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1 Introdu
tionA major theme in the study of degree stru
tures of all types has been the question ofthe de
idability or unde
idability of their theories. This is a natural and fundamentalquestion that is an important goal in the analysis of these stru
tures. It also serves asa guide and organizational prin
iple for the development of 
onstru
tion te
hniques andalgebrai
 information about the stru
tures. A de
ision pro
edure implies (and requires) afull understanding and 
ontrol of the �rst order properties of a stru
ture. Unde
idabilityresults typi
ally require and imply some measure of 
omplexity and 
oding in the stru
-ture. On
e a stru
ture has been proven unde
idable, it is natural to try to determineboth the extent and sour
e of the 
omplexity. One the one hand, one wants to determinethe degree of the theory. On the other hand, one strives to �nd the dividing line be-tween de
idability and unde
idability in terms of fragments of the theory. The �rst hasfrequently brought with it 
onsiderable information about se
ond order properties su
has de�nability and automorphisms. The se
ond requires the most algebrai
 informationand development of 
onstru
tion te
hniques.Our interest here is in R, the r.e. degrees under Turing redu
ibility, and some naturalextensions of this stru
ture, but, for the sake of 
omparison, we also dis
uss D andD(� 00), the Turing degrees of all sets and the ones below 00. For D; D(� 00) the results
ame fairly early. The �rst paper on the stru
ture D of the Turing degrees as a whole,Kleene-Post [1954℄, developed the �nite extension method (essentially Cohen for
ing forone quanti�er formulas of arithmeti
) and proved that all �nite partial orderings 
an beembedded in both D and D(� 00). As these stru
tures are partial orderings, this suÆ
esto show that the one quanti�er (9) theories are de
idable. (An existential senten
e istrue in either stru
ture if and only if it is 
onsistent with the theory of partial orders, orequivalently, if there is a partial order with a domain of size the number of variables inthe formula.)On
e the embedding problem is settled, the next level of algebrai
 questions about thestru
tures 
on
ern extension of embeddings. The �rst example here is density (or, fromthe other side minimal 
overs). A long development of 
onstru
tion te
hniques buildingon Spe
tor's original 
onstru
tion [1956℄ of a minimal degree essentially by for
ing withre
ursive trees lead to La
hlan's [1968℄ result that every 
ountable distributive latti
e isisomorphi
 to an initial segment of D. This 
oding of distributive latti
es is suÆ
ientto get the unde
idability of the theory as La
hlan [1968℄ notes. Combining these initialsegment te
hniques with the �nite extension method, Simpson [1977℄ showed that thetheory of D is re
ursively isomorphi
 to Th2(N), true se
ond order arithmeti
.Finding the dividing line between de
idability and unde
idability required Lerman's[1971℄ result that every �nite latti
e (not just the distributive ones) is isomorphi
 to aninitial segment of D. On one hand, 
ombining this with the �nite extension methodsolved the extension of embedding problem in su
h a way that it gave the de
idability ofthe two quanti�er (89) theory of D (Shore [1978℄ and Lerman [see 1983, Appendix A℄).(By the extension of embedding problem we mean determining for whi
h partial orders2



X � Y does every embedding of X into D have an extension to one of Y.) The abilityto 
ode all �nite latti
es also suÆ
ed for S
hmerl (see Lerman [1983, Appendix A℄) toprove that the three quanti�er (898) theory of D is unde
idable.A similar analysis of D(� 00) was then 
arried out �rst by a signi�
ant elaborationof the 
onstru
tion te
hniques to get enough initial segments results below 00 to giveunde
idability (Epstein [1979℄ and Lerman). Lerman then proved the full analog thatevery �nite (even re
ursive) latti
e is isomorphi
 to an initial segment of D(� 00) (Lerman[1983, 
h. XII℄). This immediately gives the unde
idability of the three quanti�er theory.Then these results were extended and 
ombined with extension of embedding resultsbelow an arbitrary r.e. degree (Lerman and Shore [1988℄) to get the de
idability of thetwo quanti�er theory. They were also used to show (Shore [1981℄) that the theory ofD(� 00) is re
ursively isomorphi
 to true �rst order arithmeti
.The road has been mu
h longer for the analysis of the r.e. degrees, R. It began withthe �nite injury (or 00) priority method of Friedberg [1957℄ and Mu
hnik [1956℄ that pro-du
ed in
omparable r.e. degrees and so an embedding of the simplest nontrivial Booleanalgebra. The method suÆ
ed to embed all �nite (even 
ountable) partial orderings (Sa
ks[1963℄) and so de
ide the one quanti�er theory of R in the same way that Kleene andPost's work de
ided that of D and D(� 00). As the r.e. degrees are dense (by the in�niteinjury (or 000) methods of Sa
ks [1964℄), the next steps in the analysis 
ould not follow thepath laid out for D. Many years of development of 
onstru
tion te
hniques and algebrai
information ensued. La
hlan's monster (or 0000 injury) methods were eventually used byHarrington and Shelah [1982℄ to prove that R is unde
idable. The degree of its theory,as by now one should expe
t, is also that of true �rst order arithmeti
 (Harrington andSlaman; Slaman and Woodin; Nies, Shore and Slaman [1998℄).The situation for these three degree stru
tures is summarized in the following table:R D D(� 00)9 De
 De
 De
89 ? De
 De
898 Unde
 Unde
 Unde
Th Th(N) Th2(N) Th(N)This leaves us with determining the boundary line between de
idability and unde
id-ability for R. On
e again, a long hiatus and mu
h work on other developments led tothe unde
idability of the three quanti�er theory by Lempp, Nies and Slaman [1998℄. Theextension of embedding problem was solved by Slaman and Soare [2001℄ but the questionof the de
idability of the two quanti�er theory of R remains open. A major obsta
leis the latti
e embedding problem of determining whi
h �nite latti
es 
an be embeddedin R. Despite some forty years of e�ort by many resear
hers on both embedding andnonembedding results, this question is still unsolved. The best result to date is Lerman[2000℄ whi
h shows that the question for an important 
lass of latti
es is of degree at most3



000. Even if the latti
e embedding problem is shown to be de
idable, there are furtherdiÆ
ulties related to La
hlan's [1966℄ nondiamond result that there is no embedding ofthe four element Boolean algebra into R that preserves both 0 and 1.Thus we remain a long way from the de
idability of the two quanti�er theory of R.On the other hand, the methods used to prove unde
idability of other degree stru
tures,interpretation of theories with simple fragments known to be unde
idable, 
annot workfor the two quanti�er theory ofR with just�T , or even any extension by relation symbols,sin
e the most we 
an 
ode into this fragment is the validity (perhaps in all �nite models)of an 89 senten
e in a �nite relational language but this problem is always de
idable.(The point here is that, sin
e the language is relational, any su
h senten
e with n variablesis satis�able if and only if it is satis�able in some stru
ture of size at most n. As there areonly �nitely many su
h stru
tures, this question is de
idable. The basi
 result is 
lassi
al(Bernays and S
h�on�kel [1928℄ and Ramsey [1930℄). Its appli
ation to interpretations instru
tures su
h as R is pointed out in Shore [1999, p. 179℄.)The only hope for an unde
idability result at the two quanti�er level then is to addfun
tion symbols. One would then try to interpret some theory with fun
tion symbols or,more dire
tly, to 
ode register ma
hines. (The 
oding of register ma
hines is at the basisof mu
h of the work on unde
idability of various severely restri
ted quanti�
ation 
lassesof formulas as in B�orger, Gr�adel and Gurevi
h [1997℄.) The natural fun
tion on R is thejoin operator _. However, it is uniformly lo
ally �nite, i.e. the 
losure of any �nite setis �nite with size bounded by a �xed re
ursive fun
tion of the 
ardinality of the startingset and so 
annot, on its own, be used to generate the in�nite (or at least unbounded)stru
tures need for 
oding even register ma
hines. The next thing to try in terms ofthe known stru
tural work on R is the in�mum operator ^. This has the advantagethat �nitely generated substru
tures 
an be in�nite (Lerman, Shore and Soare [1984℄).The obvious problem with this approa
h is that not every pair of r.e. degrees has anin�mum and so ^ is not a total fun
tion on R as is required. We 
an, of 
ourse, 
onsidertotal extensions of the partial in�mum relation but would not want the unde
idabilityto be an artifa
t of our (perhaps perverse) 
hoi
e of extension. Our solution is to proveunde
idability in a suÆ
iently uniform way so that the proof is independent of the 
hoi
eof extension. This we do for our main result.Theorem 1.1 For any total extension ^ of the partial in�mum relation on R, the twoquanti�er (89) theory of R(�;_;^) is unde
idable.Now it is routine to eliminate _ by repla
ing it with its de�nition (as least upperbound) at the expense of adding one quanti�er. Thus, for example, 8x; y9z(x_ y � z) isequivalent to 8x; y9z8w(x; y � w! w � z). This translation shows that the 89-theory ofR(�;_) is redu
ible to the 898-theory ofR(�). The same would be true of ^ (as greatestlower bound) were it a total in�mum fun
tion, i.e. 8x; y9z(x^y � z) would be equivalentto 8x; y9z8w(x; y � w ! w � z). This needn't be true for arbitrary extensions of thepartial in�mum relation on R but the 
are that we take with our 
oding to guarantee4



that it works for all extensions allows us to argue that the 89 senten
es of R(�;_;^) thatwitness unde
idability 
an, in fa
t, be repla
ed uniformly by equivalent 898 senten
esof R(�) so that the previous best result on unde
idability is also a 
onsequen
e of ourproof.Corollary 3.1 (Lempp, Nies and Slaman [1998℄): The three quanti�er (898) theory ofR(�) is unde
idable.We will give the details of the proof in Se
tion 3, on
e we explain the spe
i�
 
odingof register ma
hines that we employ. As essentially similar 
odings of register ma
hines
an easily be 
arried out in latti
es, the usual interpretation of latti
es in D as initialsegments shows that our main result also holds for the degrees as a whole and thosebelow 00.Corollary 3.2 For any total extension ^ of the partial in�mum relation on D (D(� 00)),the two quanti�er (89) theory of D (D(� 00)) with �, _ and ^ is unde
idable.As for R, the arguments here also imply the previous result that the 898 theories ofthese stru
tures are unde
idable. At least in 
ase of D, the boundary here is very �ne asJo
kus
h and Slaman [1993℄ have proven that the 89 theory of D(�;_) is de
idable.A new 
orollary of our proof of unde
idability is one for the (latti
e) stru
ture I(R)of ideals of R with _ and ^. Here both operations are naturally total on the stru
ture.I _J is the ideal generated by I [J , i.e. the downward 
losure of fa_ b j a 2 I & b 2 Jg,and I ^ J is the ideal I \ J . This stru
ture is an interesting one that has been studied,for example, by Calhoun [1993℄, Lerman and Calhoun [2001℄ and Nies [2003℄. Also ofinterest are the stru
tures In(R) for n � 4 of the �0n ideals of R (those ideals I su
h thatfe j deg(We) 2 Ig is �0n) whi
h are ea
h latti
es with the same operations as I(R). (Notethat by standard index set results In(R) is trivial for n = 1; 2: If an ideal I of R does not
ontain 00 (but does 
ontain 0) then by Yates' representation theorem [1966℄ (see Soare[1987 XII, 1.3) applied to K, the 
omplete �04 set is of the form fk j 8e(W [e℄f(k) 2 I)g forsome re
ursive f and so I must be at least �03. On the other hand, the 
lass of �03 idealsis not 
losed under _, as 
an be seen by 
onsidering a high degree h and a splitting ofh into two low degrees a;b. The prin
ipal ideals generated by a and b are �03 but theirjoin is the one generated by h whi
h is �04 but not �03.) Ea
h of these latti
es (I(R) andIn(R) for n � 4) is a natural extension of R in the sense that the natural embeddingtaking a degree in R to the prin
ipal ideal it generates is an embedding that preservesorder and join as well as in�mum when it is de�ned.Corollary 3.3 The two quanti�er (89) theory of I(R) (In(R) for n � 4), the latti
e of(�n) ideals of R, with �, _ and ^ is unde
idable.5



On
e again, after we have the details of the 
oding in pla
e, an algebrai
 analysisshows that the prin
ipal ideals generated by the degrees doing the 
oding in R performthe same job in I(R). As both _ and ^ are total fun
tions on I(R), their routineelimination as des
ribed above gives the unde
idability of the three quanti�er theory.Corollary 3.4 The three quanti�er (898) theory of I(R) (In(R) for n � 4), the latti
eof (�n) ideals of R, with just � is unde
idable.We also remark that similar algebrai
 observations show that we 
an 
hara
terize thedegrees of the theories of these ideal stru
tures. Indeed the ideas of Nies, Shore andSlaman [1998℄ would have suÆ
ed as well.Corollary 3.5 The theory of I(R) is re
ursively isomorphi
 to that of true se
ond orderarithmeti
 and that of In(R) to that of true �rst order arithmeti
 for ea
h n � 4.2 Coding Register Ma
hinesIn this se
tion we will explain the algebrai
 aspe
ts of our 
odings and derive the maintheorem, assuming these 
odings 
an be interpreted in R. The next se
tion will providethe proofs of the 
orollaries about other degree stru
tures. The �nal se
tion will supplythe re
ursion theoreti
 arguments to show that the stru
tures des
ribed here 
an berealized in the r.e. degrees.We begin with a standard des
ription of the k-register ma
hines of Shepherdson andSturgis [1963℄ and Minsky [1961℄ and their representation in predi
ate logi
 as in Nerodeand Shore [1997, III.8℄ or B�orger, Gr�adel and Gurevi
h [1997, 2.1℄).A k-register ma
hine 
onsists of k many storage lo
ations 
alled registers. Ea
hregister 
ontains a natural number. There are only two types of operations that thesema
hines 
an perform in implementing a program. First, they 
an in
rease the 
ontentof any register by one and then pro
eed to the next instru
tion. Se
ond, they 
an
he
k if any given register 
ontains the number 0 or not. If so, they go on to the nextinstru
tion. If not, they de
rease the given register by one and 
an be told to pro
eed toany instru
tion in the program. Formally, we de�ne register ma
hine programs and theirexe
ution as follows:A k-register ma
hine program I is a �nite sequen
e I1; : : : ; It; It+1 of instru
tionsoperating on a sequen
e of numbers x1; : : : ; xk, where ea
h instru
tion Im, for m � t, isof one of the following two forms:(i) xi := xi + 1 (repla
e xi by xi + 1)(ii) If xi 6= 0, then xi := xi� 1 and go to j. (If xi 6= 0, repla
e it by xi� 1 and pro
eedto instru
tion Ij.) 6



It is assumed that after exe
uting some instru
tion Im, the exe
ution pro
eeds toIm+1, the next instru
tion on the list, unless Im dire
ts otherwise. The exe
ution of su
ha program pro
eeds in the obvious way on any input of values for x1; : : : ; xk (the initial
ontent of the registers) to 
hange the values of the xi and progress through the list ofinstru
tions. The �nal instru
tion, It+1, is always a halt instru
tion. Thus, if It+1 isever rea
hed, the exe
ution terminates with the 
urrent values of the xi. In general, wedenote the assertion that an exe
ution of the program I is at instru
tion Im with valuesn1; : : : ; nk of the variables by Im(n1; : : : ; nk).The standard translation of a register ma
hine M des
ribes the a
tion of M by asystem of universal axioms in the language of one unary fun
tion s thought of as thesu

essor fun
tion on N. For te
hni
al reasons pe
uliar to our later 
oding in R, we wantto use distin
t domains Di with least elements 0i and su

essor fun
tions si for ea
hregister. In our appli
ation, these sets and operations will be de�ned from parametersin R. For now, we des
ribe the axioms needed in predi
ate logi
 with additional k-aryrelations Pm 
orresponding to the instru
tions Im.For ea
h instru
tion Im, 1 � m � t, in
lude an axiom of the appropriate form:(i) Pm(x1; : : : ; xk)! Pm+1(x1; : : : ; xi�1; si(xi); xi+1; : : : ; xk):(ii) Pm(x1; : : : ; xi�1; 0; xi+1; : : : ; xk) ! Pm+1(x1; : : : ; xi�1; 0; xi+1; : : : ; xk)^ Pm(x1; : : : ; xi�1; si(y); xi+1; : : : xk) ! Pj(x1; : : : ; xi�1; y; xi+1; : : : ; xk):(Note that being a su

essor is equivalent to being nonzero.)Let P (I) be the �nite set of universal axioms 
orresponding in this translation to reg-ister program I. It is easy to prove that, program I halts on input (n1; : : : ; nk) if and onlyif the senten
e Fk(n1; : : : ; nk) � P1(sn1(0); : : : snk(0)) ! 9x1; : : : ;9xk[Pt+1(x1; : : : ; xk)℄ isa logi
al 
onsequen
e of P (I). More spe
i�
ally for our purposes, the ma
hine halts ifand only if Fk(n1; : : : ; nk) is true in every model of P (I) in any 
lass of stru
tures that
ontains ones isomorphi
 to the standard model (where ea
h si on Di is isomorphi
 tothe standard su

essor fun
tion s on N) with all possible re
ursively enumerable k-aryrelations Pm on D1 � � � � �Dk. (Validity implies truth in all the stru
tures in our 
lassand if I fails to halt, the standard interpretation of the predi
ates as the r.e. relationsIm(n1; : : : ; nk) gives a stru
ture of the required form in whi
h F (n1; : : : ; nk) is false.)As it is a 
lassi
al fa
t (Shepherdson and Sturgis [1963℄; Minsky [1961℄) that the halt-ing problem for 2-register ma
hine programs is r.e. 
omplete, it suÆ
es to 
ode all su
hstandard models with binary predi
ates to get unde
idability.As usual for interpretations, we now want to provide formulas �i(~q; x), �m(~q; x; y)and terms �i(~q; x) of R(�;_;^) de�ning, for ea
h 
hoi
e of parameters ~q, sets Di (i =1; 2), binary relations Pm on D1 � D2 (1 � m � t + 1) and unary fun
tions si on Di(i = 1; 2). We take q1 and q2 to be the interpretations of 0 in D1 and D2 respe
tively.We now interpret our formulas P (I) ! F (n1; : : : ; nk) in the usual way. We relativizethe quanti�ers to the appropriate domain, i.e. 9xi(: : : ) be
omes 9xi(�i(~q; x)^ : : : ) and7



8xi(: : : ) be
omes 8xi(�i(~q; x) ! : : : ). We then repla
e o

urren
es of si(xi) by �i(~q; xi)and ones of Pm(x1; x2) by �m(~q; x1; x2). We indi
ate this translation by �. We also needa 
orre
tness 
ondition � that says that qi 2 Di and the �i de�ne fun
tions on the Di:�1(~q; q1) ^ �2(~q; q2)^ 8x1(�1(~q; x1) ! �1(~q; �1(x1)) ^ 8x2(�2(~q; x2) ! �2(~q; �2(x2)).The 
lass of senten
es of R(�;_;^) that we want will then be those of the form 8~q[�!(P (I)� ! F �2 )℄ where I ranges over programs for 2-register ma
hines.As long as the 
lass of stru
tures given by all 
hoi
es of parameters ~q in
ludes onesisomorphi
 to the standard model with all possible r.e. relations as the Pm, truth in Rfor this 
lass of senten
es will be unde
idable. It is 
lear that to get these senten
es to be89 ones it is suÆ
ient to get quanti�er free de�nitions (�i and �m) of the domains andrelations (and the worst that would work would be equivalent �1 and �1 de�nitions).As long as there are realizations of the Di as a uniformly low independent set of degreesin R, we 
an de�ne arbitrary r.e. relations on them from parameters in a quanti�er freeform by using the following spe
ial 
ase of Lemma 7.1 of Nies, Shore and Slaman [1998℄:Lemma 2.1 (Nies, Shore and Slaman [1998℄) If haji is a uniformly r.e. independent setwith �ai low and S is any r.e. set then there are u;v su
h that S = fi : u � ai _ vg.If we assume, for example, that Di = fg2j+i : j 2 !g (identi�ed with N in the obviousway) for some independent set of degrees gl with �gl low, then we 
an apply the lemmato the set of degrees fg2j _ g2k+1 : j; k 2 !g with Sm = fhj; ki : Pm(j; k)g for any r.e.relation Pm to provide parameters um;vm su
h that the formula um � x1 _ x2 _ vmde�nes the isomorphi
 
opy of Pm on D1�D2 and 
an be taken as the desired quanti�erfree �m. Thus the sour
e of all our 
on
erns is providing a quanti�er free de�nitionfrom parameters of a uniformly r.e. independent set hgli with a term of R that gives thesu

essor relation on them. (On
e we have su
h a set we 
an pi
k out the even and oddparts using the same lemma (or exa
t pairs) and then take the su

essor fun
tions onea
h of these two disjoint sets to be simply the two-fold iteration of the original su

essorfun
tion.)The two known methods for 
onstru
ting independent sets de�nable from parametersare essentially those of Harrington and Shelah [1982℄ and Slaman and Woodin (see Nies,Shore and Slaman [1998℄). The sets they de�ned from parameters are as follows:� HS(r;b; 
) = fg � r : g is maximal s.t. g _ b 6� 
g� SW(r;p;q) = fg � r : g is minimal s.t. g _ p � qg.Here the elements gi of the sets typi
ally 
onstru
ted are uniformly r.e. and inde-pendent while r is taken to be their e�e
tive sum and 
an be made low. Thus the onlyproblem is that the de�nitions of these sets requires a universal quanti�er. We 
ouldredu
e this to a quanti�er free de�nition by requiring that they de�ne the same set G,for then 8



� G(r;b; 
;p;q) = fg � r : g _ p � q&g _ b 6� 
g.As a te
hni
al 
onvenien
e that simpli�es the 
onstru
tion we note that if we have anHS set hgii de�ned from parameters r;b and 
 then we 
an weaken the 
onditions 
orre-sponding to the de�nition of the SW set to require only that, for ea
h i, gi _ p � qand, for any w � gi, if w _ p � q then w = gi. This 
learly suÆ
es to show thatG(r;b; 
;p;q) = HS(r;b; 
). (That HS(r;b; 
) � G(r;b; 
;p;q) follows from the 
on-dition that gi_p � q for ea
h gi 2 HS(r;b; 
). To see thatG(r;b; 
;p;q) � HS(r;b; 
),
onsider any w 2 G(r;b; 
;p;q). By the maximality 
ondition on HS(r;b; 
) there isa gi2 HS(r;b; 
) su
h that w � gi. Now our weakened requirements guarantee thatw = gi as required.) Thus we wish to show that there are parameters r;b; 
;p;q su
hthat the set G =hgi : i 2 !i they de�ne is uniformly r.e. and independent with a lowsum.In addition, we want to de�ne a su

essor fun
tion on these degrees. A
tually, wede�ne one on the g2j taking g2j to g2j+2 and so our required domain will be thesedegrees. (Again they 
an be de�ned from parameters using the lemma as des
ribedabove but in fa
t our 
onstru
tion will also build a degree f1 su
h that D = fg2igi2! =fx : x 2 G&x � f1 _ x = g0g.) We use the e�e
tive su

essor stru
ture from Shore[1981℄ employed in Nies, Shore and Slaman [1998℄. This 
alls for the 
onstru
tion ofadditional parameters e0; e1; f0; f1 su
h that, for i 2 !, (g2i_e0)^ f0 = g2i+1 and (g2i+1_e1) ^ f1 = g2i+2. We 
an then de�ne the desired su

essor fun
tion on D by s(g2i) =(((g2i _ e0) ^ f0) _ e1) ^ f1 =g2i+2. The required result is then the following:Theorem 2.2 There are r.e. sets R;B;C; P;Q;E0; E1; F0; F1; hHi : i 2 !i and hGi : i 2!i with R = �Gi; Hi = �k 6=iGk; F0 = �G2k+1 and F1 = �G2k+2 su
h that (for all i andW )1. Gi �T Hi.2. R is low.3. If W �T Gi and Q �T W � P then Gi �T W .4. If W �T R and C �T W _ B then (9k)W �T Gk.5. C �T Gi _B.6. Q �T Gi _ P .7. deg(G2i+1) = deg(G2i � E0) ^ deg(F0).8. deg(G2i+2) = deg(G2i+1 � E1) ^ deg(F1).9



The proof of this theorem is given in the �nal se
tion.Note that as the stru
tures required for the unde
idability are 
oded by parameterssu
h that all the in�ma needed to de�ne �i exist in R, the stru
tures 
oded in R(�;_;^)in
lude all the ones needed for the unde
idability for any (total) extension ^ of the partialin�mum relation on R. Thus the 
onstru
tion of r.e. degrees r;b; 
;p;q; e0; e1; f0; f1 asdes
ribed above suÆ
es to prove our main result (Theorem 1.1) that the two quanti�ertheory of R(�;_;^) is unde
idable for any total extension ^ of the in�mum relation.We now turn to establishing the 
orollaries mentioned in the Introdu
tion.3 Appli
ations to Other Stru
turesWe �rst show that our 
odings provide a new proof of Lempp, Nies and Slaman's resultthat the 898 theory ofR(�) is unde
idable. We need to �nd a translation of the senten
es8~q[� ! (P (I)� ! F �2 )℄ of R(�;_;^) into 898 ones of R(�) whi
h preserve truth inR. Note �rst that the de�nitions �i and �m of the domains Di and predi
ates Pmuse � and _ but not ^. Our only use of the in�mum operation is in the de�nitions�i of the terms representing the su

essor operations on the Di. In our translationthese terms are de�ned by 
omposition from the su

essor fun
tion s on D =fg2ig =fx : x 2 G&x � f1 _ x = g0g given by s(g2i) = (((g2i _ e0) ^ f0) _ e1)^ f1 =g2i+2. Ourprimary task then is to eliminate the uses of s in our formulas.We begin with the 
orre
tness 
ondition � whi
h for s says that 8x 2 D(s(x) 2 D),i.e. (((g2i_e0)^ f0)_e1)^ f1 2 D. We use the set �D =fg2i+1g = fx : x 2 G&x � f0g aswell and break up the 
ondition into the 
onjun
tion of two similar assertions: 8x 2D((x _ e0) ^ f0 2 �D) and 8x 2 �D((x _ e1) ^ f1 2 D). The �rst is repla
ed by(8x 2 D)(9y 2 �D)(y � x _ e0; f)0&(8x 2 D)(8y; z 2 �D)(y; z � x _ e0; f0 ! y = z) andthe se
ond by the analogous statement swit
hing D with �D and e0; f0 with e1; f1. We
an now eliminate _ from this senten
e at the expense of one additional quanti�er inthe usual way to get our �2 
orre
tness 
ondition �̂ in the language of R(�): The�rst one be
omes (8x 2 D)(8u)(9y 2 �D)[8v(v� x; e0 ! v � u)! y � u; f ℄&(8x 2D)(8y; z 2 �D)(8u)[8v(v� x; e0 ! v � u)! ((y; z � u; f 0) ! y = z))℄ and the se
ondis analogous.Our typi
al senten
e on the list of ones showing unde
idability now looks like 8~q[�̂!(P (I)� ! F �2 )℄. Our next task is to eliminate the uses of s (and so ^) in these for-mulas. We might as well view P (I)� ! F �2 as a single �1 senten
e in �;_; s. Our
orre
tness 
ondition �̂ says that for ea
h r 2 D there is a unique v 2 �D and w 2 Dsu
h that (v � r _ e0; f0)& (w � v _ e1; f1). We 
an use this property to repla
e ea
hinstan
e of an appli
ation of s. We pro
eed by an indu
tion on the 
omplexity ofterms. Suppose our formula is of the form 9~r'(~r; s(r0)). (Note that ' ne
essarilyin
ludes a 
lause r0 2 D.) We repla
e this with the senten
e 9~r(9v0 2 �D)(9w0 2D)[(v0� r _ e0; f0)& (w0� v0_e1; f1)&'(~r;w0=s(r0))℄. (We use the notation w0=s(r0)10



to indi
ate that we have substituted w0 for the term s(r0) in the ambient formula.) As-suming the 
orre
tness 
ondition �̂, this is 
learly equivalent to the original 9~r'(~r; s(r0)).We 
an now pro
eed indu
tively to eliminate all o

urren
es of s and produ
e a �1 for-mula in �;_ equivalent under the assumption �̂ to our original 9~r'(~r; s(r0)). We 
annow apply the dual pro
edure to the one used to eliminate _ from �1 formulas in �;_to get a �2 formula 	(I) in just � equivalent to (P (I)� ! F �2 ). We then have our newfamily of formulas 8~q[�̂! 	(I)℄ whi
h are 898 and whose validity in R is unde
idableas required to prove Corollary 3.1.Corollary 3.1 (Lempp, Nies and Slaman [1998℄): The three quanti�er (898) theory ofR(�) is unde
idable.Next, we 
onsider D and D(� 00). First note that it is straightforward to 
onstru
t �02latti
es with top r, individual elements b; 
; p; q; e0; e1; f0; f1 and a family of independent(even minimal) elements gi satisfying all the algebrai
 fa
ts required in Theorem 2.2 andadditional elements u and v de�ning any �xed r.e. subset of the gi as in Lemma 2.1.We 
an now use the standard embedding theorems from Lerman [1983℄ to realize theselatti
es as initial segments of D or D(� 00). Our arguments for unde
idability now workjust as well in these stru
tures and so we have the analogous results.Corollary 3.2 For any total extension ^ of the partial in�mum relation on D (D(� 00)),the two quanti�er (89) theory of D (D(� 00)) with �, _ and ^ is unde
idable.Finally, we turn our attention to the latti
es I(R) (In(R), n � 4) of (�n) ideals ofR with _ and ^. Re
all that the operations _ and ^ are de�ned in the usual way forstru
tures of ideals (I_ J is the ideal generated by I[ J and I ^ J is the ideal I\ J) andare both total operators on I(R) and In(R) for n � 4.Corollary 3.3 The two quanti�er (89) theory of I(R) (In(R), n � 4), the latti
e of(�n) ideals of R, with _ and ^ is unde
idable.Proof. We 
laim that the prin
ipal ideals generated by the degrees 
onstru
ted to satisfyTheorem 2.2 and Lemma 2.1 have all the required properties in I(R) that the degreesthemselves had in R. The 
ru
ial fa
t is the quanti�er free de�nability of the set fgigas G(r;b; 
;p;q). We denote the prin
ipal ideal generated by a degree x by (x) andwant to establish the 
orresponding fa
ts in I(R). Consider any ideal I � (r) su
hthat (q) � I _ (p) and (
) * I _ (b). The �rst assumption tells us that there is an e 2 Isu
h that q � e _ p while the se
ond guarantees that 
 � e _ b. Thus e is one of the giand so (gi) � I. On the other hand, if h 2 I then (by our se
ond assumption again) 
� h _ gi_b. The HS maximality property of gi then guarantees that h _ gi � gi and soI � (gi) as required. 11



The other fa
ts needed from Theorem 2.2 are that (g2i+1) = [(g2i) _ (e0)℄ ^ (f0) andthe analogous one for (g2i+2). These follow immediately from the trivial general fa
tsabout I(R) (In(R), n � 4) that, for all degrees x;y, (x _ y) = (x) _ (y) and, if x ^ yexists, (x ^ y) = (x) ^ (y). The only other algebrai
 fa
t needed is that the prin
ipalideals given by the degrees 
onstru
ted for Lemma 2.1 have the analogous property inI(R). This too follows immediately from the �rst trivial fa
t.The same arguments work for In(R) for n � 4. 2As remarked above, when _ and ^ are total fun
tions the two quanti�er theory with�, _ and ^ is redu
ible to the three quanti�er theory with just � and so we also haveproven Corollary 3.4.Corollary 3.4 The three quanti�er (898) theory of I(R) (In(R), n � 4), the latti
e of(�n) ideals of R, with just � is unde
idable.We now explain how similar 
onsiderations 
hara
terize the theories of these stru
-tures of ideals.Corollary 3.5 The theory of I(R) is re
ursively isomorphi
 to that of true se
ond orderarithmeti
 and that of In(R) to that of true �rst order arithmeti
 for ea
h n � 4.Proof. Consider the e�e
tive su

essor models fg2i : i 2 !g in R with the relevantparameters as 
onstru
ted here. As remarked above the e�e
tive su

essor models de�nedby the ideals (g2i) = fa �T g2ig generated by the relevant degrees are de�nable in thesame way in I(R) (In(R), n � 4), using the analogous su

essor fun
tion. We begin bynoting that we 
ould add parameters to de�ne additional relations of the form suppliedby Lemma 2.1. We want to 
hoose ones that de�ne a stru
ture for arithmeti
 on onesubset of the set D = f(g2i)g of ideals. We let Dk = f(g8i+2k) : i 2 !g for k � 3 andde�ne the required relations for order, addition and multipli
ation on D0. We begin withparameters that pi
k out the relations Sk = ff(g8i); (g8i+2k)g : i 2 !g for 1 � k � 3 thatidentify the 
orresponding elements of D0 and Dk. We 
an then de�ne, for example,the natural ordering on D0 by parameters that pi
k out ff(g2i+1); (g2j+2)g : i � jgand similarly plus and times by pi
king out ff(g2i+1); (g2j+2); (g2k+3)g : i+ j = kg andff(g2i+1); (g2j+2); (g2k+3)g : i � j = kg. One 
an then say that the stru
ture so de�ned isa model of arithmeti
 in the usual way.The problem now is to �nd a nonempty de�nable 
lass C of stru
tures in I(R) (In(R)),
ontaining the stru
ture de�ned above, su
h that every stru
ture in C is isomorphi
 to thestandard model of arithmeti
. C will be de�ned by saying that there exist parametersIei and Ifi (i = 0; 1), Ib, I
, et
. (
orresponding to the parameters ei, fi, b, 
; : : : inour 
onstru
tion on degrees), and an ideal J0 serving as 0 in the model of arithmeti
,satisfying a 
onjun
tion of 
orre
tness 
onditions. (Noti
e that here we 
annot assumeor require that these parameters be prin
ipal ideals.)12



We use the e�e
tiveness of the su

essor fun
tion. As is argued in Shore [1981℄ orNies, Shore and Slaman [1998℄, we 
an generate all representatives of degrees in ea
helement Ji = si(J0) of the stru
ture, uniformly in i, in a way that is e�e
tive in � and_ on degrees, beginning with representatives of the degrees in the ideals J0, Iei, and Ifi(i = 0; 1).deg(Wk) 2 s(J0) () deg(Wk) 2 (((J0 _ Ie0) ^ If0) _ Ie1) ^ If1() (9b; 
; d)[deg(Wb) 2 J0 & deg(W
) 2 Ie0 & deg(Wd) 2 Ie1 &deg(Wb �W
) 2 If0 & Wk �T Wb �W
 �Wd & deg(Wk) 2 If1 ℄:Now all statements here are �n (in
luding the Turing equivalen
e, sin
e n � 4), be
auseall these ideals are in In(R). By iterating, we derive a �n formulation of \deg(We) 2si(J0)" uniformly in i.The independen
e of the de�ned set G(Ir; Ib; I
; Ip; Iq) 
an also be guaranteed by a
orre
tness 
ondition saying that for ea
h element of the de�ned set there is somethingabove all the others but not above it. Thus the ideal generated by all the Ji will not
ontain any elements of G(Ir; Ib; I
; Ip; Iq) other than the Ji. So as usual, if we require ofour model that every proper initial segment have a maximal element (all in the orderingde�ned on the stru
ture) then we have pi
ked out pre
isely the standard models. On
ewe have de�ned this 
lass of standard models of arithmeti
, we have guaranteed thatea
h theory is at least as 
ompli
ated as true �rst order arithmeti
. As ea
h In(R) isarithmeti
al, this 
ompletely 
hara
terizes the 
omplexity of their theories. For I(R)we simply note that the independen
e of the Ji guarantees that every subset is uniquelydetermined by the ideal it generates and so quanti�
ation over I(R) 
odes full se
ondorder quanti�
ation over ea
h standard model of arithmeti
 pi
ked out by our de�nition.As I(R) is itself de�ned in se
ond order arithmeti
, its theory is equivalent to that oftrue se
ond order arithmeti
 as required. 2Corollary 3.6 For m > n � 4, the ideal latti
es Im(R) and In(R) are not elementarilyequivalent, nor is any of them elementarily equivalent to I(R).Proof. Let S � ! be a �n+1-
omplete set. The senten
e  whi
h we build to distinguishthe latti
e Im(R) from In(R) will say that there exists a standard model of arithmeti
en
oded in the latti
e by parameters Ie0, If0 , et
., su
h that some element of the latti
e
an use this model to 
ompute S. The existen
e of a standard model requires only theexisten
e of a set of parameters satisfying the 
onditions given in the pre
eding proof.In the rest of the senten
e, we say that there exists an element I in the latti
e su
h thatfor every i, i 2 S () Ji � I;where Ji = si(J0) is the ideal 
orresponding to i in the spe
i�ed standard model. (ThusI 
odes the set S in this model.) To say \i 2 S" in the language of latti
es, we use thestandard model given by the parameters and the �n+1 de�nition of S.13



In Im(R), by the pre
eding results, we have a standard model of arithmeti
 on 
ertainideals fJi : i 2 !g. Let JS be the ideal 
onsisting of �nite joins d1 _ � � � _ dp with ea
hdj 2 Jij for some ij 2 S. We 
laim that JS lies in Im(R):fe : (9p)(9i0; : : : ip 2 S)[deg(We) 2 _pj=0 Jij ℄g =fe : (9p; i0; : : : ip; k0; : : : kp)(8l � p)[il 2 S & deg(Wkl) 2 sil(J0) & We �T Lpj=0 Wkj ℄g:As noted above, sil(J0) is a �m-ideal uniformly in i. Thus JS is indeed a �m-ideal, andIm(R) (and I(R)) satisfy  .Now suppose that we have parameters in In(R) de�ning a standard model of arith-meti
 on ideals fJi : i 2 !g, and that I 2 In(R) is a (not ne
essarily prin
ipal) idealwith fi : Ji � Ig = S. Then there would be a �n formula � de�ning fe : deg(We) 2 Ig,so we would havei 2 S () Ji � I () (8a 2 Ji)[a 2 I℄ () (8e)[deg(We) 2 si(J0) =) �(e)℄:This is impossible for the �n+1-
omplete set S, sin
e the rightmost formula is �n+1.Therefore the senten
e  fails in In(R), whereas it holds in Im(R) and in I(R).4 Constru
tionTo prove our required te
hni
al result on degrees, Theorem 2.2, it suÆ
es to 
onstru
tr.e. sets satisfying the requirements of the following Theorem:Theorem 4.1 There exist sets Gi (i 2 !), P , Q, B, C, E0, E1, and R = �Gi satisfyingthe following requirements for all e, i, j, k, and x in ! and all 
omputable fun
tionals
, �, �, �, and 	:
14



Requirements:Di;
 : Gi 6= 
Hi; where Hi = �k 6=i GkL�;x : [(91s) �R(x)[s℄#℄ =) �R(x)#Mi;j;�;� : Wj = �Gi =) [�Wj�P = Q =) (9�) Gi = �Wj ℄Ne;� : We = �R =) [(9�) C = �We�B or (9k)(9�) We = �Gk ℄Pi;	 : C 6= 	Gi�BRk : (9�)Q = �Gk�P :Latti
e requirements: (Here F0 = �k G2k+1 and F1 = �k G2k+2.)T2i : G2i+1 �T G2i � E0T2i+1 : G2i+2 �T G2i+1 � E1Ue;2i : �G2i�E0e = �F0e total =) �F0e �T G2i+1Ue;2i+1 : �G2i+1�E1e = �F1e total =) �F1e �T G2i+2:(Here and afterwards, the notation \[s℄" at the end of a term or equation indi
atesthat we refer to the approximation at stage s of ea
h set, ora
le and fun
tion used there.Thus, for example, the hypothesis of the requirement L�;x is that there are in�nitelymany stages s at whi
h �Rss (x) 
onverges.)As in Nies, Shore and Slaman [1998℄, we begin by 
hoosing an e�e
tive ordering of allthe D-, M-, N-, P-, R-, and U-requirements, in order type !, su
h that for all i and j:� Ri pre
edes every Di;
 and every Ue;i in the ordering (i.e. Ri has higher prioritythan Di;
 and Ue;i); and� both Ri and Rj pre
ede everyMi;j;�;�.(The requirements Ti are global requirements and will not be given a priority rankor pla
ed on the tree. The requirements L�;x will play a role in priority arguments, asdes
ribed below, but they also are not pla
ed on the tree.)This ordering yields a spe
i�
 priority order on the N-requirements, whi
h we writeas N0;N1; : : :, de�ning ei and �i so that Ni denotes Nei;�i . Next we 
onstru
t a tree15



T . Ea
h node on the tree will have a spe
i�
 requirement assigned to it, will play aparti
ular strategy to attempt to satisfy that requirement, and will have one immediatesu

essor for ea
h possible out
ome of the requirement. For brevity, if the requirementDi;
 is assigned to a node �, we will 
all � a Di;
-node, and also a D-node; similarlywith all other requirements. Below, we name the out
omes for ea
h type of node andexplain how the 
onstru
tion works to sele
t one of the out
omes and satisfy the node'srequirement.We view the tree T as growing upwards from a root node. The relation � willrepresent higher priority: � � � if � is to the left of � on T or � ( �, i.e. exa
tly when� has higher priority than �. To de�ne T and determine whi
h requirement is assignedto ea
h node � 2 T , we need the following de�nition.De�nition 4.2 Let � 2 T . Ea
h requirement is either a
tive along � (via a single node� �), or satis�ed along � (again via a single node � �), or neither, a

ording to thefollowing indu
tive de�nition. (Noti
e that a requirement 
annot be both a
tive andsatis�ed along the same node.)If � is the empty string, then no requirement is a
tive or satis�ed along �. Otherwise,let � = ��, the immediate prede
essor of �.If a D-,M-, N-, R-, or U-requirement is assigned to �, then every requirement a
tiveor satis�ed along � via some � is also a
tive or satis�ed (respe
tively) along � via �.Also, the requirement assigned to � is a
tive along � via � (if it is an N-requirement and� = � ĥ1i) or satis�ed along � via � (otherwise).If � is a Pi;	-node, then we must 
onsider the su

essors of � separately.� If � = � ĥfi or � = � ĥwi, then every requirement a
tive or satis�ed along � viasome � is also a
tive or satis�ed (respe
tively) along � via �, and Pi;	 itself issatis�ed along � via �.� Otherwise, a

ording to our de�nition below of the su

essors of �, � = � ĥali forsome l 2 ! su
h that Nl is a
tive along � via some �. We then de�ne this Nl tobe satis�ed along � via �, and every N-requirement a
tive or satis�ed along � viasome � � � to be a
tive or satis�ed (respe
tively) along � via the same �. Allother N-requirements are neither a
tive nor satis�ed along �. (In parti
ular, N-requirements whi
h were a
tive or satis�ed along � but not along � will be injuredby the a
tion we take at node � and hen
e are neither a
tive nor satis�ed along �.)Requirements of types other than N whi
h were a
tive or satis�ed along � via any� remain a
tive or satis�ed (respe
tively) along � via �, and Pi;	 itself is satis�edalong � via �.With this de�nition, we assign to � the requirement of highest priority that is neithera
tive nor satis�ed along �. The immediate su

essors of � depend on the type of require-ment assigned. For ea
h possible out
ome y of � as de�ned below, we add an immediatesu

essor �̂ hyi of � to T . 16



The possible out
omes of ea
h node, and their meanings, are as follows:� If � is a Di;
-node, then the two possible out
omes for �, in order, are f < w. Thenode � �nds a witness element wi�, as in a Friedberg-Mu
hnik 
onstru
tion, waitsfor the witness to be realized, and then attempts to put it into Gi. The out
omew holds while we wait for the witness element to be realized. If it is never realized,then it never entersGi, so the requirement is satis�ed. If it is realized at some stage,then we preserve the 
onvergen
e of the 
omputation 
Hi(wi�)#= 0 by initializingall nodes � �, and attempt to enumerate the witness element into Gi, by allowingit to enter the pinball ma
hine asso
iated with the satisfa
tion of the U- and T-requirements, starting at node �. Ea
h U- and P-node below � periodi
ally allowselements (\balls") to pass its gate, thereby giving those elements its permission toenter their target sets. Other elements may be assigned to the witness as tra
es andtargeted for sets E0, E1, or Gi�1; Gi�2; : : : to satisfy the T-requirements. Assumingthat � is on the true path, wi� will eventually pass every gate below � and enter Gi,at whi
h point we swit
h to the out
ome f . This represents a \�nite win" for therequirement Di;
, sin
e we have now satis�ed Gi(wi�) 6= 
Hi(wi�).D-nodes (andM-nodes, des
ribed below) do injure the negative requirements L�;xby enumerating elements into R. At 
ertain stages a requirementL�;x may initialize
o�nitely many nodes on T in order to preserve the 
omputation �R(x). Also, ea
htime the node � is initialized by another node (as opposed to being initializedby an L-requirement), it loses some priority vis-a-vis the L-requirements. Thisguarantees that even if � is to the right of the true path and enumerates in�nitelymany elements into R, it will only injure ea
h L-requirement �nitely often.� If � is a Ue;i-node, then the possible out
omes of � are:p0 < p1 < p2 < � � � ;ordered as given. The out
ome pr represents a restraint of length r pla
ed onGi�E0and F0 (or on Gi �E1 and F1, depending on the parity of i) as in the pinball-style
onstru
tions for latti
e embeddings in Lerman [1973℄ and related works. A \balltargeted for Gi" is a number whi
h some D- or M-node � would like to put intoGi, and will be named wi�. The node � a
ts as a gate in the pinball ma
hine. Forevery � � �, every ball wi� must wait at gate � until the ball 
an enter Gi withoutinjuring the requirement Ue;i. O

asionally su
h an � may also want to put a ballej� into the set Ej (for j = 0 or 1), and again the gate � will make that ball waituntil the enumeration will not injure Ue;i. If the hypothesis of Ue;i is satis�ed, thenthe restraints will drop to 0 in�nitely often; if not, then they will 
onverge to a�nite limit, and every node above that out
ome will have the 
orre
t guess aboutthe limit, hen
e will only use witnesses large enough not to injure that restraint.� If � is an Rk-node, then the only possible out
ome is 1. At ea
h �-stage, weextend the fun
tional �Gk�P being built by Rk. The only possible injury to this17




onstru
tion o

urs when someMk;j;�;�-node wishes to enumerate an element intoQ, for reasons des
ribed below. Ea
h M-node enumerates at most one element xafter its last initialization, and any M-node � � will enumerate its x into Q onlyafter ensuring that some 
hange in Gk � P will allow � to rede�ne �Gk�P� (x) = 1.� If � is an Mi;j;�;�-node, then the possible out
omes aref <1 < w:We have some 
ontrol over the enumeration of Wj using the hypothesis Wj = �Gi,and this in turn a�e
ts the hypothesis �Wj�P = Q. The out
ome w denotes a non-expansionary stage for the latter hypothesis, meaning that the length of agreementbetween Wj and �Gi is not suÆ
ient for us to guarantee any in
rease in the lengthof agreement between �Wj�P and Q. If there are 
o�nitely many nonexpansionarystages, then Mi;j;�;� will be satis�ed.On the other hand, if the length of agreement between Wj[s℄ and �Gi[s℄ has in-
reased suÆ
iently to enable a longer length of agreement l between �Wj�P [s℄ andQ[s℄ to be 
omputed, we 
all s + 1 a �-expansionary stage, and we attempt toextend our fun
tional �� to 
ompute Gi from Wj on the domain l, setting the use�Wj� (y)[s+ 1℄ = �Wj�P (y)[s℄ and preserving the equality of these uses, as des
ribedbelow. If we su

eed, the out
ome is1. If there are in�nitely many �-expansionarystages and we su

eed in extending �� at every one, then the true path will 
ontain�̂ h1i.If, at some �-expansionary stage s+1, we 
annot extend �� as above, then we willbe able to a
hieve a �nite win, denoted by the out
ome f . Some number, whi
h wedesignate as x�, must have enteredGi sin
e the last �-expansionary stage r+1, withno 
hange to Wj��Wj�P (x�)[r℄ up until stage s (sin
e su
h a 
hange would allow usto rede�ne �Wj� (x�)[s+1℄). We attempt to enumerate x� intoQ to make �Wj�P 6= Q,sin
e the absen
e of any Wj -
hange ensures that �Wj�P (x�)[s℄ #= 0. (Re
all thatthe use �� mat
hes the use �.) We will preserve this �nite win by initialization,imposing suÆ
ient restraints on P and Gi to prevent Wj from 
hanging, sin
eWj = �Gi .Before enumerating x� into Q, however, we must ensure that this enumeration willnot injure any higher-priorityRk-node �, sin
e su
h a � builds a fun
tional �� withthe intention that �Gk�P�k = Q. When we enumerate x� into Q at a later stage t+1,therefore, we will want to enumerate �Gk�P�k (x�)[t℄ into P , allowing �k to rede�ne itsfun
tional at the next �k-stage. On the other hand, if �Gk�P�k (x�) < �Wj�P (x�)[t℄,then this enumeration would allow �Wj(x�)[t + 1℄ to 
hange as well, whi
h woulddestroy our diagonalization. For k 6= i, we avoid this problem by �rst enumeratingan element wk� = �Gk�P�k (x�)[s℄ into the set Gk, whi
h allows �k to in
rease the ��k -use without permitting any 
hange in ��. (Of 
ourse, this takes time, sin
e wk� must18



pro
eed through the pinball ma
hine, starting at �, before entering Gk.) When we�nally enumerate x� into Q at a stage t+1, our P -enumerations at that stage willallow for 
hanges in �Wj�k (x�)[t+ 1℄ while maintaining �Wj�P (x�)[t+ 1℄#= 0.The requirement Ri is also assigned to some �i � �, and the strategy above wouldnot work for it, sin
e any Gi-enumeration after stage s 
ould allow a 
hange inWj = �Gi [s℄, hen
e in �Wj�P (x�)[s℄, ruining our diagonalization. (P -enumerations,whi
h 
ould also ruin the diagonalization, are dis
ussed below.) Fortunately, we donot need any Gi-enumeration, be
ause the ball x� was 
hosen at a stage s+1 whenit had just entered Gi itself. �i will have in
reased the use �Gi�P�i (x�)[s℄ to be large,hen
e > �Wj�P (x�)[s℄. (Re
all that any 
hange in this �-use between stages r and swould have allowed us to extend the fun
tional �� so that �Wj� (x�) = Gi(x�)[s+1℄.)Therefore, we make no further Gi-enumerations, but simply enumerate �Gi�P�i (x�)[s℄into P at the stage t + 1 when x� enters Q. �i will then be able to rede�ne�Gi�P�i (x�) = 1 at the next �i-stage, as required.It is important in the pre
eding 
onstru
tion that we keep the use �Wj� (x) equal to�Wj�P (x) at ea
h stage. If the �-use be
ame larger, then a number > �Wj� (x�)[r℄whi
h entered Wj between stages r and s might leave �Wj�P (x�) > �Gi�P�i (x�)[s℄ sothat the P -enumerations would destroy our diagonalization against �Wj�P = Q,without letting us rede�ne �Wj� (x�)[s+1℄ = 1. So we must ensure that P��Wj�P (x)is preserved for every x whi
h might eventually play the role of x�, i.e. any ball wi
(with �̂ h1i � 
) targeted for Gi.To make this happen, we refuse to allow any ball wk� to enter the pinball ma-
hine (the preliminary step to entering Gi) if its entry into Gi 
ould 
reate a P -enumeration whi
h might upset the strategy for a higher-priority wi
. In parti
ular,if �̂ h1i � �, then � thinks that the expansionary out
ome of � holds, and so �refuses to release any ball wk� into the pinball ma
hine until wk� 2 dom(�Wj� ), thatis, until the �-use on all numbers � wk� has been 
hosen and guaranteed by agree-ment betweenWj and �Gi . (In parti
ular, the �-use of all balls from higher-prioritynodes 
 has been 
hosen by then.) If wk� does enter Gk, then the Rk-node � � �will subsequently 
hoose the use �Gk�P� (wk�) to be large, hen
e larger than the �-useof any ball wi
 from any node 
 � �. This use �Gk�P� (wk�) may subsequently beenumerated into P by some otherM-node, but it will not 
hange P��Wj�P (wi
) forany 
 � �. Thus, it will not injure the strategy of any M-node of higher prioritythan �.(The same is true for any tra
e for wk�: the 
orresponding R-node will 
hoose the�-use of the tra
e to be large after the tra
e enters its target set, hen
e after wk�was released, hen
e after wi
 entered dom(�Wj� ). So this �-use will also be greaterthan �Wj�P (wi
) and 
an safely be enumerated into P . Therefore, we de�ne everytra
e to be 
erti�ed automati
ally. Only witness balls 
hosen by D- and M-nodesmust wait for 
erti�
ation.) 19



We will say that wk� is 
erti�ed when it has entered the domains of all su
h �Wj� -fun
tionals (for all � with �̂ h1i � �), and we require all balls targeted for anyGk (whether from D-nodes, fromM-nodes, or tra
es for other balls) to be 
erti�edbefore moving through the pinball ma
hine. If � is on the true path, then theexpansionary out
ome �̂ h1i does hold, and so the domain of �Wj� will eventuallygrow large enough to in
lude wk�. Thus no ball from a node on the true path willbe for
ed to wait forever before entering the pinball ma
hine.� If � is an Ne;�-node, then the possible out
omes of � are 1 and w, ordered with1 < w. The out
ome w denotes a nonexpansionary stage, i.e. a stage at whi
h thelength of agreement betweenWe and �R has not in
reased, so that we wait withouttaking any a
tion. 1 represents the out
ome of an expansionary stage; if we havein�nitely many su
h stages, then Ne;� goes about the business of trying to build�� to 
ompute C from We �B. As des
ribed below, this pro
ess 
an be injured bylower-priority P-nodes, making this a 0000-
onstru
tion.� If � is a P-node, let K be the �nite set of higher-priority N -requirements whi
h �may injure:K = fk : Nk is a
tive along � via some �kg = fk0 < k1 < � � � kng:Then the set of possible out
omes of � is the following, ordered as given:f < ak0 < ak1 < � � � < akn < w:For P-nodes �, we attempt to a
hieve a �nite win by 
hoosing a witness z�, waitingfor 	Gi�B(z�)[s℄ #= 0 at some stage s, and then putting z� into C, so as to for
eC 6= 	Gi�B. The out
ome f denotes our su

ess in doing so, with the 
onstru
tioninitializing nodes � � at stage s to preserve (Gi �B)� Gi�B(z�)[s℄. The out
omew denotes that we are waiting for this 
onvergen
e to o

ur. (If we wait forever,then Pi;	 will be satis�ed.)However, an Ne;�-node � � � may obje
t to letting z� enter C, sin
e this woulddisrupt its own 
omputation of C from We �B via its fun
tional ��. The easiestway around this diÆ
ulty is to enumerate the 
urrent use 
We�B� (z�)[s℄ into B,thereby allowing � to 
hange the value of �We�B� (z�) to 1. However, we 
an onlydo this if 
We�B� (z�) >  Gi�B(z�)[s℄, sin
e otherwise the 
hange in B would ruinthe 
onvergen
e 	Gi�B(z�)[s℄ = 0 and leave Pi;	 still unsatis�ed.To handle this issue, we 
he
k in turn with ea
h requirement Nk = Nek ;�k a
tiveat � via one of the �k, starting with the lowest-priority one Nkn and working downto the highest-priority one Nk0 . If 
Wek�B�k (z�) >  Gi�B(z�)[s℄, then Nk does notobje
t to the entry of z� into C, and we 
ontinue with the next-higher-priority N -requirement. Otherwise, we wait until the next �-stage, o�ering Wek�
Wek�B�k (z�)[s℄the opportunity to 
hange (for te
hni
al reasons having to do with Lemma 5.15).20



If no su
h Wek -
hange o

urs, we then enumerate 
Wek�B�k (z�)[s℄ into B[s + 1℄,destroying both of the 
omputations �Wek�B�k (z�)[s℄ and 	Gi�B(z�)[s℄. In this 
asewe make the out
ome ak eligible at stage s. In doing so, we give up our hope of a�nite win for � with the 
urrent realization of z�, and also disrupt the 
omputations�Wel�B�l (z�)[s℄ for every l > k. This pro
edure will result in a win for � if we repeatit in�nitely often, sin
e in that 
ase 	Gi�B(z�) must diverge. For the node �k, ea
htime we make su
h a B-enumeration, we take a further step in the 
onstru
tion of afun
tional ��;k. If �̂ haki lies on the true path, then the fun
tional ��;k will re
eivesu
h attention in�nitely often and will 
ompute Wek from Gi, thereby satisfyingNk. Hen
e we say that Nk is satis�ed via � along nodes � �̂ haki, meaning that�k does not a
tively try to prote
t its fun
tional ��k at su
h nodes, sin
e � has
onstru
ted ��;k to satisfy Nk instead. This out
ome is des
ribed in more detailon page 28, in Sub
ase 3 of the 
onstru
tion for P-nodes.While the out
ome ak does satisfy Nk, it also disrupts the fun
tionals ��l for alll > k in K, without doing anything to build �-fun
tionals for the requirementsNl.Those requirements all have lower priority thanNk, and are immediately reassigned,in the same order, to �̂ haki, its immediate su

essors, their immediate su

essors,and so on until ea
h has been assigned to another node � on ea
h path through�̂ haki. Thus, along every path through �̂ haki, ea
h su
h Nl now is assigned toa new � � �, with the assuran
e that the requirement Nk will never destroy thefun
tional �� the way it destroyed ��l. By indu
tion, therefore, ea
h Nl will bereassigned to higher nodes only �nitely often along any �xed path through the tree.The Nj-requirements whi
h are a
tive along �k emerge with their �-fun
tionalsuns
athed by �. These nodes all have higher priority than Nk (i.e. have j < k), sowill have 
Wej�B�j (z�) < 
Wek�B�k (z�)[s℄:Therefore the numbers enumerated into B by � will not injure the fun
tionals ��j .The out
ome ak leaves Nk satis�ed, not a
tive, and, assuming indu
tively thatall higher-priority N-requirements remain either a
tive forever or satis�ed foreveralong the true path, Nk will remain satis�ed forever there as well.The P-node also fun
tions as a gate in the pinball ma
hine, temporarily restrainingballs targeted for sets Gj . When z� is realized at a stage s, the restraint willkeep balls <  Gi�B(z�)[s℄ from entering Gi, thereby prote
ting the 
onvergen
e of	Gi�B(z�)[s℄. (In the �nite-win situation, of 
ourse, the sour
e nodes for all su
hballs are initialized when z� enters C. If the true path passes through �̂ haki, thenthis restraint be
omes arbitrarily large, but drops ba
k to 0 ea
h time we destroythe 
onvergen
e of 	Gi�B(z�).) At other stages, for the sake of Lemma 5.15, wewish to ensure that the only balls whi
h enter the set R = �jGj are balls enteringGi, so we restrain balls targeted for sets Gj with j 6= i. Sin
e Nk assumes thatWek = �R, this restraint will ensure that any 
hange in Wek at these stages 
an be21



tra
ed to a 
hange in Gi, allowing us to rede�ne the fun
tional �Gi�;k on the elementwhi
h enteredWek , as Nk requires. These retraints are also set to 0 periodi
ally, atstages s when a 
hange in Wek would allow us to in
rease the use 
Wek�B�k (z�)[s+1℄to be >  Gi�B(z�)[s℄. Su
h a 
hange in Wek would let us move 
loser to the �nite-win situation and would lead to initialization of the node �̂ haki, so there is noreason to prote
t Wek at su
h stages. Thus no ball will be restrained forever byany P-node on the true path.This 
ompletes our des
ription of the out
omes of nodes on T and the meaningatta
hed to ea
h.Constru
tion. As in Nies, Shore, and Slaman [1998℄, ea
h stage s + 1 of the 
on-stru
tion 
onsists of (at most) s substages, along with two steps whi
h are exe
uted atthe end of every stage. At ea
h substage t < s, only one node � 2 T , of length t, will beeligible to a
t, and that � will then designate at most one of its immediate su

essors inT to be eligible to a
t at the following substage. (Alternatively, � may refuse to make anyof its su

essors eligible.) The empty node is always eligible to a
t at substage 0 of anystage. The 
hoi
e of whi
h nodes are eligible to a
t 
orresponds to our approximation atstage s of the true path through T , i.e. the path g su
h that for ea
h � � g, the su

essorof � along g denotes the ultimate out
ome of the strategy played by � to satisfy therequirement assigned to it. g(n) will be the leftmost node of length n whi
h is eligible toa
t at in�nitely many stages.To initialize a strategy means to make all its parameters unde�ned and all fun
tionalswhi
h it 
onstru
ts 
ompletely unde�ned. At stage 0, we initialize every node. At ea
hsubsequent substage we initialize every node whi
h lies to the right of any node eligibleto a
t at that substage. O

asionally the 
onstru
tion will instru
t us to initialize othernodes as well, but ea
h node on the a
tual true path will only be initialized �nitely often.A number is large if it is greater than every other number seen thus far in the 
on-stru
tion. By 
onvention, our fun
tionals are built so that, for any �xed ora
le, the usefun
tion is stri
tly in
reasing.At stage s+ 1 and substage t < s, let � be the node of T eligible to a
t at this stageand substage. If we have just 
ompleted substage s � 1, or if an eligible node refuses tomake any of its su

essors eligible to a
t at the next substage, then we pro
eed to the�nal steps of the stage, whi
h des
ribes whi
h balls are allowed to move on the pinballma
hine at that stage. We then terminate the stage.Let s00 + 1 be the last stage at whi
h � was initialized, and let s0 + 1 be the mostre
ent stage > s00+1 at whi
h � was eligible to a
t. (If there has been no su
h stage sin
es00+ 1, we take s0 = s00.) The a
tion of � depends on the type of requirement assigned toit. If � is a Di;
-node, we pro
eed in the style of Friedberg and Mu
hnik.22



1. If no witness element wi� is 
urrently de�ned, then pi
k a large witness element wi�and target it for Gi. (Thus, for every gate � � � on the pinball ma
hine, this wi�will be greater than the restraint 
urrently maintained by that gate. If � is on thetrue path, then wi� will be large enough that every su
h � will eventually allow wi�to pass its gate.) We also 
hoose a large number ej�, where j is 0 if i is odd and 1 ifi is even, and target it for Ej. The ball ej� serves as a tra
e for wi�, for the sake ofrequirement Ti�1. We then initialize every requirement ) � and end this substage,with no node eligible to a
t at the next substage.2. If wi� is 
urrently de�ned but either 
Hi(wi�)" [s℄ or 
Hi(wi�)#6= 0[s℄, then 
ontinuewith the next substage, making �̂ hwi eligible to a
t at that substage. (Re
all thatHi = �k 6=i Gk. In this 
ase we say that wi� has not yet been realized.)3. If wi� is 
urrently de�ned and 
Hi(wi�)#= 0[s℄, we 
he
k whether wi� is 
erti�ed atstage s. By de�nition, wi� is 
erti�ed at stage t if for every node � � � su
h that arequirementMi0;j;�;� is assigned to � and � ĥ1i � �, we have wi� 2 dom(�Wj� )[t0℄,where t0 + 1 is the greatest �-expansionary stage � t.(It is important to note that this de�nition of 
erti�ed only applies to balls 
hosenby D- and M-nodes, not to their tra
es. Every tra
e, whether targeted for Ej orfor a set Gk, is automati
ally 
erti�ed and enters the pinball ma
hine immediatelyupon being 
hosen by Instru
tion 4.4.)If wi� is not 
erti�ed at stage s, then we initialize all nodes ) � (so they willnever injure the 
omputation 
Hi(wi�)[s℄) and terminate this substage, with nonode eligible to a
t at the next substage.4. If wi� is 
urrently de�ned and 
erti�ed and 
Hi(wi�)#= 0[s℄, we let wi� and ei� enterthe pinball ma
hine, following Instru
tion 4.3 below. We then initialize all nodes) � and end this substage, with no node eligible to a
t at the next substage.5. If wi� has entered the pinball ma
hine, but has not yet entered Gi, we end thissubstage, with no node eligible to a
t at the next substage.6. If wi� has already been enumerated into Gi by stage s, then end this substage,making �̂ hfi eligible to a
t at the next substage.Instru
tion 4.3 (Entering the Pinball Ma
hine) The gates of the pinball ma
hineare pre
isely the P-nodes and the U-nodes. If a ball entering the pinball ma
hine at stages + 1 has subs
ript �, we 
all � the sour
e node for that ball. � will be either a D-nodeor an M-node.� If there is no gate � � �, then we enumerate ej� into Ej[s+1℄ and wi� into Gi[s+1℄.(Noti
e that every ball whi
h enters the pinball ma
hine, either from a D-node oran M-node, is already 
erti�ed, hen
e allowed to enter its target set.)23



� If there is a gate � � �, then we drop wi� to the greatest su
h �, and drop ej� to thegreatest gate � � � to whi
h a requirement Ue;2k+j is assigned. If there is no su
h�, then we enumerate ej� into Ej[s + 1℄ and appoint a new tra
e or tra
es for wi�,following Instru
tion 4.4.Instru
tion 4.4 (Assigning Tra
es) At stage s+ 1, if the ball wi� is waiting at a P-gate, we assign a large tra
e e0� (if i is odd) or e1� (if i is even). If it is waiting at aUe;2k-gate �, we follow these dire
tions:� If i is even and i > 0, then we assign a new tra
e e1�, 
hosen large and targeted forE1. This ball starts at gate �.� If i is odd and i 6= 2k+1, then we assign a new tra
e wi�1� , 
hosen large and targetedfor Gi�1, and this tra
e is assigned its own tra
e e1� targeted for E1. Ea
h of thesetwo balls starts at gate �. (Sin
e i � 1 6= 2k, this will not threaten the restraintimposed by Ue;2k.) The tra
e wi�1� is immediately 
onsidered 
erti�ed.� If i = 2k + 1, then the ball wi� is not assigned any tra
es at this gate. Instead, wi�passes gate � immediately and drops to the greatest gate �0 ( � to whi
h either aP-requirement or a requirement Ue0;k0 with k0 + 1 6= i is assigned. We then followthese same instru
tions with �0 in pla
e of �. If there is no su
h node �0, then wi�enters Gi[s+ 1℄. In this 
ase we 
he
k whether wi� was a tra
e for another ball. Ifso, then we follow these same instru
tions for that ball at the gate at whi
h it is
urrently waiting.� If i = 0, then the ball wi� waits at gate � but is not assigned any tra
es.To 
reate tra
es for a ball wi� waiting at a Ue;2k+1-gate �, we follow the analogousdire
tions, with the spe
ial 
ase o

urring when i = 2k + 2. The ball wi� and the one ortwo tra
es de�ned above together 
onstitute a blo
k, with lead ball wi�. Any previouslyexisting blo
ks whi
h 
ontained wi� be
ome unde�ned.The point of this pro
ess is that (barring initialization of �), at any subsequent �-stage at whi
h the restraint r at gate � is less than wi�, all the balls in the blo
k will beable to pass gate � simultaneously. For instan
e, in the 
ase where � is a Ue;2k+1-gate,either no ball in the blo
k is targeted for F1 (if i is odd) or none of them is targeted forG2k+1 � E1 (if i is even and j 6= 2k + 2). As noted above, the 
ase i = 2k + 2 is anex
eption, but then the ball wi� is targeted for G2k+2, allowing G2k+2 to 
ompute �F1e , soUe;2k+1 will still be satis�ed. Finally, if i = 0 then no T-requirement applies to Gi, so notra
e is required. Therefore the entire blo
k will be able to drop down to the next gate ofthe pinball ma
hine simultaneously without violating requirement Ue;2k+1. If more thanone blo
k of balls is waiting at a gate, we allow the blo
k with highest-priority subs
riptto pass �rst; if several blo
ks have the same subs
ript, then the one with the largest leadball goes �rst, sin
e the larger lead ball will be a tra
e for the smaller lead ball.24



If � is an Rk-node, we extend the fun
tional �� it builds. If s0 = s00, then �Gk�P� [s0+1℄is empty, and we let y = �1; otherwise we let y = max(dom(�Gk�P� ))[s0 + 1℄. We 
he
kwhether there is any x � y su
h that �Gk�P� (x)[s℄ does not 
onverge to Q(x)[s℄. If thereis no su
h x, we de�ne �Gk�P� (y+1)[s+1℄ = Q(y+1)[s℄ with large use. If there is, thenfor ea
h su
h x we a
t as follows:� If x has entered Q[s℄ sin
e s0, then it must have done so on behalf of an M-nodeabove �, and this node will have enumerated an element into P , allowing us torede�ne �Gk�P� (x)[s+ 1℄ = 1. We do so, sin
e now Q(x)[s℄ = 1, and we leave theuse of the 
omputation un
hanged.� If Q(x)[s℄ = Q(x)[s0℄, then there must have been a 
hange in Gk � P sin
e stages0+1 on the use of the 
omputation �Gk�P� (x)[s0+1℄. Therefore, we simply rede�ne�Gk�P� (x)[s+1℄ = Q(x)[s℄. If either x 2 Gk[s℄�Gk[s0℄ or x = x� for someMi;j;�;�-node � � � su
h that wk� 2 Gk[s℄� Gk[s0℄ (as de�ned below), then we 
hoose theuse of this 
omputation to be large. Otherwise, we retain the previous use.Rk has only one out
ome, namely1, and we end this substage, making �̂ h1i eligibleto a
t at the next substage.If � is an Mi;j;�;�-node, then there may be a witness element x� already de�ned,whi
h we will use to try to make �Wj�P 6= Q. We will also ask whether the stage s + 1is �-expansionary, de�ned as follows. Letm(�; s) = maxfy � s : (8x < y) �Gi� (x)#=Wj(x)[s℄gl(�; s) = maxfz � s : (8x < z) �Wj�P (x)#= Q(x)[s℄ with use < m(�; s)g:The stage s+1 is �-expansionary if � is eligible to a
t at s+1 and l(�; s) > l(�; t) forevery t with s00 < t < s at whi
h � was eligible to a
t. Thus, we are 
onsidering not thea
tual length of agreement between �Wj�P [s℄ and Q[s℄, but rather that portion of thelength of agreement whi
h we 
an guarantee by putting suÆ
ient restraint on Wj�P . Of
ourse, we 
annot restrain Wj dire
tly, but we a
hieve this purpose by putting restrainton Gi and noting that the use of �Wj�P [s℄ is less than the length of agreement between�Gi� [s℄ and Wj [s℄. We de�ne r + 1 to be the greatest �-expansionary stage su
h thats00 < r < s. (If there has been no su
h stage, then s0 = s00, and we set r = s00.)1. If x� 2 Q[s℄, then we end this substage, making �̂ hfi eligible to a
t at the nextsubstage. (This preserves any �nite win we may have a
hieved through Substep 6at a previous stage sin
e s00.)2. If s + 1 is not �-expansionary and x� is not de�ned, then we end this substage,making �̂ hwi eligible to a
t at the next substage.25



3. If s + 1 is �-expansionary but no witness element x� existed at stage r + 1, thenwe 
he
k whether there exists x 2 dom(�Wj� )[r+1℄ su
h that x 2 Gi[s℄�Gi[r℄ andWj[s℄ has not 
hanged on the use �Wj� (x)[r℄ sin
e stage r.(a) If there is no su
h x, then we extend dom(�Wj� )[s + 1℄ up to l(�; s) � 1 byde�ning �Wj� (x)[s + 1℄ = Gi(x)[s℄, with use �Wj� (x)[s + 1℄ = �Wj�P (x)[s℄,for ea
h x for whi
h �Wj� (x)[s℄ is not already de�ned. (Possibly this de�nes�Wj� (x)[s+ 1℄ 6= �Wj� (x)[r+ 1℄ for 
ertain x, but only if Wj[s℄ has 
hanged onthe use of the 
omputation at r.) We make �̂ h1i eligible to a
t at the nextsubstage, and end this substage.(b) If some x 2 dom(�Wj� )[r + 1℄ has entered Gi[s℄ sin
e stage r, without any
orresponding Wj-
hange as above, we 
hoose x� be the least su
h x. For ea
hk 6= i su
h that some �k � � is an Rk-node, we set wk� = �Gk�P�k (x�)[s℄ andassign to it a large tra
e el� targeted for the set El, where l = 0 if k is odd andl = 1 if k is even. In order to preserve (Wj � P )� �Wj�P (x�)[s℄, we initializeall nodes above � and end this substage, with no su

essor eligible to a
t atthe next substage.4. If x� is de�ned and no balls with subs
ript � are 
urrently on the pinball ma
hine,but some ball wk� is de�ned and has not yet entered the ma
hine, then for the leastsu
h k, we 
he
k whether wk� is 
erti�ed at stage s (using the same de�nition as forD-nodes, from page 23). If so, then we allow wk� and its tra
e to enter the ma
hineat node �, in a

ordan
e with Instru
tion 4.3; if not, we do nothing. In either 
asewe end this substage, with no su

essor eligible to a
t at the next substage.5. If x� is de�ned and some ball wk� has entered the pinball ma
hine but is not yetin Gk, then we end this substage, with no su

essor eligible to a
t at the nextsubstage.6. If x� is de�ned but not in Q[s℄, and every ball wk� 
urrently de�ned has enteredGk[s℄, then we enumerate x� into Q[s+ 1℄. For every k su
h that some �k � � isan Rk-node, we enumerate �Gk�P�k (x�)[s℄ into P [s+1℄. We initialize every node � �and terminate this substage, with no node eligible to a
t at the next substage.(The initializations when x� was de�ned guarantee that either �Wj�P (x�) #= 0 6=Q(x�)[s℄ or Wj has 
hanged in su
h a way that Wj 6= �Gi. Ea
h possibility yields a�nite win on requirementMi;j;�;�. For ea
h k 6= i, the enumerations of wk� into Gkguarantee that �Gk�P�k (x�)[s℄ has been 
hosen large sin
e x� was de�ned. Also, beforex� was 
hosen as x�, it entered Gi, and at the next �i-stage t+ 1, �Gi�P�i (x�)[t+ 1℄was 
hosen large. Sin
e �Wj�P (x�) has not 
hanged sin
e before x� entered Gi,our P -enumerations at this stage do not a�e
t the 
onvergen
e �Wj�P (x�)#= 0[s℄.Moreover, now ea
h �k (in
luding k = i) will be allowed to rede�ne �Gi�P�k (x�) = 1at the next �k-stage, sin
e now Q(x�)[s+ 1℄ = 1.)26



If � is an Ne;�-node, we de�ne the length of agreement for � at this stage by:l(�; s) = maxfx : (8y < x)�R(y)#=We(y)[s℄g:The stage s+ 1 is �-expansionary if � is eligible to a
t at s and l(�; s) > l(�; t) for everyt with s00 < t < s at whi
h � is eligible to a
t.If s + 1 is not �-expansionary, we end this substage, with �̂ hwi eligible to a
t atthe next substage. Otherwise, for ea
h y < l(�; s) for whi
h �We�B� (y)[s℄ is unde�ned,let �We�B� (y)[s + 1℄ = C(y)[s℄. To de�ne the use 
We�B� (y)[s + 1℄, we ask if any of thefollowing apply:� 
We�B� (y)[s0+ 1℄ was not de�ned; or� 
We�B� (z)[s0 + 1℄ 2 B[s℄ for some z � y (whi
h happens if some P-node � �̂ h1ihas enumerated it into B in order to allow 
We�B� (z)[s0 + 1℄ to in
rease); or� for some z � y, some node � �̂ h1i in T has requested that 
We�B� (z)[s0 + 1℄ bein
reased.If so, we 
hoose 
We�B� (y)[s+ 1℄ to be large. If none of the 
onditions applies, thenapparently no node above � has tried to destroy the fun
tional ��, so we set 
We�B� (y)[s+1℄ = 
We�B� (y)[s0 + 1℄, in order to keep 
We�B� (y) from approa
hing 1. We then make�̂ h1i eligible to a
t at the next substage, and end this substage.If � is a Pi;	-node, we �rst 
he
k if any balls with subs
ripts � � are presently waitingat any gate below gate �. If so, then we end this substage, with no su

essor eligible to a
tat the next substage. Otherwise � 
ontinues to try to satisfy Pi;	, and anyN-requirementa
tive along � may be injured by the a
tion of �. LetK = fk : Nk is a
tive along � via some �kg:De�ne ek and �k su
h that Nk = Nek ;�k , and for brevity write �k for the fun
tion�Wek�B�k [s℄, the 
urrent version of the fun
tional being built by �k (k 2 K), with asso
iateduse fun
tion 
k = 
Wek�B�k [s℄. We will also de�ne a restraint r(�; j; k; s + 1) asso
iatedto ea
h k 2 K, denoting the restri
tion whi
h � pla
es on elements targeted for Gj.(Restraining Gj , 
oupled with the expansionary out
ome of �k, will help ensure that Wekdoes not 
hange, or else will ensure that if it does 
hange, we 
an tra
e the sour
e of the
hange to some set other than Gj .) The restraint �nally enfor
ed by � on su
h elementswill be r(�; j; s + 1) = maxk2K r(�; j; k; s+ 1):(Any restraint r(�; j; k; s+1) whi
h is not mentioned is assumed to retain its value fromstage s0 + 1, or is reset to 0 if �̂ haki was initialized at or sin
e stage s0 + 1.)27



Sub
ase 1: If no witness z� is presently de�ned for Pi;	, then pi
k a large number zand designate it as the witness element z� for Pi;	. Let �̂ hwi be eligible to a
t at thenext substage, and end this substage.Sub
ase 2: If z� 2 C[s℄, then let �̂ hfi be eligible to a
t at the next substage, and endthis substage.Sub
ase 3: If z� =2 C[s℄ and � enumerated any elements into B at stage s0 + 1 (usingSub
ase 6(b)), then we set ~ks+1 = ~ks0+1, ws+1 = ws0+1, and e = e~ks+1 and rede�ne thesame fun
tional ��;~ks+1 whi
h we extended at that stage (using the notation from Sub
ase6(b) below): �Gi�;~ks+1�ws+1[s+ 1℄ = We�ws+1[s℄:If this involves adding any axioms to ��;~ks+1, we 
hoose the use to be large. (Sublemma5.17 will ensure that our rede�nition of ��;~ks+1 is allowed.) We also set r(�; i; ~ks+1; s+1) ='R(
~ks+1(z�))[s℄, whi
h (along with the restraints set at stage s0+1) guarantees that �~ks+1will preserve We� 
We�B~ks+1 (z�)[s℄ until the next �-stage. We then end this substage, with�̂ ha~ks+1i eligible to a
t at the next substage. (This is the stage where we 
omplete thebusiness begun in Sub
ase 6(b) at stage s0+1. Between s0+1 and s, any ball targeted forGi 
an pass gate � without injuring the out
ome a~ks+1, sin
e our B-enumeration at stages0 + 1 already destroyed the 
onvergen
e of 	Gi�B(z�)[s0℄. Also, this is the only sub
asein whi
h �̂ ha~ks+1i is made eligible. If �̂ haki is on the true path, then after stage s00 wewill 
y
le forever from Sub
ase 4 to 5 to 6 to 3 and ba
k to 4, with ~ks+1 = k in�nitelyoften and ~ks+1 < k only �nitely often, and in Sub
ases 6(b) and 3 we will build a totalfun
tion �Gi�;k =Wek to satisfy Nk.)Sub
ase 4: If z� =2 C[s℄ and � made no B-enumeration at stage s0 + 1 and z� is notyet realized (i.e. either 	Gi�B(z�)[s℄" or 	Gi�B(z�)[s℄#6= 0), then we let �̂ hwi be eligibleto a
t at the next substage, and end this substage.Sub
ase 5: If z� =2 C[s℄ and 	Gi�B(z�)[s℄#= 0 and � made no B-enumeration at stages0, then 
onsider ea
h Ne;�-node � � � (for ea
h e and �) su
h that Ne;� is not a
tivealong � via �. Let �� be the greatest node � � su
h that Ne;� is a
tive along �� via �;there must be su
h a node ��, and it must be a P-node. If for some su
h � we have
We�B� (z��)#�  Gi�B(z�)[s℄ then we let �̂ hwi be eligible to a
t at the next substage, andend this substage.(If � is on the true path, then for ea
h su
h � the requirementNe;� is either satis�edor destroyed at ��. Hen
e 
We�B� (z��) will eventually be rede�ned to be >  Gi�B(z�)[s℄.We wait for this to take pla
e, be
ause we do not want to enter Sub
ase 6 until we are
ertain that the 
onvergen
e 	Gi�B(z�) #= 0 will not be disrupted even if �� de
ides toenumerate 
We�B� (z��) into B.)Sub
ase 6: Otherwise z� =2 C[s℄ and 	Gi�B(z�)[s℄#= 0 and � made no B-enumerationat stage s0 + 1 and there is no node � as des
ribed in Sub
ase 5. We 
hoose ~ks+1 to be28



the greatest k 2 K su
h that 
k(z�) �  Gi�B(z�)[s℄: (1)If no k satis�es this 
ondition, then let ~ks+1 = �1.If ~ks+1 = �1, we enumerate z� 2 C[s+1℄ (to satisfy Pi;	). We enumerate into B[s+1℄every number in the setf
We�B� (z�)[s℄ : � � � & � is an N -nodeg;in order to allow the 
orresponding fun
tionals �� to 
hange their value on the argumentz�. To preserve the 
omputation 	Gi�B(z�) #= 0[s℄, we initialize every node � �. Weset all restraints r(�; j; k; s + 1) to 0, sin
e no further restraint is ne
essary after theseinitializations. Then we end this substage, with no su

essor eligible to a
t at the nextsubstage. (Now that we have enumerated z� into C, ea
h su
h � will wait until thenext stage at whi
h it is eligible and then adjust �� to 
ompute C 
orre
tly. Our B-enumeration ensures that these 
hanges will be possible.)If �1 < ~ks+1 < ~ks0+1 (or if �1 < ~ks+1 and ~ks0+1 was not de�ned), we request thatthe node �~ks+1 in
rease the use 
~ks+1(z�) at the next opportunity, and revoke any 
orre-sponding request for �~ks0+1 , sin
e that request must have been ful�lled in order for ~k tohave de
reased. We also setr(�; i; ~ks+1; s+ 1) = max( Gi�B(z�)[s℄; 'R(
~ks+1(z�))[s℄);and for all j 6= i we set r(�; j; ~ks+1; s + 1) = 0 (sin
e at this stage, balls targeted for Gjwith j 6= i may pass node � without injuring our strategy for satisfying Pi;	). We thenend this substage, with no su

essor eligible to a
t at the next substage.Finally, if ~ks+1 = ~ks0+1 > �1, we write ~k = ~ks+1, e = e~k, � = �~k, � = �̂ ha~ki, and
 = 
~k(= 
We�B�~k ) for simpli
ity, and let t+ 1 be the greater of s00 + 1 and the last stageat whi
h ��;~k was extended. We sele
t the appropriate step among the following.a. If some Gj with j 6= i 
hanged on 'R(
(z�))[s0℄ between stage s0 and stage s, thenwe initialize all nodes to the right of � and end this substage, with no su

essoreligible to a
t at the next substage.b. Otherwise, we let ws+1 = min(
(z�); 1 + dom(�Gi�;~k))[t+ 1℄(here regarding dom(�Gi�;~k)[t+ 1℄, a �nite initial segment of !, as an integer). Wede�ne �Gi�;~k�ws+1[s+ 1℄ =We�ws+1[s℄:29



If this involves adding any axioms to ��;~k, we 
hoose the use to be large. Sublemma5.17 will ensure that these rede�nitions are allowed.We enumerate 
(z�)[s0 + 1℄ into B[s + 1℄, making �We�B�~k (z�)[s + 1℄ unde�ned, sothat �~k will in
rease the use 
(z�) at the next �~k-stage. (Noti
e that 
(z�)[s0 + 1℄did not already lie in B[s℄. Only numbers in the ranges of the 
-fun
tions areever enumerated into B, and su
h numbers are always 
hosen large.) By (1),	Gi�B(z�)[s+1℄ also be
omes unde�ned. We set r(�; i; ~k; s+1) = 0 and r(�; j; ~k; s+1) = 'R(
(z�))[s℄ for all j 6= i, to ensure that until the next stage at whi
h z� isrealized, We�ws+1 
an only 
hange on a

ount of a Gi-
hange, whi
h will allow usto rede�ne �Gi�;~k wherever needed. We also revoke our request for �~k to in
rease theuse 
�~k(z�). We initialize all nodes to the right of � and end this substage, with nosu

essor eligible to a
t at the next substage.This 
ompletes the instru
tion for P-nodes.If � is a Ue;i-node, let m = 0 if i is even and m = 1 if i is odd, and set:l(�; s) = maxfx : (8y < x)�Gi�Eme (y)#= �Fme (y)# [s℄g:The stage s + 1 is �-expansionary if s = 0 or l(�; s) > l(�; t) for all stages t + 1 withs00 < t < s at whi
h � was eligible to a
t. We de�ne r(�; s) = 0 if s+1 is �-expansionary,while otherwise r(�; s) is the greatest number used in the 
onstru
tion up until the last�-expansionary stage. If no ball with a subs
ript � �̂ hpr(�;s)i is waiting at any gate ( �at stage s, then we make �̂ hpr(�;s)i eligible to a
t at the next substage, and end thissubstage. If any su
h ball is waiting at any gate below �, then we initialize all nodes tothe right of �̂ hpr(�;s)i, but end this substage without making any nodes eligible to a
t atthe next substage.This 
ompletes the instru
tions for the substages of the stage s + 1. On
e we have
ompleted all s substages, or rea
hed a substage at whi
h no new node is made eligibleto a
t at the next substage, we pro
eed to the �nal two steps of the stage: satisfying theL-requirements and allowing balls on the pinball ma
hine to drop to lower gates.First we 
onsider the L-requirements. If Lk = L�;x, then k is the priority of thatrequirement. For ea
h � 2 T , de�ne n(�; s) to be the number of times that � has beeninitialized (up to stage s) by other nodes on T . (We do not 
ount any initializationsby L-requirements themselves in this total.) For the least k � s su
h that �R(x)[s℄ #and �R(x)[s � 1℄ either diverges or 
onverges with a di�erent use, the requirement Lkinitializes every � 2 T satisfying: p�q+ n(�; s) > k:(Here p�q 2 ! is a 
ode for the node �, with T viewed as a subtree of !<!.) Thisguarantees that none of the � initialized will later injure Lk.Finally, we use a pinball-style approa
h to determine whi
h ball(s) 
urrently on thepinball ma
hine 
an pass the gate at whi
h they are 
urrently waiting. Choose the30



highest-priority � su
h that there is a gate � whi
h was eligible at the 
urrent stage s+1su
h that:� there is a blo
k of balls waiting at �, with lead ball wj� or ej�; and� if � is a U-gate, then the lead ball of the blo
k is > r(�; s); and� if � is a P-gate, then the lead ball of the blo
k either is of the form ej� or is> r(�; j; s+ 1); and� no ball whi
h passed gate � at any earlier stage is 
urrently waiting at any gatebelow �.If there is no su
h �, then end the stage. If � exists, then the 
orresponding � isunique (by the last 
ondition), and we 
hoose the greatest lead ball with subs
ript �
urrently waiting at gate �. We allow all balls in its blo
k to pass gate �, initialize allnodes � �, and follow Instru
tion 4.5 below for the balls in the blo
k. On
e the ballspass gate �, they are no longer in the same blo
k. (For 
onvenien
e, we usually think ofthe node � as having performed the initialization of the nodes � �, even though � itselfmay not have been eligible at this stage.)Instru
tion 4.5 (Dropping to a new gate) 1. For ea
h ball ek� whi
h passed gate�, we drop ek� to the highest Ue;2l+k-gate � ( � (for any l), if su
h a � exists. Itsblo
k at gate � 
onsists only of itself.2. For ea
h ball wk� whi
h passed gate �, we drop wk� to the highest gate � ( �, if su
ha � exists. For the time being, its blo
k at gate � 
onsists only of itself, but tra
esmay be added later.3. If there is no su
h � , then we enumerate the ball into its target set (wk� into Gk[s+1℄or ek� into Ek[s + 1℄). If this ball was a tra
e for another ball wj� whi
h does notenter Gj at this same stage, then we add new tra
es for wj� in a

ordan
e withInstru
tion 4.4, to form a new blo
k at the gate at whi
h wj� is 
urrently waiting.(If wj� is waiting at a Ue;j�1-gate, this pro
ess will involve dropping it to a lowergate or into Gj .)If the ball was not a tra
e, then it was of the form wk�. Either it was enumeratedinto Gk for the sake of some Mi;j;�;�-node � with i 6= k, so as to allow an Rk-node � � � to rede�ne its fun
tional �Gk�P� , helping � a
hieve a �nite win; orit was a witness element for a D-requirement assigned to �, in whi
h 
ase thatD-requirement is now satis�ed.Noti
e that under these instru
tions, no ball wj� 
an end up at a lower gate than itstra
e.This 
ompletes the 
onstru
tion. 31



5 Veri�
ation of the Constru
tionTo prove that the stru
ture of our tree allows every node to be satis�ed, we �rst need asublemma.Sublemma 5.1 At every node � on T , if Nj is a
tive or satis�ed along � and i < j,then Ni is a
tive or satis�ed along � also.Proof. We use indu
tion on the level of the node �. Suppose Nj is a
tive or satis�edalong �, and let i < j. Write � = ��.Case 1. Suppose Nj was a
tive or satis�ed along �. Then by indu
tion so wasNi. Theonly way for Ni not to be a
tive or satis�ed along � is if a P-requirement was assignedto � and � = � ĥali, for some l su
h that Nl is a
tive along � via some � along whi
hNi is neither a
tive nor satis�ed. Sin
e � ( �, the indu
tive hypothesis ensures that Njwas neither a
tive nor satis�ed along � either. But then Nj 
annot be a
tive or satis�edalong �, 
ontradi
ting the assumption of the sublemma.Case 2. Otherwise Nj was neither a
tive nor satis�ed along �, so in order to be
omea
tive or satis�ed at � it must have been assigned to �. Sin
e Ni has higher priority thanNj, this implies that Ni was already a
tive or satis�ed at �. But with an N-requirementassigned to �, every requirement a
tive or satis�ed at � will still be a
tive or satis�ed at�, in
luding Ni.Lemma 5.2 For every path h through T and every requirement Nl, there exists an Nl-node � � h su
h that either:� Nl is a
tive via � along every � with � � � � h; or� there exists � � h su
h that Nl is a
tive via � along every � with � � � � �, andsatis�ed via � along every � with � ( � � h.Proof. Fix h, and assume by indu
tion that the lemma holds for every N-requirement ofhigher priority than Nl. This yields a node �i � h for ea
h i < l, as well as nodes �i � hfor 
ertain i < l, and we take � to be the largest of all these nodes (both �i's and �i's).Then no Ni with i < l is assigned to any node on h extending �.Case 1. Suppose �rst that there exists an Nl-node � � h above �. Nl must be a
tiveor satis�ed along the immediate su

essor of � on h. We argue indu
tively that Nl mustbe a
tive or satis�ed via � along every � � � on h. Let � = ��. Then the only way Nl
ould possibly fail to be a
tive or satis�ed at � via � is if a P-requirement is assignedto �, and � = �̂ hami for some m su
h that Nm is a
tive along � via some �. A

ordingto the 
onstru
tion, Nm is then satis�ed along �, so by the indu
tive hypothesis on l,we have m > l. But then, in order for Nm to have been assigned to �, Nl must havebeen a
tive or satis�ed along �. Hen
e Nl remains a
tive or satis�ed along � via �, byDe�nition 4.2. 32



Case 2. Otherwise Nl is not assigned to any node on h above �. Then Nl must havebeen assigned to some node below � (sin
e otherwise it would eventually be assigned tosome node above �, as no higher-priority requirement 
an be assigned to more than onenode on h above �). So let � be the greatest Nl-node � �. If Nl were neither a
tivenor satis�ed via � along any node on h above �, then a new node on h above � wouldbe 
hosen as an Nl-node, 
ontrary to hypothesis. Thus in both of these two 
ases, Nl iseither a
tive or satis�ed via the 
hosen � along every node � with � � � � h.Finally, we note that Nl 
annot swit
h from satis�ed via � at a node � to a
tive atany of its immediate su

essors �. A

ording to De�nition 4.2, if Nl is satis�ed via �at �, then either Nl is satis�ed via � at �, or � = �̂ hami for some m and Nl is neithera
tive nor satis�ed at �. Sin
e this does not happen at any � with � � � � h, we seethat either Nl is a
tive via � along every su
h �, or it is satis�ed via � along every su
h�, or it is a
tive via � along � ĥ1i, swit
hes to satis�ed via � along some higher � � h,and then stays satis�ed via � along all extensions of � on h. In ea
h of these 
ases, thelemma holds for Nl.The true path g through T is de�ned indu
tively. It begins at the root of T , and forea
h � � g, we extend g to in
lude the leftmost immediate su

essor � of � su
h that� is eligible to a
t at in�nitely many stages. The existen
e of su
h a � will be shownby indu
tion in Lemma 5.9. To begin this indu
tion, however, we need some sublemmas�rst.D- and M-nodes are the only nodes that ever try to enumerate balls into the setsGk. To see that these enumerations do o

ur, we need the following sublemmas.Sublemma 5.3 If the ball wi� is ever 
hosen as x� by an M-node �, then � ĥ1i � �.Proof. The node � has three immediate su

essors, 
orresponding to its out
omes f , 1,and w. To be 
hosen as x� at a stage s + 1, wi� must have been enumerated into Gisin
e the last � ĥ1i stage r + 1. If � � �, this enumeration would have initialized �,in whi
h 
ase � would not have 
hosen any x� at s + 1. If � ĥfi � �, then � was nevereligible until after x� was sele
ted. If � lies to the right of � ĥ1i, then wi� must havebeen 
hosen after the last � ĥ1i-stage, hen
e 
ould not lie in dom(�Wj� )[s℄ and wouldnot have been 
hosen as x�. Finally, � 6= �, sin
e � does not target balls for any set Gkuntil it 
hooses x�. Hen
e � ĥ1i � �.The next sublemma will be used extensively throughout the rest of our proofs. Itguarantees that balls entering the pinball ma
hine are suÆ
iently large not to injure anyhigher-priority requirements.Sublemma 5.4 Let s00 + 1 be the greatest stage < s+ 1 at whi
h � was initialized, andlet t + 1 be the least �-stage > s00 + 1. If a ball wk� enters the pinball ma
hine at stages+ 1, then wk� is greater than any number used in the 
onstru
tion up to stage t.33



Proof. If � is a D-node, then its 
urrent witness was 
hosen at stage t + 1, so wk� was
hosen large at some stage � t + 1. If � is an Mi;j;�;�-node, then wk� = �Gk�P� (x�)[s0℄for some Rk-node � � � and some �-stage s0 + 1 < s + 1, and x� = wi�0 for some�0 � � ĥ1i (by Sublemma 5.3). If �0 is a D-node, then we are done, sin
e wk� > x� and�0 is initialized every time � is. If not, then we 
ontinue by indu
tion. Eventually wemust rea
h a witness or tra
e for a D-node, sin
e only �nitely many nodes have beeneligible up to stage s.Sublemma 5.5 For a D-node � � g, if wi� is realized at a stage after whi
h � is neveragain initialized, then eventually wi� will enter Gi. For an M-node � � g, if wi� is a balltargeted for Gi by � at a stage after whi
h � is never again initialized, then eventuallywi� will enter Gi.Proof. Every Mi0;j0 ;�;�-node � with � ĥ1i � � has � ĥ1i � g. At ea
h � ĥ1i-stages + 1, the domain of �Wj0 is extended to the new length of agreement l(�; s). Hen
efor ea
h ball wj� (j � i) there exists a stage s + 1 su
h that wj� is 
erti�ed at all stagest + 1 � s + 1. So wj� will eventually enter the pinball ma
hine and drop to the highestgate below �, as di
tated by Instru
tion 4.3. (For M-nodes �, this involves an easyindu
tion on j � i. For D-nodes, it only applies with j = i.)Leaving � and i �xed, we argue by indu
tion, �rst on gates � � � and then on j � i,that every ball wj� (in
luding tra
es for other balls) whi
h rea
hes a gate � � � musteventually pass that gate. This will prove the sublemma.Suppose wj� is 
urrently waiting at a U-gate � and let �̂ hpri be the immediate su

essorof � on g. Sin
e � is never again initialized, no ball with subs
ript � � will ever moveagain. By indu
tion on �, every 
urrent tra
e for wj� at any gate below � will eventuallyenter its target set. (If j = 0, no tra
e is ever assigned, and similarly for tra
es targetedfor E0 or E1.) By Sublemma 5.4, wj� and all its tra
es must be > r, sin
e �̂ hpri � �.There may be a tra
e wj�1� for wj� whi
h is also waiting at gate � but in a di�erent blo
kfrom wj�. However, by indu
tion wj�1� eventually passes gate � and enters Gj�1, withInstru
tion 4.4 assigning a new tra
e (or two) to wj�. The new tra
e(s) lie in the sameblo
k as wj�, so after that, the next time �̂ hpri is eligible, wj� and its new tra
e(s) willpass � and drop to lower gates, in a

ordan
e with Instru
tion 4.5. Thus, by indu
tionon �, wj� will eventually enter Gj .Now suppose wj� has been waiting at a Pi0;	-gate � sin
e the last �-stage, where� � � is the immediate su

essor of � below �. If � = �̂ hfi, then there is a stages0 + 1 after whi
h � sets all its restraints to 0. We also note that ea
h time a restraintr(�; j; k0; s) is 
hanged, all nodes to the right of �̂ hak0i are initialized. Hen
e if � = �̂ hwi,then no restraint is rede�ned after the last initialization of �, so by Sublemma 5.4, wj�is larger than all su
h restraints and is allowed to pass gate �. Finally, if � = �̂ haki,then wj� > r(�; j; k0; s + 1) for all s and all k0 < k by Sublemma 5.4, and all restraintsr(�; j; k0; s+ 1) with k0 > k are reset to 0 whenever ~ks+1 = k. We know that � is eligiblein�nitely often. If i0 = j, then r(�; j; k; s + 1) is set to 0 in�nitely often in Sub
ase 6(b)34



with ~ks+1 = k; if not, it is set to 0 ea
h time ~ks+1 = k 6= ~ks0+1 in Sub
ase 6. Thuslim infs r(�; j; s) < wj�. This 
ompletes the indu
tion.Lemma 5.6 Let � � g be anMi;j;�;�-node su
h that �Gi = Wj and �Wj�P = Q, and let� ĥ1i � 
. Fix a ball wi
, 
hosen by 
 at a stage after whi
h � is never again initialized.Let s0+1 be the least �-expansionary stage with wi
 2 dom(�Wj� )[s0+1℄, and let s1+1 bethe greatest �-expansionary stage before whi
h wi
 has not yet entered the pinball ma
hine.Let s2 + 1 be the greatest �-expansionary stage < the stage at whi
h wi
 either enters Gior is 
an
elled, and let s3 + 1 be the least �-expansionary stage > s2 + 1. Then:1. For every �-expansionary stage t + 1 with s0 � t < s1, let t0 + 1 be the least�-expansionary stage > t+ 1. Then we haveP� l [t℄ = P� l [t0℄;where l = �Wj(wi
)[t+ 1℄.2. For every �-expansionary stage t+ 1 with s1 � t < s2, we have(Wj � P )� l1 [t℄ = (Wj � P )� l1 [t0℄;with t0 as above, and where lk = �Wj�P (wi
)[sk℄ (for k = 1; 2). Hen
e l1 = l2.3. If wi
 is 
hosen as x� at stage s3 + 1, then for every �-expansionary stage t + 1 �s3 + 1, we have (Wj � P )� l1 [t℄ = (Wj � P )� l1 [s1℄with l1 as above. Hen
e �Wj�P (wi
) = 0.If wi
 is never 
an
elled nor ever enters Gi, then the items above hold with s2 = s3 =1.If wi
 never enters the pinball ma
hine, they hold with s1 =1.In fa
t we will use this lemma to show that wi
 
annot be 
hosen as x�, so that(assuming �Gi = Wj and �Wj�P = Q) the third item never a
tually applies.Proof. For the �rst item, let t+ 1 be a �-expansionary stage with s0 � t < s1. We willpro
eed by indu
tion on su
h t. Only M-nodes enumerate elements into P , so supposean Mk;j0;�0 ;�0-node � enumerates some x into P at a stage s + 1 su
h that t + 1 is thegreatest �-expansionary stage � s+1. For this s, the node � must be unique, sin
e everynode � � is initialized at s + 1. (This also for
es 
 � �, sin
e 
 is not initialized befores1 + 1.) We wish to show that x > l.Now the least number enumerated into P by � at s + 1 is of the form �Gk�P� (x�)[s℄,for the Rk-node � � �, and � also enumerates x� into Q at stage s + 1. If � lay to theright of �̂ h1i, then x� and its use �Gk�P� (x�)[s℄ would both have been 
hosen after stage35



t+1 (sin
e the ball x� would have been 
an
elled at stage t+1, by Sublemma 5.3), hen
e
ould not be < l.So assume �̂ h1i � �. Now x� = wk0� for some � � �, by Sublemma 5.3, so 
 � �. Letwk� be the original ball released by � (so either wk0� = wk�, or wk0� is a tra
e for wk�, or a tra
efor a tra
e for wk�, et
.) Sublemma 5.4 shows that wi
 < wk�. By the 
onstru
tion for D-and M-nodes, wk� did not enter the pinball ma
hine until after the �rst �-expansionarystage t0 + 1 � t + 1 with wk� 2 dom(�Wj� )[t0℄, by whi
h stage wi
 2 dom(�Wj� )[t0℄ aswell, sin
e at every �̂ h1i-stage this domain is an initial segment of !. Thus s0 < t0.Let l0 = �Wj�P (wi
)[t0℄, and let u0 be the use of the 
omputation �Gi(l0)[t0℄. Then�Gk�P� (x�)[s℄ must be > l0, having been 
hosen large after wk� entered Gk, hen
e after t0.Now if Wj� l0 has 
hanged between t0 + 1 and t, then there must have been a 
or-responding 
hange in Gi�u0 between those same stages, sin
e t0 + 1 and t+ 1 are both�-expansionary. So some ball wi�0 < u0 entered Gi between t0 + 1 and t. Now wi�0 musthave been 
hosen by stage t0, by Sublemma 5.4, and so �0 � �, sin
e wi�0 was not 
an-
elled at t0 + 1. But the entry of wi�0 into Gi took pla
e after t0 + 1, hen
e after wk�entered Gk, sin
e otherwise it would have 
an
elled wk�.Now we apply the same argument to wi�0 as to wk�. If t00 is the greatest �-expansionarystage before wi�0 (or the ball for whi
h it was a tra
e) entered the ma
hine, with 
orre-sponding uses l00 and u00, then wi
 2 dom(�Wj� )[t00℄, and s0 < t00 < t0. and so �Gk�P� (x�)[s℄ >l00. But any 
hange to Wj� l00 between t00 and t would require a 
orresponding 
hange inGi� u00 between those same stages, by a ball wi�00 entering Gi, and so forth. Sin
e Gi[t℄is �nite, this pro
ess must terminate. Thus eventually we �nd a stage t(n)0 , with 
orre-sponding l(n)0 and u(n)0 , for whi
h �Gk�P� (x�)[s℄ > l(n)0 and no 
hange o

urred in Wj� l(n)0between t(n)0 + 1 and t. But by the indu
tive hypothesis on t, P� l(n)0 [t(n)0 ℄ = P� l(n)0 [t℄ aswell, and so in fa
t l(n)0 = l. Hen
e �Gk�P� (x�)[s℄ > l, 
ompleting our indu
tion on t.For the se
ond item, let t + 1 be a �-expansionary stage with s1 � t < s2. Now allnodes � � 
 are initialized at stage s1 + 1 when wi
 enters the pinball ma
hine. Hen
eno su
h � ever again enumerates any element < l1 into P , nor any ball < u1 into Gi,where u1 is the use of the 
omputation �Gi(l1)[s1℄. Also, no node � 
 
ould enumerateany ball into Gi or any element into P without 
an
elling wi
, whi
h would 
ontradi
tt0 � s2. Finally, 
 itself never has two distin
t balls on the pinball ma
hine whi
h areboth targeted for the same set Gi, and 
 
annot make any P -enumerations until wi
has entered Gi. For P , this shows that P � l1 [t℄ = P � l1 [s1℄. For Gi, it shows thatGi�u1 [t℄ = Gi�u1 [s1℄, and sin
e t+ 1 is �-expansionary,Wj� l1 [t℄ = �Gi� l1 [t℄ = �Gi� l1 [s1℄ = Wj� l1 [s1℄:The 
on
lusion that l2 = l1 is immediate, by indu
tion on t, so this 
ompletes the proofof the se
ond item.For the third item, assuming s2 < 1, we know wi
 2 Gi[s3℄. First we show thatP � l1 [s2℄ = P � l1 [s3℄. Nodes � 
 were initialized after s1 + 1, hen
e 
annot enumerate36



elements� l1 into P . Among nodes � 
, those � � 
ould not enumerate elements into Pwithout initializing �, and those � � do not enumerate into P at s2+1 (sin
e this wouldinitialize 
 when wi
 has yet to enter Gi) and are not eligible after that until s3+1, hen
e
annot enumerate any elements into P .Now we indu
t on �-expansionary stages t+ 1 � s3 + 1. Sin
e wi
 is 
hosen as x� atstage s3+1, all nodes � �̂ h1i are initialized at s3+1, and the only nodes above � thatare ever again eligible are those � �̂ hfi. These nodes have not been eligible sin
e thelast initialization of �, so they will never enumerate any elements � l3 into P , nor anyelements � u3 into Gi. Sin
e Wj = �Gi, this yields our result for (Wj � P ) in the thirditem.It is now 
lear that the �nal value �Wj�P (wi
) will be the value �Wj�P (wi
)[s2℄. Sin
ewi
 =2 Gi[s2℄, we must have wi
 =2 Q[s2℄. Sin
e s2 + 1 is �-expansionary, this for
es�Wj�P (wi
)[s2℄ = 0.Lemma 5.7 The requirements Tj are all satis�ed by our 
onstru
tion.Proof. We show that G2i+1 �T G2i � E0, as required by T2i. (The proof for T2i+1 isanalogous.) To 
ompute whether n 2 G2i+1, we run the following steps:1. Che
k whether n is targeted for G2i+1 at or before stage n, either as a witness forsome D- orM-requirement or as a tra
e. If not, halt and 
on
lude that n =2 G2i+1.2. If n is targeted for G2i+1 by stage n, then when it was so targeted, it must have hada tra
e appointed. Use the ora
le to 
he
k whether this tra
e ever entered G2i�E0.If it never entered them, 
on
lude that n =2 G2i+1.3. If the tra
e did enter G2i �E0, �nd the stage s+1 at whi
h it did so, and 
he
k ifn 2 G2i+1[s + 1℄. If so, 
on
lude that n 2 G2i+1. If not, then another tra
e musthave been appointed at stage s. Repeat Step 2 with this new tra
e.We 
laim that this pro
ess must eventually terminate with the 
orre
t answer. The
on
lusion in Step 1 is justi�ed by Sublemma 5.4, and the 
on
lusion in Step 3 is abun-dantly 
lear. For Step 2, we note that the 
onstru
tion does appoint a tra
e when nis targeted for G2i+1, and ea
h time su
h a tra
e enters its target set, either n itselfsimultaneously enters G2i+1 or another tra
e is appointed. Furthermore, this new tra
ebe
omes part of the same blo
k as n, so they will pass the 
urrent gate simultaneously.Hen
e n must advan
e by at least one gate down the tree before that tra
e 
an enterits target set, whi
h implies that only �nitely many tra
es for n will ever be appointed.(In parti
ular, if n = w2i+1� , then after its �rst tra
e, it 
an only have as many tra
esappointed as there are gates below � on T .) Thus the pro
ess does eventually terminate.Finally, noti
e that at ea
h gate � on the tree, the blo
ks waiting at gate � areprioritized so that if n and a tra
e for n lie in di�erent blo
ks waiting at gate �, then37



ea
h is the lead ball of its blo
k, and the tra
e will get to pass the gate �rst. Hen
eat every stage until a tra
e enters its target set, the tra
e will be waiting at a gate �the gate at whi
h the ball itself is waiting. Therefore n 
annot enter its target set G2i+1unless all its tra
es have entered their target sets by the same stage. This proves the
orre
tness of our 
on
lusion in Step 2 of the above pro
edure.Lemma 5.8 Ea
h requirement L�;x is satis�ed by our 
onstru
tion, and initializes othernodes at only �nitely many stages.Proof. Let s00 + 1 be a stage after whi
h no Lj with j < k ever initializes any node, andwrite Lk = L�;x. If �R(x)[s℄# with the same use at every s � s00, or if �R(x)[s℄" for allsu
h s, then Lk is satis�ed and never again initializes any nodes. Otherwise, Lk initializes
o�nitely many nodes at some stage s + 1 � s00 + 1. Thereafter, none of those nodeswill put any number < 'R(x)[s℄ into R. Among the �nitely many remaining nodes �,D- and M-nodes may injure Nk, but ea
h of them 
an put only �nitely many numbersinto R without being initialized itself. (A witness ball for � drops by at least one gateevery time a new tra
e targeted for R is assigned.) Su
h an � will not be initialized byany other L-requirement after s00+1, and if other nodes initialize � in�nitely often, theneventually n(�; s) be
omes so large that Lk will initialize � along with everything else.Hen
e we will rea
h a stage at whi
h Lk initializes every node ex
ept those whi
h willnever again injure it, and thereafter Lk is satis�ed and never needs to initialize any morenodes.Lemma 5.9 The true path g is in�nite, and every node on it is initialized only �nitelyoften.Proof. Suppose the node � lies on g. Now � may have in�nitely many immediate su
-
essors, so we must show that one of them will be eligible in�nitely often. Sin
e theimmediate su

essors of � are well-ordered, there will be a leftmost one � eligible in-�nitely often, and that � will then lie on g.By indu
tion we assume that � is initialized only �nitely often by nodes � � (andnever by nodes � �). Hen
e n(�) = lims n(�; s) exists, and only requirements Lk withk < p�q + n(�) will ever initialize �. By Lemma 5.8, therefore, � will only be initialized�nitely often. Let s00+ 1 be the last stage at whi
h � is initialized. Now we argue that �itself initializes its su

essors only �nitely often, and that one of its immediate su

essorswill be eligible in�nitely often (so g does not terminate at �).If � is an N- or R-node, then � has only �nitely many immediate su

essors. Everytime � a
ts, one of its su

essors will be eligible, and su
h a � never initializes any of itssu

essors, so the lemma is 
lear.A Pi;	-node � also has only �nitely many immediate su

essors, but may initialize itssu

essors. We 
laim that this only happens on
e after stage s00 + 1, however. It o

ursat only a stage s+1 su
h that z� has been realized and ~ks+1 = �1, and the initialization38



preserves the 
omputation 	Gi�B(z�)[s℄ = 0. Thereafter �̂ hfi will be eligible whenever� is, and no further initialization o

urs.Even if no initializations o

ur after s00 + 1, however, there may be in�nitely manystages after s00 + 1 at whi
h � is eligible but no immediate su

essor of � is eligible.Su
h stages o

ur in Sub
ase 6 of the 
onstru
tion for �. To 
omplete the indu
tion forP-nodes, therefore, we need the following sublemma.Sublemma 5.10 In this situation, let k be the least number su
h that Nk = Ne;� is a
tivealong � via some � and ~ks+1 = k at in�nitely many �-stages s + 1. Then � = � ĥaki iseligible at in�nitely many stages.Proof. �̂ hfi 
an never be eligible after s00 + 1, or ~k would never again be de�ned. Byminimality of k, there is a stage s0+1 after whi
h no node to the left of � is ever eligible.Hen
e at stages s + 1 > s0 + 1, � must never have been able to obey the request fromSub
ase 6 and in
rease 
Wek�B� (z�)[s℄ on its own. Therefore, the only in
reases 
ome atstages s + 1 when Sub
ase 6(b) applies with ~ks+1 = k and 
Wek�B� (z�)[s℄ is enumeratedinto B. After ea
h su
h B-enumeration, � will be eligible at the next �-stage. Hen
eif � were eligible only �nitely often, then 
Wek�B� (z�) would only be rede�ned �nitelyoften, so would 
onverge to some 
. However, sin
e � ĥ1i � g, Lemma 5.8 ensures that�R is total, so there will exist �-stages s + 1 with ~ks+1 = k at whi
h R�'R(
)[s℄ #. Atsu
h stages we have no Gj -
hange on 'R(
)[s℄, so we enter Sub
ase 6(b), and at the next�-stage we will be in Sub
ase 3 and � will be eligible again, yielding a 
ontradi
tion.If � is a Di;
-node, then � initializes all its su

essors when the witness element wi� isde�ned, again if wi� is realized, again at every �-stage until wi� enters the pinball ma
hine,and again ea
h time any ball with subs
ript � moves down the pinball ma
hine. On
e werea
h a stage after whi
h � is never initialized again, the next witness wi� will never be
an
elled, and by Sublemma 5.5, if it is realized, then it will eventually enter its targetset, after whi
h � will never again initialize any of its su

essors.Among the immediate su

essors of �, �̂ hfi will be eligible in�nitely often if wi� entersGi after the last initialization of �. If this wi� never enters Gi, then by Sublemma 5.5 itmust never have been realized, so �̂ hwi is eligible in�nitely often.An M-node � has only �nitely many immediate su

essors, and the only stages> s00 + 1 at whi
h � either fails to make one of them eligible or initializes its su

essorsare those stages s+ 1 (if any) at whi
h Substeps 3(b), 4, 5, or 6 of the 
onstru
tion forM-nodes apply. To rea
h any of these substeps after s00 + 1, � must enter Substep 3(b)�rst. After that, x� is permanently de�ned. By Sublemma 5.5, � 
an only stay in Substep4 for �nitely many steps for ea
h of the �nitely many balls wk� , and then 
an only stay inSubstep 5 for �nitely many steps for ea
h su
h ball. Finally � spends exa
tly one �-stagein Substep 6, at whi
h x� enters Q. Thereafter �̂ hfi will be eligible (via Substep 1) atevery �-stage, and � will make no further initializations after its one stage in Substep 6.Thus the lemma holds at M-nodes. 39



Finally, if � is a Ue;i-node, we let r = lim infs r(�; s) and � = �̂ hpri. The existen
e ofthis r follows from the de�nition of r(�; s) in the 
onstru
tion: if there are in�nitely many�-expansionary stages, then r = 0; otherwise r equals the greatest number appearing inthe 
onstru
tion at or before the greatest �-expansionary stage. Clearly, on
e we rea
ha stage s00+1 after whi
h r(�; s) � r, � will never again initialize any node above �. We
laim that � � g.Now the proof of Sublemma 5.5 a
tually showed slightly more than was stated:Sublemma 5.11 Let � � g be a Ue;2i-gate, and 
hoose r as above. Any ball wj� > rwaiting at gate � at a stage s+1 after whi
h � is never again initialized must eventuallyenter Gj .From this it follows that there will be in�nitely many �-stages. If not, then eventuallyall of the (�nitely many) balls emanating from above � whi
h had passed gate � wouldeither enter their target sets or be 
an
elled by initialization of their sour
e nodes. (Allsu
h balls are > r by Sublemma 5.4.) At the next stage at whi
h r(�; s) = r, � wouldthen be eligible again. By indu
tion, then, we have established Lemma 5.9.Lemma 5.12 Every D-,M-, P-, R-, and U-requirement is satis�ed by our 
onstru
tion.Proof. Every one of these requirements is assigned to some unique node on the true pathg. (N-requirements, whi
h may be assigned to several nodes, are handled in Lemma5.16.) We argue by indu
tion along g, proving that the requirement assigned to ea
h� � g is satis�ed by the sets we 
onstru
t. Assume this holds for every � ( �, and lets00 + 1 be the last stage at whi
h � is initialized.� Suppose � is a Di;
-node. On
e we rea
h the �rst �-stage > s00+1, the 
onstru
tionsele
ts a witness element wi� whi
h will remain �xed through all subsequent stages.If this witness element is ever realized, then by Sublemma 5.5 we see that wi� 2 Gi,so that Di;
 is satis�ed. If it is never realized, then 
Hi(wi�) either diverges or
onverges to a value 6= 0. However, in this 
ase wi� never enters the pinball ma
hineon behalf of �, and it 
annot simultaneously be a witness or tra
e for any othernode, sin
e su
h witnesses are always 
hosen large (in
luding balls fromM-nodes,whose values were originally 
hosen as the uses of �-fun
tionals). Hen
e wi� =2 Gi,satisfying Di;
.� Suppose � is an Rk-node. Then at ea
h �-stage we either extend the fun
tional ��to a larger domain, or add new axioms so as to rede�ne it on some value x in its
urrent domain. However, the use of �Gk�P� (x) is only 
hanged when x enters Gkor when x = x� for some � � � and wk� enters Gk. Sin
e ea
h of these 
an happenonly on
e after �Gk�P� (x� 1) has 
onverged, the fun
tion �Gk�P� must be total.If s0+1 < s+1 are 
onse
utive �-stages and a number x enters Q at a stage t withs0 + 1 � t < s + 1, we have x = x� for some Mi;j;�;�-node � � � (sin
e if � � �,40



� would be initialized). If � lies to the right of �, then x� must have been 
hosenby a node to the right of � at a stage > s0 + 1, so x� 
annot be in the domain of�Gk�P� [s0+1℄. Otherwise � � �, and by the 
onstru
tion for M-nodes, � will haveenumerated the use �Gk�P� (x)[s0 + 1℄ into P at the same stage that x entered Q.Sin
e s+1 is the �rst �-stage sin
e then, � is allowed to rede�ne �Gk�P� (x)[s+1℄ = 1.Thus �Gk�P� = Q, satisfying Rk.� Suppose � is an Mi;j;�;�-node, and suppose Wj = �Gi and �Wj�P = Q. Thenthere must be in�nitely many �-expansionary stages. Now if a witness element x�be
omes de�ned at any stage s+ 1 > s00 + 1, then as noted in the 
onstru
tion wehave x� = wi
 for some 
 � �̂ h1i (by Sublemma 5.3), and x� must have enteredGi by stage s but sin
e the previous �-expansionary stage r + 1. At stage s + 1we enter Substep 3(b) of the 
onstru
tion for �, and at the next �-stage we enterSubstep 4. By Sublemma 5.5, the balls 
hosen by � in Substep 3(b) all eventuallyenter their target sets, so we eventually enumerate x� into Q[t+ 1℄ via Substep 6at some stage t + 1. However, applying Lemma 5.6 to the ball wi
, we see that�Wj�P (x�) = 0, 
ontradi
ting the assumption that �Wj�P = Q.Hen
e x� is never de�ned. But this means that �Wj� = Gi on all elements of !,sin
e in Step 3(a) of the 
onstru
tion for � we de�ne it thus, with the same use as�Wj�P , for all x < l(�; s) (and lims l(�; s) = 1). Moreover, we made sure in thatstep that any rede�nition of � was allowed by some Wj -
hange, so � is indeed a
omputable fun
tional. (Had there been no Wj-
hange, we would have de�ned anelement to be x� instead.) Thus Mi;j;�;� is satis�ed.� Suppose � is a Ue;2i-node, and that �G2i�E0e = �F0e with domain !. (The argumentfor Ue;2i+1 is analogous.) Then the node � = �̂ hp0i will lie on g.We make the standard argument for a pinball 
onstru
tion. In the 
onstru
tion,we only allow a blo
k to pass gate � if its lead ball is targeted for the in�mum (asdis
ussed below) or for E1, or is > r(�; s). (A ball is always smaller than its tra
e.Hen
e if the lead ball is > r(�; s), then the entire blo
k 
onsists of balls > r(�; s).)A single blo
k 
an injure both �G2i�E0e and �F0e only if it 
ontains a ball targetedfor the in�mum G2i+1. Otherwise, we prote
t the uninjured side by initializing allnodes of lower priority than the sour
e node of the balls in the blo
k and refusing toallow any other ball to pass the gate until all the balls of the �rst blo
k have eitherentered their target sets or disappeared due to initialization of their sour
e nodes,and until the injured 
omputation has re
overed and a
hieved a longer length ofagreement with the uninjured 
omputation. (Noti
e that � has the 
orre
t guessesabout lim infs r(�; s) for every U-gate � ( � and about lim infs r(�; i; s) for everyP-gate � ( � and every i, so any ball emanating from a node above � is largeenough that su
h an � will eventually allow that ball to pass. Thus no ball whi
hpassed gate � will have to wait permanently at any gate below �, so we know thateventually ea
h blo
k waiting at gate � will be allowed to pass.)41



In Instru
tion 4.4, however, we allowed a ball w2i+1� targeted for G2i+1 to passgate � at stage s + 1 even if it was � r(�; s). (No other instru
tion allows balls� r(�; s) to pass gate �, ex
ept balls targeted for E1, whi
h will not injure eitherside of the 
omputation. Also, Instru
tion 4.4 applies when w2i+1� needs a newtra
e, so w2i+1� passes gate � by itself; its blo
k at stage s + 1 
ontained no otherballs.) Therefore, when we attempt to 
ompute �F0e (x), we use a G2i+1-ora
le tolook for the least �-stage s0+1 > s00+1 by whi
h the length of agreement between�F0e [s0℄ and �G2i�E0e [s0℄ ex
eeds x and su
h that both 
omputations on input x areG2i+1-
orre
t, i.e. G2i+1� (u0 + 1)[s0℄ = G2i+1� (u0 + 1);where u0 is the greater of the uses of the two 
omputations �G2i�E0e (x)[s0℄ and�F0e (x)[s0℄. Set h(x) = �G2i�E0e (x)[s0℄.(Su
h a stage s0 must exist. �F0e (x) and �G2i�E0e (x) both 
onverge by some stages with some use u, and there must be in�nitely many �-stages > s by whi
h G2i+1stabilizes on u. Pi
k any Dj;
-node � � � su
h that � � g, j 2 !, the fun
tional
 evaluates to 0 on every input and every ora
le, and � is never eligible until afterG2i+1 � u has stabilized. Then � must subsequently enumerate an element intoGj . We 
laim that the least �-stage s0 + 1 > s + 1 by whi
h � has 
ompleted itsenumerations into all sets Gj will satisfy the above 
onditions. Clearly the lengthof agreement ex
eeds x, so we must show that s0 is G2i+1-
orre
t. Now � is neverinitialized again, sin
e otherwise it would have to enumerate another element intoGj to get ba
k to the out
ome � ĥfi, so no ball from any node � � ever movesafter stage s0 + 1. Sin
e s0 + 1 is a �-stage, every node to the right of � = �̂ hp0iis initialized at stage s0 + 1. Nodes � � above � were initialized when the witnesswj� entered Gj, and 
annot have been eligible sin
e then, be
ause � has not beeneligible sin
e then. Also, no ball from any node � � 
an have been below � whenwj� passed �, or 
an have moved sin
e then. Hen
e no ball at all is at any gate ( �at stage s0 + 1, ex
ept those whi
h wait there permanently.)We note that no balls below � at stage s0 + 1 ever move again. Balls from nodes� � 
annot move without initializing �, whi
h is impossible sin
e s0 + 1 > s00 + 1.Balls from nodes to the right of � are all 
an
elled at the �-stage s0 + 1, and inorder for s0 + 1 also to be a �-stage, no ball from any node � � 
an be waiting atany node below � at stage s0+1, sin
e otherwise � would not be eligible at s0+1.We argue by indu
tion that at every �-stage s + 1 > s0 + 1, at least one side ofthe 
omputation is G2i+1-
orre
t { that is, either �F0e (x)[s℄ = h(x) with use us su
hthat G2i+1� (us+1)[s℄ = G2i+1� (us+1), or �G2i�E0e (x)[s℄ = h(x) with use satisfyingthe same 
ondition. Assume this holds for all �-stages t+1 with s0 � t � s0, wheres0 + 1 is the last �-stage before s+ 1.Suppose that �F0e (x)[s0℄ = h(x) is G2i+1-
orre
t with use us0. (The analogousargument will hold if the other side was G2i+1-
orre
t, as shown below.) Theindu
tion is trivial unless some ball � us0 enters F0 before stage s+ 1, so suppose42



w = w2k+1� is the �rst su
h ball to do so, entering G2k+1 at a stage t + 1 withs0 < t � s. Sin
e no ball from any node � � ever moves after s00 +1, we must have� � �. With w � us0 , Sublemma 5.4 ensures that w must have been 
hosen beforestage s0 + 1, and hen
e � � �, sin
e all nodes to the right of � were initialized atstage s0+1. Thus w 
annot have been below � at the �-stage s0+1, so w must havepassed � at a stage t0 + 1 � s0 + 1. By G2i+1-
orre
tness, w was not targeted forthe in�mum G2i+1, so we must have r(�; t0) < w � us0 � s0, and thus r(�; t0) = 0.This for
es t0 + 1 to be a �-stage < s + 1, so in fa
t t0 + 1 = s0 + 1. Noti
e thatdue to the instru
tions for gate �, no other ball from above � 
an have been below� at stage s0 + 1, or 
an have passed � between stages s0 + 1 and t. Tra
es mayhave been 
hosen for w after it passed �, but they would all be 
hosen > us0, andwill all enter their target sets before w enters G2k+1. After stage t+1, the restraintr(�; �) will be set to prevent any other ball from above � from passing gate �, untilthe next time the length of agreement re
overs and ex
eeds l(�; s0) { whi
h mustbe the next �-stage, namely s + 1. Thus w was the only ball 
hosen before s0 + 1to pass gate � between stages s0 + 1 and s.Now we 
laim that if �F0e (x)[s℄ is no longer G2i+1-
orre
t, then the 
omputation�G2i�E0e (x)[s℄ = h(x) is G2i+1-
orre
t. The pre
eding paragraph shows that no ballentered G2i �E0 between stages s0+ 1 and s, ex
ept balls whi
h were 
hosen largeafter s0 + 1, so that�G2i�E0e (x)[s℄ = �G2i�E0e (x)[s0℄ = �F0e (x)[s0℄ = h(x):The �rst two of these 
omputations have the same use u, and we 
laim that bothare G2i+1-
orre
t. Suppose that some ball w2i+1� was 
hosen before stage s0 + 1(sin
e any ball 
hosen after s0+1 would be > u) and eventually enters G2i+1. Thenw2i+1� was waiting either at gate � or at a gate � � at stage s0 + 1 (sin
e no ballwas waiting below � at s0 + 1, balls from the right of � were initialized then, andballs from nodes � � never move again). Also, we have � � �, sin
e w2i+1� was not
an
elled when w2k+1� moved. Hen
e w2i+1� was 
hosen before w2k+1� was 
hosen,and so w2i+1� < w2k+1� . (If � = �, then k < i, sin
e w2k+1� passed gate � �rst.Then w2k+1� would be a tra
e for w2i+1� , hen
e larger.) But w2k+1� < us0, so thiswould 
ontradi
t the G2i+1-
orre
tness of the 
omputation �F0e (x)[s0℄, whi
h wasthe indu
tive hypothesis.The analogous argument, assuming �G2i�E0e (x)[s0℄ = h(x) to be G2i+1-
orre
t withuse us0 , is similar. However, in the se
ond paragraph, when we 
laim that no ball
hosen before s0 + 1 entered F0 between s0 + 1 and s, we must worry about ballsw2i+1� targeted for the in�mum, sin
e su
h balls 
ould pass � at a stage t betweens0 + 1 and s despite a large restraint r(�; t). The only way for this to happen isunder Instru
tion 4.4, if the tra
e for w2i+1� entered its target set at stage t+1. Thisis possible only if that tra
e was the ball w2i� or e0� whi
h passed � at stage s0 + 1,whi
h for
es both � = � and w2i+1� < us0 . This 
ontradi
ts the G2i+1-
orre
tness43



of the 
omputation �G2i�E0e (x)[s0℄, so in fa
t no su
h ball w2i+1� 
an have passed �between s0+1 and s. The rest of the argument goes through essentially un
hanged,showing that �F0e (x)[s℄ = h(x) must be G2i+1-
orre
t.� Suppose � is a Pi;	-node. Then at the �rst �-stage after s00 + 1, a witness elementz� will be 
hosen and will remain �xed at all subsequent stages. We will need thefollowing two sublemmas for our argument. The �rst one guarantees that if � isin Sub
ase 5 at in�nitely many stages but only rea
hes Sub
ase 6 at �nitely manystages, then the use  Gi�B(z�)!1.Sublemma 5.13 Suppose some � � g is an Nk-node, with Nk = Ne;�, but thereis a node � with � � � � g su
h that Ne;� is not a
tive along � via �. Then forall suÆ
iently large z, 
We�B� (z)[s℄ ! 1 as s ! 1. (More spe
i�
ally, let � bethe immediate prede
essor of the least su
h �. Then � � � , � is a P-node, and forea
h z � z� and ea
h n 2 ! there exists a stage s0 su
h that at all stages s � s0 wehave either 
We�B� (z)[s℄ > n or �We�B� (z)[s℄".)Proof. Nk is a
tive via � along every immediate su

essor of �, so the � des
ribedmust lie above �. The node � must be a Pi;	-node for some i and 	, sin
e onlyat su

essors of P-nodes 
an Nk 
hange from a
tive via � to ina
tive via �. If� � � ĥaki, then Sub
ase 6(b) must apply in�nitely often with ~ks+1 = k in the
onstru
tion for � . Hen
e 
We�B� (z�)[s+1℄ is 
hosen large at in�nitely many stagess+ 1, so the sublemma is satis�ed for z = z� . Otherwise � � � ĥali for some l < kwith Nl assigned to some � � �. In order for this � to be eligible in�nitely often,k must fail Condition (1) from page 29 in�nitely often. But 
Wel�B� (z�)[s + 1℄ is
hosen large at in�nitely many stages s + 1 sin
e � ĥali � g, and we must have Gi�B(z�)[s℄ ! 1 as s ! 1 to allow ~k = l in�nitely often. By Condition (1),therefore, 
We�B� (z�)[s℄!1 as well.By 
onvention the use fun
tion 
We�B� is in
reasing, so the result holds for allz � z� .Sublemma 5.14 Let s+1 > s00+1 be a �-stage at whi
h the 
onstru
tion for � isin Sub
ase 6. Then (Gi�B)� Gi�B(z�)[s℄ will be preserved (and 	Gi�B(z�)[s℄#= 0)until we enter either Sub
ase 6(b) or Sub
ase 2 of the 
onstru
tion for �.Proof. Let t+1 > s+1 be a �-stage su
h that � has not entered Sub
ase 2 or 6(b)sin
e stage s+1. By indu
tion on t, � has not entered any of Sub
ases 1, 3, 4, or 5sin
e stage s+ 1 either. (For Sub
ase 5, this follows be
ause 
-uses never de
reasefrom one stage to the next.)For preservation of Gi, noti
e that no ball targeted for Gi was below gate � at stages+ 1 (ex
ept possibly balls from nodes to the left of �, and su
h balls never move44



again). The 
onstru
tion set r(�; i; ~ks; s+ 1) �  Gi�B(z�)[s℄, ensuring that no ball�  Gi�B(z�)[s℄ from above � has passed � sin
e stage s+1, and all balls from nodesto the right of � are 
an
elled by initialization at s+1. (Balls from nodes � � nevermove again, sin
e � is never initialized again.)Now a node must be eligible in order to enumerate an element into B. Hen
e nonode to the left of � nor any node above � will violate our B-preservation, sin
enodes above � are never eligible when � is in Sub
ase 6. Ea
h node � to the rightof � is initialized at s + 1, so any element whi
h � enumerates into B at staget+ 1 will be of the form 
We�B� (z�)[t℄, hen
e > z�[t℄ >  Gi�B(z�)[s℄. A node � � �never again enumerates anything into C (sin
e doing so would initialize �), so itsonly B-enumeration 
an 
ome when � is in Sub
ase 6(b). Assume � ĥaki � �, andsuppose that at stage t+ 1, � enumerates some element 
We�B� (z�)[t℄ into B, withNl = Ne;� assigned to � � � . Then k � l, sin
e otherwise � would be initialized atthis stage, so Nl is not a
tive via � along �, and � is pre
isely the node �� des
ribedin Sub
ase 5. But then 
We�B� (z�) >  Gi�B(z�)[t℄, sin
e we are not in Sub
ase 5.Thus the B-enumeration by � at stage t+ 1 does not violate the sublemma.If �̂ hfi ever be
omes eligible at some stage s+ 1 > s00+ 1, then our initializationswhen z� entered C will preserve the 
onvergen
e 	Gi�B(z�)[s℄#= 0 6= C(z�) foreverafter, satisfying Pi;	. (The same argument as in Sublemma 5.14 shows that no� � � will injure this 
omputation by any subsequent B-enumeration.)If �̂ hwi � g, then either Sub
ase 4 holds in�nitely often (so 	Gi�B(z�) #6= 0 ordiverges) or Sub
ase 5 holds in�nitely often (so 	Gi�B(z�) ", by Sublemma 5.13and the 
onditions of Sub
ase 5). Sublemma 5.13 ex
ludes the possibility of ourremaining in Sub
ase 5 without eventually entering Sub
ases 2 or 3, both of whi
hgive out
omes to the left of �̂ hwi � g.) Moreover, z� never enters C, so Pi;	 holds.Otherwise, z� is realized in�nitely often, and Sublemma 5.13 guarantees that ea
htime it is realized, we will eventually enter Sub
ase 6 of the 
onstru
tion for �. If~k = �1 at any subsequent �-stage, � will enumerate z� into C, and �̂ hfi be
omeseligible, as des
ribed above. Otherwise there is some k su
h that Nk = Ne;� isa
tive along � via some � and � = �̂ haki � g. Let s0 + 1 < s1 + 1 < � � � be allthe �-stages o

urring after the last initialization of �. We 
laim that Pi;	 holdsbe
ause in this 
ase 	Gi�B(z�) must diverge. At ea
h stage sn+1, we are in Sub
ase3 of the 
onstru
tion for the node �, so we have been in Sub
ase 6(b) at some staget+ 1 > sn�1 + 1. At that stage t + 1, we enumerated 
We�Bk (z�)[t℄ into B, and atthe next �-stage s+1, 
We�Bk (z�)[s+1℄ was 
hosen large. Sin
e ~ksn+1 = k, we know
We�Bk (z�) �  Gi�B(z�)[sn℄, so  Gi�B(z�)[sn℄!1 as n!1, satisfying Pi;	.This 
ompletes the proof of Lemma 5.12.The following lemma ensures that the fun
tionals ��;k built at P-nodes � with�̂ haki � g are indeed 
omputable. 45



Lemma 5.15 (�-Corre
tion Lemma) Let � be a Pi;	-node, and let � = � ĥaki lieon the true path g through T , with Nk = Ne;�. Then there is an s0 su
h that for everyw 2 ! and every �-stage s+ 1 � s0 + 1 su
h that w 2 dom(�Gi�;k)[s+ 1℄, no ball wi� withÆGi�;k(w)[s+ 1℄ < wi� < 'R(w)[s℄ enters Gi from stage s+ 1 until the next �-stage.Proof. Sin
e ak is an out
ome of the node �, the requirement Nk must be a
tive along� via some node � ( �. Now dom(�Gi�;k) � dom(�R)[t℄ at every stage t, sin
e ��;k isextended only at �-stages, all of whi
h are � -expansionary. Let s0 + 1 be the last stageat whi
h � is initialized, so that no ball with subs
ript � � ever moves after stage s0+1.Let s1+1 be the �rst �-stage > s0+1 at whi
h �Gi�;k(w)[s1+1℄ is de�ned. Then the useÆGi�;k(w)[s1 + 1℄ is 
hosen large, hen
e is greater than 'R(w)[s1℄.We argue by indu
tion on �-stages s+1 that no ball wi� with ÆGi�;k(w) < wi� < 'R(w)[s℄and � � � even exists at any �-stage � s1+1. (By the above remarks, this holds at stages1 + 1.) Sin
e no ball with subs
ript � � moves after stage s0 + 1 and no ball de�nedafter a �-stage s + 1 
an be < 'R(w)[s℄, this will prove the lemma.For the indu
tive step, let s + 1 > s0 + 1 be 
onse
utive �-stages � s1 + 1, and �x� � �. Now any new witness or tra
e 
hosen at an intervening stage must be greaterthan 'R(w)[s0℄, so the indu
tion will be trivial unless 'R(w)[s℄ > 'R(w)[s0℄. This impliesthat some element y < 'R(w)[s0℄ entered R after stage s0. (Re
all that R = �kGk.)Then y must have been appointed as a witness or tra
e before stage s0+1, by some node� � �.If y entered Gi, then by our indu
tion on s0 + 1, we have y � ÆGi�;k(w)[s0 + 1℄ as well,so at stage s + 1 we rede�ne �Gi�;k(w) and set ÆGi�;k(w)[s+ 1℄ > 'R(w)[s℄, 
ompleting theindu
tion for s+ 1.Otherwise y = wj� entered Gj for some j 6= i. If � � � on T , then � was initializedwhen y entered Gj and is not eligible again before stage s + 1, so any new ball withsubs
ript � at stage s+ 1 will be greater than 'R(w)[s℄, by Sublemma 5.4.If � � �, then no ball y0 with subs
ript � has moved or been 
hosen sin
e wj� was
hosen (sin
e otherwise � would have been initialized). Sublemma 5.4 then ensures thatsu
h a y0 is < wj�, hen
e < 'R(w)[s0℄, and the indu
tive hypothesis guarantees that eithery0 < ÆGi�;k(w)[s0 + 1℄ or y0 is targeted for a set other than Gi.Finally we 
onsider the 
ase � = �. Sin
e wj� entered Gj after stage s0, it must havepassed gate � at a stage > s0, sin
e otherwise � 
ould not have been eligible at s0 + 1.When wj� passed gate �, all its tra
es either had already entered their target sets or weretargeted for E0 or E1. Moreover, if wj� was a tra
e for another ball wj+1� , then wj+1�must have been waiting at a gate � � at stage s0 + 1. (Two balls targeted for R 
annotpass a P-gate simultaneously.) The ball wj+1� may have dropped as far as gate � whenwj� entered Gj, but the 
onstru
tion does not allow it to pass � until the next �-stages + 1. When wj� entered Gj , a new tra
e (or tra
es) was appointed for wj+1� , but thesenew tra
es will ea
h be targeted for either E0, E1, or Gj , not for Gi, and will begin at46



the same gate at whi
h wj+1� is 
urrently waiting. Hen
e none of these tra
es will moveuntil stage s+ 1, so no new tra
e will be targeted for Gi until at least stage s+ 1. Thisproves our 
laim, and the lemma follows.Lemma 5.16 Every requirement Nk = Ne;� is satis�ed by our 
onstru
tion.Proof. Let g be the true path, and let � be the node des
ribed by Lemma 5.2 for Nk. If� ĥwi � g, then We 6= �R, so Nk holds. Otherwise we have two 
ases.Case 1: There exists a Pi;	-node � � �, for some i and 	 su
h that � = �̂ haki � g.By the 
onstru
tion and our 
hoi
e of �, Nk must be satis�ed via � along every node� � on g. On
e we have rea
hed a stage s00 + 1 after whi
h � is never again initialized,Sub
ase 6(b) guarantees that the domain of the fun
tion �Gi�;k built by � will be extendedby at least one element between every pair of �-stages, subje
t only to the restri
tionthat every element in the domain at stage s+1 must be < 
We�Bk (z�)[s+1℄. As noted inthe proof of satisfa
tion of Pi;	 above, 
We�Bk (z�)[s℄!1 as s!1, so for ea
h n 2 !,�Gi�;k(n)[s + 1℄ is de�ned at in�nitely many stages s + 1. The L-requirements will thenensure that �Gi�;k is total, so that We �T Gi, given the following.Sublemma 5.17 In the situation above, ��;k is a 
omputable fun
tional, with �Gi�;k =We.Proof. In Sub
ases 3 and 6(b) we always rede�ne �Gi�;k to equal We on its domain. Wemust prove that ��;k is 
omputable, i.e. that these rede�nitions are allowed.If the 
onstru
tion is in Sub
ase 3 at the �-stage s+ 1, let s0 + 1 be the most re
ent�-stage (at whi
h we must have been in Sub
ase 6(b)). If any y < ws0+1 has entered Wesin
e stage s0+1, then some 
hange in 'R(y) must have taken pla
e sin
e s0+1 to allow it,where � is the fun
tional assigned to Nk. With the restraints r(�; j; k; s0+1) � 'R(y)[s0℄for all j 6= i, this means that Gi�'R(y)[s0℄ has 
hanged sin
e s0. Indeed, by Lemma 5.15,Gi�ÆGi�;k(y)[s0℄ must have 
hanged, so our rede�nition of �Gi�;k(y)[s+ 1℄ is allowed.In Sub
ase 6(b) at stage s+ 1, if some y < ws+1 � 
We�Bk (z�)[t+ 1℄ has entered Wesin
e the last stage t+1 at whi
h we were in Sub
ase 3 with ~kt+1 = k, then y must havebeen allowed to enter We by some 
hange in R�'R(y)[t℄. Now we set r(�; i; k; t+ 1) ='R(
k(z�))[t℄, and this restraint has stayed at least that large at all subsequent stagesup through s + 1. Hen
e some Gj � 'R(z�)[t℄ with j 6= i must have 
hanged after z�was realized. However, the 
hange would have happened before the previous �-stages0 + 1 (sin
e otherwise we would be in Sub
ase 6(a) at stage s + 1) and after the staget0+1 > t+1 at whi
h we re-entered Sub
ase 6 with ~kt0+1 = k and reset r(�; j; k; t0+1) = 0.However, at stage t0 + 1 we also requested that � = �k in
rease 
We�B� (z�)[t0℄. Hen
eby stage s + 1, � would have re
ognized the We-
hange and obeyed our request, setting
We�B� (z�)[s+1℄ >  Gi�B(z�)[s℄. This would 
ontradi
t Condition (1), sin
e our restraintshave preserved  Gi�B(z�)[t0℄ sin
e we entered Sub
ase 6. Thus no su
h Gj-
hanges 
anhave taken pla
e, so We has not 
hanged, and Sub
ase 6(b) only extends the domain ofthe fun
tional ��;k without rede�ning it on any arguments.47



Case 2: By Lemma 5.2, if Case 1 does not hold, then Nk is a
tive via � along everynode on g above �. Then at every �-expansionary stage we extend the domain of �We�B�by another element. On
e the use 
We�B� (x�1) stabilizes, 
We�B� (x) in
reases only when:� x enters C; or� x = z� for some eligible � � � at whi
h Nk is satis�ed; or� x = z� for some eligible � � � at a stage at whi
h ~k = k in the 
onstru
tion at �.In the se
ond 
ase, � 
annot lie on g, so either � is eligible only �nitely often or z� iseventually 
an
elled by initialization and rede�ned to be > x. In the third 
ase, if � � g,then there are only �nitely many su
h stages. Hen
e the use will in
rease only �nitelyoften, and �We�B� is total.It only remains to show that this fun
tion 
omputes C 
orre
tly { whi
h is 
lear forany argument x =2 C. Now no node � � ever enumerates any element into C withoutinitializing �, and after ea
h initialization we start building a new ��, so the versionof �� 
onstru
ted after the last initialization of � will never be injured by those nodes.Among nodes � � �, only P-nodes ever enumerate any elements into C. When su
h a �does so, the element is the witness z�, and it enters C at a stage s+1 with ~ks+1 = �1 inthe 
onstru
tion for that �.If � lies to the right of �, then z� is 
an
elled ea
h time � is eligible. If su
h a z� isenumerated into C, therefore, then there were no �-stages between the de�nition of z�at some stage s+ 1 and its entry into C. Sin
e z� was 
hosen large, it 
annot have beenin the domain of �We�B� [s℄, nor 
an it have entered that domain sin
e stage s+ 1. When�We�B� (z�) is �nally de�ned, therefore, it will be 
orre
t.So suppose � lies below the Pi;	-node �, and � enumerates z� into C at stage s + 1(using Sub
ase 6 of the 
onstru
tion for �). Sin
e ~ks+1 = �1 and Sub
ase 5 did notapply, either 
We�B� (z�)[s℄" or 
We�B� (z�) >  Gi�B(z�)[s℄. In the latter 
ase � enumerates
We�B� (z�)[s℄ intoB[s+1℄. In either 
ase, therefore, � will be able to de�ne �We�B� (z�)[t+1℄
orre
tly at the next �-stage t+ 1. Hen
e �We�B� = C, satisfying Nk.6 Referen
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