(b) and 3 we will build a total
function Ai’k = W,, to satisfy N}.)

Subcase 4: If z, ¢ C[s] and p made no B-enumeration at stage s’ + 1 and z, is not
yet realized (i.e. either W& @B (2)[s]1 or W ®B(2)[s]|#£ 0), then we let p*(w) be eligible
to act at the next substage, and end this substage.

Subcase 5: If z, ¢ C[s] and ¥ ¥B(z)[s] |= 0 and p made no B-enumeration at stage
s', then consider each N, g-node 3 C p (for each e and ®) such that N, ¢ is not active
along p via 3. Let 75 be the greatest node C p such that N, ¢ is active along 75 via [3;
there must be such a node 73, and it must be a P-node. If for some such 3 we have
’yZVe@B(ZTﬁ)ig OB (2,)[s] then we let p"(w) be eligible to act at the next substage, and
end this substage.

(If p is on the true path, then for each such 3 the requirement A, ¢ is either satisfied
or destroyed at 75. Hence VWS@B(ZTﬁ) will eventually be redefined to be > “®B(z)[s].
We wait for this to take place, because we do not want to enter Subcase 6 until we are
certain that the convergence W %5 (2) |= 0 will not be disrupted even if 75 decides to

W.sB .
enumerate v, " (z,,) into B.)

Subcase 6: Otherwise z, ¢ C'[s] and W7#P(z,)[s] |= 0 and p made no B-enumeration
at stage s’ + 1 and there is no node 3 as described in Subcase 5. We choose k41 to be

28

the greatest & € K such that

(2p) S VE(2,)]s]. (1)

If no £ satisfies this condition, then let les_H = —1.

If kyyy = —1, we enumerate z, € C'[s41] (to satisfy P;y). We enumerate into B[s+1]
every number in the set

{VZVSGBB(ZP)[S] : 3 Cp & (3is an N-node},

in order to allow the corresponding functionals I'5 to change their value on the argument
z,. To preserve the computation W% %B(z) |= 0[s], we initialize every node = p. We
set all restraints r(p, j,k,s + 1) to 0, since no further restraint is necessary after these
initializations. Then we end this substage, with no successor eligible to act at the next
substage. (Now that we have enumerated z, into C, each such 8 will wait until the
next stage at which it is eligible and then adjust I's to compute C' correctly. Our B-
enumeration ensures that these changes will be possible.)

If -1 < INCS_H <]Nfs'+1 (or if =1 <]Nfs-l—l and Z/js/_l_l was not defined), we request that
the node L, increase the use Vs (z,) at the next opportunity, and revoke any corre-
sponding request for oz . since that request must have been fulfilled in order for k& to

have decreased. We also set

r(pyis ko, s + 1) = max(v@®P (2, [s], o™z, () [s]),

and for all j # i we set r(p, 7, i1, s+ 1) = 0 (since at this stage, balls targeted for G;
with j # ¢ may pass node p without injuring our strategy for satisfying P;). We then
end this substage, with no successor eligible to act at the next substage.

Finally, if kyy1 = kgyr > —1, we write k = kyyy, € = er, ® = @;, 0 = p'(a;), and
v =vi(= VL/ZEGBB) for simplicity, and let t + 1 be the greater of s + 1 and the last stage
at which A ; was extended. We select the appropriate step among the following.

a. If some G with j # ¢ changed on ©®(7(z,))[s] between stage s’ and stage s, then
we initialize all nodes to the right of o and end this substage, with no successor
eligible to act at the next substage.

b. Otherwise, we let
eyt = min(y(z,), 1+ dom(A%:) [t + 1]

(here regarding dom(Af’;)[t + 1], a finite initial segment of w, as an integer). We
define 7
AS Tyl + 1] = Wl wpas]

‘
ok

29

If this involves adding any axioms to A 7, we choose the use to be large. Sublemma
5.17 will ensure that these redefinitions are allowed.

We enumerate v(z,)[s" + 1] into B[s + 1], making FK‘;&@B(ZP)[S + 1] undefined, so
that aj will increase the use v(z,) at the next aj-stage. (Notice that v(z,)[s" + 1]
did not already lie in B[s]. Only numbers in the ranges of the v-functions are
ever enumerated into B, and such numbers are always chosen large.) By (1),
USPB (2)[s+1] also becomes undefined. We set (p, 1, k, s+1)=0and r(p, J, k, s+
1) = ©®(v(z,))[s] for all j # 7, to ensure that until the next stage at which z, is
realized, W. [wS_H can only change on account of a (G;-change, which will allow us
to redeﬁne A% iy wherever needed. We also revoke our request for o to increase the

use Yo (2,). We initialize all nodes to the right of o and end this substage, with no
successor eligible to act at the next substage.

This completes the instruction for P-nodes.

If pis all;-node, let m =0 if ¢ is even and m =1 if ¢ is odd, and set:

l(p.s) = max{e : (Vy < 2)@FFFn(y) |= & (y) | [s]}.

The stage s + 1 is p-expansionary if s = 0 or {(p,s) > l(p,t) for all stages ¢ + 1 with

" <t < s at which p was eligible to act. We define r(p,s) = 0 if s+ 1 is p-expansionary,
while otherwise r(p, s) is the greatest number used in the construction up until the last
p-expansionary stage. If no ball with a subscript 2 p*(p,(,)) is waiting at any gate C p
at stage s, then we make p"(p,(,) eligible to act at the next substage, and end this
substage. If any such ball is waiting at any gate below p, then we initialize all nodes to
the right of p™(p,(,,s)), but end this substage without making any nodes eligible to act at
the next substage.

This completes the instructions for the substages of the stage s + 1. Once we have
completed all s substages, or reached a substage at which no new node is made eligible
to act at the next substage, we proceed to the final two steps of the stage: satisfying the
L-requirements and allowing balls on the pinball machine to drop to lower gates.

First we consider the L-requirements. If £ = Lg,, then k is the priority of that
requirement. For each o € T, define n(a, s) to be the number of times that « has been
initialized (up to stage s) by other nodes on T. (We do not count any initializations
by L-requirements themselves in this total.) For the least k& < s such that ®f(z)[s] |
and ®f(z)[s — 1] either diverges or converges with a different use, the requirement £
initializes every a € T satisfying:

T+ n(a,s) > k.

(Here "o € w is a code for the node a, with T viewed as a subtree of w<¥.) This
guarantees that none of the « initialized will later injure L.

Finally, we use a pinball-style approach to determine which ball(s) currently on the
pinball machine can pass the gate at which they are currently waiting. Choose the

30

highest-priority « such that there is a gate p which was eligible at the current stage s+ 1
such that:

e there is a block of balls waiting at p, with lead ball w? or ¢/; and

e if p is a U-gate, then the lead ball of the block is > r(p, s); and

o if p is a P-gate, then the lead ball of the block either is of the form ¢/ or is
> v(p,jvs + 1); and

e no ball which passed gate p at any earlier stage is currently waiting at any gate
below p.

If there is no such «, then end the stage. If o exists, then the corresponding p is
unique (by the last condition), and we choose the greatest lead ball with subscript «
currently waiting at gate p. We allow all balls in its block to pass gate p, initialize all
nodes > «, and follow Instruction 4.5 below for the balls in the block. Once the balls
pass gate p, they are no longer in the same block. (For convenience, we usually think of
the node « as having performed the initialization of the nodes > «, even though « itself
may not have been eligible at this stage.)

Instruction 4.5 (Dropping to a new gate) 1. For ecach ball ¢* which passed gate
p, we drop c* to the highest U. g i-gate T S p (for any 1), if such a T exists. Its
block at gate T consists only of itself.

2. For each ball w* which passed gate p, we drop w® to the highest gate 7 C p, if such
a T exists. For the time being, its block at gate T consists only of itself, but traces
may be added later.

3. If there is no such 7, then we enumerate the ball into its target set (wF into Gy[s+1]
or ek into Ey[s + 1]). If this ball was a trace for another ball w’ which does not
enter G; at this same stage, then we add new traces for w’ in accordance with
Instruction 4.4, to form a new block at the gate at which w? is currently waiting.
(If wi, is waiting at a U. ;_1-gate, this process will involve dropping it to a lower
gate or into G;.)

If the ball was not a trace, then it was of the form w®. Either it was enumerated

into Gy for the sake of some M, ;ax-node o with v # k, so as to allow an Ry-
node 3 C « to redefine its functional Egk®P, helping o achieve a finite win; or
it was a witness element for a D-requirement assigned to «, in which case that
D-requirement is now satisfied.
Notice that under these instructions, no ball w’ can end up at a lower gate than its
trace.

This completes the construction.

31

5 Verification of the Construction

To prove that the structure of our tree allows every node to be satisfied, we first need a
sublemma.

Sublemma 5.1 At every node p on T, if N, is active or satisfied along p and i < j,
then N is active or satisfied along p also.

Proof. We use induction on the level of the node p. Suppose N is active or satisfied
along p, and let 1 < 5. Write n = p~.

Case 1. Suppose N; was active or satisfied along 1. Then by induction so was N;. The
only way for N; not to be active or satisfied along p is if a P-requirement was assigned
to n and p = n"(q;), for some [such that A is active along n via some « along which
N is neither active nor satisfied. Since a C p, the inductive hypothesis ensures that N
was neither active nor satisfied along « either. But then A; cannot be active or satisfied
along p, contradicting the assumption of the sublemma.

Case 2. Otherwise N; was neither active nor satisfied along 7, so in order to become
active or satisfied at p it must have been assigned to 7. Since N has higher priority than
N, this implies that A; was already active or satisfied at . But with an A-requirement
assigned to 7, every requirement active or satisfied at 1 will still be active or satisfied at
p, including ;. |

Lemma 5.2 [For every path h through T and every requirement N, there exists an Nj-
node o« C h such that either:

o N} is active via o along every 3 with o C 3 C h; or

o there exists o C h such that Ny is active via o along every 3 with a C 3 C o, and
satisfied via o along every 8 with o C 3 C h.

Proof. Fix h, and assume by induction that the lemma holds for every N-requirement of
higher priority than A;. This yields a node a; C h for each i < [, as well as nodes o; C h
for certain ¢ < [, and we take ¢ to be the largest of all these nodes (both «;’s and o;’s).
Then no N; with 7 < [is assigned to any node on h extending €.

Case 1. Suppose first that there exists an A;-node a C h above £. A; must be active
or satisfied along the immediate successor of @ on h. We argue inductively that A must
be active or satisfied via o along every 3 D « on h. Let p = 37. Then the only way A}
could possibly fail to be active or satisfied at (3 via «a is if a P-requirement is assigned
to p, and 3 = p*(a,,) for some m such that N, is active along p via some n. According
to the construction, N, is then satisfied along 3, so by the inductive hypothesis on I,
we have m > [. But then, in order for A,, to have been assigned to n, N; must have
been active or satisfied along 1. Hence N remains active or satisfied along /3 via «, by
Definition 4.2.

32

Case 2. Otherwise A is not assigned to any node on h above . Then A} must have
been assigned to some node below ¢ (since otherwise it would eventually be assigned to
some node above £, as no higher-priority requirement can be assigned to more than one
node on h above £). So let a be the greatest Mj-node C £. If A were neither active
nor satisfied via « along any node on h above «, then a new node on i above a would
be chosen as an Nj-node, contrary to hypothesis. Thus in both of these two cases, A is
either active or satisfied via the chosen « along every node § with o C § C h.

Finally, we note that N; cannot switch from satisfied via o at a node p to active at
any of its immediate successors 3. According to Definition 4.2, if N is satisfied via o
at p, then either N is satisfied via « at 3, or 3 = p"(a,,) for some m and N is neither
active nor satisfied at . Since this does not happen at any § with o C 3 C h, we see
that either A is active via « along every such f3, or it is satisfied via a along every such
3, or it is active via « along o”(00), switches to satisfied via o along some higher o C h,
and then stays satisfied via « along all extensions of o on h. In each of these cases, the

lemma holds for N. [

The true path g through T is defined inductively. It begins at the root of T', and for
each p C g, we extend ¢ to include the leftmost immediate successor 7 of p such that
7 is eligible to act at infinitely many stages. The existence of such a 7 will be shown

by induction in Lemma 5.9. To begin this induction, however, we need some sublemmas
first.

D- and M-nodes are the only nodes that ever try to enumerate balls into the sets
G'i. To see that these enumerations do occur, we need the following sublemmas.

Sublemma 5.3 [f the ball w', is ever chosen as x, by an M-node o, then 0" (c) C a.

Proof. The node o has three immediate successors, corresponding to its outcomes f, oo,
and w. To be chosen as x, at a stage s + 1, wé must have been enumerated into G
since the last o0"(c0) stage r + 1. If a < o, this enumeration would have initialized o,
in which case o would not have chosen any z, at s + 1. If 0°(f) C «, then o was never
eligible until after , was selected. If a lies to the right of ¢"(00), then w!, must have
been chosen after the last o"(co0)-stage, hence could not lie in dom(@ZVJ)[S] and would
not have been chosen as z,. Finally, o # o, since o does not target balls for any set G,
until it chooses x,. Hence o"(c0) C a.]

The next sublemma will be used extensively throughout the rest of our proofs. It
guarantees that balls entering the pinball machine are sufficiently large not to injure any
higher-priority requirements.

Sublemma 5.4 Let s 4+ 1 be the greatest stage < s+ 1 at which o was initialized, and

let t + 1 be the least a-stage > s" 4 1. If a ball w* enters the pinball machine at stage
s+ 1, then w” is greater than any number used in the construction up to stage t.

33

Proof. If a is a D-node, then its current witness was chosen at stage ¢ + 1, so w* was

chosen large at some stage > ¢ + 1. If a is an M, ;s r-node, then w* = fgk®P(xa)[3’]
for some Ri-node C «a and some a-stage s’ + 1 < s+ 1, and z, = w;, for some
o’ 2 a’(o0) (by Sublemma 5.3). If o’ is a D-node, then we are done, since w* > z, and
o' is initialized every time « is. If not, then we continue by induction. Eventually we
must reach a witness or trace for a D-node, since only finitely many nodes have been

eligible up to stage s. |

Sublemma 5.5 For a D-node a C g, if w', is realized at a stage after which o is never
again initialized, then eventually w' will enter G;. For an M-node o C g, if w', is a ball
targeted for G; by o at a stage after which « is never again initialized, then eventually
w' will enter G.

Proof. Every M js A y-node o with o”(0c0) C o has 0"(c0) C g. At each 0" (c0)-stage
s 4 1, the domain of "' is extended to the new length of agreement [(p,s). Hence
for each ball w’ (j < 1) there exists a stage s + 1 such that w/ is certified at all stages
t+1> s+ 1. So w! will eventually enter the pinball machine and drop to the highest
gate below «, as dictated by Instruction 4.3. (For M-nodes «, this involves an easy
induction on j <. For D-nodes, it only applies with j = i.)

Leaving « and 1 fixed, we argue by induction, first on gates p C « and then on 5 <3,
that every ball w/ (including traces for other balls) which reaches a gate p C o must
eventually pass that gate. This will prove the sublemma.

Suppose w?, is currently waiting at a U-gate p and let p"(p,) be the immediate successor
of p on g. Since « is never again initialized, no ball with subscript < « will ever move
again. By induction on p, every current trace for w’ at any gate below p will eventually
enter its target set. (If 7 =0, no trace is ever assigned, and similarly for traces targeted
for Fy or E;.) By Sublemma 5.4, w’ and all its traces must be > r, since p’(p,) C a.
There may be a trace w?~! for w? which is also waiting at gate p but in a different block
from w/. However, by induction w/~! eventually passes gate p and enters G;_;, with
Instruction 4.4 assigning a new trace (or two) to w’. The new trace(s) lie in the same
block as w?, so after that, the next time p"(p,) is eligible, w’ and its new trace(s) will
pass p and drop to lower gates, in accordance with Instruction 4.5. Thus, by induction
on p, w’, will eventually enter ;.

Now suppose w’ has been waiting at a Py y-gate p since the last o-stage, where
o C «a is the immediate successor of p below a. If o = p*(f), then there is a stage
so + 1 after which p sets all its restraints to 0. We also note that each time a restraint
r(p,J, k', s) is changed, all nodes to the right of p*(as) are initialized. Hence if o = p"(w),
then no restraint is redefined after the last initialization of o, so by Sublemma 5.4, w?
is larger than all such restraints and is allowed to pass gate p. Finally, if o = p"(ag),
then w!, > r(p,7,k',s + 1) for all s and all &’ < k by Sublemma 5.4, and all restraints
r(p,J, k' s+ 1) with &' > k are reset to 0 whenever]Nfs-l—l = k. We know that o is eligible
infinitely often. If i/ = j, then r(p,J,k, s + 1) is set to 0 infinitely often in Subcase 6(b)

34

with]Nfs-l—l = k; if not, it is set to 0 each time]Nfs-l—l =k # lesl_H in Subcase 6. Thus
lim inf, r(p, j, s) < w’. This completes the induction. []

Lemma 5.6 Lel p C g be an M jx v-node such that Y% = W, and A":%F = Q, and let
p (o) C . Fiz a ball w%, chosen by v at a stage after which p is never again initialized.
Let sq+ 1 be the least p-expansionary stage with w% € dom(@ZVJ)[SO +1], and let s;+1 be
the greatest p-expansionary stage before which w!, has not yetl entered the pinball machine.
Let sy + 1 be the greatesl p-expansionary stage < the stage al which w!, either enters G;
or is cancelled, and let s3 + 1 be the least p-expansionary stage > so + 1. Then:

1. For every p-expansionary stage t + 1 with sg < t < sy, let ' + 1 be the least
p-expansionary stage >t + 1. Then we have

where [= 0™ (w! [t +1].
2. For every p-expansionary stage t + 1 with s; <t < s9, we have
(Wj & P)l [t = (Wi & P [,
with t' as above, and where [, = AWJ@P(wQ)[Sk] (for k =1,2). Hence l; = [5.

3. 1If wi is chosen as x, at stage s3 + 1, then for every p-expansionary stage t +1 >
s34+ 1, we have

(W@ P [t = (W& P)I [s4]

with [} as above. Hence AWJ@P(wQ) =0.

If w% is never cancelled nor ever enters G, then the items above hold with sy = s3 = 0.
If wi never enters the pinball machine, they hold with s; = oo.

In fact we will use this lemma to show that w% cannot be chosen as x,, so that
(assuming T = W, and AY:%" =) the third item never actually applies.

Proof. For the first item, let ¢t + 1 be a p-expansionary stage with so < ¢t < s;. We will
proceed by induction on such ¢. Only M-nodes enumerate elements into P, so suppose
an My, i arr-node o enumerates some x into P at a stage s + 1 such that £ 41 is the
greatest p-expansionary stage < s+ 1. For this s, the node o must be unique, since every
node > o is initialized at s + 1. (This also forces v < o, since v is not initialized before
s1 + 1.) We wish to show that z > [.

Now the least number enumerated into P by o at s + 1 is of the form fgk®P(xg)[s],
for the Ry-node g C o, and o also enumerates z, into () at stage s + 1. If o lay to the
right of p"(o0), then x, and its use fgk PP (2,)[s] would both have been chosen after stage

35

t+1 (since the ball z, would have been cancelled at stage ¢ + 1, by Sublemma 5.3), hence
could not be < [.

So assume p*(c0) C 0. Now x, = w*' for some a D o, by Sublemma 5.3, s0o v < a. Let
w® be the original ball released by a (so either w* = w*, or w* is a trace for w*, or a trace
for a trace for w”, etc.) Sublemma 5.4 shows that w% < w”. By the construction for D-

and M-nodes, w* did not enter the pinball machine until after the first p-expansionary
stage to + 1 < ¢+ 1 with w* ¢ dom(@ZVJ)[to], by which stage w! € dom(@ZVJ)[to] as
well, since at every p'(oco)-stage this domain is an initial segment of w. Thus so < t.

Let [y = AWJ@P(wQ)[tO], and let uy be the use of the computation Y% (l)[te]. Then
fgk®P(xg)[s] must be > [y, having been chosen large after w* entered (%, hence after .

Now if W,y has changed between ¢y + 1 and ¢, then there must have been a cor-
responding change in ;] ug between those same stages, since o + 1 and ¢ + 1 are both
p-expansionary. So some ball wé, < ug entered G; between g+ 1 and . Now wé, must
have been chosen by stage t5, by Sublemma 5.4, and so o’ < a, since w’, was not can-
celled at o + 1. But the entry of w!, into G; took place after ¢y + 1, hence after w*
entered (71, since otherwise it would have cancelled w?*.

Now we apply the same argument to w’, as to w”. If], is the greatest p-expansionary
stage before w!, (or the ball for which it was a trace) entered the machine, with corre-
sponding uses [y, and u(, then w! € dom(@ZVJ)[tg], and sg < (), < tp. and so fgk®P(xg)[s] >
l;- But any change to W, [[between ¢} and t would require a corresponding change in
G ufy between those same stages, by a ball w’, entering ;, and so forth. Since G][t]

(n)

is finite, this process must terminate. Thus eventually we find a stage ¢, ’, with corre-

sponding l(()n) and uén), for which fgk®P(xg)[s] > l(()n) and no change occurred in Wj[l(()n)

between tén) + 1 and ¢. But by the inductive hypothesis on ¢, P[l(()n) [tén)] = P[l(()n) [t] as
(n)

well, and so in fact [’ = 1. Hence fgk ®P(xg)[3] > [, completing our induction on .

For the second item, let ¢t + 1 be a p-expansionary stage with s; < ¢ < s,. Now all
nodes « > ~ are initialized at stage s; + 1 when wi enters the pinball machine. Hence
no such « ever again enumerates any element < [y into P, nor any ball < u; into G},
where wu; is the use of the computation Y% ({;)[s;]. Also, no node < 7 could enumerate
any ball into G; or any element into P without cancelling w%, which would contradict
t" < s3. Finally, v itself never has two distinct balls on the pinball machine which are
both targeted for the same set (;, and v cannot make any P-enumerations until w%
has entered ;. For P, this shows that P[{; [t] = P [l [s1]. For G, it shows that
Giluy [t] = GiTuy [s1], and since ¢ + 1 is p-expansionary,

Willy [f] = Y10 [1] = YO Thy [s1] = Wil [s4):

The conclusion that [, = [is immediate, by induction on ¢, so this completes the proof
of the second item.

For the third item, assuming sy < oo, we know w% € Gy[s3]. First we show that
Pl [s2] = Pl [s3]. Nodes = 4 were initialized after s; + 1, hence cannot enumerate

36

elements < [; into P. Among nodes < v, those < p could not enumerate elements into P
without initializing p, and those = p do not enumerate into P at s+ 1 (since this would
initialize v when wi has yet to enter (7;) and are not eligible after that until s3+ 1, hence
cannot enumerate any elements into P.

Now we induct on p-expansionary stages ¢t +1 > s3 + 1. Since w% is chosen as z, at
stage s3 + 1, all nodes D p*(oo) are initialized at s34 1, and the only nodes above p that
are ever again eligible are those O p"(f). These nodes have not been eligible since the
last initialization of p, so they will never enumerate any elements < [3 into P, nor any
elements < uz into G;. Since W; = Y% this yields our result for (W; & P) in the third
item.

It is now clear that the final value A" 7 (w?) will be the value A" (w!)[s5]. Since
w! ¢ Gilss], we must have w! ¢ Q[sa]. Since sy + 1 is p-expansionary, this forces
AWSDE (i)[s2] = 0. n

Lemma 5.7 The requirements T; are all satisfied by our construction.

Proof. We show that G411 <7 G & Ey, as required by Tz;. (The proof for Ta,41 is

analogous.) To compute whether n € (3,41, we run the following steps:

1. Check whether n is targeted for (G54, at or before stage n, either as a witness for
some D- or M-requirement or as a trace. If not, halt and conclude that n ¢ Gq;y;.

2. If n is targeted for Giy;41 by stage n, then when it was so targeted, it must have had
a trace appointed. Use the oracle to check whether this trace ever entered Gy; ® Ejy.
If it never entered them, conclude that n ¢ Ga;yq.

3. If the trace did enter Gy; & FEy, find the stage s + 1 at which it did so, and check if
n € Gair1[s + 1]. If so, conclude that n € Go;11. If not, then another trace must
have been appointed at stage s. Repeat Step 2 with this new trace.

We claim that this process must eventually terminate with the correct answer. The
conclusion in Step 1 is justified by Sublemma 5.4, and the conclusion in Step 3 is abun-
dantly clear. For Step 2, we note that the construction does appoint a trace when n
is targeted for Gig;41, and each time such a trace enters its target set, either n itself
simultaneously enters (3,41 or another trace is appointed. Furthermore, this new trace
becomes part of the same block as n, so they will pass the current gate simultaneously.
Hence n must advance by at least one gate down the tree before that trace can enter
its target set, which implies that only finitely many traces for n will ever be appointed.
(In particular, if n = wzi"'l, then after its first trace, it can only have as many traces
appointed as there are gates below p on T'.) Thus the process does eventually terminate.

Finally, notice that at each gate a on the tree, the blocks waiting at gate « are
prioritized so that if n and a trace for n lie in different blocks waiting at gate «, then

37

each is the lead ball of its block, and the trace will get to pass the gate first. Hence
at every stage until a trace enters its target set, the trace will be waiting at a gate C
the gate at which the ball itself is waiting. Therefore n cannot enter its target set G;41
unless all its traces have entered their target sets by the same stage. This proves the
correctness of our conclusion in Step 2 of the above procedure.]

Lemma 5.8 FEach requirement Lg ,; is satisfied by our construction, and initializes other
nodes at only finitely many stages.

Proof. Let s” + 1 be a stage after which no £; with j < k ever initializes any node, and
write L), = Lo If ®F(z)[s]] with the same use at every s > s, or if ®%(x)[s]? for all
such s, then Ly is satisfied and never again initializes any nodes. Otherwise, L, initializes
cofinitely many nodes at some stage s + 1 > s’ + 1. Thereafter, none of those nodes
will put any number < pf(z)[s] into R. Among the finitely many remaining nodes «,
D- and M-nodes may injure N}, but each of them can put only finitely many numbers
into R without being initialized itself. (A witness ball for o drops by at least one gate
every time a new trace targeted for R is assigned.) Such an o will not be initialized by
any other L-requirement after s” + 1, and if other nodes initialize « infinitely often, then
eventually n(a, s) becomes so large that £, will initialize o along with everything else.
Hence we will reach a stage at which £; initializes every node except those which will
never again injure it, and thereafter £ is satisfied and never needs to initialize any more
nodes. |

Lemma 5.9 The true path g is infinite, and every node on it is initialized only finitely
often.

Proof. Suppose the node p lies on g. Now p may have infinitely many immediate suc-
cessors, so we must show that one of them will be eligible infinitely often. Since the
immediate successors of p are well-ordered, there will be a leftmost one 7 eligible in-
finitely often, and that 7 will then lie on g¢.

By induction we assume that p is initialized only finitely often by nodes < p (and
never by nodes > p). Hence n(p) = limsn(p,s) exists, and only requirements £ with
k< "pT4 n(p) will ever initialize p. By Lemma 5.8, therefore, p will only be initialized
finitely often. Let s” + 1 be the last stage at which p is initialized. Now we argue that p
itself initializes its successors only finitely often, and that one of its immediate successors
will be eligible infinitely often (so ¢ does not terminate at p).

If p is an A~ or R-node, then p has only finitely many immediate successors. Every
time p acts, one of its successors will be eligible, and such a p never initializes any of its
successors, so the lemma is clear.

A P; y-node p also has only finitely many immediate successors, but may initialize its
successors. We claim that this only happens once after stage s” 4 1, however. It occurs
at only a stage s+ 1 such that z, has been realized and k;1; = —1, and the initialization

38

preserves the computation W8 (2)[s] = 0. Thereafter p"(f) will be eligible whenever
p is, and no further initialization occurs.

Even if no initializations occur after s” 4+ 1, however, there may be infinitely many
stages after s” 4+ 1 at which p is eligible but no immediate successor of p is eligible.
Such stages occur in Subcase 6 of the construction for p. To complete the induction for
P-nodes, therefore, we need the following sublemma.

Sublemma 5.10 In thiSNSituation, let k be the least number such that N}, = N. ¢ is active
along p via some o and ksyy = k at infinitely many p-stages s + 1. Then o = p*(ay) is
eligible at infinitely many stages.

Proof. p"(f) can never be eligible after s” + 1, or k would never again be defined. By
minimality of &k, there is a stage sq+ 1 after which no node to the left of o is ever eligible.
Hence at stages s + 1 > sg + 1, @ must never have been able to obey the request from

B

Subcase 6 and increase ’yzve (z,)[s] on its own. Therefore, the only increases come at

stages s + 1 when Subcase 6(b) applies with k,y; = k and ’yZVek@B(Zp)[S] is enumerated
into B. After each such B-enumeration, o will be eligible at the next p-stage. Hence
if o were eligible only finitely often, then ’yzv ek@B(ZP) would only be redefined finitely
often, so would converge to some ¢. However, since a”(c0) C g, Lemma 5.8 ensures that
O is total, so there will exist p-stages s + 1 with k,; = k at which R] ¢™(¢)[s]]. At
such stages we have no (¢;-change on ¢%(c)[s], so we enter Subcase 6(b), and at the next

p-stage we will be in Subcase 3 and o will be eligible again, yielding a contradiction. m

If p is a D; g-node, then p initializes all its successors when the witness element w; is
defined, again if w, is realized, again at every p-stage until wj enters the pinball machine,
and again each time any ball with subscript p moves down the pinball machine. Once we
reach a stage after which p is never initialized again, the next witness w; will never be
cancelled, and by Sublemma 5.5, if it is realized, then it will eventually enter its target
set, after which p will never again initialize any of its successors.

Among the immediate successors of p, p*(f) will be eligible infinitely often if w; enters
(; after the last initialization of p. If this w; never enters (&;, then by Sublemma 5.5 it
must never have been realized, so p"(w) is eligible infinitely often.

An M-node p has only finitely many immediate successors, and the only stages
> s + 1 at which p either fails to make one of them eligible or initializes its successors
are those stages s + 1 (if any) at which Substeps 3(b), 4, 5, or 6 of the construction for
M-nodes apply. To reach any of these substeps after s” + 1, p must enter Substep 3(b)
first. After that, x, is permanently defined. By Sublemma 5.5, p can only stay in Substep
4 for finitely many steps for each of the finitely many balls w’;, and then can only stay in
Substep 5 for finitely many steps for each such ball. Finally p spends exactly one p-stage
in Substep 6, at which z, enters (). Thereafter p"(f) will be eligible (via Substep 1) at
every p-stage, and p will make no further initializations after its one stage in Substep 6.

Thus the lemma holds at M-nodes.

39

Finally, if p is a U, ;-node, we let r = liminfsr(p, s) and o = p"(p,). The existence of
this r follows from the definition of r(p, s) in the construction: if there are infinitely many
p-expansionary stages, then r = 0; otherwise r equals the greatest number appearing in
the construction at or before the greatest p-expansionary stage. Clearly, once we reach
a stage s + 1 after which r(p,s) > r, p will never again initialize any node above o. We
claim that ¢ C g¢.

Now the proof of Sublemma 5.5 actually showed slightly more than was stated:

Sublemma 5.11 Let p C g be a U.o;-gate, and choose v as above. Any ball w) > r
waiting at gate p at a stage s+ 1 after which « is never again initialized must eventually
enter G;.]

From this it follows that there will be infinitely many o-stages. If not, then eventually
all of the (finitely many) balls emanating from above o which had passed gate p would
either enter their target sets or be cancelled by initialization of their source nodes. (All
such balls are > r by Sublemma 5.4.) At the next stage at which r(p,s) = r, o would
then be eligible again. By induction, then, we have established Lemma 5.9.]

Lemma 5.12 Fvery D-, M-, P-, R-, and U-requirement is satisfied by our construction.

Proof. Every one of these requirements is assigned to some unique node on the true path
g. (N-requirements, which may be assigned to several nodes, are handled in Lemma
5.16.) We argue by induction along ¢, proving that the requirement assigned to each
p C g is satisfied by the sets we construct. Assume this holds for every o C p, and let
s" 4+ 1 be the last stage at which p is initialized.

e Suppose pis a D; g-node. Once we reach the first p-stage > 5”41, the construction
selects a witness element w; which will remain fixed through all subsequent stages.
If this witness element is ever realized, then by Sublemma 5.5 we see that w}, € G,
so that D;q is satisfied. If it is never realized, then QH"(w;) either diverges or
converges to a value # 0. However, in this case wj, never enters the pinball machine
on behalf of p, and it cannot simultaneously be a witness or trace for any other
node, since such witnesses are always chosen large (including balls from M-nodes,
whose values were originally chosen as the uses of =Z-functionals). Hence w; ¢ G,
satisfying D; q.

e Suppose p is an Ry-node. Then at each p-stage we either extend the functional =,
to a larger domain, or add new axioms so as to redefine it on some value x in its
current domain. However, the use of Efkeap(x) is only changed when z enters G
or when z = x, for some a D p and w® enters (G;. Since each of these can happen

= =GrOP
P

only once after H/kaeaP(x — 1) has converged, the function = must be total.

If s+ 1 < s+ 1 are consecutive p-stages and a number x enters () at a stage ¢ with
§+1<t<s+1, we have v = z, for some M, r-node a = p (since if o < p,

40

p would be initialized). If « lies to the right of p, then x, must have been chosen
by a node to the right of p at a stage > s’ + 1, so x, cannot be in the domain of
Efkeap [s" 4 1]. Otherwise p C «, and by the construction for M-nodes, o will have
enumerated the use £5%%7(z)[s' 4+ 1] into P at the same stage that x entered Q.
Since s+1 is the first p-stage since then, p is allowed to redefine ZG+9F (z)[s+1] = 1.
Thus Efkeap = (), satisfying Ry.

Suppose p is an M ; y-node, and suppose W; = Y% and A% = Q. Then
there must be infinitely many p-expansionary stages. Now if a witness element z,
becomes defined at any stage s + 1 > s” 4+ 1, then as noted in the construction we
have z, = w% for some v D p*(c0) (by Sublemma 5.3), and x, must have entered
Gi; by stage s but since the previous p-expansionary stage r + 1. At stage s + 1
we enter Substep 3(b) of the construction for p, and at the next p-stage we enter
Substep 4. By Sublemma 5.5, the balls chosen by p in Substep 3(b) all eventually
enter their target sets, so we eventually enumerate x, into Q[t + 1] via Substep 6
at some stage ¢t + 1. However, applying Lemma 5.6 to the ball w%, we see that
AWi®P (g) = 0, contradicting the assumption that AW:%7 = (.

Hence z, is never defined. But this means that @ZVJ = (; on all elements of w,
since in Step 3(a) of the construction for p we define it thus, with the same use as
AWi®F for all < I(p,s) (and lim, [(p,s) = oo). Moreover, we made sure in that
step that any redefinition of © was allowed by some W;-change, so © is indeed a
computable functional. (Had there been no Wj-change, we would have defined an
element to be x, instead.) Thus M, ;o is satisfied.

Suppose p is a U, y;-node, and that ®“21%F0 = G0 with domain w. (The argument
for U, ;41 is analogous.) Then the node o = p"(po) will lie on g.

We make the standard argument for a pinball construction. In the construction,
we only allow a block to pass gate p if its lead ball is targeted for the infimum (as
discussed below) or for Fy, or is > r(p,s). (A ball is always smaller than its trace.
Hence if the lead ball is > r(p, s), then the entire block consists of balls > r(p, s).)
A single block can injure both ®%21%%0 and &I only if it contains a ball targeted
for the infimum G9;11. Otherwise, we protect the uninjured side by initializing all
nodes of lower priority than the source node of the balls in the block and refusing to
allow any other ball to pass the gate until all the balls of the first block have either
entered their target sets or disappeared due to initialization of their source nodes,
and until the injured computation has recovered and achieved a longer length of
agreement with the uninjured computation. (Notice that p has the correct guesses
about liminf (o, s) for every U-gate o« C p and about liminf, r(a,i,s) for every
P-gate a« C p and every ¢, so any ball emanating from a node above p is large
enough that such an « will eventually allow that ball to pass. Thus no ball which
passed gate p will have to wait permanently at any gate below p, so we know that
eventually each block waiting at gate p will be allowed to pass.)

41

In Instruction 4.4, however, we allowed a ball w?**! targeted for Gyiyi to pass

gate p at stage s + 1 even if it was < r(p,s). (No other instruction allows balls
< r(p,s) to pass gate p, except balls targeted for Fy, which will not injure either
side of the computation. Also, Instruction 4.4 applies when w?*!
trace, so wX*! passes gate p by itself; its block at stage s 4+ 1 contained no other
balls.) Therefore, when we attempt to compute ®1°(z), we use a Gy;y;-oracle to
look for the least o-stage so+1 > s” +1 by which the length of agreement between
®I0[s50] and ®E2PE0[54] exceeds x and such that both computations on input x are

Gigiy1-correct, 1.e.

needs a new

Gaipa] (uo + 1)[so] = Gaiyal (uo + 1),

where wug is the greater of the uses of the two computations ®%2i%F0(2)[sg] and
B0 (2)[s0]. Set h(z) = B2 (1)[s0].

(Such a stage so must exist. ®L0(z) and ®F2i%F0 (1) hoth converge by some stage
s with some use u, and there must be infinitely many o-stages > s by which G414
stabilizes on w. Pick any D;g-node o D p such that o C ¢, 7 € w, the functional
) evaluates to 0 on every input and every oracle, and « is never eligible until after
Gyiq1 | u has stabilized. Then o must subsequently enumerate an element into
Gj. We claim that the least o-stage so +1 > s + 1 by which o has completed its
enumerations into all sets GG; will satisfy the above conditions. Clearly the length
of agreement exceeds z, so we must show that sg is (Gy;11-correct. Now « is never
initialized again, since otherwise it would have to enumerate another element into
(/; to get back to the outcome o' (f), so no ball from any node < « ever moves
after stage so 4+ 1. Since so + 1 is a o-stage, every node to the right of o = p"(po)
is initialized at stage sg + 1. Nodes > « above o were initialized when the witness
w’, entered G;, and cannot have been eligible since then, because ¢ has not been
eligible since then. Also, no ball from any node < « can have been below p when
w’ passed p, or can have moved since then. Hence no ball at all is at any gate C p
at stage so + 1, except those which wait there permanently.)

We note that no balls below p at stage sp + 1 ever move again. Balls from nodes
~< p cannot move without initializing p, which is impossible since so + 1 > s” 4 1.
Balls from nodes to the right of o are all cancelled at the o-stage sq + 1, and in
order for sg 4 1 also to be a o-stage, no ball from any node O o can be waiting at
any node below p at stage so+ 1, since otherwise ¢ would not be eligible at s + 1.

We argue by induction that at every o-stage s + 1 > sy 4 1, at least one side of
the computation is Gy 1-correct — that is, either ®%(x)[s] = h(z) with use u, such
that Goipi] (us +1)[s] = G| (us + 1), or @20 (3)[s] = h(x) with use satisfying
the same condition. Assume this holds for all o-stages ¢t + 1 with so <t < &', where
s+ 1 is the last o-stage before s + 1.

Suppose that ®%(z)[s'] = h(zx) is Gyiyi-correct with use uy. (The analogous
argument will hold if the other side was Gg;11-correct, as shown below.) The
induction is trivial unless some ball < uy enters Fy before stage s 4 1, so suppose

42

w = w21 is the first such ball to do so, entering (iopy1 at a stage ¢ 4+ 1 with
s <t < s. Since no ball from any node < p ever moves after s” + 1, we must have
a = o. With w < ugy, Sublemma 5.4 ensures that w must have been chosen before
stage s’ + 1, and hence o C «, since all nodes to the right of o were initialized at
stage '+ 1. Thus w cannot have been below p at the o-stage '+ 1, so w must have
passed p at a stage ' +1 > s’ + 1. By Gy 41-correctness, w was not targeted for
the infimum G341, so we must have r(p,t') < w < uy < &, and thus r(p,t') = 0.
This forces ' + 1 to be a o-stage < s+ 1, so in fact ¢’ + 1 = s’ + 1. Notice that
due to the instructions for gate p, no other ball from above p can have been below
p at stage s’ + 1, or can have passed p between stages s’ + 1 and ¢. Traces may
have been chosen for w after it passed p, but they would all be chosen > uy, and
will all enter their target sets before w enters Gyp41. After stage £ 4 1, the restraint
r(p,-) will be set to prevent any other ball from above o from passing gate p, until
the next time the length of agreement recovers and exceeds [(p, s') — which must
be the next o-stage, namely s + 1. Thus w was the only ball chosen before s’ + 1
to pass gate p between stages s’ 4+ 1 and s.

Now we claim that if ®0(z)[s] is no longer Gy, -correct, then the computation
®&2iPE0(7)[s] = h(x) is Gyiyi-correct. The preceding paragraph shows that no ball
entered Gy; @ Fo between stages s’ + 1 and s, except balls which were chosen large
after ' + 1, so that

G20 (2)[s] = @0 (2)[s] = @0 (2)[s'] = h(z).

The first two of these computations have the same use u, and we claim that both

are (y;11-correct. Suppose that some ball w?"’l was chosen before stage s’ + 1

(since any ball chosen after s'4+ 1 would be > u) and eventually enters (G3;41. Then
w?"’l was waiting either at gate p or at a gate D o at stage s’ + 1 (since no ball
was waiting below p at s’ 4 1, balls from the right of o were initialized then, and
balls from nodes < p never move again). Also, we have 3 < «, since w?"’l was not

cancelled when w?**! moved. Hence w?"’l was chosen before w?k+!
and so w?"’l < w¥Hl (If 3 = a, then k < i, since w?**! passed gate p first.
Then w?*! would be a trace for w?"’l, hence larger.) But w?*! < g, so this

was chosen,

would contradict the (Gig;yi-correctness of the computation ®1°(z)[s’], which was
the inductive hypothesis.

The analogous argument, assuming ®%2i%50 (2)[s'] = h(zx) to be Gy;yy-correct with
use ug, is similar. However, in the second paragraph, when we claim that no ball
chosen before s’ + 1 entered Fy between s’ + 1 and s, we must worry about balls
w?"’l targeted for the infimum, since such balls could pass p at a stage ¢ between
s+ 1 and s despite a large restraint r(p,¢). The only way for this to happen is
under Instruction 4.4, if the trace for w?"’l entered its target set at stage t41. This
is possible only if that trace was the ball w? or €® which passed p at stage s’ + 1,

which forces both 8 = a and w?"’l < ug. This contradicts the Gg;yq-correctness

43

of the computation ®“2¢%20(z)[s'], so in fact no such ball w?"’l can have passed p
between s'+1 and s. The rest of the argument goes through essentially unchanged,
showing that ®%°(z)[s] = h(x) must be Gy, -correct.

Suppose p is a P;g-node. Then at the first p-stage after s” + 1, a witness element
z, will be chosen and will remain fixed at all subsequent stages. We will need the
following two sublemmas for our argument. The first one guarantees that if p is
in Subcase 5 at infinitely many stages but only reaches Subcase 6 at finitely many
stages, then the use ¥“%8(z,) — .

Sublemma 5.13 Suppose some o C g is an Ny-node, with Ny = N. g, but there
is a node o with o C o C g such that N, g is not active along o via o. Then for
all sufficiently large z, vY*%B(2)[s] = oo as s — oo. (More specifically, let T be
the immediate predecessor of the least such o. Then o C 7, 7 is a P-node, and for

each z > z, and each n € w there exists a stage sq such that at all stages s > sy we
have either vV¥B(2)[s] > n or I¥B(2)[s]1.)

Proof. Ny, is active via a along every immediate successor of a, so the 7 described
must lie above o. The node 7 must be a P; y-node for some 1 and ¥, since only
at successors of P-nodes can A}, change from active via o to inactive via a. If
o 2 7 (ag), then Subcase 6(b) must apply infinitely often with ksy1 = k in the
construction for 7. Hence yV®P (2)[s + 1] is chosen large at infinitely many stages
s+ 1, so the sublemma is satisfied for z = z,. Otherwise o 2 7°(q;) for some [< k
with A assigned to some 3 C a. In order for this ¢ to be eligible infinitely often,
kE must fail Condition (1) from page 29 infinitely often. But ’yZVel@B(ZT)[S + 1] is
chosen large at infinitely many stages s 4+ 1 since 7°(a;) C g, and we must have
PEEB (2)[s] = 0o as s — oo to allow k = [infinitely often. By Condition (1),
therefore, V<P (2)[s] — oo as well.

By convention the use function v"¢®P is increasing, so the result holds for all

z 2 Zr. [

Sublemma 5.14 Let s+ 1 > s+ 1 be a p-stage at which the construction for p is
in Subcase 6. Then (G; @ B)[9B (z,)[s] will be preserved (and WF B (2)[s]|=0)

until we enter either Subcase 6(b) or Subcase 2 of the construction for p.

Proof. Let t+1 > s+ 1 be a p-stage such that p has not entered Subcase 2 or 6(b)
since stage s+ 1. By induction on ¢, p has not entered any of Subcases 1, 3, 4, or 5
since stage s + 1 either. (For Subcase 5, this follows because y-uses never decrease
from one stage to the next.)

For preservation of (;, notice that no ball targeted for GG; was below gate p at stage
s+ 1 (except possibly balls from nodes to the left of p, and such balls never move

44

again). The construction set r(p, 1, ks, s+ 1) > %%B(2,)[s], ensuring that no ball
< %i®B(2,)[s] from above p has passed p since stage s+ 1, and all balls from nodes
to the right of p are cancelled by initialization at s+ 1. (Balls from nodes < p never
move again, since p is never initialized again.)

Now a node must be eligible in order to enumerate an element into B. Hence no
node to the left of p nor any node above p will violate our B-preservation, since
nodes above p are never eligible when p is in Subcase 6. FEach node o to the right
of p is initialized at s + 1, so any element which ¢ enumerates into B at stage
t + 1 will be of the form !V<#B(z,)[t], hence > z,[t] > PP (2,)[s]. A node 7 C p
never again enumerates anything into C' (since doing so would initialize p), so its
only B-enumeration can come when 7 is in Subcase 6(b). Assume 7" (a;) C p, and
suppose that at stage ¢ + 1, 7 enumerates some element v"-5 (2,)[¢] into B, with
N = N, assigned to a C 7. Then k < [, since otherwise p would be initialized at
this stage, so A is not active via a along p, and 7 is precisely the node 7, described
in Subcase 5. But then yV<®P(z) > »“®B (2)[t], since we are not in Subcase 5.

Thus the B-enumeration by 7 at stage ¢t + 1 does not violate the sublemma.]

If p*(f) ever becomes eligible at some stage s + 1 > s” 4 1, then our initializations
when z, entered C' will preserve the convergence W& %8 (2 J[s]|= 0 # C(z,) forever
after, satisfying P;y. (The same argument as in Sublemma 5.14 shows that no
7 < p will injure this computation by any subsequent B-enumeration.)

If p’(w) C g, then either Subcase 4 holds infinitely often (so W% %B(z) |#£ 0 or
diverges) or Subcase 5 holds infinitely often (so W&®P(z)4, by Sublemma 5.13
and the conditions of Subcase 5). Sublemma 5.13 excludes the possibility of our
remaining in Subcase 5 without eventually entering Subcases 2 or 3, both of which
give outcomes to the left of p*(w) C g.) Moreover, z, never enters C, so P; ¢ holds.

Otherwise, z, is realized infinitely often, and Sublemma 5.13 guarantees that each
time it is realized, we will eventually enter Subcase 6 of the construction for p. If
k = —1 at any subsequent p-stage, p will enumerate z, into C, and p"(f) becomes
eligible, as described above. Otherwise there is some k such that Ny = M. g is
active along p via some o and o = p*(ay) C g. Let so+1 < s+ 1 < --- beall
the o-stages occurring after the last initialization of p. We claim that P; ¢ holds
because in this case U¥ %P (2) must diverge. At each stage s,,+1, we are in Subcase
3 of the construction for the node p, so we have been in Subcase 6(b) at some stage

t+1>s,1+ 1. At that stage ¢t + 1, we enumerated VZVSGBB(ZPN)[?}] into B, and at
the next a-stage s +1, v, “®P(z,)[s + 1] was chosen large. Since kj, 11 = k, we know

’yZVe@B(Zp) < ;/)G"@B(Zp)[sn], SO ;/)G"@B(Zp)[sn] — 00 as n — oo, satisfying P y.

This completes the proof of Lemma 5.12.]

The following lemma ensures that the functionals A, built at P-nodes p with
p"(ar) C g are indeed computable.

45

Lemma 5.15 (A-Correction Lemma) Let p be a P;y-node, and let 0 = p*(ay) lie
on the true path g through T, with Ny = N, . Then there is an sq such that for every
w € w and every o-stage s + 1 > so + 1 such that w € dom(Ag’;ﬂ)[s + 1], no ball wé with

522(w)[5 + 1] < wi < o (w)[s] enters G; from stage s + 1 until the next o-stage.

Proof. Since a;, is an outcome of the node p, the requirement A, must be active along
p via some node 7 C p. Now dom(Ai’;ﬂ) C dom(®F)[t] at every stage ¢, since A, is
extended only at p-stages, all of which are T-expansionary. Let sy + 1 be the last stage
at which o is initialized, so that no ball with subscript < o ever moves after stage sq+ 1.

Let s; + 1 be the first o-stage > so + 1 at which Ai’k(w)[sl + 1] is defined. Then the use
552()[s1 + 1] is chosen large, hence is greater than o (w)[s,].

We argue by induction on o-stages s+ 1 that no ball w! with 5 H(w) < w!, < pf(w)]s]
and o < «a even exists at any o-stage > s; + 1. (By the above remarks this holds at stage
s1 4 1.) Since no ball with subscript < o moves after stage so + 1 and no ball defined
after a o-stage s + 1 can be < (w)[s], this will prove the lemma.

For the inductive step, let s + 1 > s’ 4+ 1 be consecutive o-stages > s; + 1, and fix
a = 0. Now any new witness or trace chosen at an intervening stage must be greater
than ¢ (w)[s'], so the induction will be trivial unless ¢ (w)[s] > @ (w)[s]. This implies
that some element y < ©®(w)[s'] entered R after stage s’. (Recall that R = @®;Gy.)
Then y must have been appointed as a witness or trace before stage s’ + 1, by some node
B 2o.

If y entered G, then by our induction on s" 4+ 1, we have y < 522(w)[3’ + 1] as well,
so at stage s + 1 we redefine Ag’k(w) and set 522(w)[5 + 1] > (w)[s], completing the
induction for s + 1.

Otherwise y = wg entered G for some j # 1. If @ = $ on T, then o was initialized

when y entered G; and is not eligible again before stage s 4+ 1, so any new ball with
subscript a at stage s + 1 will be greater than ¢ (w)[s], by Sublemma 5.4.

If @ < 3, then no ball y' with subscript o has moved or been chosen since wg was
chosen (since otherwise # would have been initialized). Sublemma 5.4 then ensures that
such a y' is < wy}, hence < ¢ (w)[s'], and the inductive hypothesis guarantees that either

y' < 522(w)[3’ + 1] or ¢’ is targeted for a set other than G;.

Finally we consider the case o = 3. Since wg entered G after stage s', it must have
passed gate p at a stage > ', since otherwise o could not have been eligible at s + 1.
When wg passed gate p, all its traces either had already entered their target sets or were
targeted for Ey or Fy. Moreover, if wg was a trace for another ball wgl'l, then wg—H
must have been waiting at a gate 2 o at stage s’ + 1. (Two balls targeted for R cannot

pass a P-gate simultaneously.) The ball le may have dropped as far as gate p when
wﬁ entered G, but the construction does not allow it to pass p until the next o-stage

s+ 1. When wﬁ entered (7;, a new trace (or traces) was appointed for w]ﬁ-l' but these
new traces will each be targeted for either Fy, E;, or (G, not for G, and will begin at

46

the same gate at which wgl'l is currently waiting. Hence none of these traces will move
until stage s 4+ 1, so no new trace will be targeted for i; until at least stage s + 1. This
proves our claim, and the lemma follows. []

Lemma 5.16 Every requirement Ny, = N, g is satisfied by our construction.

Proof. Let g be the true path, and let a be the node described by Lemma 5.2 for N},. If
a’(w) C g, then W, # ®F so A} holds. Otherwise we have two cases.

Case 1: There exists a P; y-node p D a, for some i and ¥ such that o = p™(ay) C g.
By the construction and our choice of a, AN}, must be satisfied via « along every node
D o on ¢g. Once we have reached a stage s” 4+ 1 after which o is never again initialized,
Subcase 6(b) guarantees that the domain of the function Ai’k built by p will be extended
by at least one element between every pair of o-stages, subject only to the restriction
that every element in the domain at stage s+ 1 must be < ’yZVe@B(Zp)[S +1]. As noted in
the proof of satisfaction of P; g above, 7, *®F(2,)[s] = oo as s — oo, so for each n € w,

Ai’k(n)[s + 1] is defined at infinitely many stages s + 1. The L-requirements will then
ensure that Ai’k is total, so that W, <7 (;, given the following.

Sublemma 5.17 In the situation above, A, is a computable functional, with Af’k =

We..

Proof. In Subcases 3 and 6(b) we always redefine Af’k to equal W, on its domain. We
must prove that A, is computable, i.e. that these redefinitions are allowed.

If the construction is in Subcase 3 at the p-stage s 4 1, let s’ + 1 be the most recent
p-stage (at which we must have been in Subcase 6(b)). If any y < wy 41 has entered W,
since stage s'+ 1, then some change in ¢ (y) must have taken place since s'+1 to allow it,
where ® is the functional assigned to Aj,. With the restraints r(p, 7, k, s’ + 1) > ¢ (y)[s]
for all j # 1, this means that G;[¢"(y)[s'] has changed since s’. Indeed, by Lemma 5.15,
Gi[(sg};(y)[s’] must have changed, so our redefinition of Ag’k(y)[s + 1] is allowed.

In Subcase 6(b) at stage s + 1, if some y < w,qq < ’yZVe@B(Zp)[t + 1] has entered W,
since the last stage ¢ + 1 at which we were in Subcase 3 with k;yy = k, then y must have
been allowed to enter W, by some change in R| ¢ (y)[t]. Now we set r(p,i,k,t + 1) =
o™ (v(2,))[t], and this restraint has stayed at least that large at all subsequent stages
up through s + 1. Hence some G; | ¢®(z,)[t] with j # ¢ must have changed after z,
was realized. However, the change would have happened before the previous p-stage
s" 4+ 1 (since otherwise we would be in Subcase 6(a) at stage s + 1) and after the stage
t'4+1 > t+1 at which we re-entered Subcase 6 with IN@/.H = k and reset r(p, 7, k, t'+1) = 0.
However, at stage t' + 1 we also requested that a = oy, increase 7V<¥5(2,)[t']. Hence
by stage s + 1, o would have recognized the W.-change and obeyed our request, setting
AWeBB (2)[s4+1] > PP (z,)[s]. This would contradict Condition (1), since our restraints
have preserved %98 (z,)[t'] since we entered Subcase 6. Thus no such ;-changes can
have taken place, so W, has not changed, and Subcase 6(b) only extends the domain of

the functional A, ; without redefining it on any arguments. |

47

Case 2: By Lemma 5.2, if Case 1 does not hold, then N}, is active via o along every
node on g above a. Then at every a-expansionary stage we extend the domain of I'"V®B
by another element. Once the use vV-®5(z —1) stabilizes, 7V<®P(x) increases only when:

O

o z enters (' or
e x = z, for some eligible p D o at which N} is satisfied; or

o 2 = 2, for some eligible p D « at a stage at which k = k in the construction at p.

In the second case, p cannot lie on g, so either p is eligible only finitely often or z, is
eventually cancelled by initialization and redefined to be > . In the third case, if p C g,
then there are only finitely many such stages. Hence the use will increase only finitely
often, and I'"V<®B is total.

It only remains to show that this function computes C' correctly — which is clear for
any argument ¢ C'. Now no node < «a ever enumerates any element into €' without
initializing «, and after each initialization we start building a new I',, so the version
of I', constructed after the last initialization of o will never be injured by those nodes.
Among nodes p > «, only P-nodes ever enumerate any elements into C'. When such a p
does so, the element is the witness z,, and it enters C' at a stage s +1 with kgy1 = —1in
the construction for that p.

If p lies to the right of o, then z, is cancelled each time « is eligible. If such a z, is
enumerated into C, therefore, then there were no a-stages between the definition of z,
at some stage s + 1 and its entry into /. Since z, was chosen large, it cannot have been
in the domain of I'V®B[s], nor can it have entered that domain since stage s + 1. When
[We®B(2) is finally defined, therefore, it will be correct.

So suppose « lies below the P; y-node p, and p enumerates z, into C' at stage s + 1
(using Subcase 6 of the construction for p). Since ksy1 = —1 and Subcase 5 did not
apply, either vV®B (2)[s] 1 or ¥VPB(2,) > %P8 (2,)[s]. In the latter case p enumerates
AWVe®B (2,)[s] into B[s+1]. In either case, therefore, a will be able to define I8 (2)[t+1]
correctly at the next a-stage ¢ + 1. Hence I''V<®8 = (' satisfying N. []

6 References

Bernays, P. and Schoenfikel, M. [1928], Zum Entscheidungsproblem der mathematis-
chen Logik, Math. Ann. 99, 342-372.

Borger, E., Gradel, E. and Gurevich, Y. [1997], The Classical Decision Problem,
Springer, Berlin.

Calhoun, W. C. [1993], Incomparable prime ideals of recursively enumerable degrees.,
9th International Congress of Logic, Methodology and Philosophy of Science (Uppsala,
1991). Ann. Pure Appl. Logic 63, 39-56.

48

Calhoun, W. C. and Lerman, M. [2001], Embedding finite lattices into the ideals of
computably enumerable Turing degrees. J. Symbolic Logic 66, 1791-1802.

Dreben, B. and Goldfarb, W. [1979], The decision problem, Solvable Classes of Quan-
tificational Formulas, Addison-Wesley, Reading MA.

Epstein, R. L. [1979], Degrees of Unsolvability: Structure and Theory, LNM 759,
Springer-Verlag, Berlin.

Friedberg, R. M. [1957], Two recursively enumerable sets of incomparable degrees of
unsolvability, Proc. Nat. Ac. Sci. 43, 236-238.

Harrington, L. and Shelah, S. [1982], The undecidability of the recursively enumerable
degrees (research announcement), Bull. Am. Math. Soc., N. S. 6, 79-80.

Jockusch, C. G. Jr. and Slaman, T. A. [1993], On the ¥s-theory of the upper semi-
lattice of Turing degrees, J. Symbolic Logic 58, no. 1, 193-204.

Kleene, S. C. and Post, E. L. [1954] The upper semi-lattice of degrees of recursive
unsolvability, Ann. of Math. (2) 59, 379-407.

Lachlan, A. H. [1966], The impossibility of finding relative complements for recursively
enumerable degrees, J. Symb. Logic 31, 434-454.

Lachlan, A. H. [1968], Distributive initial segments of the degrees of unsolvability, 14,
457-472.

Lachlan, A. H. [1975], A recursively enumerable degree which will not split over all
lesser ones, Ann. Math. Logic 9, 307-365.

Lempp, S., Nies, A. and Slaman, T. A. [1998], The Il5-theory of the computably
enumerable Turing degrees is undecidable, Trans. Am. Math. Soc. 350, 2719-2736.

Lerman, M. [1971], Initial segments of the degrees of unsolvability, Ann. of Math. (2)
93, 365-389.

Lerman, M. [1973], Admissible ordinals and priority arguments, in Cambridge Sum-
mer School in Mathematical Logic, LNM 337, A. R. D. Mathias and H. Rogers jr. eds.,
Springer-Verlag, Berlin, 311-344.

Lerman, M. [1983], Degrees of Unsolvability, Springer-Verlag, Berlin.

Lerman, M. [2000] A necessary and sufficient condition for embedding principally
decomposable finite lattices into the computably enumerable degrees, Annals of Pure

and Applied Logic 101, 275-297.

Lerman, M. and Shore, R. A [1988], Decidability and invariant classes for degree
structures, Trans. Am. Math. Soc. 310, 669-692.

Lerman, M., Shore, R. A. and Soare, R. 1. [1984], The Elementary Theory of the
Recursively Enumerable Degrees is not Ng-categorical, Advances in Mathematics 53,

301-320.

Minsky, M. L. [1961], Recursive unsolvability of Post’s problem of tag and other topics
in the theory of Turing machines, Ann. Math. 74, 437-454.

49

Muchnik, A. A. [1956], On the unsolvability of the problem of reducibility in the
theory of algorithms, Dokl. Akad. Nauk SSSRE N.S. 108, 29-32.

Nies, A. [2003], Parameter definability in the recursively enumerable degrees, to ap-
pear in Journal of Mathematical Logic.

Nerode, A. and Shore, R. A. [1997], Logic for Applications, Springer, New York, , 2nd
ed.

Nies, A., Shore, R. A. and Slaman, T. A. [1998], Interpretability and definability in
the recursively enumerable degrees, Proc. London Math. Soc. (3) 77, 241-291.

Ramsey, F. P. [1930], On a problem of formal logic, Proc. Lond. Math. Soc. (2) 30,
338-384.

Sacks, G. E. [1963], Recursive enumerability and the jump operator, Trans. Am.
Math. Soc. 108, 223-239.

Sacks, G. E. [1964], The recursively enumerable degrees are dense, Ann. of Math. (2)
80, 300-312.

Shepherdson, J. and Sturgis, H. [1963], Computability of recursive functions, J. Assoc.
Comp. Mach 10, 217-255.

Shore, R. A. [1978], On the V3-sentences of a-recursion theory, in Generalized Recur-
ston Theory II, J. F. Fenstad, R. O. Gandy and G. E. Sacks eds., Studies in Logic and
the Foundations of Mathematics 94, North-Holland, Amsterdam, 331-354.

Shore, R. A. [1981],The theory of the degrees below 0/, Journal of the London Math-
ematical Society 24 (1981), 1-14.

Shore, R. A. [1999], The recursively enumerable degrees, in Handbook of Computabil-
ity Theory, Studies in Logic and the Foundations of Mathematics 140, North-Holland,
Amsterdam, 169-197.

Simpson, S. G. [1977], First order theory of the degrees of recursive unsolvability,
Ann. Math. (2), 105, 121-139.

Slaman, T. A. and Soare, R. I. [2001], Extension of embeddings in the computably
enumerable degrees, Annals of Mathematics, 153, 1-43.

Soare, R. 1. [1987], Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin.
Spector, C. [1956], On degrees of recursive unsolvability, Ann. Math. (2) 64, 581-592.

Yates, C. E. M. [1966], On the degrees of index sets, Trans. Am. Math. Soc. 121,
309-328.

50

