
Computable Categori
ity of Trees of Finite HeightSte�en LemppDepartment of Mathemati
sUniversity of Wis
onsin-MadisonCharles M
CoyDepartment of Mathemati
sUniversity of Wis
onsin-MadisonRussell MillerDepartment of Mathemati
sQueens College { C.U.N.Y.Reed SolomonDepartment of Mathemati
sUniversity of Conne
ti
ut�August 3, 2004Abstra
tWe 
hara
terize the stru
ture of 
omputably 
ategori
al trees of �nite height, andprove that our 
riterion is both ne
essary and suÆ
ient. Intuitively, the 
hara
terizationis easiest to express in terms of isomorphisms of (possibly in�nite) trees, but in fa
t itis equivalent to a �03-
ondition. We show that all trees whi
h are not 
omputably
ategori
al have 
omputable dimension !. Finally, we prove that for every n � 1 in!, there exists a 
omputable tree of �nite height whi
h is �0n+1-
ategori
al but not�0n-
ategori
al.�The �rst author was partially supported by NSF grant DMS-9732526 and by the Vilas Foundation of theUniversity of Wis
onsin. The se
ond author was partially supported by a VIGRE grant to the University ofWis
onsin. The third author was partially supported by a VIGRE postdo
 under NSF grant number 9983660to Cornell University. The fourth author was partially supported by an NSF postdo
toral fellowship.1



1 Introdu
tionComputability theorists have developed powerful te
hniques for studying 
omputational prop-erties of the natural numbers. Many of these te
hniques 
an be applied to more general alge-brai
 stru
tures on
e they are suitably 
oded into the natural numbers. In this arti
le, we usetools from 
omputability theory to study 
omputational problems for trees of �nite height.We begin with some general de�nitions and ba
kground in 
omputable model theory. LetA be a 
ountable stru
ture over a �xed 
omputable language whose domain jAj is a subset of!. The degree of A is the Turing degree of the atomi
 diagram of (A; a)a2jAj. In parti
ular, ifthe language is �nite, then A is 
omputable if jAj is a 
omputable set and the interpretationsof the fun
tion and relation symbols are all 
omputable. Throughout this paper, we assumethat all stru
tures are 
oded into the natural numbers.In 
omputable model theory, one frequently works in a given 
lass of 
ountable algebrai
stru
tures su
h as abelian groups, partial orders, �elds, or as in this paper, �nite heighttrees. Any 
omputable stru
ture from one of these 
lasses is isomorphi
 to in�nitely manyother 
omputable stru
tures. It may happen, however, that two 
omputable stru
tures areisomorphi
, yet that the only isomorphisms between them are non
omputable (as maps fromone domain to the other). If so, then these stru
tures lie in distin
t 
omputable isomorphism
lasses of the isomorphism type of the stru
ture. On the other hand, if there exists a 
om-putable fun
tion taking one stru
ture isomorphi
ally to the other, then the two stru
tures liein the same 
omputable isomorphism 
lass.The 
omputable dimension of a 
omputable stru
ture is the number of 
omputable iso-morphism 
lasses of that stru
ture. The most 
ommon 
omputable dimensions are 1 and !,and many 
lasses of algebrai
 stru
tures are known to admit only these 
omputable dimen-sions. The following theorem is a 
ompilation of results due to Gon
harov ([12℄); Gon
harov,Dzgoev ([13℄); Gon
harov, Lempp, Solomon ([14℄); LaRo
he ([22℄); Metakides, Nerode ([23℄);Nurtazin ([28℄); and Remmel ([29℄, [30℄).Theorem 1.1 Computable stru
tures in the following 
lasses have 
omputable dimension 1 or!: algebrai
ally 
losed �elds, real 
losed �elds, abelian groups, linear orders, Boolean algebras,and ordered abelian groups.On the other hand, Gon
harov ([11℄) proved that for ea
h 0 < n � !, there exist stru
tureswith 
omputable dimension n. Sin
e then, many 
lasses of stru
tures have been dis
overedwhi
h admit 
omputable dimension n for ea
h 0 < n � !. The following examples 
ome fromGon
harov ([11℄); Gon
harov, Molokov, Romanovskii ([15℄); Hirs
hfeldt, Khoussainov, Shore,Slinko ([16℄); and Kudinov ([21℄).Theorem 1.2 For ea
h 0 < n � !, there are 
omputable stru
tures in the following 
lasseswith 
omputable dimension n: graphs, latti
es, partial orders, nilpotent groups, and integraldomains. 2



There are many other natural 
omputational questions that one 
an ask about the mem-bers of these algebrai
 
lasses. For example, is it possible for the 
omputable dimension ofA to 
hange when a single 
onstant is named? What are the possible degree spe
tra for astru
ture or for a relation on a stru
ture within ea
h 
lass? The degree spe
trum of A isthe set of Turing degrees d for whi
h there is an isomorphi
 
opy of A of degree d. Thedegree spe
trum of a relation U on A is the set of degrees d su
h that there is an isomorphi

omputable 
opy of A for whi
h the image of U in this 
opy has degree d.Hirs
hfeldt, Khoussainov, Shore and Slinko ([16℄) gave highly e�e
tive 
oding methodswhi
h show that for the 
lasses of stru
tures from Theorem 1.2, any answer to the abovequestions whi
h 
an o

ur in a 
ountable model, 
an a
tually o

ur within these 
lasses.More spe
i�
ally, they show that for ea
h of these 
lasses and for ea
h nontrivial 
ountablestru
ture M, there is a stru
ture A from that 
lass su
h that1. the degree spe
trum of M is equal to the degree spe
trum of A,2. the 
omputable dimension of M is the same as the 
omputable dimension of A,3. for ea
h x 2 jMj, there is an a 2 jAj su
h that (M; x) has the same 
omputabledimension as (A; a),4. for ea
h S � jMj, there is a U � jAj su
h that the degree spe
trum of the relation Swith respe
t to M is the same as the degree spe
trum of U with respe
t to A.These results suggest that the algebrai
 stru
ture on the members of these 
lasses intera
ts ina trivial way with the 
omputational stru
ture in the sense that any \pathologi
al" 
omputa-tional behavior whi
h 
an o

ur in a 
ountable model 
an a
tually o

ur within these 
lassesof stru
tures. For example, Slaman ([32℄) and Wehner ([34℄) independently proved that thereis a 
omputable model M whose degree spe
trum 
ontains all degrees ex
ept 0. Therefore,by the result above, there are graphs, latti
es, and so on with this property.Be
ause Property (2) above fails for the 
lasses in Theorem 1.1, the intera
tion betweenthe algebrai
 stru
ture on the members of these 
lasses and their 
omputational stru
tureis nontrivial in the sense that the algebrai
 stru
ture ne
essarily limits the types of 
ompu-tational behavior that 
an o

ur. It is therefore interesting to ask about how the algebrai
stru
ture and the 
omputational properties intera
t. For example, Downey and Jo
kus
h ([7℄)showed that every low Boolean algebra has a 
omputable 
opy. Therefore, it is not possiblefor a Boolean algebra to have a degree spe
trum 
onsisting of all degrees ex
ept 0. On theother hand, by Miller ([25℄), there is a linear order whi
h has 
opies in every �02 degree ex
ept0. The question of whether a linear order 
an have a spe
trum 
onsisting of all degrees ex
ept0 remains open. The reader is referred to [16℄ for a more detailed survey of similar results.We would hope for a �ne line separating the 
lasses of stru
tures whi
h behave as inTheorem 1.1 and those whi
h behave as in Theorem 1.2. In the 
lass of groups, the fa
tthat abelian groups fall in Theorem 1.1 and nilpotent groups fall in Theorem 1.2 gives areasonably sharp distin
tion. To sharpen the di�eren
e further, we 
ould weaken nilpotent3



groups to torsion free nilpotent groups (that is, nilpotent groups in whi
h no element ex
eptthe identity has �nite order) and we 
ould add stru
ture to the abelian groups by makingthem ordered. In both 
ases, the 
lasses retain their previous possible 
omputable dimensions.For ring stru
tures and ordered stru
tures, the story is quite di�erent. There is a large gapbetween algebrai
ally or real 
losed �elds (Theorem 1.1) and integral domains (Theorem 1.2).The obvious open question is what are the possible 
omputable dimensions for 
omputable�elds. For ordered stru
tures, there is a gap between linear orderings and Boolean algebras(Theorem 1.1) and latti
es and partial orderings (Theorem 1.2). Trees are one obvious 
lassof stru
tures whi
h falls within this gap and therefore they are of parti
ular interest. It isnot immediately apparent whether one would expe
t trees to admit only limited 
oding, likelinear orders, or to admit very general 
oding, like partial orders, with respe
t to 
omputabledimension and the other properties mentioned above. Our main result says that with respe
tto 
omputable dimension, they have limited behavior in that they must have 
omputabledimension 1 or !. It would therefore be interesting to explore the answers to the other
omputational questions for trees.In addition to proving that �nite height trees must have dimension 1 or !, we give analgebrai
 
hara
terization for when they have 
omputable dimension 1. If the 
omputabledimension of A is 1, we say that A is 
omputably 
ategori
al. This notion is somewhatanalogous to the 
on
ept of 
ategori
ity in ordinary model theory: a theory is 
ategori
alin a given power � if all models of the theory of power � are isomorphi
. Computable
ategori
ity, however, is a property of stru
tures, not of theories: a 
omputable stru
ture Ais 
omputably 
ategori
al if every other 
omputable stru
ture whi
h is isomorphi
 to A is
omputably isomorphi
 to A.A standard example of a 
ategori
al theory is the theory of dense linear orders withoutend points, whi
h is 
ategori
al in power !. One proves this by taking two arbitrary 
ountabledense linear orders and building an isomorphism between them by a ba
k-and-forth 
onstru
-tion. The same 
onstru
tion allows us to prove that the stru
ture Q is 
omputably 
ategori
al.(More formally, let (!;�) be a 
omputable linear order isomorphi
 to (Q; <). Then (!;�) is
omputably 
ategori
al.)Chara
terizations of 
omputable 
ategori
ity have been found for several types of stru
-tures. The following examples 
omes from Gon
harov, Dzgoev ([13℄); Gon
harov, Lempp,Solomon ([14℄); and Remmel ([29℄, [30℄).Theorem 1.3 The following equivalen
es for 
omputable 
ategori
ity hold.1. A 
omputable linear order is 
omputably 
ategori
al if and only if it has a �nite numberof pairs of adja
ent elements.2. A 
omputable Boolean algebra is 
omputably 
ategori
al if and only if it has a �nitenumber of atoms.3. A 
omputable ordered abelian group is 
omputably 
ategori
al if and only if it has �niterank. 4



There are a number of natural generalizations for 
omputable 
ategori
ity, two of whi
hare important for this arti
le. A 
omputable stru
ture A is relatively 
omputably 
ategori
alif for every isomorphi
 (not ne
essarily 
omputable) 
opy B, there is an isomorphism betweenA and B whi
h is 
omputable from the degree of B. It follows dire
tly from this de�nitionthat any stru
ture whi
h is relatively 
omputably 
ategori
al is also 
omputably 
ategori
al.For linear orders and Boolean algebras, the notions of 
omputable 
ategori
ity and relative
omputable 
ategori
ity 
oin
ide. However, this is not always the 
ase. In general, 
omputable
ategori
ity does not imply relative 
omputable 
ategori
ity without addition assumptions onthe stru
tures involved.Theorem 1.4 (Kudinov ([20℄)) There is a 
omputable A for whi
h the �01 diagram is de-
idable and whi
h is 
omputably 
ategori
al but not relatively so.By the following result of Gon
harov, Kudinov's example is the best possible in terms ofde
idable fragments.Theorem 1.5 (Gon
harov ([8℄)) LetA be a 
omputable stru
ture for whi
h the �02 diagramis de
idable. Then, A is relatively 
omputably 
ategori
al if and only if it is 
omputably
ategori
al.In the present paper we 
onsider 
omputable trees of �nite height, and develop a stru
-tural 
riterion for su
h trees whi
h is equivalent to both 
omputable 
ategori
ity and relative
omputable 
ategori
ity. There are a number of de�nitions for trees, but for our purposes, atree 
onsists of a universe T with a stri
t partial order � on T su
h that for every x 2 T ,� well-orders the set of �-prede
essors of x in T , and su
h that T 
ontains a least elementunder � 
alled the root. We view our trees as growing upward with the root r at the base.A tree is 
omputable if T is a 
omputable set and � is a 
omputable relation. Without lossof generality, we 
an restri
t ourselves to trees whose domain is an initial segment of !. Anindex for T is then an index for the 
hara
teristi
 fun
tion of �.Be
ause we are only 
on
erned with trees of �nite height, we 
an de�ne the level of a nodex 2 T by levelT (x) = jfy 2 T : y � xgj:A more formal de�nition sets the level of the root to be 0 and indu
tively de�nes levelT (x) =supflevelT (y) + 1 : y � xg, thereby also 
overing the 
ase of an element with in�nitely manyprede
essors. The level of a node is not generally 
omputable, but it 
an be approximatedfrom below by the 
omputable fun
tion f(x; s) = jfy < s : y � xgj whi
h is in
reasing in thevariable s and whi
h has the property that for all x 2 T , levelT (x) = lims f(x; s). The heightof T is de�ned by ht(T ) = supx2T (levelT (x) + 1):A path 
 through T is a maximal linearly ordered subset of T . Thus, for a �nite height tree,the height of T is the greatest n su
h that T 
ontains a path with n elements. In a tree of5



�nite height n, we say that a node is established if it lies on a path of length n, and (for
omputable trees) established at stage s if it lies on a path of length n whi
h is 
ontained inthe approximation Ts at stage s. (If a node is established at stage s, then at that stage weknow what its level in T must be, sin
e no more prede
essors of the node 
an appear at laterstages.)We de�ne our stru
tural 
riterion for 
omputable 
ategori
ity by indu
tion on the heightof the tree.De�nition 1.6 Let (T;�) be a tree of �nite height, and x a node of T , with immediatesu

essors fxi : i 2 Ig. Let T [xi℄ = fy 2 T : xi � yg. We say that x is of strongly �nite typeif it satis�es the following 
onditions:i. There are only �nitely many isomorphism types in the set fT [xi℄ : i 2 Ig, ea
h of whi
his of strongly �nite type; andii. For ea
h j and k in I, if T [xj℄ embeds into T [xk℄, then either T [xj℄ and T [xk℄ areisomorphi
, or the isomorphism type of T [xk℄ appears only �nitely often in fT [xi℄ : i 2Ig.T itself is of strongly �nite type if every node in T is of strongly �nite type, or equivalently,if the root node is of strongly �nite type. (By part (i), it is also equivalent to require thatevery minimal !-bran
h point in T be of strongly �nite type.)Noti
e that ht(T [xi℄) < ht(T ) for every i 2 I, so that the 
on
ept is well-de�ned for everytree of �nite height. Also, �nite trees are automati
ally of strongly �nite type, having no!-bran
h points. We also have a weaker 
riterion.De�nition 1.7 Using the same notation, we say that x is of �nite type if it satis�es:i. There are only �nitely many isomorphism types in the set fT [xi℄ : i 2 Ig, ea
h of whi
his of �nite type; andii. Every isomorphism type whi
h appears in�nitely often in the set fT [xi℄ : i 2 Ig is ofstrongly �nite type; andiii. For ea
h j and k in I, if T [xj℄ embeds into T [xk℄, then either T [xj℄ and T [xk℄ areisomorphi
, or the isomorphism type of T [xj℄ appears only �nitely often in fT [xi℄ : i 2Ig, or the isomorphism type of T [xk℄ appears only �nitely often in fT [xi℄ : i 2 Ig.T itself is of �nite type if every node in T is of �nite type. Again, this is equivalent to everyminimal !-bran
h point being of �nite type.We 
an now state our main theorem.Theorem 1.8 For a 
omputable tree (T;�) of �nite height, the following are equivalent:6



1. T is of �nite type;2. T is 
omputably 
ategori
al;3. T has �nite 
omputable dimension;4. T is relatively 
omputably 
ategori
al.The proof of Theorem 1.8 is 
ontained in Se
tions 2, 3 and 4. In Se
tion 2, we showthat �nite type implies relative 
omputable 
ategori
ity, whi
h in turn implies 
omputable
ategori
ity. In Se
tions 3 and 4, we show that any tree whi
h is not of �nite type 
annot be
omputably 
ategori
al, whi
h in turn implies that it is not relatively 
omputably 
ategori
al.The proof pro
eeds by indu
tion, with Se
tion 3 
ontaining the base 
ase and Se
tion 4
ontaining the indu
tive argument. This establishes the equivalen
e of 
onditions 1, 2 and 4.We also show, in Se
tion 4, that if a 
omputable tree does not have �nite type, then it musthave in�nite 
omputable dimension. This establishes the equivalen
e of 
ondition 3 with theother 
onditions.To our knowledge, this is the �rst example of a stru
tural 
riterion for 
omputable 
at-egori
ity whi
h needs to be de�ned by re
ursion. Noti
e, however, that this 
riterion onlyapplies to trees of �nite height. The following result handles the 
ase of in�nite height trees.Theorem 1.9 (Miller ([24℄)) The 
omputable dimension of every 
omputable tree of in�-nite height is ! (regardless of whether or not the tree has !-bran
h points).Together, Theorems 1.8 and 1.9 show that trees, like linear orders, 
annot exhibit thebehavior of the stru
tures listed in Theorem 1.2. Chisholm ([4℄) has some related unpublishedwork for intrinsi
ally 1-
omputable trees. A 
omputable tree T is 1-
omputable if its �01diagram is 
omputable and T is intrinsi
ally 1-
omputable if every 
omputable 
opy of Tis 1-
omputable. Chisholm proved that every intrinsi
ally 1-
omputable tree is 
omputably
ategori
al. Noti
e, however, that intrinsi
 1-
omputability is a strong assumption for trees,as Chisholm also showed that every intrinsi
ally 1-
omputable tree is intrinsi
ally de
idable.(That is, every 
omputable 
opy of the tree is de
idable.)On
e we know that there are 
omputable trees of �nite height with in�nite 
omputabledimension, it is natural to ask exa
tly how diÆ
ult it is to 
ompute an isomorphism betweenarbitrary pairs of su
h trees. (For 
omputable trees without the restri
tion to �nite height,the isomorphism problem is �11-
omplete as 
omputable trees 
an be used to 
ode arbitrary
omputable ordinals.) In Se
tion 5 we begin to answer this question for �nite height trees byshowing that no degree 0(n) is 
apable of 
omputing an isomorphism between every pair ofisomorphi
 
omputable trees of �nite height. More spe
i�
ally, a 
omputable stru
ture A is
alled �0n-
ategori
al if for every 
omputable B isomorphi
 to A, there is a �0n-isomorphismfrom A to B. In this notation, �01-
ategori
ity is equivalent to 
omputable 
ategori
ity. InSe
tion 5, we show the following theorem. 7



Theorem 1.10 For every n � 1 there is a 
omputable tree of �nite height whi
h is �0n+1-
ategori
al but not �0n-
ategori
al.Another natural question to ask is how diÆ
ult it is to express the property \T is 
om-putably 
ategori
al". On its fa
e, our stru
tural 
riterion is an analyti
 predi
ate of similar
omplexity to stating the de�nition of 
omputable 
ategori
ity. However, Ash, Knight, Man-nasse and Slaman ([3℄) showed that for any 
omputable language L, a 
omputable L-stru
tureis relatively 
omputably 
ategori
al if and only if it has a formally �01 S
ott family. In Se
tion2, we show that 
omputable trees of �nite height and �nite type have formally �01 S
ott fami-lies 
onsisting of �nitary formulas. (In fa
t, any formally �01 S
ott family 
an be transformedinto one 
onsisting of �nitary formulas.) It is known (see Proposition 6.10 in Ash, Knight([2℄)) that the existen
e of su
h families is des
ribed by a �03 
ondition. Therefore, sin
e 
om-putable 
ategori
ity and relative 
omputable 
ategori
ity 
oin
ide for trees of �nite height,there is a �03 predi
ate whi
h expresses \T is 
omputably 
ategori
al". Theories are knownto exist in whi
h the property of 
omputable 
ategori
ity is stri
tly more 
omplex than �03;we refer the reader to [35℄ for details.It is important to note that our de�nition of tree is based on a partial order �. In otherpapers, \tree" is sometimes de�ned using the in�mum fun
tion ^, where the in�mum x ^ yof x and y is the �-maximal z su
h that z � x and z � y. One 
an de�ne � from ^ bya � b if and only if a ^ b = a. Therefore, the notions of tree in terms of ^ and � are
lassi
ally bi-interpretable, and if (T;^) is a 
omputable tree, then so is the 
orresponding(T;�). However, the 
omputability of � need not imply 
omputability of ^. Therefore, by
hoosing a de�nition based on � rather than ^, we 
onsider a broader 
lass of 
omputabletrees. In Se
tion 6, we give a brief dis
ussion and 
onje
ture about 
riteria for 
omputable
ategori
ity of trees in the language of the in�mum.By a homomorphism of trees, we mean a map whi
h respe
ts the partial orders, but neednot preserve in�ma. Similarly, an embedding is a one-to-one homomorphism T ,! T 0. Wewill frequently use the equivalen
e relation � given byT � T 0 () T ,! T 0 ,! T:A tree (T 0;�0) is a subtree of (T;�) if T 0 � T and the in
lusion map respe
ts the partialorders. Thus the in�mum of two elements in T may not be the same as their in�mum in T 0.(This broader notion of subtree is another reason for 
hoosing a de�nition of tree based on �rather than ^.) Also, the root of T may be distin
t from the root of T 0, as in the 
ase of thesubtrees T [x℄, whi
h we will 
onsider frequently. If x 2 T , then T [x℄ = fy 2 T : x � yg. Thepartial order on T [x℄ is the restri
tion to T [x℄ of the partial order � on T . Therefore T [x℄ isa subtree of T with root x. If x is an immediate su

essor of the root in T , then we refer toT [x℄ as a su

essor tree (of the root) in T . We de�ne the height of T above x byhtx(T ) = ht(T [x℄):8



2 Relatively 
omputably 
ategori
al treesIn [8℄, Gon
harov gave a synta
ti
 
ondition whi
h, under some extra hypotheses, is equivalentto 
omputable 
ategori
ity. In [3℄ Ash, Knight, Mannasse, and Slaman proved that this
ondition is a
tually equivalent, with no extra hypotheses needed, to the stronger notion ofrelative 
omputable 
ategori
ity. In fa
t, they proved a more general result whi
h applies torelative �-
ategori
ity for any � < !CK1 . In order to understand these statements fully, onewould need to know about 
omputable in�nitary formulas as de�ned by Ash. However, allformulas we will need in this paper are �nitary. Thus we state the relevant de�nitions andresults 
orre
tly and 
ompletely, but we provide some 
larifying remarks.De�nition 2.1 Let L be a 
omputable language, and let A be a 
omputable L-stru
ture.A formally �01 S
ott family for A is a 
.e. 
olle
tion � of 
omputable �1 formulas (possiblyin�nitary) so that1. there is a �nite tuple ~
 so that for any �(~x) 2 �, all of the parameters appearing in �are among ~
;2. for ea
h tuple ~a 2 A of distin
t elements, there is a �(~x) 2 � so that A j= �(~a);3. for ea
h � 2 �, ea
h tuple ~a 2 A of distin
t elements and ea
h tuple ~a0 2 A of distin
telements, if A j= �(~a) ^ �(~a0), then (A;~a) �= (A;~a0).Note that sin
e we talk about a 
.e. set of formulas, we must have some way of assigning
ode numbers to the 
omputable formulas. Note also that any �nitary existential formula is(logi
ally equivalent to) a 
omputable �01 formula. Again, throughout this paper, we will dealonly with �nitary formulas.Theorem 2.2 (Ash-Knight-Mannasse-Slaman [3℄) Let L be a 
omputable language, andlet A be a 
omputable L-stru
ture. Then A is relatively 
omputably 
ategori
al i� A has aformally �01 S
ott family.The forward dire
tion of this result is diÆ
ult and requires a for
ing 
onstru
tion. The otherdire
tion follows from a straightforward ba
k-and-forth argument. In this se
tion, we use theeasy dire
tion of Theorem 2.2 to show that a tree with �nite type is relatively 
omputably
ategori
al, and thus 
omputably 
ategori
al.De�nition 2.3 Using the same notation as the introdu
tion, we say that x has weakly �nitetype if there are only �nitely many isomorphism types in the set fT [xi℄ : i � 1g, ea
h of whi
hhas weakly �nite type. T itself has weakly �nite type if every !-bran
h point in T has weakly�nite type.De�nition 2.4 Let T be a tree of �nite height with root node r, and let x 2 T , x 6= r. Tx isde�ned to be (fz 2 T : z is not 
omparable to xg [ frg;�T ).9



We need to prove a few fa
ts about this operation.Lemma 2.5 Let T be a tree of �nite height with root node r. Let x; y 2 T , x; y 6= r, and x; yin
omparable.1. Tx is a tree.2. (Tx)y = (Ty)x.3. If T has weakly �nite type, then so does Tx.Proof. 1. The ordering relation on Tx is inherited from T , and the root node of T , by de�nition,is in Tx.2. Sin
e ea
h tree inherits its relation from T , we need only show that the two trees have thesame underlying set. Note that r is a member of both trees. Let z 6= r be a member of (Tx)y.Then z is in
omparable with x, sin
e it belongs to Tx. (The operation never adds elementsto a tree, so (Tx)y � Tx.) And by de�nition, z is in
omparable with y in T , sin
e the relationon Tx is inherited from T . Consequently, z 2 (Ty)x. By symmetry, (Tx)y = (Ty)x.3. We indu
t on the height of T . First note that the de�nition only applies to trees of height� 2. If ht(T ) = 2, then x is an immediate su

essor of r with no su

essors, so the 
laim isobviously true.Let ht(T ) = n + 1. If x is an immediate su

essor of r, then Tx = T � T [x℄, whi
h hasweakly �nite type. If x is stri
tly above an immediate su

essor r1 of r, then we must �rstunderstand exa
tly how Tx looks. Let (ri1)i2I be the immediate su

essors of r1 in the tree(T [r1℄)x. (The set I might be �nite or in�nite.) Then the tree Tx is as follows:1. T � T [r1℄ � Tx; and2. for ea
h i 2 I, the tree ((T [r1℄)x)[ri1℄ is atta
hed dire
tly above r.By indu
tion, (T [r1℄)x has weakly �nite type. Consequently, ea
h !-bran
h point of(T [r1℄)x has only �nitely many types dire
tly above it. Therefore, there are only �nitelymany isomorphism types in the set f((T [r1℄)x)[ri1℄ : i 2 Ig. And so, if r is an !-bran
h pointin Tx, then it has weakly �nite type. Moreover, sin
e (T [r1℄)x has weakly �nite type and Thas weakly �nite type, all other !-bran
h points of Tx have weakly �nite type. Thus, Tx hasweakly �nite type.Based on part 2 of the pre
eding lemma, if x; y are in
omparable nodes in T , we write Tx;yfor (Tx)y = (Ty)x. One further pie
e of notation we use is to denote the isomorphism type ofa tree T [x℄ by ot(T [x℄).Lemma 2.6 If T has weakly �nite type, then the set fot(T [x℄) : x 2 Tg is �nite.10



Proof. We indu
t on the height of T . If ht(T ) = 1, then it's 
lear. Let ht(T ) be n+1, let r beits root node and its immediate su

essors be members of the sequen
e (ri)i2I . Whether I is�nite or in�nite, the set fot(T [ri℄) : i 2 Ig is �nite, sin
e T has weakly �nite type. Moreover,by the indu
tion hypothesis, for ea
h i 2 I, the set fot(T [z℄) : z � rig is �nite. Consequently,fot(T [x℄) : x 2 Tg = fot(T )g [ fot(T [ri℄) : i 2 Ig [Si2Ifot(T [z℄) : z � rig is �nite. (Even ifI is in�nite, there are only �nitely many di�erent sets in this union by the 
omments above.)Based on Lemma 2.6, we 
ould restate De�nition 2.3 by saying the a �nite height tree Thas weakly �nite type if and only if it has �nitely many orbits under automorphisms of T .Lemma 2.7 If T has weakly �nite type and T has root node r, then the set fot(Tx) : x 6= rgis �nite.Proof. We indu
t on the height of T . If ht(T ) = 2, then there is only one element in the setfot(Tx) : x 6= rg.Let ht(T ) = n+1. Let the immediate su

essors of r be members of the sequen
e (ri)i2I;and let r1; : : : ; rk be the su

essors so that for all i 2 I, there is 1 � j � k with T [ri℄ �= T [rj℄.By indu
tion, we know that for ea
h 1 � j � k, there are pj 2 N and r1j ; : : : ; rpjj � rj so thatfor ea
h x � rj, there is 1 � q � pj with (T [rj℄)x �= (T [rj℄)rqj . It is 
lear from the des
ription ofTx in the proof of Lemma 2.5 that the set fot(Trj) : 1 � j � kg[S1�j�kfot(Trqj ) : 1 � q � pjgis equal to fot(Tx) : x 6= rg.The proof of the next two lemmas will use indu
tion on the degree of !-bran
hing, whi
hwe de�ne formally below. Intuitively, T has degree m !-bran
hing if and only if the followingtwo 
onditions hold: �rst, there is a 
hain of elements in T whi
h 
ontains m many elementswhi
h are ! bran
hing and se
ond, for any 
hain of elements in T , there are at most m manyelements in the 
hain whi
h are !-bran
hing.De�nition 2.8 Let T be a �nite height tree.1. T has degree 0 !-bran
hing i� it is �nite;2. T has degree n+ 1 !-bran
hing i�a. T does not have degree n !-bran
hing; andb. if x is a minimal !-bran
h point of T with immediate su

essors ri; i � 1, then forea
h i � 1, there is m � n so that T [ri℄ has degree m !-bran
hing.Lemma 2.9 If T1 and T2 have weakly �nite type and T1 6,! T2, then there is a �nite subtreeT 01 � T1 su
h that T 01 6,! T2. 11



Proof. We indu
t on the height of tree T1. If ht(T1) = 1, then T1 ,! T2.Let T1 have height n + 1. We indu
t on the degree of !-bran
hing in T1. First, if thedegree is 0, then T1 is �nite, so T 01 = T1.Let T1 have degree m+1 !-bran
hing. We indu
t on the height of T2. If ht(T2) = 1, thenT1 is in�nite, but T2 is �nite, so the desired 
on
lusion is 
lear.Let T2 have height p + 1. We indu
t on the degree of !-bran
hing in T2. If the degree is0, then then T1 is in�nite, but T2 is �nite.Let T2 have degree q + 1 !-bran
hing.Case 1: The root node r of T1 is �nite bran
hing with immediate su

essors r1; : : : ; rk. Byindu
tion on the height of T1, for ea
h i 2 f1; : : : ; kg and ea
h s 2 T2, if T1[ri℄ 6,! T2[s℄, thenthere is a �nite subtree (T1[ri℄)s � T1[ri℄ so that (T1[ri℄)s 6,! T2[s℄. Consequently, by Lemma2.6, for ea
h i 2 f1; : : : ; kg, there is a single �nite T1[ri℄0 � T1[ri℄ so that for all s 2 T2, ifT1[ri℄ 6,! T2[s℄, then T1[ri℄0 6,! T2[s℄. (We may assume that ri 2 T1[ri℄0 for ea
h i 2 f1; : : : ; kg.)De�ne T 01 � T1 as follows:1. r 2 T 01;2. T1[ri℄0 � T 01 for ea
h i 2 f1; : : : ; kg.We 
laim that T 01 6,! T2. Assume otherwise that f : T 01 ,! T2. Then f maps r; r1; : : : ; rk tosome s; s1; : : : sk so that1. s is below all of s1; : : : ; sk;2. no two of s1; : : : ; sk are 
omparable; and3. T1[ri℄0 ,! T2[si℄ for all 1 � i � k.Consequently, by the way in whi
h we de�ned ea
h T1[ri℄0,1. s is below all of s1; : : : ; sk;2. no two of s1; : : : ; sk are 
omparable; and3. T1[ri℄ ,! T2[si℄ for all 1 � i � k.Therefore, T1 ,! T2, a 
ontradi
tion.Case 2: The root node r is an !-bran
h node with immediate su

essors ri; i � 1, wherer1; r2; : : : ; rk; rk+1; : : : ; rl are su
h that1. T1[r1℄; : : : ; T1[rk℄ are all of the dire
t su

essor trees of r whose isomorphism types o

ur�nitely often dire
tly above r; 12



2. T1[rk+1℄; : : : ; T1[rl℄ are dire
t su

essor trees of r whose isomorphism types o

ur in-�nitely often dire
tly above r;3. for all j; j0 with k + 1 � j < j0 � l, T1[rj℄ 6�= T1[rj0℄; and4. for all i � 1, there is j � l so that T1[ri℄ �= T1[rj℄.Case 2a: The root node s of T2 is an !-bran
h node of T2 with immediate su

essors si; i �1, where s1; s2; : : : st; st+1; : : : ; su have properties analogous to those of r1; : : : ; rk; rk+1 : : : ; rl.Consider T3 � T1 de�ned as follows:1. r 2 T3;2. T1[ri℄ � T3 for ea
h 1 � i � k.If T3 6,! T2, then by indu
tion on the degree of !-bran
hing in T1, there is a �nite subtreeT 01 � T3 � T1 so that T 01 6,! T2. So assume that T3 ,! T2. Thus, it 
annot be the 
ase thatea
h T1[rk+1℄; : : : ; T1[rl℄ embeds into one of T2[st+1℄; : : : ; T2[su℄. Otherwise, T1 ,! T2. (T2 with
ountably many more 
opies of ea
h of T2[st+1℄; : : : T2[su℄ atta
hed dire
tly above s is a treeisomorphi
 to T2 itself.)Let T1[r�1℄; : : : ; T1[r�v℄ be a list of all the trees among T1[r1℄; : : : ; T1[rk℄ whi
h individuallydo not embed into any T2[st+1℄; : : : ; T2[su℄. Similarly, let T1[r�1℄; : : : ; T2[r�w ℄ be a list of allthose among T1[rk+1℄; : : : ; T1[rl℄ with this property. Consider the tree T �1 � T1 de�ned asfollows:1. r 2 T �1 ;2. T1[r�1℄; : : : ; T1[r�v℄ � T �1 ;3. for ea
h i 2 f1; : : : ; wg, T �1 
ontains in�nitely many 
opies of T1[r�i℄ dire
tly above r.This tree 
annot be embedded into the subtree fsg [ T2[s1℄[ � � � [ T2[st℄; otherwise T1 ,! T2.By indu
tion on the degree of !-bran
hing of T2, there is a �nite number � and a tree T̂1 sothat1. r 2 T̂1;2. T1[r�1℄; : : : ; T1[r�v℄ � T̂1;3. for ea
h i 2 f1; : : : ; wg, T̂1 
ontains exa
tly � 
opies of T1[r�i℄ dire
tly above r; and4. T̂1 6,! fsg [ T2[s1℄ [ � � � [ T2[st℄. 13



In fa
t, T̂1 6,! T2. Why? Assume otherwise that f : T̂1 ,! T2. None of the roots ofthe 
opies of T1[r�1℄; : : : ; T1[r�v℄; T1[r�1℄; : : : ; T2[r�w ℄ 
an be mapped to a point in T2[si℄ withi � t + 1. Thus, f : T̂1 ,! fsg [ T2[s1℄ [ � � � [ T2[st℄, a dire
t 
ontradi
tion. And so, byindu
tion on the degree of !-bran
hing of T1, there is a �nite subtree T 01 � T̂1 � T1 su
h thatT 01 6,! T2.Case 2b: The root node s of T2 has �nitely many immediate su

essors. We pro
eed byindu
tion on the number of immediate su

essors s has. First assume that s has only oneimmediate su

essor s1. Sin
e the root node r of T1 has in�nitely many immediate su

essors,we know, by indu
tion on the height of T2, that there is a �nite tree T 01 � T1 so that1. r 2 T 01;2. r has at least two immediate su

essors in T 01; and3. T 01 6,! T2 � fs1g(�= T2[s1℄).Of 
ourse, this implies that T 01 6,! T2; if f : T 01 ,! T2, then f(r) 2 T2[s1℄ or s1 62 range(()f),sin
e s1 is the sole immediate su

essor of s, and r has at least two.Assume that s has t + 1 immediate su

essors s1; : : : ; st+1 in T2. Of 
ourse, for ea
hj 2 f1; : : : ; t + 1g, T1 6,! T2 � T2[sj℄. Therefore, by indu
tion on the number of immediatesu

essors of the root node s, for ea
h j 2 f1; : : : ; t+1g, there is a tree (T1)j � T1 and a �nitenumber �j so that1. r 2 (T1)j;2. for ea
h i 2 f1; : : : ; kg, T1[ri℄ � (T1)j;3. for ea
h i 2 fk+1 : : : ; lg, (T1)j 
ontains exa
tly �j many 
opies of T1[ri℄ dire
tly abover; and4. (T1)j 6,! T2 � T2[sj℄.Let � = maxf�j : j 2 f1; : : : ; t+ 1gg. De�ne T �1 as follows:1. r 2 T �1 ;2. for ea
h i 2 f1; : : : ; kg, T1[ri℄ � T �1 ;3. for ea
h i 2 fk + 1 : : : ; lg, T �1 
ontains exa
tly � many 
opies of T1[ri℄ dire
tly above r.Assume, without loss of generality, that the immediate su

essors of r in T �1 
an be listed asr1; : : : ; rw. If for some v1; : : : ; vw 2 T2, f : T �1 ,! T2 and f(ri) = vi for 1 � i � w, then thefollowing must be true: 14



a. for ea
h 1 � j � t+ 1, there is 1 � i � w so that vi � sj; andb. (T1 � T �1 ) [ frg 6,! (T2)v1;:::;vw (where (T2)v1;:::;vw is de�ned in De�nition 2.5).Otherwise, (T1)j ,! T2 � T2[sj℄ for some j or T1 ,! T2.Noti
e that if v1; : : : ; vw satisfy a. above, then ht((T2)v1;:::;vw) < ht(T2). And so, by indu
-tion on the height of tree T2, it must be the 
ase that for ea
h tuple ~v = v1; : : : ; vw 2 T2 whi
hsatisfy a. and b. above, there is a �nite number �~v and a subtree T ~v � (T1 � T �1 ) [ frg sothat1. r 2 T ~v;2. for ea
h i 2 fk + 1; : : : ; lg, T ~v 
ontains exa
tly �~v many 
opies of T1[ri℄ dire
tly abover; and3. T ~v 6,! (T2)v1;:::;vw .Therefore, by Lemma 2.7, there is a single number � and a single tree T̂ � (T1�T �1 )[ frg sothat1. r 2 T̂ ;2. for ea
h i 2 fk + 1; : : : ; lg, T̂ 
ontains exa
tly � many 
opies of T1[ri℄ dire
tly above r;and3. for ea
h list of in
omparable elements v1; : : : ; vw whi
h satisfy a. and b. above, T̂ 6,!(T2)v1;:::;vw .Finally, de�ne T̂1 � T1 as follows:1. r 2 T̂1;2. for ea
h i 2 f1; : : : ; kg, T1[ri℄ � T̂1;3. for ea
h i 2 fk+1; : : : ; lg, T̂1 
ontains exa
tly �+� many 
opies of T1[ri℄ dire
tly abover.A straightforward argument similar to ones previously given shows that T̂1 6,! T2. Therefore,by indu
tion on the degree of !-bran
hing in T1 it must be the 
ase that there is a �niteT 01 � T̂1 � T1 so that T 01 6,! T2.Lemma 2.10 If T1 and T2 have strongly �nite type, and T1 ,! T2 ,! T1, then T1 �= T2.15



This lemma need not hold if either T1 or T2 is only of �nite type. For instan
e, let T1 bethe tree !<3, with x � y i� x is an initial segment of y, and delete fh0; ni : n 2 !g fromT1 to get T2 (or let T2 be any other tree of height 3 in whi
h T1 embeds). Re
all that theequivalen
e relation � on all trees is de�ned byT � T 0 () T ,! T 0 ,! T:So the lemma says that for trees of strongly �nite type, � and �= are identi
al.Proof. We indu
t on the height of T1. If ht(T1) = 1, then the result is obvious.Let ht(T1) = n+1. We indu
t on the degree of !-bran
hing of T1. If the degree is 0, thenT1 is �nite. Therefore, if T1 ,! T2 ,! T1, then both trees are �nite of the same size, so anyembedding must be an isomorphism.Let the T1 have degree q+ 1 !-bran
hing. Let r be the root node of T1 and s be the rootof T2. It is 
lear that ht(T1) = ht(T2), and that in any embedding of one into the other, theroot node must be mapped to the root node.Case 1: r has �nitely many immediate su

essors. First, we argue that s must have the samenumber of immediate su

essors. Let r have immediate su

essors r1; : : : ; rm. Let p be thenumber of trees among T1[r1℄; : : : ; T1[rm℄ whi
h have height equal to n. Sin
e T1 ,! T2 ,! T1,the number of su
h immediate su

essors of s must also be p, and in the embeddings, asu

essor at the base of a tree of height n must be mapped to a su

essor at the base of atree of height n.If r has no more immediate su

essors, then s 
annot either, be
ause T2 ,! T1. Otherwise,let h1 be the greatest number< n so that r has an immediate su

essor ri with ht(T1[ri℄) = h1,and let p1 be the number of su
h ri's. First, noti
e that s 
annot have a su

essor si with h1 <ht(T2[si℄) < n, sin
e T2 ,! T1, and all of the su

essors ri of r with ht(T1[ri℄) > h1 are images ofsu

essors si of s with ht(T2[si℄) = n. Moreover, s must have exa
tly p1 immediate su

essorssi with ht(T2[si℄) = h1, sin
e T1 ,! T2 ,! T1. Continuing in this fashion we 
omplete theargument that r and s must have exa
tly the same number of immediate su

essors.We 
omplete this 
ase by arguing by indu
tion on the number of immediate su

essors ofr, s. First, if r has only one immediate su

essor r1, and s has only one immediate su

essors1, then obviously, T1[r1℄ ,! T2[s1℄ ,! T1[r1℄. By indu
tion on the height on the trees,T1[r1℄ �= T2[s1℄, so T1 �= T2.Assume that r has immediate su

essors r1; : : : ; rm+1 and s has immediate su

essorss1; : : : ; sm+1. By indu
tion on the height of the trees, there must be a su

essor ri of r so that1. T1[ri℄ has height n; and2. T1[ri℄ is maximal among T1[r1℄; : : : ; T1[rm+1℄ with respe
t to embedding; i.e., if j 6= iand T1[ri℄ ,! T1[rj℄, then T1[ri℄ �= T1[rj℄.Assume, without loss of generality, that it is r1.16



Now 
onsider f : T1 ,! T2 and g : T2 ,! T1. Sin
e T1[r1℄ has height n, there are1 � j; k � m + 1 su
h that f : T1[r1℄ ,! T2[sj℄ and f : T1 � T1[r1℄ ,! T2 � T2[sj℄; andg : T2[sj℄ ,! T1[rk℄ and g : T2�T2[sj℄ ,! T1�T1[rk℄. However, then T1[r1℄ ,! T1[rk℄, so by our
hoi
e of T1[r1℄, we know that T1[r1℄ �= T1[rk℄. Consequently, by indu
tion on the height oftrees, T1[r1℄ �= T2[sj℄; and by indu
tion on the number of immediate su

essors the root nodehas, T1 � T1[r1℄ �= T2 � T2[sj℄. Therefore, T1 �= T2.Case 2: r is an !-bran
h node with immediate su

essors ri; i � 1, and s is an !-bran
hnode with immediate su

essors si; i � 1. First, 
onsider the subtree T 01 � T1 whi
h is de�nedas follows:1. r 2 T 01;2. T1[ri℄ � T 01 i� T1[ri℄ has height n.De�ne T 02 similarly. Of 
ourse T 01 ,! T 02 ,! T 01.Next, 
onsider the subtree T 001 � T 01 de�ned as follows:1. r 2 T 001 ;2. T1[ri℄ � T 001 i� T1[ri℄ � T 01 and the isomorphism type of T1[ri℄ o

urs only �nitely oftendire
tly above r.De�ne T 002 similarly. We 
laim that T 001 ,! T 002 ,! T 001 . To see this, let T1[rj℄ � T 001 . Of 
ourse,it must be the 
ase that T1[rj℄ ,! T2[sk℄ for some T2[sk℄ � T 02. If T2[sk℄ 6� T 002 , then theisomorphism type of T2[sk℄ o

urs in�nitely often dire
tly above s. Sin
e ht(T2[sk℄) = n, itmust be the 
ase that T2[sk℄ ,! T1[rl℄, where the isomorphism type of T1[rl℄ o

urs in�nitelyoften dire
tly above r0. However, then T1[rj℄ ,! T1[rl℄, a 
ontradi
tion to the fa
t that T1 hasstrongly �nite type. And so, T2[sk℄ � T 002 . Consequently, T 001 ,! T 002 . A symmetri
 argumentshows that T 002 ,! T 001 . By indu
tion on the degree of !-bran
hing of T1, T 001 �= T 002 .Next, let T1[rj℄ � T 01 � T 001 . Of 
ourse, it must be the 
ase that T1[rj℄ ,! T2[sk℄ for someT2[sk℄ � T 02�T 002 . Similarly, T2[sk℄ ,! T2[rl℄ for some T1[rl℄ � T 01�T 001 . But then T1[rj℄ ,! T1[rl℄,so T1[rj℄ �= T1[rl℄, sin
e T1 has strongly �nite type. By indu
tion on the height of the trees,T1[rj℄ �= T1[sk℄. Similarly, let T2[sp℄ � T 02�T 002 . Then T2[sp℄ �= T1[rt℄ for some T1[rt℄ � T 01�T 001 .Therefore, frg [ (T 01 � T 001 ) �= fsg [ (T 02 � T 002 ). Consequently, T 01 �= T 02.Finally, we 
laim that if f : T1 ,! T2, then f : frg [ (T1 � T 01) ,! fsg [ (T2 � T 02). LetT1[rj℄ 6� T 01, and let f : T1[rj℄ ,! T2[sk℄. It 
annot be the 
ase that T2[sk℄ � T 002 , be
ause,as we have seen, the number of immediate su

essors y of s with T2[y℄ � T 002 is exa
tly thesame as the number of immediate su

essors x of r with T1[x℄ � T 001 , and ea
h su
h x mustbe sent to su
h an y. Also, it 
annot be the 
ase that T2[sk℄ � T 02�T 002 ; otherwise, as we haveseen, it would be the 
ase that T2[sk℄ �= T1[rl℄ where T1[rl℄ o

urs in�nitely often immediatelyabove r; but T1[rj℄ 6,! T1[rl℄, sin
e T1 has strongly �nite type. Thus f : T1[rj℄ ,! T1[sk℄, whereT1[sk℄ � T1 � T 01. Therefore, f : frg [ (T1 � T 01) ,! fsg [ (T2 � T 02). A symmetri
 argumentshows that fsg [ (T2 � T 02) ,! frg [ (T1 � T 01). Therefore, by indu
tion on the height of thetrees, frg [ (T1 � T 01) �= fsg [ (T2 � T 02). And so, T1 �= T2.17



Lemma 2.11 If T has strongly �nite type, then T has a formally �01 S
ott family of �nitaryformulas with no parameters.Proof. First, note that if T is a tree and T 0 is a �nite tree, then we 
an say that T 0 
an beembedded in T [x℄ with a �nitary existential formula  (x).We indu
t on the height of tree T . Let r be the root node of T . If ht(T ) = 1, thenT = frg, so fx = xg is the desired S
ott family.Let ht(T ) = n+1. Let r have immediate su

essors (ri)i2I. First, let r1; : : : ; rk; rk+1; : : : ; rlbe su
h that1. T1[r1℄; : : : ; T1[rk℄ are all of the dire
t su

essor trees of r whose isomorphism types o

ur�nitely often dire
tly above r;2. T1[rk+1℄; : : : ; T1[rl℄ are dire
t su

essor trees of r whose isomorphism types o

ur in-�nitely often dire
tly above r (this list is empty if I is �nite);3. for all j; j0 with k + 1 � j < j0 � l, T1[rj℄ 6�= T1[rj0℄; and4. for all i 2 I, there is j � l so that T1[ri℄ �= T1[rj℄.Next, for ea
h j 2 f1; : : : ; lg, let T 0j be su
h that1. T 0j � T [rj℄;2. T 0j is �nite; and3. for all i 2 I, if T [rj℄ 6,! T [ri℄, then T 0j 6,! T [ri℄.Finally, for ea
h 1 � j � l, let 	j be the Turing ma
hine whi
h enumerates the formally �01S
ott family for T [rj℄.Given a tuple of variables ~x = x1; : : : ; xt of length t, we 
onsider all 7-tuples �t =ha; j; s; P; �; �; s0i, where1. a 2 f0; 1g and 1 � j � t: if a = 0, then no member of ~x is going to \represent" r; ifa = 1, then xj is going to \represent" the root node r.2. s � maxfjIj; t�ag, P is a partition of f1; : : : ; tg (f1; : : : ; tg�fjg if a = 1) into s pie
es:for the part of ~x remaining, we divide it into subtuples ~y1; : : : ; ~ys a

ording to P .3. � = hi1; : : : ; isi is an s-tuple so thata. for ea
h 1 � � � s, i� 2 f1; : : : ; lg;b. for ea
h 1 � � � s, j~y�j � jT [ri�℄j; and
. for ea
h 1 � � < � � s, if i� = i�, then i� 2 fk + 1; : : : ; lg.18



4. � is an s-tuple of natural numbers: for ea
h 1 � � � s, � (�) tells us whi
h formula touse from the formally �01 S
ott family for T [ri�℄:5. s0 is a natural number.Now we form the formula 
�t(~x):1. If in 1. above, a = 1, then 
�t in
ludes a 
onjun
t whi
h says that xj is at the bottomof a 
hain of length n+1; otherwise, 
�t in
ludes a 
onjun
t whi
h says that there is v0so that v0 � ~x.2. For ea
h tuple ~y� and ea
h tree T [ri�℄ from 2. and 3. above, 
�t in
ludes 
onjun
ts
�(~y�) so thata. if j1; : : : ; jw� is a 
omplete list of the elements of f1; : : : ; kg so that T [ri�℄ ,!T [rj1℄; : : : ; T [rjw� ℄, but T [ri�℄ 6�= T [rj1℄; : : : ; T [rjw� ℄ (and thus Lemma 2.10 impliesT [rj1℄; : : : ; T [rjw� ℄ 6,! T [ri�℄), then 
�(~y�) in
ludes the 
onjun
t whi
h says9v0v1 � � � vw�+1[v0 is at the bottom of a 
hain of length n+1; v1; : : : ; vw�; vw�+1 arein
omparable; for ea
h 1 � p � w�, T 0jp ,! T [vp℄, and vp is at the bottom of a 
hainof length ht(T [rjp℄); ~y� � vw�+1, and T 0i� ,! T [vw�+1℄℄;b. if both of the following are true about 	i�:i. 	i� halts on input � (�) (a natural number) in less than s0 steps and outputsa formula Æ(~z); andii. j~y�j is the number of free variables a
tually appearing in Æ(~z),then 
�(~y�) in
ludes the 
onjun
t Æ(~y�). Otherwise, it in
ludes the 
onjun
t ?(falsity).3. For ea
h 1 � � < � � s so that i� 6= i�, but T [ri�℄ �= T [ri� ℄, 
�t(~x) in
ludes a 
onjun
twhi
h says 9v1v2[v1 and v2 are in
omparable; ea
h is at the bottom of a 
hain of lengthht(T [ri�℄); ~y� � v1 and ~y� � v2℄.Let � = f
�t(~x) : t 2 !; ~x is a t-tuple, and ~x, �t are as above g. We 
laim that � is aformally �01 S
ott family of the desired form. First, sin
e we expli
itly des
ribe how to formthe formulas 
�t, � is 
ertainly 
.e. Next, if ~a is a t-tuple of distin
t elements of T , then itis obvious to see that there is going to be some 
�t(~x) whi
h it satis�es. Finally, assume that~a = a1; : : : ; at and ~b = b1; : : : ; bt are two tuples of distin
t elements so that T j= 
�t(~a)^
�t(~b).We must show that (T;~a) �= (T;~b).First, it must be the 
ase that ~a 
ontains the root node r i� ~b does, and that aj = r i�bj = r. Next, sin
e T j= 
�t(~a), ~a (perhaps without aj) is sorted into ~a1;~a2; : : : ;~as (a

ordingto the substitution of ~a� for the subtuple of variables ~y� for ea
h 1 � � � s) so that for ea
h1 � � � s the following things are determined:19



1. all elements in a single tuple ~a� are 
ontained in the same dire
t su

essor tree of r;2. ~a� belongs to a dire
t su

essor tree of r of order type that of T [ri�℄;3. for all � with 1 � � � s and � 6= �, some element of ~a� and some element of ~a� are not
ontained in the same dire
t su

essor tree of r; and4. ~a� satis�es the formula Æ(~z), obtained from the formally �01 S
ott family for T [ri�℄.To see 2., noti
e that 
lause a. in the formation of 
~y� guarantees that ~a� is 
ontained in adire
t su

essor tree of r whi
h embeds T 0i�, and hen
e T [ri�℄. Therefore, we know that ~a�is either 
ontained in a dire
t su

essor tree of order type T [ri�℄ or one of the �nitely manynon-isomorphi
 dire
t su

essor trees whi
h embed T [ri�℄. But the rest of 
lause a. rules outall other possibilities.To see 3., assume that in 2. we have determined that the type of the dire
t su

essor treeto whi
h ~a� belongs is the same as the type of the dire
t su

essor tree to whi
h ~a� belongs.Then 
�(~a) 
ontains a 
onjun
t whi
h says that 9v1v2[v1 and v2 are in
omparable; ea
h ofv1; v2 is at the bottom of a 
hain of length ht(T [ri�℄); and v1 � ~a�; and v2 � ~a�℄.Of 
ourse, the tuple ~b is sorted by 
�t in exa
tly the same way. Therefore, by the de�nitionof a S
ott family, r has immediate su

essor trees T1; : : : ; Ts, T 01; : : : ; T 0s so that for all 1 � p 6=q � s the following are true:1. Tp 6= Tq, and T 0p 6= T 0q;2. ~ap 2 Tp; ~bp 2 T 0p; and3. (Tp;~ap) �= (T 0p;~bp).And so, (T;~a) �= (T;~b).Our next result shows that �nite type implies relative 
omputable 
ategori
ity in Theorem1.8.Theorem 2.12 If T has �nite type, then T has a formally �01 S
ott family of �nitary formu-las.Proof. We indu
t on the height of T . If ht(T ) = 1, then T is �nite, so T has strongly �nitetype, and the previous result applies. Let ht(T ) = n+ 1, and let r be the root node of T .Case 1: r has only �nitely many immediate su

essors r1; : : : ; rm. Then T [r1℄; T [r2℄; : : : ; T [rm℄all have �nite type, and hen
e all have formally �01 S
ott families by indu
tion. For ea
h1 � i � m, let ~
i be the parameters of T [ri℄ whi
h appear in the S
ott family for T [ri℄. Letthe tuple of parameters of our formally �01 S
ott family be ~
 = r; r1; : : : ; rm;~
1; : : : ;~
m.Let ~a be a tuple of distin
t elements in T , and let ~x be a 
orresponding tuple of variables.We 
onstru
t the formula 
~a(~x) as follows: 20



1. if any ai 2 ~a is equal to an element 
 of our parameter set, then we in
lude the 
onjun
txi = 
;2. let ~a0 be the tuple ~a with su
h elements removed, and let ~x0 be the 
orresponding tupleof variables; we in
lude a 
onjun
t whi
h says that ~x0 \ ~
 = ;;3. we divide the tuple ~a0 into subtuples ~a1; : : : ;~am so that ~ai 2 T [ri℄ (some subtuplesmight be empty); we divide the tuple of variables ~x0 into ~x1; : : : ; ~xm a

ordingly; forea
h 1 � i � m, we in
lude the 
onjun
t whi
h says that ~xi � ri;4. for ea
h tuple ~ai, we sear
h until we �nd the �rst formula Æi from the formally �01 S
ottfamily for T [ri℄ whi
h ~ai satis�es; we in
lude the 
onjun
t Æi(~xi).Let � = f
~a(~x) : ~a 2 T is a tuple of distin
t variablesg. It is 
lear that � is a formally �01S
ott family of �nitary formulas.Case 2: r has in�nitely many immediate su

essors ri; i � 1. As usual, let r1; : : : ; rk; : : : ; rlbe su
h that1. T1[r1℄; : : : ; T1[rk℄ are all of the dire
t su

essor trees of r whose isomorphism types o

ur�nitely often dire
tly above r;2. T1[rk+1℄; : : : ; T1[rl℄ are dire
t su

essor trees of r whose isomorphism types o

ur in-�nitely often dire
tly above r;3. for all j; j0 with k + 1 � j < j0 � l, T1[rj℄ 6�= T1[rj0℄; and4. for all i � 1, there is j � l so that T1[ri℄ �= T1[rj℄.By indu
tion, ea
h of the trees T [r1℄; : : : ; T [rk℄ has a formally �01 S
ott family of �nitaryformulas. For ea
h 1 � i � k, let ~
i be the parameters of T [ri℄ whi
h appear in the S
ottfamily for T [ri℄. Furthermore, noti
e that that the tree T �S1�i�k T [ri℄ has strongly �nitetype. Therefore, by the previous lemma, this tree has a formally �01 S
ott family of �nitaryformulas with no parameters. Let the tuple of parameters of our formally �01 S
ott family ber; r1; : : : ; rk;~
1; : : : ;~
k.Let ~a be a tuple of distin
t elements in T , and let ~x be a 
orresponding tuple of variables.We 
onstru
t the formula 
~a(~x) as follows:1. if any ai 2 ~a is equal to an element 
 of our tuple of parameters, then we in
lude the
onjun
t xi = 
;2. let ~a0 be the tuple ~a with su
h elements removed, and let ~x0 be the 
orresponding tupleof variables; we in
lude a 
onjun
t whi
h says that ~x0 \ ~
 = ;;21



3. we divide the tuple ~a0 into subtuples ~a1; : : : ;~ak;~ak+1 so that ~ai 2 T [ri℄ for 1 � 1 � kand ~ak+1 2 T �S1�i�k T [ri℄ (some subtuples might be empty); we divide the tuple ofvariables ~x0 into ~x1; : : : ; ~xk; ~xk+1 a

ordingly; for ea
h 1 � i � k, we in
lude the 
onjun
twhi
h says that ~xi � ri; for ea
h element a of ~ak+1, we in
lude a 
onjun
t whi
h saysthat the 
orresponding variable x is in
omparable to r1; : : : ; rk;4. for ea
h 1 � i � k, we sear
h until we �nd the �rst formula Æi from the formally �01S
ott family for T [ri℄ whi
h ~ai satis�es; we in
lude the 
onjun
t Æi(~xi);5. we sear
h until we �nd a formula Æk+1 from the formally �01 S
ott family for T �S1�i�k T [ri℄ whi
h ~ak+1 satis�es; we in
lude the 
onjun
t Æk+1(~xk+1).Let � = f
~a(~x) : ~a 2 T is a tuple of distin
t variablesg. It is 
lear that � is a formally �01S
ott family of �nitary formulas.3 Computably Non-Categori
al TreesTo prepare for the indu
tion that establishes Theorem 1.8, we will prove the following:Proposition 3.1 Let T be a 
omputable tree of �nite height with root r. If r is not of �nitetype but every other node in T is of �nite type, then T is not 
omputably 
ategori
al. Indeed,T has 
omputable dimension !.Our proof of Proposition 3.1 requires several distin
t �nite-injury 
onstru
tions for thedi�erent possible 
ases. In ea
h 
onstru
tion we build a 
omputable tree T 0 isomorphi
 to Tsatisfying the requirementsRe : 'e one-one and total =) [(9we 2 T )T [we℄ 6�= T 0['e(we)℄℄:We guarantee that T 0 is isomorphi
 to T by building a �02 fun
tion f : T ! T 0. f will eitherbe an isomorphism from T onto T 0 or it will be an isomorphism from T onto range(f). In thelatter 
ase, T 0nrange(f) will 
onsist of su

essor trees of the root in T 0 ea
h of whi
h will havethe same isomorphism type as a su

essor tree of the root in T whi
h o

urs in�nitely oftenin T . Therefore, despite the extra su

essor trees, T and T 0 will be isomorphi
. Gon
harov([10℄) proved that if two 
omputable stru
tures are not 
omputably isomorphi
 but are �02isomorphi
, then their 
omputable dimension is !. So, in the 
ase where f is an isomorphism,we get the in�nite dimension part of the theorem for free. We make a separate argument atthe end of the se
tion for the 
ase when f does not map onto T 0.The node we will be 
alled the witness node for requirementRe, and will be approximatedby nodes we;s at ea
h stage s. At 
ertain stages we will need to �nd embeddings of Ts[we;s℄ intoother bran
hes of T , in order to satisfy Re, and we may rede�ne f on the nodes in Ts[we;s℄.22



(We assume that we work with a �xed approximation Ts of T by �nite subtrees.) To ensurethat lims fs(x) exists for ea
h x 2 T , we impose the negative requirements:Nx : lims fs(x) 
onverges.In addition, for any y 2 T 0, we need to insure that either lims f�1s (y) exists or y is permanentlypla
ed into one of the auxiliary subtrees of T 0 whi
h are not in the range of f but whi
h o

urin�nitely often as su

essor trees of the root in T . In the 
ases when we use su
h auxiliarytrees, this property will be easy to verify. In the other 
ases, we expli
itly insure this propertyby meeting the requirements for all u 2 T 0:Mu : lims f�1s (u) 
onverges:Clearly, satisfying all these requirements will prove the theorem.By de�nition, a su

essor tree in T above an !-bran
h point x of T is a tree T [y℄, wherey is an immediate su

essor of x. We use I to stand for an isomorphism type, and say that Iappears �nitely often (resp. in�nitely often) among the su

essor trees fT [y℄g above x if thereare only �nitely many (resp. in�nitely many) immediate su

essors y of x su
h that T [y℄�= I.In general, when we speak of an isomorphism type I o

urring in a tree T , we mean thatthere is a node a 2 T su
h that T [a℄ �= I.The domain of T is always assumed to be !, and we have a 
omputable approximation toT by: Ts = f0; 1; : : : s� 1g [ frg;where r is the root of T . We restate Lemma 2.10 be
ause it will be used repeatedly.Lemma 2.10 Suppose T and T 0 are two trees of �nite height and strongly �nite type. If ea
hof T and T 0 embeds into the other, then they are isomorphi
.Lemma 3.2 Suppose that T is a tree of �nite height whi
h is of �nite type but not of strongly�nite type. Then there exists an !-bran
h point y0 2 T su
h that all su

essor trees above y0are of strongly �nite type, and su
h that some su

essor tree whi
h appears only �nitely oftenabove y0 embeds into some su

essor tree appearing in�nitely often above y0.Proof. Let y0 be maximal in T among nodes whi
h are not of strongly �nite type. (This setis non-empty, sin
e it must in
lude the root of T .) Then y0 must be !-bran
hing, and everysu

essor tree above y0 is of strongly �nite type. The only way y0 
an fail to be of strongly�nite type is for there to be distin
t su

essor trees Tj ,! Tk above y0 su
h that in�nitelymany other su

essor trees above y0 are isomorphi
 to Tk. Sin
e y0 is of �nite type, however,the isomorphism type of Tj must appear only �nitely often above y0.Lemma 3.3 Let fT1; : : : Tng be any 
olle
tion of trees of weakly �nite type. Then there exist�nite trees S1; : : : Sn su
h that for all i and j:Si ,! Tj () Ti ,! Tj:23



Proof. To build Si, 
onsider the set Ai = fj � n : Ti 6,! Tjg. For ea
h j 2 Ai, there is a�nite subtree Si;j � Ti su
h that Si;j 6,! Tj, by Lemma 2.9. Let Si be the union of all thesesubtrees, for all j 2 Ai. (If Ai is empty, take Si to be a single node.)We will need a version of Kruskal's Theorem for trees of weakly �nite type. In order toprove this theorem, we use labeled �nite trees. For our purposes, a labeled �nite tree is a�nite tree S together with a fun
tion l : S ! f0; 1; !g. The elements of the set f0; 1; !g are
alled labels and the fun
tion l is 
alled the labeling fun
tion. Let S1 and S2 be labeled treeswith labeling fun
tions l1 and l2. An embedding f : S1 ,! S2 respe
ts the labels if for everyx 2 S1, l1(x) � l2(f(x)). A proof of the following version of Kruskal's Theorem 
an be foundin either [19℄ or [31℄. (In fa
t, for our purposes, we 
an assume that there is a uniform �nitebound n on the heights of the trees Si. This assumption leads to a far simpler proof.)Theorem 3.4 (Kruskal) Let fSi : i 2 !g be an in�nite 
olle
tion of �nite trees, ea
h with alabeling li. Then there exist i < j in ! and an embedding f : Si ,! Sj (preserving the in�mumfun
tion) su
h that for every x 2 Si, li(x) � lj(f(x)).Lemma 3.5 (Kruskal's Theorem for weakly �nite type) Fix n 2 !, and let fTi : i 2!g be an in�nite 
olle
tion of trees of weakly �nite type, with ht(Ti) � n for all i. Then thereexist i < j in ! su
h that Ti 
an be embedded in Tj.Corollary 3.6 Let fTi : i 2 !g be an in�nite 
olle
tion of trees of weakly �nite type, withht(Ti) � n for all i. Then there exists m 2 ! su
h that for every i > m, Ti 
an be embeddedin some Tj with j > i, and some Tk with k < i 
an be embedded in Ti.Proof. By Lemma 3.5 both f i 2 ! j 8j > i (Ti 6,! Tj) g and f i 2 ! j 8k < i (Tk 6,! Ti) g mustbe �nite.Proof of Lemma 3.5. We 
laim that given the 
olle
tion fTig, we 
an build a 
orresponding
olle
tion fSig of labeled �nite trees su
h that if i < j and there is an embedding of Si intoSj whi
h respe
ts the labels, then Ti also embeds into Tj. To prove this 
laim, we indu
t onn. The 
ase n = 1 is easy, sin
e there is only one possible tree, 
ontaining a single node; wetake Si = Ti for ea
h i, labeling the node of ea
h Si with 1.Now assume the 
laim for n. For ea
h tree Ti given by the lemma, let ri be the root ofTi, and let Ii;1; : : : Ii;mi be the (�nitely many) distin
t isomorphism types of su

essor treesabove ri. Then the indu
tive hypothesis applies to the setfIi;k : i 2 !; 1 � k � mig;yielding a set fSi;kg of 
orresponding labeled �nite trees. De�ne Si indu
tively as follows:� Si has a root si, labeled with 1; 24



� Si has a 
hain ui;1 � ui;2 � � � � � ui;n, ea
h labeled with 0, and with ui;1 an immediatesu

essor of si� For ea
h isomorphism type Ii;k whi
h appears only �nitely often { say p times { amongthe su

essor trees above ri in Ti, add p 
opies of the 
orresponding Si;k as su

essortrees above si in Si, with the root of ea
h of these su

essor trees labeled with a 1; and� For ea
h isomorphism type Ii;k whi
h appears in�nitely often among the su

essor treesabove ri in Ti, add a 
opy of the 
orresponding Si;k as a su

essor tree above si in Si,but labeling its root with !, rather than 1.We have 
hanged the labels on the roots of 
ertain �nite su

essor trees Si;k, but only by
hanging the label of the root from 1 to !, so we have not introdu
ed any new embeddingsamong the Si;k's.Now if f is an embedding of Si into Sj (j > i) whi
h preserves in�ma and respe
ts labels,then f must map the root si to sj , sin
e both trees have height n. (This was the purpose of the
hains fui;kg and fuj;kg.) Hen
e ea
h su

essor tree in Si maps into a distin
t su

essor tree inSj, sin
e f preserves in�ma. It follows that ea
h isomorphism type among the su

essor treesin Ti maps into some su

essor tree in Tj. Be
ause of the labeling with 0, 1 and ! on Si, weknow that no Si;k maps into the 
hain above uj;1, and that ea
h in�nite-appearing su

essortree in Ti maps into an in�nite-appearing su

essor tree in Tj (or possibly into an in�nite-appearing subtree of a �nite-appearing su

essor tree in Tj). Finally, ea
h �nite-appearingsu

essor tree in Ti appeared just as many times in Si, and hen
e there must be suÆ
ientlymany su

essor trees in Tj for ea
h 
opy of the type to map to.Applying Theorem 3.4 to our set fSig, we get an f with pre
isely the properties requiredby the 
laim. Hen
e some Ti embeds into some Tj with j > i.We will be interested in the minimal elements (under embedding) of various sets of treesof weakly �nite type. Let T be a set of trees of weakly �nite type for whi
h there is a �nitebound on the height of the trees appearing in T . Lemma 3.5 says that T together with theembeddability relation forms a well-quasi-order. Therefore, T satis�es both the des
ending
hain 
ondition that any stri
tly des
ending 
hain in T under embeddability is �nite andthe in
omparable 
hain 
ondition that any anti-
hain under the embeddability relation is�nite. (See [19℄ for more details on these properties. We are using the fa
t that a quasi-orderis a well-quasi-order if and only if it satis�es both of these 
onditions.) In this 
ontext, theappropriate de�nition of \minimal" is based on equivalen
e 
lasses under � rather than under�=.De�nition 3.7 T 2 T is minimal in T if for every T 0 2 T su
h that T 0 ,! T , we haveT � T 0.For trees of strongly �nite type, this is equivalent to the standard de�nition of minimalunder �=, by Lemma 2.10. However, trees of weakly �nite type do not ne
essarily satisfy25



this lemma; they form only a quasi-order under ,!, not a partial order. (The notion of aquasi-order plays no expli
it role in the paper after the next 
orollary.)Corollary 3.8 Let T be an in�nite 
olle
tion of trees of weakly �nite type, with ht(T ) � nfor all T 2 T . Then there exists a �nite set M � T of minimal elements of T (under theembedding relation) su
h that for every T 2 T there exists T 0 2 M with T 0 ,! T .Proof. Let S be the set of all minimal elements of T , and let M 
ontain exa
tly one repre-sentative from ea
h �-equivalen
e 
lass in S. Then the in
omparable 
hain 
ondition impliesthatM must be �nite, and the des
ending 
hain 
ondition implies that every T 2 T 
ontainsa subtree from M.This 
orollary will frequently be applied with T being either the set fT : T 6,! T0g (forsome �xed T0) or the set fT : T0 ,! T & T0 6�= Tg. We will need one last general fa
t aboutembeddings between �nite height trees of �nite type.Lemma 3.9 Let T0 and T1 be �nite height trees of �nite type and let Ii be the �nite set ofisomorphism types of su

essor trees whi
h o

ur in�nitely often immediately above the rootin Ti. If T0 � T1, then I0 = I1.Proof. We will write Ti[x℄ 2 Ii to indi
ate that the tree Ti[x℄ is a su

essor tree of the root inTi and that its isomorphism type o

urs in Ii.Consider any T0[x℄ 2 I0 and suppose that T0[x℄ embeds in some T1[y℄ 2 I1. Further,suppose that T1[y℄ embeds in some T0[z℄ 2 I0. Composing these two embeddings gives thatT0[x℄ ,! T0[z℄. But, be
ause T0 has �nite type and both T0[x℄ and T0[z℄ o

ur in�nitely often,it must be that T0[x℄ �= T0[z℄. Furthermore, T0[x℄, T1[y℄ and T0[z℄ all have strongly �nite typesin
e they o

ur in�nitely often. The two embeddings T0[x℄ ,! T1[y℄ ,! T0[z℄ �= T0[x℄ showthat T0[x℄ �= T1[y℄ by Lemma 2.10.The argument in the previous paragraph establishes the lemma ex
ept in the 
ase whenthere is a type I 2 Ii whi
h does not embed in any type J 2 I1�i. Without loss of generality,assume that there is a type I 2 I0 whi
h does not embed in any type in I1. In this 
ase wewill derive a 
ontradi
tion to the fa
t that T0 and T1 have �nite height.For any 
 2 Tj, we say that 
 o

urs in the �nite part of Tj if 
 2 Tj[a℄ for some a at level 1of Tj for whi
h Tj[a℄ is one of the �nitely o

urring isomorphism types at level 1. Otherwise,we say that 
 o

urs in the in�nite part of Tj.We de�ne a notion of rank for our �xed isomorphism type I. A node a 2 Tj has rankrk(a) � 0 if I embeds in Tj[a℄. A node a has rank rk(a) � n + 1 if there are in�nitely manynodes 
 for whi
h a � 
 and rk(
) � n. There are a number of simple fa
ts that follow fromthis de�nition.Fa
t 1. If rk(a) � n, then ht(Tj[a℄) � ht(I) + n. This fa
t follows by an indu
tion on n.Fa
t 2. If 
 lies above the root in T1 and rk(
) � 0, then 
 is in the �nite part of T1. Thisfa
t follows sin
e I ,! T1[
℄ and I1 
ontains no isomorphism types into whi
h I embeds.26



Fa
t 3. If 
 lies above the root in T0 and rk(
) � 1, then 
 o

urs in the �nite part ofT0. For a 
ontradi
tion, assume that 
 o

urs in the in�nite part of T0. Then 
 must o

urin some su

essor tree T0[a℄ of the root whose isomorphism type is in I0. However, by Fa
t1, ht(T0[a℄) > ht(I), so T0[a℄ 6�= I. This means I ,! T0[a℄ is an embedding relation betweendistin
t in�nitely o

urring isomorphism types at level 1 of T0, whi
h 
ontradi
ts the fa
t thatT0 has �nite type.Fa
t 4. For any k; n � 1, if a1; : : : ; ak 2 Tj satisfy rk(ai) � n, then there are b1; : : : ; bk 2T1�j whi
h satisfy rk(bi) � n. To establish this fa
t, �x any embedding f : Tj ,! T1�j and letbi = f(ai). The result follows by indu
tion on n.By Fa
t 1, to derive a 
ontradi
tion with the fa
t that T1 has �nite height, it suÆ
es toshow that for ea
h n � 1, T1 must have a node a with rk(a) � n. We establish this byindu
tion on n. Fix embeddings f : T0 ,! T1 and g : T1 ,! T0.For the 
ase of n = 1, we 
laim that the fa
t that I does not embed into any elementof I1 implies that there is an a 2 T1 for whi
h rk(a) � 1. To prove this 
laim, 
onsider theembedding f : T0 ,! T1. Ea
h 
opy T0[d℄ of I in the in�nite part of T0 must map into the�nite part of T1 under f . Therefore, there must be a node a at level 1 of T1 (in the �nitepart) for whi
h in�nitely many 
opies of I embed into T1[a℄. For this a, rk(a) � 1.Assume by indu
tion that the fa
t that I does not embed into any element of I1 impliesthat there is an a 2 T1 with rk(a) � n.Fix a1 2 T1 su
h that rk(a1) � n. We 
laim that there is an element a2 2 T1 with a2 6= a1and rk(a2) � n. To prove this 
laim, noti
e that by Fa
t 4, we know that g(a1) = b1 2 T0satis�es rk(b1) � n. Furthermore, setting 
1 = f(b1), we have that rk(
1) � n.We split into two 
ases depending on whether a1 = 
1 or a1 6= 
1. If a1 6= 
1, then we leta2 = 
1 and we are done with the 
laim. Otherwise, if a1 = 
1, then f(b1) = a1 and g(a1) = b1.Therefore f maps T0[b1℄ into T1[a1℄ and g maps T1[a1℄ into T0[b1℄, and moreover, restri
ting fto T0 n T0[b1℄ and restri
ting g to T1 n T1[a1℄ shows that (T0 n T0[b1℄) � (T1 n T1[a1℄). By theindu
tion hypothesis (whi
h applies sin
e we have only removed a portion of the �nite partsof T0 and T1 by Fa
ts 2 and 3 and therefore not 
hanged the in�nite part of either tree), thereis an element a2 2 T1 n T1[a1℄ for whi
h rk(a2) � n. This establishes the 
laim.More generally, for any k � 1, if a1; : : : ; ak 2 T1 have rk(ai) � n, then we 
an �xg(a1) = b1; : : : ; g(ak) = bk 2 T0 with rk(bi) � n. Setting 
i = f(bi) and splitting into 
asesas above, we get the existen
e of ak+1 2 T1 with rk(ak+1) � n. Therefore, there must bein�nitely many nodes in the �nite part of T1 whi
h have rank � n. We 
an �x a node a atlevel 1 of T1 (and in the �nite part) for whi
h in�nitely many of these nodes o

ur in T1[a℄.Then, rk(a) � n+ 1 as required.We now begin the 
onstru
tions whi
h will ultimately prove Proposition 3.1. Suppose Thas �nite height, but is not of �nite type. In this se
tion we 
onsider the 
ase when the rootr is the only node of T whi
h fails to be of �nite type. Then T must be !-bran
hing at r, andwe write x0; x1; : : : for the immediate su

essors of r in T . We present several 
onstru
tions
on
erning various ways in whi
h T 
ould fail to have �nite type and we prove in ea
h 
asethat T is not 
omputably 
ategori
al. After these 
onstru
tions, we prove Proposition 3.1 by27



showing that we have 
onsidered all possible 
ases. We present the �rst proof in the mostdetail sin
e many of the later arguments will have similar features.Lemma 3.10 Let T be a tree of �nite height with root r, and suppose that ea
h node abover in T is of �nite type. Suppose there is an isomorphism type I0 whi
h is not of strongly�nite type and appears in�nitely often as a su

essor tree above r. If only �nitely many otherisomorphism types I 0 appearing above r satisfy I 0 ,! I0, then T is not 
omputably 
ategori
al.Proof. First, we establish that there is a �02 pro
edure whi
h identi�es the immediate su
-
essors x of r su
h that T [x℄ � I0. Let F be the set of all isomorphism types I appearingas su

essor trees above r su
h that I 6,! I0. Let fI1; : : : Img be a set of minimal elements(under ,!) of F as given by Corollary 3.8, so that every I 2 F is a supertree of some Ii. ByLemma 3.3, ea
h Ii (i > 0) 
ontains a �nite subtree Si su
h that Si 6,! I0. Therefore, a nodex at level 1 in T satis�es T [x℄ ,! I0 if and only if 8s8i� m(Si 6,! Ts[x℄).Consider the �nite number of isomorphism types I 0 ,! I0. For ea
h su
h I 0 for whi
hI0 6,! I 0, there is a �nite subtree Q0 of I0 su
h that Q0 6,! I 0. Taking the union of these �nitetrees Q0 gives a �nite tree Q su
h that Q ,! I0 and for all I 0 as above, Q 6,! I 0. Therefore,an immediate su

essor x of r satis�es T [x℄ � I0 if and only if8s8i� m(Si 6,! Ts[x℄) ^ 9s(Q ,! Ts[x℄):Sin
e we 
an 
learly identify the immediate su

essors of r in a �02 manner, this de�nitionshows that we 
an identify the immediate su

essors x of r whi
h satisfy T [x℄ � I0 with a �02pro
edure.During the 
onstru
tion, we try to identify trees T [x℄ for whi
h x is an immediate su

essorof r and T [x℄ � I0. We say that we believe T [x℄ � I0 at stage s if x is an immediate su

essorof r in Ts, Q ,! Ts[x℄ and Si 6,! Ts[x℄ for all i � m. Without loss of generality, we assumethat the �nite tree Q has the same height as I0. Therefore, if we believe T [x℄ � I0 at stage s,then any embedding of Ts[x℄ into I0 must send x to the root node of I0.Sin
e it is of �nite type and not of strongly �nite type, I0 must 
ontain an !-bran
hingnode y0 satisfying Lemma 3.2. Fix su
h a node y0 and let J denote the isomorphism typeof I0[y0℄. By Lemma 3.2, there exist su

essor isomorphism types J0 ,! J1 of J with J0o

urring only �nitely often above y0 and J1 o

urring in�nitely often above y0. Moreover,Lemma 3.2 ensures that both J0 and J1 are of strongly �nite type, so Lemma 2.10 guaranteesthat J1 6,! J0.We will build a tree T 0 and an embedding f : T ! T 0 su
h that T 0 is equal to the rangeof f together with in�nitely many 
opies of I0 whi
h are atta
hed to the root of T 0. Ourstrategy to diagonalize against 'e : T ! T 0 being an isomorphism will roughly be to identifysubtrees T [z℄ whi
h satisfy T [z℄ � J0. On
e we �nd su
h a subtree, we make sure that J1embeds into our subtree T 0['e(z)℄. Be
ause J1 6,! J0, it 
annot be that T 0['e(z)℄ �= T [z℄. (Infa
t, it 
annot even be that T 0['e(z)℄ ,! T [z℄.)Consider the �nite number of isomorphism types I whi
h o

ur as su

essor trees in T andwhi
h satisfy I � I0. By Lemma 2.6, ea
h su
h I 
ontains only �nitely many isomorphism28



types of the form I[a℄ for a 2 I. Therefore, we 
an list the types of all su
h I[a℄ where Iis as above and a 2 I as K1; : : : ;Kn. (This list in
ludes the types of trees I[a℄ of any level,not just the types of the su

essor trees of the root of I.) As above, we 
an use �nite treesto distinguish these types up to �-equivalen
e. That is, for K1 there are �nitely many typesKi 6,! K1. List these trees as Ki1 ; : : : ;Kil . For ea
h k � l, there is a �nite subtree S0ik of Kiksu
h that S 0ik 6,! K1. Similarly, there are �nitely manyKj su
h that K1 6,! Kj . For ea
h su
hKj, there is a �nite subtree S00j of K1 su
h that S00j 6,! Kj . Taking the union of these treesyields a �nite subtree S00 of K1 su
h that S00 6,! Kj for any su
h j. Therefore, if T [x℄ � I0and x � u, then T [u℄ � K1 if and only if8s8k � l(S0ik 6,! Ts[u℄) ^ 9s(S00 ,! Ts[u℄):At stage s, we believe that Ts[u℄ � K1 if and only if the following 
onditions are satis�ed:there is a node x � u in Ts su
h that we believe Ts[x℄ � I0; S00 ,! Ts[u℄; and for all k � l,S0ik 6,! Ts[u℄.We 
an perform similar 
al
ulations for the other types Ki. During the 
onstru
tion, if xis an immediate su

essor of r with x � u for some u and we believe T [x℄ � I0, then we 
andetermine using �nite trees whi
h Kj we believe satis�es T [u℄ � Kj (if any). From the natureof the 
onditions, it is 
lear that if we believe in�nitely often that T [x℄ � I0 and T [u℄ � Kj,then in fa
t these equivalen
es hold.Noti
e that the isomorphism types J , J0, and J1 o

ur among the types K1; : : : ;Kn.Furthermore, by Lemma 3.9, for any node y su
h that T [y℄ � J , T [y℄ must have in�nitelymany su

essor trees whi
h are isomorphi
 to J1.We begin to des
ribe the 
onstru
tion. Assume that T is approximated in �nite stages byTs. Without loss of generality, we assume that we know the root of T . We build T 0s and asequen
e of embeddings fs : Ts ! T 0s. T 0s will 
onsist of the range of fs (whi
h is a �nite treeisomorphi
 to Ts by fs) together with �nitely many subtrees whi
h are isomorphi
 to I0 andwhi
h are atta
hed to the root of T 0s.We say that a tuple hx; y; zi is spe
ial in T if x is an immediate su

essor of the root,T [x℄ � I0, x � y, T [y℄ � J , z is an immediate su

essor of y, and T [z℄ � J0. We say thathx; y; zi is spe
ial at stage s+ 1 if x; y; z 2 Ts and we believe all of these 
onditions at stages. Be
ause we have �02 approximations to these 
onditions, we know that hx; y; zi is spe
ialin T if and only if there is a stage s su
h that for all t � s, hx; y; zi is spe
ial at stage t.Re
all that we have requirements Re, whi
h attempts to diagonalize against 'e being anisomorphism, and Nu, whi
h attempts to make the limit of fs(u) de�ned so that f is �02.The basi
 strategy for Re is to de�ne a witness tuple hx; y; zi whi
h we believe is spe
ial andwait for 'e(x) = x0, 'e(y) = y0, and 'e(z) = z0 to 
onverge. We next want to determine ifwe believe that hx0; y0; z0i is going to be spe
ial in T 0. This amounts to letting f�1s (x0) = a,f�1s (y0) = b and f�1s (z0) = 
, and asking whether we 
urrently believe ha; b; 
i is spe
ial in T .If the answer is no, then it appears that Re is not an isomorphism and we do not need todiagonalize. If the answer is yes, then we want to a
tively diagonalize.Assume that not only do we believe that hx; y; zi and ha; b; 
i are spe
ial in T at stage s ofthe 
onstru
tion, but they really are spe
ial in T . Then, there is an embedding of Ts[a℄ ,! I029



whi
h maps 
 to the base of a tree of type J1. (We prove the existen
e of su
h an embeddingbelow when we do the formal 
onstru
tion.) Therefore, we 
an diagonalize by using theembedding of Ts[a℄ into I0 to turn T 0s[x0℄ into a 
opy of I0 for whi
h T 0s[z0℄ be
omes a treeinto whi
h J1 embeds. We now know J1 ,! T 0[z0℄ and T [z℄ ,! J0. Therefore, if 'e is anisomorphism, then T 0[z0℄ ,! T [z℄ and hen
e J1 ,! J0, whi
h 
ontradi
ts our 
hoi
e of J0.We also need to rede�ne fs+1 on Ts[a℄ sin
e we have turned T 0s[x0℄ into I0 and we do notknow that Ts[a℄ has isomorphism type I0. Therefore, we add new elements to T 0s+1 and de�nethe map fs+1 to send the tree Ts[a℄ to these new elements. Noti
e that on
e an element y0 2 T 0has left the range of f , it will never return to the range of f . Therefore, we have that for ally0 2 T 0, either f�1s (y0) 
onverges or y0 is permanently part of an auxiliary 
opy of I0. Hen
ewe do not need to expli
itly dis
uss the requirementsMu in this 
onstru
tion.This a
tion of 
hanging the map so that fs(a) 6= fs+1(a) 
on
i
ts with the requirementsof the form Nu for u 2 Ts[a℄. To �x this problem, we give Re e+1 many witness tuples withdistin
t �rst 
omponents and we do not allow Re to use the tuple hx; y; zi to diagonalize iff�1s ('e(x)) � u for any u � e. That is, we giveNu higher priority than Re if u < e. Sin
e ea
hNu 
an stop Re from using at most one node at level one with whi
h to diagonalize, assigninge+ 1 tuples to Re is enough to guarantee that either Re will be allowed to diagonalize withone of these tuples or Re will be satis�ed in a trivial way, su
h as 'e not being one-to-one ornot respe
ting the ordering.There is a se
ond possible worry for the basi
 strategy for Re. Assume that hx; y; zi is awitness tuple for Re and hx0; y0; z0i is as above. Sin
e T 0s 
onsists of the range of fs togetherwith additional 
opies of I0, it is possible that the elements of hx0; y0; z0i sit in one of the 
opiesof I0. In this 
ase, it makes no sense to look at f�1s on the values x0, y0 and z0 sin
e theseelements are not in the range of fs. Of 
ourse, if it is not the 
ase that x0 � y0 � z0 in T 0s,then we have beaten 'e trivially. Otherwise, Re 
an 
he
k if x0 is the root of the 
opy of I0, y0is the root of a tree whi
h is � J and z0 is the root of a tree whi
h is � J0. (We will assumethat when we add a 
opy of I0 to T 0, we add a \ni
e" 
opy in whi
h we know the isomorphismtype of ea
h subtree of the form T 0[a℄ for a in this 
opy of I0. This is possible sin
e I0 
ontainsonly �nitely many su
h isomorphism types.) If not, then Re has already won. If so, then Re
an win by turning T 0[z0℄ into a 
opy of J1 (whi
h is possible be
ause J0 ,! J1) and addinga new 
opy of the old T 0[z0℄ above T 0[y0℄. Be
ause T 0[y0℄ bounds in�nitely many 
opies of J1,adding an extra 
opy does not 
hange its isomorphism type. So, we still have T 0[y0℄ � J andT 0[x0℄ �= I0. This a
tion wins Re as above, sin
e J1 ,! T 0[z0℄ and T [z℄ ,! J0.However, noti
e that if we performed this a
tion in�nitely often with the same 
opy of I0,then we might move the same subtree of this 
opy of I0 in�nitely often and not have a 
opyof I0 in the limit. Therefore, we need to restri
t this a
tion from happening in�nitely often.When a requirement Re 
reates a 
opy of I0, it marks it with the same priority as Re. Weonly allow requirementsRi with i < e to diagonalize using this 
opy of I0 as des
ribed above.This 
auses only �nitely additions to the tree after it is de�ned, so it really does have type I0in the limit.Be
ause Re is not allowed to use a witness tuple hx; y; zi when 'e(x) 
onverges to the root30



of a 
opy of I0 whi
h is marked by a requirement of higher priority, we have to allow Re extrawitness tuples. Ea
h time Ri with i < e marks a new 
opy of I0, Re is given an extra witnesstuple. This a
tion will only o

ur �nitely often, so in the end, Re has e+n+1 many witnesstuples, where n is the number of 
opies of I0 marked by requirements of higher priority. We
annot �x the number n at the beginning of the 
onstru
tion sin
e �nitely often a requirementof higher priority may 
reate a 
opy of I0 thinking that it is diagonalizing against a parti
ularwitness tuple only to dis
over later that this witness tuple was not a
tually spe
ial.We turn to a more formal des
ription of the 
onstru
tion. At ea
h stage s, we de�ne a�nite list of tuples whi
h are spe
ial at that stage and whi
h have distin
t �rst 
omponents.More formally, let hx0; y0; z0i be the �N-least tuple (under a �xed 
oding of N3) that is spe
ialat stage s. Let hxi+1; yi+1; zi+1i be the �N-least tuple greater than hxi; yi; zii whi
h is spe
ialat stage s and su
h that xi+1 is not equal to xj for any j � i. List these tuples at stage s byhx0;s; y0;s; z0;si; : : : ; hxps;s; yps;s; zps;si:At stage s, we assign e + n + 1 many of these tuples to the requirement Re, where n is thenumber of 
opies of I0 
reated by requirements of higher priority by stage s. If there are notenough tuples for Re to get its full set of tuples, then it is not assigned any tuples. Re maybe later de
lared to be satis�ed by one of the tuples it has been assigned. If that tuple ever
hanges, then Re is said to be injured and it is no longer satis�ed.Be
ause there are in�nitely many 
opies of I0 atta
hed to the root of T , there is an in�niteset of spe
ial tuples in T whi
h have pairwise distin
t �rst 
omponents. Therefore, ea
h tupleof the form hxm;s; ym;s; zm;si is eventually de�ned and rea
hes a limit hxm; ym; zmi, whi
h is aspe
ial tuple in T . So, ea
h requirement Re is eventually assigned a 
omplete set of spe
ialtuples.At stage s+1 we extend the isomorphism fs to fs+1 : Ts+1 ! T 0s+1 by adding fresh elementsto T 0s+1, unless there exists an Re requirement with e � s whi
h requires attention. If someRe requires attention, we let the highest priority su
h requirement a
t. Below we de�ne whenRe requires attention and what a
tion Re takes when it is allowed to a
t.Assume that Re is assigned the tuple hx; y; zi during the 
onstru
tion. Re waits for 'e(x),'e(y) and 'e(z) to 
onverge to some x0, y0, and z0 respe
tively. On
e these 
omputations
onverge (say at stage s + 1), Re 
he
ks for two possible easy wins. First, if any of theelements is not in T 0s, then Re wins by making sure that these elements are all pla
ed in T 0s+1and they do not satisfy x0 � y0 � z0. Se
ond, if either 'e is not one-to-one or x0 is equal tothe root in T 0 or it is not the 
ase that x0 � y0 � z0, then 'e 
annot be an isomorphism andRe wins without performing any a
tion.Assume that Re does not win trivially and that it has not been de
lared satis�ed by oneof its tuples. The a
tion for Re splits into two 
ases. Either x0, y0 and z0 are all in the range offs or else one of these elements falls outside the range of fs. We �rst 
onsider the 
ase whenall the elements are in the range of fs. In this 
ase, Re 
he
ks if hf�1s (x0); f�1s (y0); f�1s (z0)i isspe
ial. If not, then Re does not require attention. If this tuple is spe
ial, then Re 
he
ks ifthere is an element u 2 T with u < e and f�1s (x0) � u. If so, then the requirement Nu takespre
eden
e over Re and prevents Re from a
ting. Otherwise, Re requires attention.31



When Re is allowed to a
t, it begins a 
on
urrent sear
h for one of the following:1. an embedding T 0s[x0℄ ,! I0 whi
h sends x0 to the root of I0 and sends z0 to the base of atree into whi
h the isomorphism type J1 embeds; or2. a stage t � s at whi
h we no longer believe hf�1s (x0); f�1s (y0); f�1s (z0)i is spe
ial.One 
omment is ne
essary to explain 
ondition (1). Be
ause I0 has �nite type and is 
om-putable, we 
an assume that we have a ni
e 
opy of I0 in whi
h we know the isomorphismtype of ea
h subtree I0[a℄. Therefore, we know whi
h subtrees J1 embeds into, so we 
ansear
h for an embedding as in (1) in an e�e
tive manner. In the sublemmas verifying this
onstru
tion, we show that this sear
h pro
edure must terminate.If we see (2) happen �rst, then we no longer think that Re requires attention with thistuple. We extend our tree to T 0s+1 as if no requirement had required attention and go to thenext stage. If we see (1) happen �rst, then we perform the following a
tions:� turn T 0s[x0℄ into a 
opy of I0 with x0 as the root and z0 as the root of a tree into whi
hJ1 embeds; and� add extra elements to T 0 to be the new images of the elements above f�1s (x0) in T underfs+1; and� leave fs+1 = fs on all other elements from T ; and� add new elements to T 0 to 
orrespond to the elements in Ts+1 n Ts and de�ne fs+1 inthe obvious way;� de
lare Re satis�ed with this tuple.In this 
ase, we say that Re a
ts at this stage. Noti
e that the elements in the new 
opy ofI0 in T 0 are outside of the range of fs+1. Also, as in the 
omments explaining the sear
h in(1) above, we know exa
tly how this 
opy of I0 is 
onstru
ted in the sense that we know theisomorphism type of ea
h subtree. Furthermore, if Re is never injured after this stage, thenhx; y; zi is one of the �nal tuples assigned to Re. In this 
ase, T [z℄ � J0 but J1 ,! T 0[z0℄.Sin
e 'e(z) = z0 and J1 6,! J0, 'e 
annot be an isomorphism.We still need to see what a
tion to take if one of the elements x0, y0 or z0 is not in therange of fs. Be
ause we did not get an easy win for Re, it must be the 
ase that x0 � y0 � z0all sit in some su

essor tree of the root in T 0s. Sin
e one of these elements is not in the rangeof fs, this su

essor tree must be one of the trees of type I0 added to T 0s. If this 
opy of I0was 
reated by a requirement of higher priority than Re, then Re does not a
t at this stageand it ignores this parti
ular witness tuple in future 
al
ulations (sin
e it already knows thatit is not allowed to diagonalize with this tuple). Otherwise, be
ause we know how su
h a
opy of I0 was 
onstru
ted, we 
an 
he
k whether x0 is the root of this 
opy of I0, whethery0 has in�nitely many su

essor trees of type J1, whether z0 is an immediate su

essor of y0,and whether z0 is the base of a subtree whi
h is � J0. If any of these 
onditions fail, then we32



say that Re is satis�ed by this tuple sin
e 'e does not appear to be an isomorphism. If allof these 
onditions hold, then we add a new subtree above y0 of the same type as the subtreeabove z0 and we add elements to the subtree above z0 to turn it into a 
opy of J1. (In this
ase, we say that Re a
ts at this stage.) Be
ause y0 must bound in�nitely many 
opies of J1,we still have a tree of type I0 and now we have diagonalized against 'e being an isomorphism.We de
lare Re satis�ed by this tuple.This 
ompletes the des
ription of the 
onstru
tion. We verify that it su

eeds in thefollowing sublemmas.Sublemma 3.11 In the 
ase when x0, y0 and z0 are in the range of fs, the 
on
urrent sear
hpro
edure between (1) and (2) terminates.Proof. Assume that (2) does not o

ur. Then, f�1s (x0) is an immediate su

essor of r inT , f�1s (z0) is an immediate su

essor of f�1s (y0), T [f�1s (x0)℄ � I0, T [f�1s (y0)℄ � J , andT [f�1s (z0)℄ � J0. Be
ause T [f�1s (x0)℄ � I0, we 
an �x an embedding  : T [f�1s (x0)℄ ,! I0.We have already observed that  (f�1s (x0)) is the root of I0. Be
ause T [f�1s (y0)℄ � J , we knowthat f�1s (y0) has in�nitely many su

essor trees of type J1. Sin
e T [f�1s (z0)℄ � J0, we knowthat T [f�1s (z0)℄ ,! J1.Consider the restri
tion of  to the �nite tree Ts[f�1s (x0)℄. Let a be a node at level 1 inT [f�1s (y0)℄ whi
h has type J1 and is not in Ts[f�1s (y0)℄. Fix an embedding � of Ts[f�1s (z0)℄ intoT [a℄ whi
h sends f�1s (z0) to a and let  (a) = b 2 I. Noti
e that J1 ,! I[b℄ and  � mapsTs[f�1s (z0)℄ into I[b℄ with  (�(f�1s (z0))) = b. De�ne  0 on Ts[f�1s (x0)℄ by making it equal to  for all nodes that are not in Ts[f�1s (z0)℄ and equal to  � on all nodes in Ts[f�1s (z0)℄. Be
ausefs is an isomorphism between the �nite trees T 0s[x0℄ and Ts[f�1s (x0)℄, we 
an abuse notationand view  0 as an embedding from T 0s[x0℄ into I0. Noti
e that  0 has exa
tly the propertiesrequired for 
ondition (1).Sublemma 3.12 Ea
h Re requirement only a
ts �nitely often.Proof. Let s be a stage after whi
h all Ri for i < e do not a
t. In parti
ular, they do not
reate new 
opies of I0, so the number of witness tuples required by Re is �xed at this stage.Let t � s be a stage at whi
h Re has a full set of witness tuples and ea
h su
h tuple isa
tually spe
ial in T . Suppose Re a
ts with the tuple hx; y; zi after stage t. Then Re de
laresitself satis�ed with this tuple and remains satis�ed forever sin
e hx; y; zi is never taken away.Therefore, Re a
ts at most on
e after stage t.Sublemma 3.13 For ea
h u 2 T , fs(u) rea
hes a limit as s!1.Proof. The value of fs(u) 
an only 
hange if some requirementRe diagonalizes using a witnessx su
h that f�1s ('e(x)) � u. However, only requirements Re with e � u 
an a
t in this way.Therefore, on
e these requirements have stopped a
ting, the value of fs(u) 
annot 
hange.Sublemma 3.14 Ea
h requirement Re is eventually satis�ed.33



Proof. Let n be the number of 
opies of I0 
reated during the 
onstru
tion by requirementsof higher priority. Let s be a stage at whi
h Re has been assigned its �nal set of tuples,hxi; yi; zii for i < e+n+1, and all requirements of higher priority have stopped a
ting. For a
ontradi
tion, assume that 'e is an isomorphism from T to T 0. Let t � s be a stage at whi
h'e has 
onverged on all entries in the tuples assigned to Re. Let hx0i; y0i; z0ii denote these imagetuples. Sin
e Re did not get an easy win, we 
an assume that the values in these image tuplesare either in the range of ft or in a 
opy of I0 
onstru
ted by stage t.For any tuple hxi; yi; zii whi
h is mapped by 'e into a 
opy of I0, the image tuple hx0i; y0i; z0iiis spe
ial in T 0 sin
e 'e is an isomorphism. Also, sin
e the witness tuples for Re have distin
t�rst 
omponents, if two witness tuples are mapped to 
opies of I0, then these 
opies aredistin
t (or else we win trivially). Therefore, if at least n + 1 many tuples are mapped to
opies of I0, then at least one of these 
opies of I0 was not 
reated by a requirement ofhigher priority. In this 
ase, we immediately diagonalize with su
h a tuple and Re is wonpermanently.Otherwise, there are at least e + 1 many witness tuples whose images lie in the range offt. It is possible that some requirements of lower priority will a
t in a manner whi
h 
ausessome of these witness tuples hx0i; y0i; z0ii to be 
ontained in a 
opy of I0 in T 0 at a later stage.If ever we rea
h a point where n+1 of the witness tuples are in 
opies of I0, then Re wins asin the previous paragraph.If this does not happen, then for at least e+1 many tuples the values of f�1 on ea
h entryin hx0i; y0i; z0ii is not 
hanged by any requirement of lower priority. Ea
h of these tuples sits ina distin
t 
one immediately above the root of T 0. Sin
e the requirements Nu for u < e 
anonly prote
t e many of these 
ones, there must be an unprote
ted image tuple with whi
h Reenters the 
on
urrent sear
h of 
onditions (1) and (2). Be
ause 'e is an isomorphism, by the�02 approximation to spe
ial tuples, Re must eventually see that hf�1t (x0i); f�1t (y0i); f�1t (z0i)iis spe
ial. From here, Re will begin the 
on
urrent sear
h pro
edure and must dis
over anembedding as in 
ondition (1). At this point, Re diagonalizes, 
ontradi
ting the fa
t that 'eis an isomorphism. This �nishes the proof of Lemma 3.10.Lemma 3.15 Let T be a tree of �nite height, !-bran
hing at its root r, su
h that all nodesabove r are of �nite type. Let x0; x1; : : : be the immediate su

essors of r in T . If I0 is anisomorphism type su
h that in�nitely many i satisfy T [xi℄ ,! I0 and in�nitely many j satisfyboth I0 ,! T [xj℄ and T [xj℄ 6,! I0, then T is not 
omputably 
ategori
al.Proof. Let T be the set of all isomorphism types of su

essor trees above r in T , let F � Tbe the set of types whi
h do not embed into I0 and let E 
ontain those types in F intowhi
h I0 embeds. By Corollary 3.8, E and F � E ea
h has a �nite set of minimal elements,whi
h we denote by E0 and F0, with every element of E lying above an element of E0 (in theembeddability order), and every element of F �E lying above an element of F0. (Noti
e thatno element of E 
an lie below an element of F �E, but it is possible for an element of F �Eto lie below an element of E.) Lemma 3.3 yields a �nite 
olle
tion of �nite subtrees, one Siin ea
h Ji 2 F0 and one Ri in ea
h Ki 2 E0, su
h that no Si embeds into any other Sj or into34



I0, and no Ri embeds into any other Rj, Sj or I0. The important fa
ts about these relationsare that for all I 2 T , I 2 F , 9Si(Si ,! I) or9Ri(Ri ,! I)9Ri(Ri ,! I), I 2 E:At ea
h stage s, we de�ne the witness elements w0;s < � � � < wps;s at that stage to be thosenodes x 2 Ts whi
h we 
urrently think are at the base of a su

essor tree of the root in Twhose isomorphism type is not in F . More spe
i�
ally, we look for x satisfying:� x is an immediate su

essor of r in Ts; and� No Si ,! Ts[x℄; and� No Ri ,! Ts[x℄.Then for ea
h e, we = limswe;s exists, sin
e in�nitely many su

essor trees embed intoI0. We assign e + 1 many witnesses to the requirement Re. (If there are not e + 1 manywitnesses available for Re, then it is not assigned any witnesses.) Be
ause the limit of we;sexists for ea
h e, ea
h requirement will eventually be assigned a full set of witnesses whi
hnever 
hange. We need e+ 1 many witnesses sin
e at most one witness may be forbidden byea
h of the requirements Nu for u < e.We build T 0 in stages as T 0s, and we build a �02-isomorphism f : T ! T 0 by �nite ap-proximations fs : Ts ! T 0s. At stage s+ 1, we extend fs to fs+1 by adding fresh elements toT 0s+1, unless the following 
onditions hold for some requirement Re and one of its witnesseswe;s. (Here we abuse notation slightly by letting we;s stand for an arbitrary witness node forRe at stage s. This 
on
i
ts with our indexing of the witness nodes above, but it makes the
onne
tion between we;s and the requirement Re 
learer.)� 'e;s(we;s)#2 T 0s; and� 'e;s(we;s) is an immediate su

essor of fs(r) in T 0s; and� No Si ,! T 0s['e;s(we;s)℄; and� No Ri ,! T 0s['e;s(we;s)℄; and� it is not the 
ase that f�1s ('e;s(we;s)) � u for any u 2 T with u � e (this represents therestraint pla
ed on Re by Nu for u < e).If these 
onditions hold for some e � s, then let e be the highest priority requirement forwhi
h these 
onditions hold. We attempt to diagonalize to meet Re by sear
hing for a staget > s su
h that either1. f�1s ('e(we;s)) is not an immediate su

essor of r in Tt; or35



2. Some Si ,! Tt[f�1s ('e(we;s))℄; or3. Some Ri ,! Tt[f�1s ('e(we;s))℄; or4. There is an immediate su

essor x of r in Tt su
h that Tt[x℄\Ts = ; and T 0s['e(we;s)℄ ,!Tt[x℄ and also some Ri ,! Tt[x℄.If any of the �rst three 
onditions hold, then we de�ne fs+1 and T 0s+1 as if no requirementneeded attention. In this 
ase, it appears that 'e is not an isomorphism sin
e either 'e(we;s)is not the base of a su

essor tree in T 0 or 'e(we;s) is the base of a su

essor tree whi
h doesnot embed into I0. However, if we = we;s, then we is the base of a su

essor tree in T whi
hdoes embed into I0.If the fourth 
ondition holds, then we add Tt[x℄ to our 
urrent 
opy of T , and de�ne fs+1to map Tt[x℄ onto T 0s['e(we;s)℄, adding fresh elements to T 0 above 'e(we;s) to form a 
opy ofTt[x℄. We also add more fresh elements to T 0 to be the new image of Ts[f�1s ('e(we))℄ underfs+1. Thus fs+1 is still an isomorphism, but hereafter T 0['e(we;s)℄ will grow as a 
opy of somesu

essor tree 
ontaining Ri. By de�nition of Ri, this su

essor tree 
annot be embedded intoI0. On the other hand, if we = we;s, then T [we℄ 
an be embedded into I0. Hen
e Re will besatis�ed.If none of 
onditions 1-3 hold for any t, then T [f�1s ('e(we;s))℄ does not lie above anyminimal element of F , so it must embed into I0. Sin
e in�nitely many su

essor trees abover are supertrees of I0 and do not embed into I0, we see that 
ondition 4 must then apply forsome t > s. Therefore, this sear
h pro
edure terminates.If at some later stage s0 we have we;s0+1 6= we;s0 , thenRe and all lower priority requirementsare injured at that stage. This happens if we;s0 is no longer an immediate su

essor of r, orif some Ri or Si embeds into Ts0[we;s0℄. However, su
h injuries 
an only happen �nitely oftenfor ea
h e, sin
e we;s 
onverges. Therefore, ea
h requirement Re only a
ts �nitely often.Sin
e Re has e + 1 many witnesses and the requirements Nu for u < e prote
t at most emany su

essor trees of the root in T from having the value of fs 
hanged on them, Re musthave some witness for whi
h it is allowed to rede�ne fs if it needs to in order to diagonalize.(As in the previous 
onstru
tion, if 'e is not one-to-one or does not respe
t the ordering, thenwe win trivially and we 
ease trying to diagonalize.) Therefore, every requirement of the formRe is eventually satis�ed. Finally, noti
e that f�1s (y) only 
hanges if y 2 T 0s['e;s(we;s)℄ andRe a
ts at stage s. In this 
ase, some Ri ,! T 0s+1['e;s(we;s)℄ and therefore no Rk strategy everrede�nes f�1t for t > s on this subtree in an attempt to diagonalize again. Therefore, f�1s (y)rea
hes a limit for ea
h y 2 T 0.The tree T 0 built by this pro
ess is 
omputable, and isomorphi
 to T , sin
e at ea
h stagewe have a homomorphism fs from Ts into T 0s, with fs(r) = r, whose range is all of T 0s. Our
onstru
tion makes 
lear that f = lims fs exists, sin
e ea
h Re requirement must respe
t theNu requirements for u < e. This �nishes the proof of Lemma 3.15.Lemma 3.16 Let T be a tree of �nite height with root r, su
h that all nodes above r areof �nite type. Suppose there exist distin
t isomorphism types I0; I1; : : : and I! appearing as36



su

essor trees above r. Suppose further that for every i, Ii ,! I!, and that I! appearsin�nitely often as a su

essor tree above r. Then T is not 
omputably 
ategori
al.Noti
e that we do not require that I0; I1; : : : I! be the only isomorphism types appearingas su

essor trees above r.Proof. First we apply Corollary 3.8 to the set of su

essor trees above r whi
h do not embedinto I!, and use Lemma 3.3 to 
hoose �nite subtrees R1; : : :Rm of the minimal elements ofthis set, su
h that no Rj embeds into I!.Case 1. If there are only �nitely many i su
h that Ii ,! I! 6,! Ii, then we will appealto Lemma 3.19. Sin
e there are �nitely many su
h Ii, there is a �nite subtree S � I! su
hthat S 6,! Ii for any su
h Ii. Hen
e the immediate su

essors x of r su
h that T [x℄ � I! arepre
isely those x satisfying:� (8s)(8j)Rj 6,! Ts[x℄; and� (9s)S ,! Ts[x℄.This set is �02 and in�nite, and for all x0 and x1 in the set we have T [x0℄ ,! I! ,! T [x1℄, soindeed Lemma 3.19 will apply. (Also, the proof of Lemma 3.19 will not depend on Lemma3.16 at all.)Case 2. Now suppose that there are in�nitely many i su
h that Ii ,! I! 6,! Ii. In this
ase, we build T 0 and an embedding f : T ! T 0 su
h that T 0 is equal to the range of f plusextra 
opies of I! added as immediate su

essors of the root. Be
ause I! o

urs in�nitelyoften as a su

essor tree of the root in T , we have that T and T 0 are isomorphi
. As before,we build T 0 and f in stages su
h that at ea
h stage s, T 0s is equal to the range of fs plus�nitely many 
opies of I!.We pi
k one immediate su

essor y0 of r in T su
h that T [y0℄ �= I!, and use this �niteinformation to identify our witness nodes. Our goal is to identify witness nodes x 2 T su
hthat T [x℄ ,! I! 6,! T [x℄ and then to diagonalize by making T 0['e(x)℄ �= I!. Be
ause T [x℄ ,! I!if and only if for ea
h Ri, Ri 6,! T [x℄, we 
an measure that x is an immediate su

essor of theroot su
h that T [x℄ ,! I! in a �02 way. To measure whether I! 6,! T [x℄, at stage s, for ea
hx whi
h is an immediate su

essor of r in Ts, we de�net(x; s) = �t[t � x & Tt[y0℄ 6,! Ts[x℄℄:Then we 
hoose the witness nodes w0;s; : : :wps;s to be those x whi
h are su

essors of the rootin Ts (and hen
e for whi
h t(x; s) is de�ned) and no Rj embeds into Ts[x℄. We index thesewitnesses so that t(w0;s; s) � t(w1;s; s) � � � � � t(wps;s; s)with we;s <N we+1;s for any e su
h that t(we;s; s) = t(we+1;s; s).Clearly, if x appears as a witness node at in�nitely many stages s, then x must be animmediate su

essor of r and T [x℄ ,! I!. Moreover, for an immediate su

essor x su
h that37



I! ,! T [x℄, we must have lims t(x; s) =1. On the other hand, if T [x℄ is of one of the in�nitelymany types Ii for whi
h I! 6,! Ii, then I! 6,! T [x℄, and there is some t and some �nite treeSi su
h that Si � Tt[y0℄ and Si 6,! T [x℄. Therefore, lims t(x; s)#� t. Hen
e for ea
h of theselatter values of x, there must be an e with lims we;s #= x. We write we for this x, and notethat sin
e there are in�nitely many su
h x, the limit we must exist for all e. This gives us ourwitness nodes. We assign e + 1 many witness to the requirement Re. (As before, we abusenotation when we des
ribe the a
tion of requirementRe at stage s by denoting its witness bywe;s.)At stage s+ 1 of the 
onstru
tion, we extend our previous map fs to Ts+1. We do this byadding fresh elements to the image T 0s+1, unless some requirement Re requires attention. Wesay that Re requires attention if there exists a witness we;s for Re su
h that 'e;s(we;s)# (say'e;s(we;s) = y), y is an immediate su

essor of the root in T 0s, y is in the range of fs, and itis not the 
ase that f�1s (y) � u for some u < e. Noti
e that if Re does not require attentionbe
ause y is not an immediate su

essor of the root in T 0, then we win Re trivially as longas we;s = we. If y is a su

essor of the root of T 0s but Re does not require attention be
ausey is not in the range of fs, then y is the root of a tree of type I! in T 0. Again, if we;s = we,then we have won Re trivially. And if y � u for some u < e, then we do not allow Re to a
ton this witness we;s sin
e the a
tion 
ould damage the negative requirement Nu.If Re is the highest priority requirement needing attention, then we 
he
k if some Rjembeds into T 0s[y℄. If so, then we know T 0s[y℄ 6,! I!. Assuming we;s turns out to be a truewitness, T [we;s℄ 6�= T 0[y℄ and we have won Re. If no Rj embeds in T 0s[y℄, then we attempt todiagonalize. Sear
h 
on
urrently until we �nd1. some Rj ,! Tt[f�1s (y)℄ for t � s; or2. some witness w0;t; : : : ; we;t 
hanges; or3. an embedding of T 0s[y℄ into I! appears.By the de�nition of Rj, we know that this sear
h pro
edure must terminate.If the sear
h in (1) or (2) is su

essful, then we do not need to do anything for Re. Eitherwe do not really believe that we;s is the 
orre
t witness, or we believe that when we get tostage t we will win Re easily be
ause Rj ,! T 0t [y℄.If the sear
h in (3) is su

essful, then we add fresh elements to T 0s+1 above y to makeT 0s+1[y℄ �= I!. (Noti
e that sin
e I! is of �nite type, we 
an exe
ute this step all at on
e, usinga ni
e 
opy of I! 
onstru
ted from only �nitely mu
h information.) Also, add more freshelements to T 0s+1 to be the new image of Ts[f�1s (y)℄ under fs+1. Thus, we have rede�ned f onTs[f�1s (y)℄, but as in the previous arguments, be
ause Re must respe
t Nu for u < e, this 
anhappen only �nitely often. Moreover, if we = we;s, then T [we℄ will not be isomorphi
 to I!,hen
e not isomorphi
 to T ['e(we)℄, satisfying requirementRe. Finally, noti
e that for y 2 T 0,we only 
hange f�1s (y) when we remove y from the range of f . However, when this happens,y permanently be
omes part of an auxiliary 
opy of I!.38



The next lemma is not a separate 
ase of our overall proof of Proposition 3.1, but it willbe used later in the proof of Lemma 3.18.Lemma 3.17 Let T be a tree of �nite height with root r. Let x0; x1; : : : be the immediatesu

essors of r in T , and assume that every xi is of �nite type. Moreover, assume that thereexists an in�nite �02 set G � fxi : i 2 !g su
h that1. if xi 2 G and T [xi℄ �= T [xj℄, then xj 2 G,2. every T [xi℄ with xi 2 G embeds into in�nitely many T [xj℄ with xj 2 G, and3. for ea
h xi 2 G, fxj : T [xj℄ �= T [xi℄g is a �nite subset of G.Then T is not 
omputably 
ategori
al.Proof. We 
onstru
t a 
omputable tree T 0 isomorphi
 to T , su
h that for every e, if 'e werean isomorphism from T to T 0, then one of the �=-
lasses des
ribed in the lemma would bein�nite. Let Gs be a 
omputable approximation to G, with every Gs �nite. At ea
h stage swe de�ne a �nite subtree Ds � T with Ds � Ds+1 and an isomorphism fs : Ds ! T 0s, su
hthat fs 
onverges to a �02-isomorphism f : T ! T 0. We will 
hoose in�nitely many witnesselements wji for ea
h (total one-to-one) fun
tion 'i.We begin by motivating our strategy for a single Re requirement. For simpli
ity of nota-tion, we assume that G is 
omputable, as adding the �02 approximation toG is straightforward.Re begins with a single witness w0e 2 G and waits for a stage s su
h that 'e(w0e) 
onverges.If 'e(w0e) 2 T 0s and f�1s ('e(w0e)) 62 G, then Re is satis�ed and we do not perform any a
tion.(Noti
e that by 
ondition (1) on G, if some x 2 G we have f�1('e(x)) 62 G, then 'e 
annotbe an isomorphism from T to T 0.) Otherwise, if either 'e(w0e) 62 T 0s or f�1s ('e(w0e)) 2 G, webegin our a
tion for Re.Sear
h for a t > s and an x 2 T su
h that x 2 G, T 0s['e(w0e)℄ ,! Tt[x℄, and Tt[x℄ is disjointfrom Ds. If f�1s ('e(w0e)) is in G, then we must �nd su
h an x sin
e T [f�1s ('e(w0e))℄ embedsinto T [y℄ for in�nitely many y 2 G. (If 'e(w0e) 62 T 0s, then the embedding 
ondition is trivialand we merely look for Tt[x℄ whi
h is disjoint from Ds.) We now de�ne the map fs+1 by
hanging the map fs on Ts[f�1s ('e(w0e))℄. Use the embedding of T 0s['e(w0e)℄ into Tt[x℄ and addextra elements to T 0s+1 to make fs+1 map Tt[x℄ onto T 0s+1['e(w0e)℄. Add more new elementsto T 0s+1 to serve as the new image of Ts[f�1s ('e(w0e))℄ under fs+1. For all other points in Ds,let fs+1 = fs. We now have de�ned fs+1 on Ds+1, whi
h is equal to Ds plus Tt[x℄. Finally,we de�ne w1e = x. (Noti
e that we 
an speed up the approximation of T to assume thatDs+1 � Ts+1.)Repeat the above pro
edure, but working with w1e instead of w0e . Noti
e that if we keepextending our map fs+1 to 
opy the su

essor trees it is 
urrently de�ned on, we will get thatf is an isomorphism between T 0['e(w0e)℄ and T [w1e℄. Therefore, if 'e is an isomorphism,T [w0e℄ �= T 0['e(w0e)℄ �= T [w1e℄:39



By repeating this pro
ess (and assuming that 'e 
ontinues to 
onverge on all of our witnesseswne and is well behaved { see below), we get a sequen
e of witnesses wne su
h that if 'e is anisomorphism, then T [wne ℄ �= T [wn+1e ℄ for all n. This 
ontradi
ts the fa
t that the isomorphismtypes given by nodes in G o

ur �nitely often. Noti
e that we 
hange the map f as we go fromfs to fs+1 on Ts[f�1s ('e(wne ))℄ and we also 
hange the map from f�1s to f�1s+1 on T 0s['e(wne )℄.Sin
e we are not turning T 0s['e(wne )℄ into an auxiliary tree, we will need to expli
itly addressthe requirementsMu for the �rst time.By well behaved, we mean that 'e is one-to-one, that it maps the root to the root, thatit maps 
omparable nodes to 
omparable nodes, and that it maps in
omparable nodes toin
omparable nodes. If we ever see any of these 
onditions violated, then we know 'e is notan isomorphism and we 
an stop working on Re. In all of the work below, we assume thatwe stop work on Re if we get an easy win be
ause it is not well behaved in this sense.Combining the basi
 strategy for Re with the Ni strategies is a little more subtle thanin previous 
onstru
tions be
ause one Re requirement 
an 
ause in�nitely many 
hanges inthe map fs. Before rede�ning fs on Ts[f�1s ('e(wne ))℄, we 
he
k if f�1s ('e(wne )) � m for anym from 0; : : : ; he; ni in T . If not, then we a
t as above. If it is below any su
h m, then we
annot rede�ne fs on this subtree. We also employ a similar strategy to deal with the Mistrategies. That is, if 'e(wne ) � he; ni, then Re 
annot use wne as a witness sin
e this wouldinvolve rede�ning f�1s ('e(wne )). In either 
ase, Re must repi
k its witness wne . If n > 0, wede
lare that wne is unde�ned. This for
es us to repeat the 
y
le above for wn�1e and givesus a new (large) witness wne . Assuming that 'e is well behaved, this new witness gives usa di�erent value for f�1s ('e(wne )) (whi
h we assume is in G). Sin
e ea
h point in G is animmediate su

essor of the root in T , we will have to repeat this pro
ess at most 2he; ni + 1many times before we are guaranteed to be allowed to rede�ne fs. If n = 0, then we need to
hoose a new initial witness w0e. To do this, we de
lare that the old w0e is disallowed for Reand we let the new w0e be the least element of G whi
h has not been disallowed for Re. If'e is well behaved, then we will have to rede�ne our initial witness in this fashion at most2he; 0i + 1 many times. Therefore, we eventually get our in�nite sequen
e of witnesses andwin.We also need to see how di�erent R strategies work together. Ea
h Re will have some�nite (possibly empty) list of witnesses w0e ; : : : ; wne at stage s. We say that wij has higherpriority than wpq if hi; ji < hp; qi. Consider an Re strategy working with other R strategies. IfRe has a largest witness wne and 'e(wne ) 
onverges with f�1s ('e(wne )) 2 G, then in addition to
he
king whether f�1s ('e(wne )) is below any of the numbers 0; : : : ; he; ni in T , Re also 
he
kswhether f�1s ('e(wne )) is equal to any other wmi . If so, then 
hanging fs on Ts[f�1s ('e(wne ))℄
ould damage the requirement Ri. Therefore, Re 
he
ks if the node wmi has higher prioritythan wne . If so, then Re 
annot 
hange the map on this 
one, so it a
ts as when it wasrestri
ted by an N or M requirement. If not, then it 
auses all wmi of lower priority tobe
ome unde�ned and goes ahead with its a
tion as above.Noti
e that this a
tion may allow Ri to injure Re even though e < i. However, only�nitely many witnesses wmi 
an injure a given wne , and therefore, wne will eventually rea
h a40



limit whi
h Re 
an use.We now present the full 
onstru
tion, whi
h is nothing more than the above des
riptionwith the �02 guessing for elements of G. We start by setting D0 = frg and T 00 = f0g, withf0(r) = 0.At stage s+ 1, we make a preliminary de�nition of our witnesses by indu
tion on i from0 � i � s. If w0i;s 2 Gs, then let w0i;s+1 = w0i;s and wji;s+1 = wji;s for all j > 0 su
h that wji;s isde�ned. If w0i;s 62 Gs or w0i;s is not de�ned, then w0i;s+1 and all lower priority witnesses wne;s+1are unde�ned (even if some of these were de�ned earlier in the indu
tion). Next, we 
he
k ifsome new initial witness w0k;s+1 
an be de�ned. If there is a k � s and an element x 2 Gssu
h that w0k;s+1 is unde�ned, x =2 fwji;s+1 : hi; ji < hk; 0ig, and x is not disallowed for w0k,then we let w0k;s+1 be the least su
h x. Make all lower priority witnesses unde�ned.We then �nd the least pair hi; ji su
h that 'i;s is well behaved, wji;s+1 is de�ned, wj+1i;s+1 isnot de�ned, 'i;s(wji;s+1) #, and either f�1s ('i;s(wji;s+1)) 2 Gs or 'i;s(wji;s+1) =2 T 0s. (If there isno su
h pair, we end the stage, let Ds+1 = Ds [ fsg and fs+1 = fs plus add one fresh elementfs+1(s) to T 0s+1 if needed.) If 'i;s(wji;s+1) 2 T 0s, then 
he
k the following two 
onditions for
ompatibilitywith the appropriateN andR requirements. (In the 
ase when 'i;s(wji;s+1) 62 T 0s,we 
an skip these 
he
ks.)First, 
he
k for 
ompatibility with the N and M requirements. If 'i(wji;s+1) > hi; ji andthere is no k � hi; ji su
h that f�1s ('i(wji;s+1)) � k in Ts, then go to the 
he
k in the nextparagraph. Otherwise, if j > 0, de
lare wji;s+1 unde�ned and begin the next stage. If j = 0,then de
lare w0i;s+1 disallowed for w0i , make w0i;s+1 unde�ned and go to the next stage. (Inboth of these 
ases, we extend Ds to Ds+1 = Ds [ fsg, add an extra element to T 0s+1, andde�ne fs+1 on this new element if ne
essary.)Se
ond, 
he
k for 
ompatibility with the R requirements. If there is no higher prioritywne;s+1 su
h that 'i(wji;s+1) = fs(wne;s+1), then go to the next paragraph. Otherwise, if thereis su
h a wne;s+1 and j > 0, de
lare wji;s+1 unde�ned and begin the next stage. If j = 0, thende
lare w0i;s+1 disallowed for w0i , make w0i;s+1 unde�ned and go to the next stage. (HandleDs+1, T 0s+1 and fs+1 as in the previous paragraph.)If both of these 
he
ks are su

essful, sear
h for the least stage t > s+ 1 su
h that either� 9x 2 Gt(Tt[x℄\Ds = ; & T 0s['i(wji;s+1)℄ ,! Tt[x℄); or� 'i;s(wji;s+1) 2 T 0s and f�1s ('i;s(wji;s+1)) =2 Gt.In the latter 
ase we repeat the above pro
ess for the next pair hi; ji � s whi
h appearsto need attention. In the former 
ase, we set wj+1i;s+1 = x, add elements to T 0s+1 above (andpossibly in
luding) the node 'i(wji;s+1) to make a 
opy of Tt[x℄, and de�ne fs+1 to map Tt[x℄onto these elements, a

ording to the embedding we found. If this requires rede�ning fs+1 onelements of Ds whi
h had mapped into T 0s['i(wji;s+1)℄ under fs, we add fresh elements to T 0s+1to be their images. For all other elements of Ds, fs+1 takes the same value as fs. We add theelements of Tt[x℄ to Ds+1 and we enumerate s into Ds+1, adding a fresh element as its imagein T 0s+1 if ne
essary. Thus T 0s+1 is the bije
tive image of Ds+1 under fs+1.41



We 
laim that the sear
h for stage t must eventually terminate. If f�1s ('i(wji;s+1)) =2 G,this is 
lear. If f�1s ('i(wji;s+1)) 2 G, then there are in�nitely many other nodes x 2 G su
hthat T [f�1s ('i(wji;s+1))℄ ,! T [x℄. Eventually we �nd a node x (in Gt but not ne
essarily in G)with su
h an embedding, su
h that T [x℄ \Ds = ;, and we use it. Finally, if 'i(wji;s+1) =2 T 0s,then T 0s['i(wji;s+1)℄ is 
onsidered to be empty, hen
e embeds trivially into Tt[x℄ for the �rstx =2 Ds to appear in any later Tt \Gt.The veri�
ation that the 
onstru
tion su

eeds is essentially as des
ribed in the informalsetting. The witness w00;s 
an only be 
hanged if it leaves Gs or if '0(w00;s) 
onverges eitherto 0 or su
h that f�1s ('0(w00;s)) � 0 in T . Therefore, this witness is only injured �nitelyoften due to the �02 nature of G and is injured at most on
e by ea
h of the requirementsN0 and M0. Sin
e no other requirement 
an injure w00;s, this witness eventually rea
hes its�nal value. Similarly, for ea
h wji;s, on
e the higher priority witnesses have rea
hed their �nalvalues (whi
h may in
lude never being de�ned again), this witness su�ers �nite injury dueto the fa
t that G is �02, �nite injury due to the restraints of N and M, and �nite injurydue to the restraints of the higher priority witnesses for R requirements. Therefore, for everywitness wji;s, there is a stage t su
h that either wji;s has stabilized by stage t or wji;s is neverde�ned after stage t.Sin
e ea
h witness stabilizes, Ri only 
hanges fs �nitely many times for ea
h potentialwitness wji;s. Therefore, be
ause of the restraint imposed by the N requirements, f(x) =lims fs(x) exists for all x 2 T and be
ause of the restraint of the M requirements, f�1(y) =lims f�1s (y) exists for all y 2 T 0. Thus f gives a �02-isomorphism from T to T 0.If 'i is indeed well behaved and total, then we de�ne a growing sequen
e of nodesw0i;s; : : : ; wji;s whi
h eventually settle down to w0i ; : : : ; wji . If f�1('i(wji )) =2 G, then 'i 
annotbe an isomorphism, sin
e the lemma assumes that if T [x℄ �= T [y℄, then (x 2 G () y 2 G).If f�1('i(wji )) 2 G, then eventually the se
ond 
lause in the sear
h for stage t will never againapply, and we will �nd a t and an x whi
h we de�ne to be wj+1i .On
e wj+1i has 
onverged, we de�ne fs(wj+1i ) = 'i(wji ). This a
tion may be injured �nitelymany times, but eventually it settles on a �nal wj+1i with f(wj+1i ) = 'i(wji ). We know thatf is an isomorphism from T to T 0. If 'i were an isomorphism as well, then we would haveT [wji ℄ �= T 0['i(wji )℄ �= T [wj+1i ℄for every j, the �rst isomorphism being 'i and the se
ond being f�1. But w0i 2 G (sin
e we
he
k this immediately at every stage), and wki 6= wji for all k 6= j, sin
e ea
h new wki is always
hosen as a node in T not yet in the domain Ds of fs. This 
ontradi
ts the assumptions ofthe lemma, so T and T 0 
annot be 
omputably isomorphi
.Lemma 3.18 Let T be a tree of �nite height, su
h that the root r has in�nitely many imme-diate su

essors x0; x1; : : :. Assume that all nodes above r are of �nite type, and that thereare in�nitely many isomorphism types in the set fT [xi℄g. Suppose that only �nitely many ofthese isomorphism types appear in�nitely often as su

essor trees above r, and that for ea
h42



su
h type I, only �nitely many other types appearing above r embed into I. Then T is not
omputably 
ategori
al.Proof. Let T be the set of isomorphism types of su

essor trees in T and let I be the setof types in T whi
h embed in any of the in�nite-o

urring types (in
luding the in�nitely-o

urring types themselves). By assumption I is �nite. We let fSig be a �nite 
olle
tion of�nite trees su
h that no Si embeds into any element of I, yet every T [xi℄ =2 I has some Sias a subtree. (Here we use Corollary 3.8 and Lemma 2.9.) The elements of I are pre
iselythose types into whi
h no Si embeds. Therefore, there is a �02 guessing pro
ess to identify allsu

essor trees above r whose type is in I.Noti
e further that by Corollary 3.6, we infer that of the elements of T �I, all but �nitelymany embed into in�nitely many other elements of T � I. LetU = fxi : T [xi℄ 2 T � I & (9m)(8j � m)T [xi℄ 6,! T [xj℄gbe this �nite set. We will 
on
ern ourselves with the set F of immediate su

essors x of r inT su
h that T [x℄ 2 T �I and T [x℄ embeds into in�nitely many other elements of T �I. Wehave a �02-approximation Fs for F , and we may assume that ea
h Fs \ U = ;.Case 1. Suppose there are only �nitely many equivalen
e 
lasses E0; : : : Ep under � amongfT [x℄ : x 2 Fg. At least one must be in�nite, so assume that E0; : : : Eq are the in�nite 
lassesand Eq+1; : : : ; Ep are the �nite ones. Sin
e ea
h isomorphism type o

urs only �nitely often inea
h Ei, we have that the setX = fx 2 F : T [x℄ 2 Eq+1 [ � � � [ Epgis �nite. Let G = F �X. Sin
e F is �02 and X is �nite, G is �02. G is exa
tly the kind of setto whi
h we 
an apply Lemma 3.17. Therefore, T is not 
omputably 
ategori
al.Case 2. Suppose there are in�nitely many equivalen
e 
lasses under � among fT [x℄ :x 2 Fg. We will write Ej ,! Ek to indi
ate that some (hen
e all) elements of Ej embed intosome (hen
e all) elements of Ek. For ea
h 
lass Ek, pi
k one representative T [xik℄, and applyCorollary 3.6 to fT [xik℄ : k 2 !g. (We do not need this pro
edure of pi
king elements tobe 
omputable sin
e we only use it to obtain a �nite amount of information detailed below.)This gives us a K su
h that for all k � K, there are in�nitely many j > k su
h that Ek ,! Ej.Consider the equivalen
e 
lasses E0; : : : ; EK�1. Divide these 
lasses and renumber them sothat E0; : : : ; Eq are the �nite ones. Then, just as above in Case 1, the setX = fx 2 F : T [x℄ 2 E0 [ � � � [ Eqgis �nite. Therefore, G = F �X is a �02 set to whi
h we 
an apply Lemma 3.17. Therefore,T is not 
omputably 
ategori
al.Oddly, the remaining 
ase turns out to be the hardest. This is the situation in whi
hwe have in�nitely many isomorphism types appearing above r, all of �nite type, with every43



su
h isomorphism type embedding into every other one. One would think that with so manyembeddings at hand the proof would be easy. Alternatively, Lemma 2.10 shows that in�nitelymany of these types must fail to be of strongly �nite type, hen
e must have embeddingsavailable within them to satisfy all the requirements. Curiously, the presen
e of so manytypes and embeddings interferes with the availability of non-strongly-�nite types, and vi
eversa, so that in the end we must use a 
ompletely di�erent approa
h. The following lemmawill not be used dire
tly in the proof of Proposition 3.1, but it is ne
essary to �nish the proofof Case 1 in Lemma 3.16.Lemma 3.19 Let T be a tree of �nite height with root r, su
h that every su

essor tree abover is of �nite type. Suppose there is an in�nite set X = fx0; x1; : : :g of immediate su

essorsof r satisfying:1. X is �02; and2. For all xi; xj 2 X, T [xi℄ � T [xj℄; and3. fT [xi℄g in
ludes in�nitely many distin
t isomorphism types.Then T is not 
omputably 
ategori
al.Proof. To simplify the proof, we will assume that X 
ontains every immediate su

essor of rin T . The �nite-injury 
onstru
tion we present 
an readily be adapted to the more general
ase, using �02-approximations to X. We begin by presenting the parti
ular 
ase in whi
hht(T ) = 4. As no tree of height < 4 satis�es the hypotheses of the lemma, this will serve asthe base 
ase for an indu
tion on the height of T . Suppose ht(T ) = 4 and every su

essor treeabove r embeds into every other su
h su

essor tree, and there are in�nitely many isomorphismtypes o

urring among these su

essor trees and they are all of �nite type. Ea
h time a nodebe
omes established at level 1 in T , we know that it is the root of a su

essor tree, so wede�ne it to be the next xi. Sin
e the su

essor trees all embed into ea
h other, they must allhave the same height { namely 3, sin
e ht(T ) = 4 { so every node at level 1 of T eventuallyis identi�ed as xi for some i. Also, it is not hard to see that sin
e ea
h T [xi℄ has �nite type,ea
h T [xi℄ must be !-bran
hing at its root for the 
onditions of the lemma to hold.If y is an immediate su

essor of any xi, then the isomorphism type of T [y℄ is determinedby the number of immediate su

essors y has. By Lemma 3.9, sin
e T [xi℄ � T [xj℄ are �nitetype trees, they have exa
tly the same in�nitely o

urring su

essor trees. Therefore, thereis a �nite list n1 < n2 < � � � < nk su
h that nj � ! for ea
h 1 � j � k, and for every i, thesu

essor trees in T [xi℄ whi
h o

ur in�nitely often are the nj -bran
hing trees of height 2 for1 � j � k. We next show that k = 1. Suppose that k > 1. Under this assumption, T [xi℄ hasan in�nitely o

urring su

essor tree whi
h embeds into a nonisomorphi
 in�nitely o

urringsu

essor tree. Sin
e this violates the de�nition of �nite type, we must have k = 1. Let 
 = n1be su
h that the unique in�nitely o

urring su

essor tree in every T [xi℄ is 
-bran
hing.Furthermore, we 
laim that for any m su
h that 
 < m � !, ea
h T [xi℄ has exa
tlythe same number of m-bran
hing su

essor trees. To see this fa
t, �rst suppose 
 < !,44



T [xi℄ has ui many !-bran
hing trees, T [xj℄ has uj many !-bran
hing trees and ui < uj.We know T [xj℄ ,! T [xi℄, so ea
h !-bran
hing su

essor tree in T [xj℄ must map into an!-bran
hing su

essor tree in T [xi℄, and be
ause of the heights of the trees, two di�erent!-bran
hing su

essor trees in T [xj℄ 
annot map into the same !-bran
hing su

essor tree inT [xi℄. Therefore, we have an immediate 
ontradi
tion. Se
ond, �x the maximal m < ! su
hthat 
 < m and T [xi℄ has vi many m-bran
hing su

essor trees for some vi > 0. (Be
auseT [xi℄ has �nite type, it has only �nitely many di�erent isomorphism types among its su

essortrees. Therefore, either there is no m with 
 < m < ! su
h that T [xi℄ has an m-bran
hingsu

essor tree, in whi
h 
ase we have established our 
laim, or there is a maximal su
h m.)Ea
h of these trees must map into a su

essor tree in T [xj℄ whi
h is at least m-bran
hing(but not !-bran
hing sin
e those su

essor trees are already mapped to by the !-bran
hingsu

essor trees in T [xi℄) and no two su
h m-bran
hing su

essor tree in T [xi℄ 
an map intothe same su

essor tree in T [xj℄. Therefore, T [xj℄ must have at least vi many su

essor treeswhi
h are at least m-bran
hing but not !-bran
hing. However, if T [xj℄ has a su

essor treethat is more than m-bran
hing but less than !-bran
hing, then it has no pla
e to map tounder T [xj℄ ,! T [xi℄. Therefore, T [xj℄ has at least vi many su

essor trees whi
h are exa
tlym-bran
hing. By swit
hing the roles of T [xi℄ and T [xj℄, we see that T [xj℄ must have exa
tlyvi many su

essor trees whi
h are m-bran
hing. We 
an obviously 
ontinue this pro
ess withthe next largest number whi
h is less than m, greater than 
 and su
h that T [xi℄ has at leastone su

essor tree with that number of bran
hes.We now know that any T [xi℄ and T [xj℄ must look identi
al with respe
t to their su

essortrees whi
h are more than 
-bran
hing. However, there must be in�nitely many di�erentisomorphism types among the T [xi℄ trees. These di�eren
es in isomorphism type must bedue to the su

essor trees whi
h are less than 
-bran
hing. Therefore, in�nitely many T [xi℄
ontain a node w at level 1 in T [xi℄ whi
h has fewer than 
 immediate su

essors. We will useas our witness nodes those nodes w with < 
 immediate su

essors, with at most one witnessnode in ea
h su

essor tree. When ne
essary to diagonalize, we add more su

essors to 'e(w)in T 0 so that it has exa
tly 
 su

essors.We identify the witness nodes as follows. At any given stage, the witness node in T [xi℄should be that node x 2 T [xi℄ with < 
 su

essors whi
h has levelTs(x) = 2 and whi
h hasgone the longest without a
quiring any new su

essors. That is, for ea
h x at level 1 in T [xi℄,let tx = (�t � x)[all su

essors of x in Ts are in Tt℄;and 
hoose as the witness node in T [xi℄ at stage s the smallest x su
h that tx is minimal.However, it is possible that T [xi℄ 
ontains no nodes with < 
 su

essors, so we must sear
hamong di�erent su

essor trees. At �rst, we 
hoose w0;s to be the witness node in T [x0℄. Ifthis witness node 
hanges at some subsequent stage s1, then we 
hoose w0;s1+1 to be thewitness node in T [x1℄. If at a subsequent stage s2 the witness node in T [x1℄ 
hanges, then we
hange w0;s2+1 ba
k to the (
urrent) witness node in T [x0℄, then T [x1℄ again, then T [x2℄, thenba
k to T [x0℄, and so on. In general, let sk be the next stage (if any) after sk�1 at whi
h w0;s
hanges, and 
hoose w0;1+sk to be the witness node in T [xi℄ at stage 1 + sk, where k = hi; ji.45



The properties proved above guarantee that there must be in�nitely many T [xi℄ 
ontainingnodes x su
h that x is an immediate su

essor of xi and su
h that x has < 
 su

essors, soeventually w0;s 
onverges to some w0. At the same time, we do the same for the witness nodew1;s for R1, looking only at witness nodes in su

essor trees T [xj℄ in whi
h w0;s has never yetbeen lo
ated, and so on by a standard �nite-injury pro
ess.Sublemma 3.20 For every e, we = lims we;s exists and has < 
 su

essors in T .Proof. Assume by indu
tion that the lemma holds for all i < e. Then ea
h of w0; : : : we�1lies above one of x0; : : : xk, for some k. By our assumptions about T , there must be a nodey in some T [xj℄ with j > k su
h that levelT (y) = 2 and y has < 
 su

essors. Assume thatthis y is 
hosen to have minimal ty among all su
h nodes in T [xj℄. (Hen
e y a
quires no newsu

essors after stage ty. If there is more than one y with minimal ty, we take y to be thesmallest of them.)Pi
k a stage s0 by whi
h x0; : : : xj are all established, so that T [xj℄ will be available to uswhen we de�ne we;s at all s � s0. (Hen
e we;s will never be unde�ned after s0.) If we;s failsto 
onverge to a limit, then it must be in T [xj℄ at in�nitely many stages s, a

ording to ourinstru
tions for 
hoosing we;s. Sin
e ty is minimal, we must have we;s = y at 
o�nitely manyof the stages su
h that we;s 2 T [xj℄. Hen
e we;s = y at some stage s > ty. But then we;s = yfor all subsequent stages s as well, proving the sublemma. (Possibly we;s 
onverged to someother limit in some other T [xk℄ instead of 
onverging to y, of 
ourse.) However, in any 
ase,the 
onstru
tion guarantees that the limit must have < 
 su

essors in T .We build T 0 by 
opying T at ea
h stage s, with the following provision. Find ea
h e � ssu
h that we;s is de�ned and 'e;s(we;s) # (say y = 'e;s(we;s)) and f�1s (y) lies at level 2 in Tsand has fewer than 
 su

essors in Ts. If there is no su
h e, simply extend fs to fs+1 byadding new elements to T 0s+1. If there is, then for the least su
h e, add new elements to T 0so that y has exa
tly 
 su

essors in T 0. We also add new elements to T 0 to be the image ofTs[f�1s (y)℄ under fs+1. The elements of T 0s+1[y℄ will not lie in the image of the limit f , but Tand T 0 will still be isomorphi
, sin
e every xi has in�nitely many immediate su

essors withexa
tly 
 su

essors of their own. Noti
e that as in previous 
onstru
tions with auxiliarytrees, if a node y 2 T 0 is removed from the range of f , then it permanently be
omes partof an auxiliary 
-bran
hing subtree of T 0. We have simply added one more su
h node abovef(xi) in T 0 during this rede�nition of f . The only injuries to Re o

ur when wi;s+1 6= wi;s forsome i < e. Thus we have ensured that y = 'e;s(we;s) has 
 su

essors in T 0, while we;s has< 
 su

essors in Ts. If we;s = we, then we;s a
quired no new su

essors in T after stage s,leaving Re satis�ed.Two minor modi�
ations to this strategy are required for R and N strategies to worktogether. First, as we have done before, we assign e+ 1 many witnesses to Re and we 
he
kwhether f�1s (y) � u for u < e before allowing Re to a
t. This modi�
ation insures thatf = lims fs exists and that T �= T 0. Se
ond, sin
e there are parts of T 0s whi
h are not in therange of fs, it is possible that y lies at level 2 in T 0s but it is not in the range of fs. In this46




ase, y already has 
 su

essors be
ause of the a
tion of some R requirement. Therefore, ifwe;s = we, then Re has already won without needing to a
t.We now assume by indu
tion that for all trees T with ht(T ) < n satisfying the hypothesesof the lemma, we have a 
onstru
tion of a tree T 0 whi
h is isomorphi
 to T but not 
omputablyisomorphi
 to it. Let ht(T ) = n, and suppose that every su

essor tree above r embedsinto every other su
h su

essor tree, and that there are in�nitely many isomorphism typeso

urring among these su

essor trees and that they are all of �nite type. Ea
h time a nodebe
omes established at level 1 in T , we know that it is the root of a su

essor tree, so wede�ne it to be the next xi. Sin
e the su

essor trees all embed into ea
h other, they mustall have the same height { namely n � 1, sin
e ht(T ) = n { so every node at level 1 of Teventually is identi�ed as xi for some i.Noti
e that for xi and xj at level 1 in T , we have that T [xi℄ � T [xj℄ and that both ofthese trees are of �nite type. Therefore, by Lemma 3.9, the set of isomorphism types whi
ho

ur in�nitely often among the su

essor trees of xi in T [xi℄ is exa
tly the same as the set ofisomorphism types whi
h o

ur in�nitely often among the su

essor trees of xj in T [xj℄. Letthese types be I1; : : : Ip. We will 
onsider two 
ases.Case 1. Suppose there are in�nitely many i su
h that some �nite-appearing su

essortree in T [xi℄ embeds into one of I1; : : : Ip. Then (without loss of generality) there must bein�nitely many i su
h that some �nite-appearing su

essor tree in T [xi℄ embeds into I1.The 
onstru
tion in this 
ase will be mu
h the same as the 
onstru
tion in the 
ase whereht(T ) = 4. The witness nodes will be roots of �nite-appearing su

essor trees in various T [xi℄,and we will embed those �nite-appearing trees into su

essor trees in T [xi℄ isomorphi
 to I1when ne
essary to satisfy the requirements. In this general 
ase, however, it is more diÆ
ultto lo
ate the witness nodes.Sin
e I1 has strongly �nite type, we 
an use �nitely mu
h information to 
onstru
t a ni
e
opy of I1. By a ni
e 
opy, we mean both that we know the isomorphism type of every subtreeof the form I1[a℄ and also that x � y implies that x < y. We use this 
opy of I1, along withthe notion of a basi
 embedding, to pi
k out witness nodes in T .De�nition 3.21 Two nodes x and y in a tree S are siblings if they have the same immediateprede
essor in S. (This in
ludes the 
ase x = y.)De�nition 3.22 An embedding  : S ,! T is basi
 if it maps the root of S to the root ofT and for every pair of siblings y0 < y1 in T , if T [y0℄ �= T [y1℄ and y1 2 range( ), then alsoy0 2 range( ) and  �1(y0) <  �1(y1). (Here, of 
ourse, < refers to the standard ordering on!, not to the tree stru
ture of T or S.)The intuition for building a (not ne
essarily 
omputable) basi
 embedding is that, havingmapped x to  (x), we 
onsider the immediate su

essors x0; x1; : : : of x in numeri
al order(so xi < xi+1 for all i). Having de�ned  on x0; : : : xi, we 
hoose an isomorphism type above (x) into whi
h to map S[xi+1℄, and let  (xi+1) be the least root y of a su

essor tree of thatisomorphism type above  (x) su
h that y is not already in the range of  . The only problem47



with this algorithm is that several su

essor trees from S may have to map into the same�nitely o

urring su

essor tree in T . We show how to handle this problem below. Noti
ethat for our ni
e 
opy of I1, it is 
omputable for �nite trees S, uniformly in S, whether abasi
 embedding of S into I1 exists, and also whether any spe
i�
 map  : S ! I1 is a basi
embedding or not.We prove the following sublemmas about basi
 embeddings. Although they apply to anytrees of strongly �nite type, we will apply them to our ni
e 
opy of I1.Sublemma 3.23 Let S be a tree with �nite type and U be a tree with strongly �nite type. Ifthere is an embedding f : S ,! U , then there is a basi
 embedding g : S ,! U .Proof. We pro
eed by indu
tion on the height of U . If U has height 1, then S must haveheight 1 and they both 
onsist only of a root. The basi
 embedding g sends the root of Sto the root of U . Assume U has height greater than 1 and that we know the theorem byindu
tion for all trees of lower heights.Fix the embedding f and de�ne g to send the root of S to the root of U . We des
ribehow g behaves on all su

essor trees S[x℄ of the root in S by splitting into two 
ases. Lety0; y1; : : : be all the nodes at level 1 in U numbered so that i < j implies yi < yj. Assume thatthe su

essor trees U [yi℄ for i � n are exa
tly the su

essor trees whose isomorphism typeso

ur only �nitely often in U . (The proof below does not depend on the fa
t that the �nitelyo

urring su

essor trees have roots whi
h are less than the roots of the in�nitely o

urringsu

essor trees. It does, however, simplify the notation.) We �rst 
onsider those su

essortrees of S that f embeds into some U [yi℄ for i > n and se
ond we 
onsider those su

essortrees of S whi
h f embeds into some yi for i � n.Let xi0 < xi1 < � � � be the nodes at level 1 in S su
h that f embeds S[xik℄ into one of thein�nitely o

urring isomorphism types of su

essor trees in U . Fix jk to be the index of thenode yjk at level 1 in U su
h that f : S[xik℄ ,! U [yjk ℄. De�ne g on the trees S[xik℄ by re
ursionon k. Let g(xik) = y where y is the �N{least node at level 1 in U su
h that U [y℄ �= U [yjk ℄ andy is not in the range of g yet. Sin
e S[xik℄ ,! U [y℄, by indu
tion there is a basi
 embeddingof these trees. Let g be de�ned on S[xik℄ to be su
h an embedding.Next, 
onsider the su

essor trees S[x℄ in S su
h that f maps S[x℄ into one of the �nitelyo

urring isomorphism types of su

essor trees in U . Noti
e that if f maps two su

essortrees S[x1℄ and S[x2℄ into the same su

essor tree U [y℄, then y is not in the range of f . We
onsider ea
h of the �nitely o

urring isomorphism types separately. Fix one of these typesand assume without loss of generality that U [y0℄; : : : ; U [ym℄ are the su

essor trees with thisisomorphism type and that y0 < � � � < ym. For i � m, let Yi be the set of nodes x at level1 in S su
h that f maps S[x℄ into S[yi℄. We 
onsider �rst the sets Yi whi
h have size 1 andthen the sets whi
h have size at least 2. (Of 
ourse, it is possible that some Yi are empty andwe ignore these sets.)For ea
h Yi with size 1, �x the unique su

essor tree in S whi
h maps into U [yi℄. Letxi0 < � � � < xik be the root nodes of these su

essor trees. De�ne g(xil) = yl for l � k. Sin
ewe know S[xil℄ ,! U [yl℄, we 
an extend our de�nition of g (by the indu
tion hypothesis) tobe a basi
 embedding between these subtrees.48



We 
onsider the remaining Yi with size at least 2 individually. Fix su
h a Yi and letx0; x1; : : : 2 Yi be the nodes of level 1 in S su
h that f embeds S[xk℄ into U [yi℄. (This listmay be either �nite or in�nite.) Consider an auxiliary tree Si formed by taking a root nodeand atta
hing the trees S[xk℄ immediately above the root. Let u � m be the least index su
hthat we have not de�ned g mapping into U [yu℄ yet. By our assumptions, we know that Siembeds in U [yu℄. (Noti
e that this is where we use the fa
t that Yi has size at least 2. Inthis 
ase, the node yi was not in the image of f be
ause f mapped more than one su

essortree into U [yi℄.) By the indu
tion hypothesis, there is a basi
 embedding of Si into U [yu℄.Let g be the restri
tion of su
h a basi
 embedding to all nodes in Si ex
ept the root node.This de�nition of g maps all of the S[xk℄ trees into U in a basi
 way. (That is, any violationof the requirement on the images of siblings in the restri
ted version of g would have been aviolation of the restri
tion on the basi
ness of the embedding of Si.) Performing the a
tionof the last two paragraphs for ea
h isomorphism type of a �nitely o

urring su

essor tree inU 
ompletes the des
ription of g.Sublemma 3.24 Let U be a �nite height tree of strongly �nite type and let f : U ,! U .Then for all x at level 1, we have that f(x) is at level 1 and U [x℄ �= U [f(x)℄. (We are not
laiming that f is an isomorphism, whi
h it need not be, but only that these su

essor treesare isomorphi
.)Proof. Fix a node x at level 1 in U su
h that f(x) 6= x. We split into the 
ases when U [x℄ isa �nitely o

urring isomorphism type and when U [x℄ is an in�nitely o

urring isomorphismtype.Suppose U [x℄ is a �nitely o

urring isomorphism type and there is some m < n su
h thatfm(x) = fn(x). Now f , being an embedding, has a one-to-one inverse g, with dom(g) =range(f). So fn�m(x) = gm(fn(x)) = gm(fm(x)) = x, for
ingU [x℄ ,! U [f(x)℄ ,! U [fn�m(x)℄ = U [x℄:Sin
e these are strongly �nite trees, U [x℄ �= U [f(x)℄ by Lemma 2.10, and moreover, 1 �level(f(x)) � level(fn�m(x)) = 1.Now suppose U [x℄ is a �nitely o

urring isomorphism type but there is no m < n su
h thatfn(x) = fm(x). We �rst show that there must be a n1 su
h that level(fn1(x)) > 1. Be
auseU [x℄ is a �nitely o

urring isomorphism type and U has strongly �nite type, if U [x℄ ,! U [y℄and level(y) = 1, then U [y℄ is a �nitely o

urring su

essor tree. Fix y su
h that level(y) = 1and f embeds U [x℄ into U [y℄. There are two possibilities, either y � f(x) (in whi
h 
aselevel(f(x)) > 1 and we are done) or y = f(x) (in whi
h 
ase level(f(x)) = 1). If f(x) = y,then we repeat the above pro
ess to gain information about f2(x). Sin
e U [y℄ = U [f(x)℄ isa �nitely o

urring su

essor tree, f must embed U [f(x)℄ into a �nitely o

urring su

essortree U [z℄ with level(z) = 1. Again, either we have z � f2(x) (in whi
h 
ase we are done) orz = f2(x). In the latter 
ase, we repeat the pro
ess again. Ea
h time we repeat this pro
ess,we either �nd that level(fn(x)) > 1 (and we are �nished) or fn(x) is the root of another�nitely o

urring su

essor tree. Sin
e fn(x) 6= fm(x) for all n 6= m, we 
an never repeat the49



root of a parti
ular �nitely o

urring su

essor tree during this pro
ess. Be
ause there areonly �nitely many �nitely o

urring su

essor trees, this pro
ess must stop at some value n1with level(fn1(x)) > 1.Let x1 be the node at level 1 su
h that x1 � fn1(x). We next show that it is not the
ase that fk(x1) = x1 for some k. For a 
ontradi
tion, assume that fk(x1) = x1 for some k.Then, be
ause fp+k(x1) = fp(x1) for all p, there must be a node y1 su
h that fn1 (y1) = x1.However, then we have fn1 (y1) = x1 � fn1 (x), so y1 � x whi
h implies that y1 is the root.Sin
e f must take the root to the root, this gives the desired 
ontradi
tion.Repeating the argument above for x1, there must be an n2 su
h that level(fn2(x1)) > 1.Therefore, level(fn1+n2(x)) > level(fn2(x1)) > 1and hen
e level(fn1+n2(x)) > 2. If we now let x2 be the node of level 1 su
h that x2 �fn2(x1), we 
an repeat the argument to show there is an n3 su
h that level(fn1+n2+n3(x)) > 3.Repeating this pro
ess 
ontradi
ts the fa
t that U has �nite height. Therefore, it 
annot bethe 
ase that fk(x) 6= x for all k. We have now shown that f must permute the su

essortrees U [x℄ whi
h have �nitely o

urring isomorphism types.It remains to 
onsider x su
h that U [x℄ has an in�nitely o

urring isomorphism type. Bythe argument above, f 
annot map U [x℄ into a �nitely o

urring isomorphism type be
auseit must permute those types. Therefore, f must embed U [x℄ into some U [z℄ whi
h has anin�nitely o

urring isomorphism type. However, this means that U [x℄ �= U [z℄ sin
e U hasstrongly �nite type and hen
e we must have f(x) = z.Sublemma 3.25 If T1 �= T2 have strongly �nite type and f : T1 ,! T2, then for all x at level1 in T1, f(x) is at level 1 in T2 and T1[x℄ �= T2[f(x)℄.Proof. Let g be any isomorphism from T2 to T1. This sublemma follows from Sublemma 3.24by 
onsidering gf : T1 ,! T1. Noti
e that as in the proof of Sublemma 3.24, if T1[x℄ has�nitely o

urring isomorphism type, then T2[f(x)℄ has �nitely o

urring isomorphism type.Furthermore, if y is at level 1 in T2 and T2[y℄ has �nitely o

urring isomorphism type, then yis in the range of f .Sublemma 3.26 Let U be a �nite height tree of strongly �nite type, f : U ,! U , andk < ht(U). For all nodes x at level k, f(x) has level k and U [x℄ is isomorphi
 to U [f(x)℄.Proof. This follows by indu
tion on k using Sublemma 3.24.Sublemma 3.27 Let T1 �= T2 be �nite height trees of strongly �nite type. There is exa
tlyone basi
 embedding f : T1 ,! T2 and f is an isomorphism.Proof. We pro
eed by indu
tion on the height of T1. The 
ase for height 1 is trivial. Assumethe sublemma holds for all trees of height less than the height of T1. By Sublemma 3.23, weknow that there is a basi
 embedding f : T1 ,! T2. We need to show that f is onto (andtherefore is an isomorphism) and is unique. 50



We know that f sends the root of T1 to the root of T2. Consider any node x at level 1in T2. We have already seen that if x has an in�nitely o

urring isomorphism type then x
annot be equal to f(y) where T1[y℄ has �nitely o

urring type. Also, if x is not in the rangeof f , then we have an immediate 
ontradi
tion sin
e some z > x with T2[z℄ �= T2[x℄ must bein the range of f be
ause T1 has in�nitely many nodes u at level 1 with T1[u℄ �= T2[x℄. This
ontradi
ts the fa
t that f is basi
. Therefore, x must be in the range of f . Furthermore, ifx is the k-th node at level 1 in T2 with its isomorphism type (where we measure k-th usingthe �N{ordering), it must be the 
ase that f(u) = x where u is the k-th node in T1 with thistype. Therefore, for nodes at level 1 in T1 with in�nitely o

urring isomorphism types, themap f is uniquely determined. By indu
tion, the values of f above these nodes are uniquelydetermined and give an isomorphism between the su

essor trees.If T2[x℄ is a �nitely o

urring type, then we already know that x = f(y) for some y 2 T1.By an argument similar to the one above, the value of y is uniquely determined, and by theindu
tion hypothesis, f is a uniquely determined isomorphism from T1[y℄ to T2[x℄.Sublemma 3.28 For ea
h basi
 embedding  : S ,! I1, the restri
tion of  to S\fr; 0; : : : sgis also a basi
 embedding. (Here r is the root of S.)This is 
lear from the de�nition of basi
 embedding.Sublemma 3.29 Let S and I1 be �nite height trees su
h that S is of �nite type and I1 isof strongly �nite type. Suppose every basi
 embedding S ,! I1 in
ludes the node y of I1 inits image. Then there is an s su
h that every basi
 embedding of S \ fr; 0; 1; : : : ; sg into I1in
ludes y in its image.It then follows from Sublemma 3.28 that every basi
 embedding of every S \f0; 1; : : : ; tg intoI1 with t � s in
ludes y in its image.Proof. Our argument is purely 
lassi
al and we do not 
laim (or need) any e�e
tiveness inthis sublemma. We pro
eed by indu
tion on the height of I1. The 
ase when I1 has height 1(and hen
e 
onsists of only the root) is trivial. Assume that the height of I1 is greater than 1and that the sublemma holds for all trees of shorter height. We split the argument into two
ases: when y is 
ontained in one of the �nitely o

urring su

essor trees in I1 and when yis 
ontained in one of the in�nitely o

urring su

essor trees in I1. It suÆ
es to show that ify is 
ontained in the range of all basi
 embeddings, then there is a �nite subtree U of S forwhi
h all basi
 embeddings of U into I1 hit y.First, 
onsider the 
ase when y is 
ontained in one of the �nitely o

urring su

essor treesof I1. Let S1 be the subtree of S 
onsisting of the root plus all the su

essor trees whi
h do notembed into any in�nitely o

urring su

essor tree in I1. Let J1 be the subtree of I1 
ontainingthe root and all the �nitely o

urring su

essor trees in I1. We denote the su

essor trees inJ1 by J1[z0℄; : : : ; J1[zl℄. Noti
e that not only does S1 ,! J1, but there is a basi
 embeddingS ,! I1 su
h that S n S1 is mapped into I1 n J1. This basi
 embedding 
an be obtained by51



�xing a basi
 embedding S1 ,! J1 and then mapping ea
h su

essor tree S[x℄ not in S1 (byindu
tion on x) by a basi
 embedding into I1[z℄ where z is the <-least node at level 1 in I1nJ1whi
h has not yet been mapped into.We denote the �nitely o

urring su

essor trees in S1 by S1[x0℄; : : : ; S1[xk℄ with the as-sumption that x0 < � � � < xk. For simpli
ity of notation, we assume that there is only oneisomorphism type for an in�nitely o

urring su

essor tree in S1 (the general 
ase when thereare �nitely many su
h isomorphism types will be 
lear from the argument below) and wedenote these su

essor trees S1[y0℄; S1[y1℄; : : : with the assumption that y0 < y1 < � � � . Wemake no assumptions about the <-ordering between elements xi and yj.We 
laim that for any z 2 J1 at level 1, either in�nitely many 
opies of S1[y0℄ 
an beembedded into J1[z℄ or else there is a �nite upper bound mz on the number of 
opies of S1[y0℄that 
an be embedded into J1[z℄. To see this fa
t, 
onsider an auxiliary tree U formed bytaking a root with in�nitely many 
opies of S1[y0℄ as su

essor trees. (Noti
e that sin
e S1[y0℄has �nite type, so does U .) Be
ause U has �nite type, we know that it embeds into J1[z℄ ifand only if all of its �nite subtrees embed into J1[z℄. Therefore, if U 6,! J1[z℄, then we obtaina �nite bound mz as above. Sin
e there are only �nitely many su

essor trees in J1, we let m0be a �nite number su
h that for all z 2 J1 at level 1, if m0 
opies of S1[y0℄ embed into J1[z℄,then in�nitely many 
opies of S1[y0℄ embed into J1[z℄. Finally, sin
e there are l + 1 manysu

essor trees in J1, then we let m = m0(l + 1). The point of m is that we know that if mmany 
opies of S1[y0℄ are embedded into J1, then at least m0 many must have been embeddedinto some J1[zj℄ and hen
e in�nitely many 
opies of S1[y0℄ 
ould have been embedded intothat su

essor tree.We next de�ne a �nite tree S01 � S1 whose basi
 embeddings into J1 will en
ode (in away made pre
ise below) the possible su

essor trees J1[v℄ that a su

essor tree S1[u℄ 
ouldbe sent to by a basi
 embedding of S into I1. S01 
onsists of the root plus su

essor treesS01[xi℄ � S1[xi℄ for i � k and S01[y0℄; : : : ; S01[ym℄. Ea
h of the S01[yi℄ trees are isomorphi
 withS01[y0℄ � S1[y0℄. We pi
k these �nite trees to have the following embedding properties, wherez ranges over all nodes at level 1 in J1.1. S01[xi℄ 6,! I1[v℄ for any v 2 I1 n J1 (and the same for S01[yi℄).2. S01[xi℄ ,! J1[z℄ if and only if S1[xi℄ ,! J1[z℄ (and similarly for S01[yi℄).3. If S1[xi℄ ,! J1[z℄ only by sending xi to z, then the same property holds for S 01[xi℄ (andsimilarly for S01[yi℄).4. Consider all possible 
hoi
es of nonrepeating sequen
es u0; : : : ; uq with ea
h ua equaleither to some xi (with i � k) or some yj (with j � m). Let U denote the tree formedby taking a root and su

essor trees S1[u0℄; : : : ; S1[uq℄ and let U 0 denote the �nite treeformed by taking a root and su

essor trees S 01[u0℄; : : : ; S01[uq℄. Then, U ,! J1[z℄ if andonly if U 0 ,! J1[z℄.The fa
t that we 
an pi
k �nite subtrees with properties (1), (2) and (4) is 
lear from Lemma2.9. To see that we 
an get property (3), suppose that all �nite subtrees of S1[xi℄ 
ontaining52



xi 
an be embedded into J1[z℄ without sending xi to z. Then for one of the �nitely manyisomorphism types of the su

essor trees in J1[z℄, arbitrarily large subtrees of S1[xi℄ 
an beembedded into this type. But, then S1[xi℄ 
an be embedded into a su

essor tree of J1[z℄ withthis type, and hen
e there is an embedding of S1[xi℄ into J1[z℄ whi
h does not send xi to z.Property (1) says that any embedding S01 ,! I1 must a
tually send S01 into J1. Properties(2) and (4) together say that any embedding S 01 ,! J1 
an be extended to an embeddingS1 ,! J1 and hen
e to an embedding S ,! I1. Property (3) says that if this extension requiresthat a node at level 1 in S1 map to a node at level 1 in J1, then this requirement was alreadypresent for the embedding of S01.For any basi
 embeddings f; g : S01 ,! J1, we say f � g if and only if the following two
onditions hold.8i � k 8j � l � (f(xi) 2 J1[zj℄$ g(xi) 2 J1[zj℄) ^ (f(xi) = zj $ g(xi) = zj) �8i � m8j � l � (f(yi) 2 J1[zj℄$ g(yi) 2 J1[zj℄) ^ (f(yi) = zj $ g(yi) = zj) �It is 
lear that � is an equivalen
e relation and that up to � equivalen
e, there are only�nitely many basi
 embeddings S01 ,! J1. Let f0; : : : ; fq be a list 
ontaining one element fromea
h equivalen
e 
lass. For a basi
 embedding g : S ,! I1, we say that g � fi if the restri
tionof g to S01 is equivalent to fi.Our de�nition of m and the properties (1){(4) above insure that for every basi
 embeddingg : S ,! I1, there is an fi su
h that g � fi and that for ea
h fi, there is a basi
 embeddingg : S ,! I1 su
h that g � fi. It is in this sense that the embeddings f0; : : : ; fq en
odeinformation about the possible basi
 embeddings of S into I1 when restri
ted to S1.We use the fi embeddings to prove the sublemma in the 
ase when y is a node in J1. First,by the properties of the previous paragraph, a node zj at level 1 in J1 is in the range of allbasi
 embeddings S ,! I1 if and only if zj is in the range of fi for all i � q. Therefore, the�nite tree S 01 is large enough to determine if the roots of the �nitely o

urring su

essor treesin I1 are in the range of all basi
 embeddings.Se
ond, suppose that y 2 J1[zj℄, but y 6= zj. For ea
h i � q, we de�ne a tree Ui 
orre-sponding to fi. Fix i and 
onsider all u 2 fx0; : : : ; xk; y0; : : : ; ymg su
h that fi maps S01[u℄into J1[zj℄. We split the de�nition of Ui into two 
ases. If fi maps less than m0 
opies of treesof the form S01[ya℄ into J1[zj℄, then let Ui 
onsist of a root plus the su

essor trees S1[u℄ forwhi
h fi maps S01[u℄ into J1[zj℄. If fi maps at least m0 many S01[ya℄ trees into J1[zj℄, then letUi 
onsist of a root plus the su

essor trees S1[xb℄ for whi
h fi maps S01[xb℄ into J1[zj℄ plusin�nitely many su

essor trees isomorphi
 to S1[y0℄. In either 
ase, we know that Ui embedsinto J1[zj℄ = I1[zj℄. Sin
e the height of I1[zj℄ is stri
tly less that the height of I1, we 
anapply the indu
tion hypothesis on height from the beginning of the sublemma. There is a�nite subtree U 0i su
h that every basi
 embedding of U 0i into I1[zj℄ has y in its range. Weexpand ea
h �nite tree S01[u℄ to in
lude the �nite tree U 0i \ S1[u℄. On
e we have expanded S01by performing this a
tion for ea
h i � q, we have that ea
h basi
 embedding S01 ,! J1 mustin
lude y in its range.We now 
onsider the 
ase when y is an element of one of the in�nitely o

urring su

essor53



trees in I1. We begin by establishing fa
ts about about when an in�nitely o

urring su

essortree I1[x℄ is not in the range of every basi
 embedding S ,! I1. (Think of x as the nodeat level 1 in I1 su
h that y 2 I1[x℄.) First, if there is a basi
 embedding whi
h sends twosu

essor trees of S into I1[x℄, then x is obviously not in the range of this embedding. Se
ond,if there is some basi
 embedding f su
h that x is not in the range of f , then there is a basi
embedding g su
h that range(g)\ I1[x℄ = ;. To see this se
ond fa
t, let x = x0 < x1 < � � � bethe nodes at level 1 in I1 with xi � x and I1[x℄ �= I1[xi℄. Sin
e f is basi
 and x 62 range(f), weknow that for all i, xi 62 range(f). Fix isomorphisms hi : I1[xi℄! I1[xi+1℄ whi
h are also basi
embeddings. (Su
h maps exist by Sublemma 3.27.) De�ne g(u) as follows. If f(u) 62 I1[xi℄ forany i, then g(u) = f(u). If f(u) 2 I1[xi℄, then let g(u) = hi(f(u)). Thus, g shifts the imageof f on I1[xi℄ to I1[xi+1℄. Be
ause xi 62 range(f), g is a basi
 embedding.From the previous paragraph, we see that if x is the node at level 1 in I1 su
h that y 2 I1[x℄,then x must be in the range of all basi
 embeddings and ea
h basi
 embedding maps a singlesu

essor tree S[u℄ into I1[x℄. We next show there is a bound on how big u 
an be. For a
ontradi
tion, assume that there is no su
h bound. Let J1; : : : ; Jm be the isomorphism typesof su

essor trees in S that 
an be embedded into I1[x℄ by a basi
 embedding. Assume thatJ1; : : : ; Jl are types whi
h o

ur �nitely often as su

essor trees in S and Jl+1; : : : ; Jm are typeswhi
h o

ur in�nitely often. Be
ause there is no bound on the u su
h that S[u℄ is embeddedinto I1[x℄ by a basi
 embedding, there must be basi
 embeddings whi
h map all o

urren
esof the types J1; : : : ; Jl in S as well as arbitrarily many 
opies of ea
h of the types Jl+1; : : : ; Jminto the su

essor trees I1[v℄ with v < x. However, as we saw above, if arbitrarily many�nite 
opies of some Ji 
an be embedded into some I1[v℄, then in�nitely many 
opies 
an beembedded into I1[v℄. Therefore, there must be a basi
 embedding whi
h sends all 
opies ofthe types J1; : : : ; Jm from S into the su

essor trees I1[v℄ for v < x. This means that there isa basi
 embedding whi
h does not map into I1[x℄ at all, 
ontradi
ting our assumption that yis in the range of all basi
 embeddings.We 
on
lude that if I1[x℄ \ range(f) 6= ; for all basi
 f (and hen
e x 2 range(f)), thenthere is a bound on the elements u at level 1 su
h that S[u℄ is mapped into I1[x℄ by a basi
embedding. We 
an therefore limit the \level 1 width" of S whi
h we need to 
onsider whenlooking at how mu
h of S is required to for
e the basi
 embeddings to interse
t I1[x℄. Thisbound means that by an argument similar to the one when y was assumed to be from a �nitelyo

urring su

essor tree in I1, we isolate a �nite tree U � S su
h that every basi
 embeddingU ,! I1 must hit x. From here, we again 
onsider the �nitely many su

essor trees in S whi
h
ould map into I1[x℄ by a basi
 embedding and apply the indu
tive hypothesis on the heightto handle the nodes y 2 I1[x℄ with y 6= x.We now begin our des
ription of the 
onstru
tion for Case 1 of Lemma 3.19. The witnessnode in T [xi℄ at stage s will be a node z at level 1 in Ts[xi℄ su
h that Ts[z℄ ,! I1 but forwhi
h we believe T [z℄ 6�= I1. The �rst 
ondition is easy to 
he
k, using our 
anoni
al 
opy ofI1. To satisfy the se
ond 
ondition, we want there to be a basi
 embedding of T [z℄ into I1whi
h is not surje
tive. Sin
e I1 is of strongly �nite type, Sublemma 3.27 will then ensurethat T [z℄ 6�= I1, and we will use this fa
t to diagonalize.54



At stage s, we de�ne the witness node in Ts[xi℄ by �nding the least pair hz; yi su
h thatz is at level 1 in Ts[xi℄ and there is a basi
 embedding of Ts[z℄ into I1 whose image does not
ontain y. We set vi;s = hz; yi, sin
e it appears at this stage that T [z℄ is the su

essor tree wewant in T [xi℄, and de�ne this z to be the witness node in T [xi℄ at stage s.Sublemma 3.30 lims vi;s 
onverges if and only if there exists z at level 1 in T [xi℄ su
h thatT [z℄ embeds into I1 but is not isomorphi
 to I1.Proof. Assume lims vi;s = vi = hz; yi. Then T [z℄ must embed into I1, by Lemma 2.9. On theother hand, there must be a basi
 embedding of T [z℄ into I1 whi
h omits y from its image,by Sublemmas 3.23 and 3.29, and then Sublemma 3.27 ensures that T [z℄ 6�= I1.Conversely, suppose that for some z with levelT [xi℄(z) = 1 we have T [z℄ ,! I1 but T [z℄ 6�= I1.By Sublemma 3.23, there is a basi
 embedding of T [z℄ into I1, whi
h 
annot be surje
tivebe
ause T [z℄ 6�= I1. Thus there must be a least pair hz; yi su
h that some basi
 embeddingof T [z℄ into I1 omits y. By Sublemma 3.28, we will have vi;s � hz; yi for all suÆ
iently larges. Consider any pair hz0; y0i < hz; yi. By our 
hoi
e of hz; yi, no basi
 embedding of T [z0℄into I1 omits y0, so Sublemma 3.29 ensures that vi;t 6= hz0; y0i for suÆ
iently large t. Thuslims vi;s = hz; yi.However, it is possible that T [xi℄ does not 
ontain any �nite-appearing su

essor treewhi
h embeds into I1, so we must sear
h among di�erent su

essor trees. At �rst, we 
hoosew0;0 to be the witness node in T [x0℄. If v0;s1 6= v0;0 at some subsequent stage s1, then we
hoose w0;s1 to be the witness node in T [x1℄ at stage s1. If at a subsequent stage s2 we havev1;s2 6= v1;s1, then we 
hange w0;s2 ba
k to the witness node in T [x0℄ at stage s2, then T [x1℄again, then T [x2℄, then ba
k to T [x0℄, and so on, just as in the 
onstru
tion for trees of height4. By the assumption of Case 1 (whi
h began on page 47), lims vi;s 
onverges for in�nitelymany i, so w0;s must eventually 
onverge to some w0. At the same time, we do the same forthe witness node w1;s for R1, looking only at witness nodes in su

essor trees T [xj℄ in whi
hw0;s has never yet been lo
ated, and so on by a standard �nite-injury pro
ess. The followingsublemma is now 
lear:Sublemma 3.31 For every e, we = lims we;s exists and T [we℄ ,! I1 and T [we℄ 6�= I1.We build T 0 by 
opying T at ea
h stage, with the following provision. Find ea
h e � ssu
h that we;s is de�ned and 'e;s(we;s)# (say y = 'e;s(we;s)) and f�1s (y) lies at level 2 in Ts. Ifthere is no su
h e, simply extend fs to fs+1 by adding new elements to T 0s+1. If there is su
han e, then for ea
h su
h e, we 
he
k whether there exists a basi
 embedding of Ts[f�1s (y)℄ intoI1 (re
all that this is a 
omputable 
ondition using our ni
e 
opy of I1). If no su
h embeddingexists, then we are assured that T [f�1s (y)℄ 6,! I1, so if we;s = we, then Re will be satis�ed.If su
h an embedding does exist, then we add elements to T 0s+1[y℄ to make it a 
opy of I1,and add more new elements to T 0s+1 to be the new image of Ts[f�1s (y)℄ under fs+1. Hen
eT 0['e(we;s)℄ �= I1, so if we;s = we, we have satis�ed Re. Noti
e that fs+1 is no longer onto55



T 0s+1 sin
e we have added a 
opy of I1. However, we know that I1 o

urs in�nitely often as asu

essor tree above xi in T , so T and T 0 are still isomorphi
. Ri is injured if we;s+1 6= we;sfor some e < i.As with the 
ase for trees of height 4, there are two minor modi�
ations ne
essary for thisstrategy. First, we give 2e+1 many witnesses to ea
h Re strategy and for
e this requirementto respe
t Nu and Mu for u < e. That is, Re is forbidden to use we;s if u � f�1s ('e;s(we;s))for some u < e or if 'e;s(we;s) < e. The reason for expli
itly adding the Mu requirementswill be
ome 
lear below when we dis
uss the general 
ase where our set of nodes X fromthe statement of Lemma 3.19 is �02 rather than 
omputable. Se
ond, it is possible that'e(we;s) = y lies in a 
opy of I1 in T1. In this 
ase, if we = we;s, then Re is satis�ed withoutany further a
tion.We end this 
ase with some 
omments on how to 
ombine the �02 approximation for thexi elements with the strategy just des
ribed. Suppose we have an element x whi
h we think isan xi element and we diagonalize at stage s using a su

essor of x. This means that we wantto 
reate a 
opy of I1 as a su

essor tree of T 0[fs(x)℄. The worry is that if we put I1 down allat on
e, it may turn out that x is not one of the xi elements, and even worse, that x has nosu

essor tree of type I1. Su
h an out
ome 
ould destroy our isomorphism. Therefore, we �xan approximation I1;s to I1 by �nite subtrees. Instead of putting down all of I1 at on
e as asu

essor tree of T 0[fs(x)℄, we build up I1 by putting down I1;t at stage t � s. Furthermore,before putting down I1;t, we 
he
k for either1. eviden
e that x is not an xi element; or2. a su

essor y of x su
h that y is bigger than any number seen so far in the 
onstru
tionand I1;t embeds into T [y℄.This sear
h pro
edure must terminate sin
e if x is an xi element, then x has in�nitely manysu

essor trees of type I1. The reason for in
luding 
lause (2) in the sear
h is that if we �ndeviden
e that x is not an xi element at stage t + 1, then we 
an use the su

essor tree T [y℄found at stage t to map to the 
opy of I1;t 
urrently sitting as a su

essor tree of T 0t [ft(x)℄.Sin
e we 
an 
orre
t any mistakes 
aused by the �02 approximation, it is straightforward toadd it in as a formal part of the above 
onstru
tion. Finally, noti
e that when we take intoa

ount this �02 approximation pro
edure, we 
an have elements y 2 T 0 whi
h leave the rangeof f and later return to the range of f . This is the reason why we need to expli
itly add theMu requirements into this 
onstru
tion.Case 2. If Case 1 (whi
h began on page 47) does not apply, then there are only �nitelymany T [xi℄ in whi
h some �nite-appearing su

essor tree embeds into any of I1; : : : ; Ip. Weassume �nitely mu
h information, namely the roots of those �nitely many su

essor trees,and ignore them in our 
onstru
tion, de�ning the elements xi to be those nodes at level 1 inT whi
h are not roots of these �nitely many su

essor trees.Consider any embedding T [xi℄ ,! T [xj℄ among these nodes at level 1 in T . Sin
e nosu

essor tree whi
h o

urs �nitely often in T [xi℄ 
an embed into any of I1; : : : ; Ip, we knowthat they must embed into the su

essor trees whi
h o

ur �nitely often in T [xj℄. Of 
ourse,56



the same relation holds for embeddings T [xj℄ ,! T [xi℄. Therefore, if we let Ti (respe
tivelyTj) be the tree formed by taking a root and adjoining all of the �nitely o

urring su

essortrees in T [xi℄ (in T [xj℄ respe
tively), then we have Ti � Tj.Sublemma 3.32 Fix f : Ti ,! Tj and g : Tj ,! Ti. Then for any u 2 Ti at level 1, there isa v 2 Tj at level 1 su
h that Ti[u℄ � Tj[v℄, and vi
e versa.Proof. Fix any u1 2 Ti at level 1 and let v1 2 Tj be su
h that v1 is at level 1 and f mapsTi[u1℄ ,! Tj[v1℄. If g maps Tj[v1℄ ,! Ti[u1℄, then we are done, so assume this does not happen.Let u2 6= u1 be at level 1 in Ti su
h that g maps Tj[v1℄ ,! Ti[u2℄.Fix v2 2 Tj at level 1 su
h that f maps Ti[u2℄ ,! Tj[v2℄. We 
laim that v2 6= v1. Fora 
ontradi
tion, suppose that v2 = v1. Then f maps Ti[u2℄ ,! Tj[v2℄ = Tj[v1℄ and g mapsTj[v1℄ ,! Ti[u2℄. Therefore, Ti[u2℄ � Tj[v1℄ whi
h means f(u2) = v2 = v1. But, f also mapsTi[u1℄ ,! Tj[v1℄, so v1 � f(u1). Together, these statements imply that f(u2) � f(u1), whi
h
ontradi
ts the fa
t that u1 and u2 are in
omparable nodes at level 1 in Ti.We now 
he
k whether g maps Tj[v2℄ ,! Ti[u1℄. If so, then we haveTi[u1℄ ,! Tj[v1℄ ,! Ti[u2℄ ,! Tj[v2℄ ,! Ti[u1℄:In this 
ase, Ti[u1℄ � Ti[u2℄ � Tj[v1℄ � Tj[v2℄ with f(u1) = v1, f(u2) = v2, g(v1) = u2 andg(v2) = u1, whi
h means we are done. Otherwise, �x u3 2 Ti at level 1 su
h that u3 6= u1 andg maps Tj[v2℄ ,! Ti[u3℄.We 
laim that u3 6= u2. For a 
ontradi
tion, suppose that u3 = u2. Then g maps Tj[v2℄ ,!Ti[u3℄ = Ti[u2℄ and f maps Ti[u2℄ ,! Tj[v2℄. Therefore, Tj[v2℄ � Ti[u2℄ and so g(v2) = u2.But, g also maps Tj[v1℄ ,! Ti[u2℄ whi
h means u2 � g(v1). Therefore, g(v2) � g(v1). This
ontradi
ts the fa
t that v1 and v2 are in
omparable nodes at level 1 in Tj.We next let v3 be a node at level 1 in Tj su
h that f maps Ti[u3℄ ,! Tj[v3℄. We 
laimthat v3 is not equal to either v1 or v2. For a 
ontradi
tion, suppose v3 = v1. Then fmaps Ti[u3℄ ,! Tj[v3℄ = Tj[v1℄ and the 
omposition gfg maps Tj[v1℄ ,! Ti[u3℄. Therefore,Ti[u3℄ � Tj[v1℄ and f(u3) = v3 = v1. But, we also know that f maps Ti[u1℄ ,! Tj[v1℄ whi
himplies v1 � f(u1). Together, these statements say that f(u3) � f(u1) whi
h 
ontradi
ts thefa
t that u1 and u3 are in
omparable nodes at level 1 in Ti. The argument that v3 6= v2 issimilar.We 
ontinue by indu
tion. Suppose u1; : : : ; un are pairwise distin
t nodes at level 1 in Tiand v1; : : : ; vn are pairwise distin
t nodes at level 1 in Tj su
h that f maps Ti[uk℄ ,! Tj[vk℄(for k � n) and g maps Tj[vk℄ ,! Ti[uk+1℄ (for k < n). We 
he
k if g maps Tj[vn℄ ,! Ti[u1℄. Ifso, then Ti[u1℄ � � � � � Ti[un℄ � Tj[v1℄ � � � � � Tj[vn℄and f(uk) = vk (for k � n), g(vk) = uk+1 (for k < n) and g(vn) = u1. In this 
ase, we aredone.Otherwise, we �x un+1 6= u1 at level 1 in Ti su
h that g maps Tj[vn℄ ,! Ti[un+1℄. We argueas above that un+1 6= uk for all k � n. We let vn+1 be a node at level 1 in Tj su
h that f57



maps Ti[un+1℄ ,! Tj[vn+1℄. We argue as above that vn+1 6= vk for all k � n. We are now inposition to 
ontinue the indu
tion.Sin
e there are only �nitely many nodes at level 1 in Ti and Tj, this pro
ess must 
ometo an end. Therefore, we get our result in the end. Noti
e that this proof shows that thenumber of nodes at level 1 in Ti is less that or equal to the number of nodes at level 1 in Tj.If we swit
h the roles of Ti and Tj, we get that for any u 2 Tj at level 1, there is a v 2 Ti atlevel 1 su
h that Tj[u℄ � Ti[v℄. Therefore Ti and Tj have the same number of nodes at level1. This sublemma tells us that ea
h T [xi℄ has the same number of �nitely o

urring su

essortrees. Let y1; : : : ; yq be the roots of the �nitely o

urring su

essor trees in T [x0℄. We de�nean equivalen
e relation by yi � yj if T [yi℄ � T [yj℄. The embedding relation ,! between these
lasses is well de�ned. Furthermore, we know by Sublemma 3.32 that the 
lasses de�ned in asimilar way for the �nitely o

urring su

essor trees of any other T [xi℄ are exa
tly the sameand ea
h equivalen
e 
lass has exa
tly the same size.For ea
h yn, �x a �nite tree Sn � T [yn℄ su
h that Sn does not embed into any of thein�nite types I1; : : : ; Ip. Furthermore, for ea
h m � q su
h that T [yn℄ 6,! T [ym℄, we extendSn to a �nite tree su
h that Sn 6,! T [ym℄. Of 
ourse, these �nite trees Sn have the sameproperties relative to the �nitely o

urring su

essor trees above any other T [xi℄. Therefore,we 
an use these trees to identify the �nitely many �nitely o

urring su

essor trees aboveea
h node xi. That is, for ea
h xi we look for the appropriate number of su

essors y su
hthat T [y℄ 
ontains one of these �nite trees. Furthermore, given a �02 pro
edure to identify thenodes xi, there is a �02 pro
edure to identify the su

essors y of xi for whi
h T [y℄ is a �nitelyo

urring su

essor tree and to determine whi
h equivalen
e 
lass T [y℄ belongs to.There are in�nitely many di�erent isomorphism types among the trees fT [xi℄ : i 2 !g.Sin
e they all have the same in�nite-o

urring isomorphism types, we may �x an equivalen
e
lass E su
h that fT [y℄ : y 2 T ^y 2 Eg 
ontains in�nitely many di�erent isomorphism types.(Here we are interpreting E as a 
lass in
luding su

essor nodes from ea
h of the trees T [xi℄.By the 
omments above, we have a �02 pro
edure to identify y 2 E.) Moreover, every T [y℄with y 2 E is of height at most n � 2, sin
e levelT (y) = 2. Our 
onstru
tion of T 0 thereforeuses indu
tion on height, for whi
h we regard the height 4 
ase given above as the base 
ase.We identify elements of E above the various xi and do the same 
onstru
tion on them thatwe did for a tree T with ht(T ) � n � 1.To be more spe
i�
, suppose that E = fziji 2 !g. We begin the proof of Lemma 3.19again, using the zi elements in pla
e of the xi elements. The only 
hange in the hypothesis ofthe lemma is that ea
h zi is at level 2 rather than at level 1. However, this 
hange does nota�e
t the argument at all. That is, the fa
t that T [zi℄ � T [zj℄ implies that ea
h T [zi℄ has thesame in�nitely o

urring su

essor trees. We denote the isomorphism types of these trees byJ1; : : : ; Jb. If there are in�nitely many i for whi
h T [zi℄ has a �nitely o

urring su

essor treewhi
h embeds in one of J1; : : : ; Jb, then we may assume without loss of generality that thereare in�nitely many i whi
h work with J1. We run exa
tly the same argument as in Case 1,looking for appropriate su

essors of the zi with whi
h to diagonalize. Otherwise, if there are58



not in�nitely many su
h i, we are ba
k in Case 2 and we repeat this pro
ess over again withnodes at level 3. Sin
e T has �nite height, this pro
ess must stop. This 
ompletes the 
ase ofa height n tree, and also 
ompletes the proof of Lemma 3.19.Proof of Proposition 3.1. Let T be as in the statement of Proposition 3.1. Let r be the rootof T , and let x0; x1; : : : be the immediate su

essors of r in T . Then every node above r in Tis of �nite type. Sin
e r is not of �nite type, there must be in�nitely many of these su

essortrees. We 
onsider the three ways in whi
h r 
ould fail to be of �nite type as in De�nition1.7.First, suppose there is an isomorphism type I whi
h o

urs in�nitely often as a su

essortree of r and whi
h does not have strongly �nite type. We split into two 
ases. If there areonly �nitely many isomorphism types of su

essor trees of r whi
h embed into I, then Lemma3.10 shows that T is not 
omputably 
ategori
al. If there are in�nitely many isomorphismtypes of su

essor trees of r whi
h embed into I, then Lemma 3.16 implies that T is not
omputably 
ategori
al. Therefore, we 
an assume that any isomorphism type whi
h o

ursin�nitely as a su

essor tree of r has strongly �nite type.Se
ond, suppose there exist distin
t isomorphism types I0 and I1 su
h that ea
h o

ursin�nitely often as a su

essor tree to r and I0 ,! I1. Sin
e we 
an assume I0 and I1 havestrongly �nite type and they are not isomorphi
, we must have I1 6,! I0 by Lemma 2.10. We
an now apply Lemma 3.15. Let the indi
es i be those for whi
h T [xi℄ �= I0 and let the indi
esj be those for whi
h T [xj℄ �= I1. There are in�nitely many su
h indi
es i and j, T [xi℄ ,! I0,I0 ,! T [xj℄ and T [xj℄ 6,! I0. Therefore, Lemma 3.15 proves that T is not 
omputably
ategori
al. We 
an now assume that there is no embedding between isomorphism typeswhi
h o

ur in�nitely often as su

essor trees of r. By Lemma 3.5, we know that there 
anonly be �nitely many isomorphism types whi
h o

ur in�nitely often as su

essor trees of r.Finally, let T be the set of isomorphism types whi
h o

ur among the su

essor trees ofr. It 
ould be that T is in�nite. We split into two 
ases. If there is an in�nitely o

urringisomorphism type I for whi
h I 0 ,! I for in�nitely many I 0 2 T , then we 
an apply Lemma3.16. Otherwise, the �nitely many isomorphism types whi
h o

ur in�nitely often ea
h haveonly �nitely many isomorphism types from T whi
h embed into them. This situation isexa
tly the hypothesis for Lemma 3.18. Thus we have proved Proposition 3.1.In the 
ases above in whi
h we 
onstru
ted a �02 isomorphism f between T and T 0, the
omputable dimension of T must be ! by Gon
harov [10℄. However, we 
an see this moredire
tly (and prove it in the remaining 
ases) simply be rewriting the positive requirements:Rhe;ii : 'e one-one and total =) [(9we 2 Ti)Ti[we℄ 6�= T 0['e(we)℄℄:Here fTig is assumed to be a �nite sequen
e of 
omputable trees isomorphi
 to T , and the T 0whi
h we 
onstru
t to satisfy these requirements will be of a di�erent 
omputable isomorphism
lass from ea
h of them. In the original 
onstru
tion, T a
tually served a dual purpose, asboth the template for T 0 and the 
omputable isomorphism type to be avoided. Here we alwaysuse T0 as the template, but diagonalize simultaneously against all the Ti.59



4 Indu
tionIn this se
tion, we prove the se
ond half of Theorem 1.8, that trees whi
h are not of �nite type
annot be 
omputably 
ategori
al, and indeed must have 
omputable dimension !. Se
tion 2established the 
onverse of this statement, and Se
tion 3 enables us to use indu
tion to provethe following proposition.Proposition 4.1 Let T be a tree of �nite height but not of �nite type. Then T is not 
om-putably 
ategori
al.Proof. The proof uses indu
tion on the height n of T . The base 
ase n = 2 is trivial, sin
eevery tree of height � 2 is of �nite type. Let r be the root of T , with immediate su

essorsx0; x1; : : :. If every node xi is of �nite type, then Proposition 3.1 shows that T has in�nite
omputable dimension. So we may suppose that some isomorphism type I0 appearing above ris not of �nite type. (Without loss of generality we assume that T [x0℄ �= I0.) By the indu
tivehypothesis, I0 must not be 
omputably 
ategori
al, so there is a 
omputable tree U whi
h isisomorphi
 to T [x0℄ but not 
omputably isomorphi
 to it, and we may take the domain of Uto be the 
omputable set T [x0℄. Let V be identi
al to T , only with U in pla
e of T [x0℄. ThenV is 
omputable and isomorphi
 to T .Now we assume for a 
ontradi
tion that T is 
omputably 
ategori
al. Then there mustexist a 
omputable isomorphism ' from V to T , whi
h must map U to some other su

essortree T [xj℄ 
omputably isomorphi
 to U . (Hen
e j 6= 0.) Moreover, ' would then have to mapT [xj℄ (whi
h is also a su

essor tree in V ) to yet another su

essor tree T [xk℄ 
omputablyisomorphi
 to U , and so on. Therefore, the isomorphism type I0 must appear in�nitely oftenabove r in T .Moreover, sin
e I0 appears in�nitely often above r, we 
an build another 
omputable treeisomorphi
 to T , simply by adding any 
omputable 
opy of I0 as a new su

essor tree abover. Sin
e this 
opy 
an be of any 
omputable isomorphism type for I0, the same argumentas above shows that every 
omputable isomorphism type of I0 must appear in�nitely oftenas a su

essor tree above r. Indeed, under the assumption that T is 
omputably 
ategori
al,we see that for ea
h su
h 
omputable isomorphism type this pro
ess would yield an in�nite
.e. set of roots of su

essor trees of that 
omputable isomorphism type.Sin
e I0 is not 
omputably 
ategori
al, we have at least two of these 
.e. sets, say C1 andC2. The idea is to use elements of C1 = fw0; w1; : : :g as witness elements when we build T 0.We wait until 'e;s(we) 
onverges, and then rede�ne the �02-isomorphism f : T ! T 0 so thatfrom stage s on, T 0['e(we)℄ is built 
omputably isomorphi
 to T [ye℄, where C2 = fy0; y1 : : :g.(Namely, de�ne fs+1(f�1s ('e(we))) = ye.) The diÆ
ulty is that at the stage s at whi
h 'e(we)
onverges, we do not know if T 0s['e(we)℄ embeds into I0 or not, sin
e f�1s ('e(we)) may or maynot lie in a su

essor tree in T isomorphi
 to I0. To handle this diÆ
ulty, we appeal to a
orollary of Kruskal's Theorem.Corollary 4.2 Let fSi : i 2 !g be an in�nite set of �nite trees. Then there exists m 2 !su
h that for every j there is an i � m su
h that Si ,! Sj.60



Proof. If the set fSj : (8i < j)[Si 6,! Sj ℄g were in�nite, it would 
ontradi
t Kruskal's Theorem.Hen
e we may take m to be the greatest index in this set. The 
orollary follows by an easyindu
tion on the indi
es > m.Let J be the set of all �nite trees S whi
h do not embed into I0. Then Corollary 4.2 yieldsa �nite subset S � J su
h that for every S 2 J there is some S0 2 S su
h that S0 ,! S.Moreover, no S0 2 S embeds into I0.The witness elements for our 
onstru
tion will be the nodes we des
ribed above. Sin
e theset C1 is in�nite and 
omputably enumerable, we need not use �02 guessing, either for themor for the 
orresponding nodes ye 2 C2. (Te
hni
ally, we will use �02-guessing, but with asimple method of renaming the elements of C1 and C2.)A requirement Re requires attention at stage s if s is the least stage su
h that 'e;s(we)
onverges to some w0e 2 T 0s. At ea
h stage s, we simply extend fs to fs+1 mapping Ts+1 toT 0s+1 by adding fresh elements to T 0s+1 as needed, ex
ept on those su

essor trees Ts[we℄ su
hthat Re requires attention. For those e, we sear
h for the least t � s su
h that one of thefollowing holds:1. levelTt(f�1s (w0e)) 6= 1; or2. some S0 2 S embeds into Tt[f�1s (w0e)℄; or3. T 0s[w0e℄ embeds into Tt[ye℄.If either (1) or (2) holds, then again we simply extend fs to fs+1 on Ts+1[we℄ by adding freshelements to T 0s+1, without rede�ning fs+1 on any nodes. However, if (3) holds, then we mayneed to rede�ne f .The idea of the rede�nition of f is as follows. Let a = f�1s (w0e). Currently, using fs, T 0[w0e℄is being built by 
opying T [a℄ and T 0[fs(ye)℄ is being built by 
opying T [ye℄. We use the em-bedding in (3) to de�ne fs+1 so that T 0[w0e℄ begins 
opying T [ye℄ and T 0[fs(ye)℄ begins 
opyingT [a℄. This su

essfully diagonalizes be
ause T [we℄ and T [ye℄ are not 
omputably isomorphi
.Before performing this swit
h, we need to 
he
k that no higher priority requirements will beinjured. We ask �rst whether w0e lies in the setPe;s = ffs(y0); : : : fs(ye�1)g [ fw0i : i < e & 'i;s(wi)#= w0ig:If it does, then we 
annot rede�ne f without possibly injuring some Ri of higher priority, soinstead we eliminate we from our enumeration of C1 and pi
k ws+1 to be the witness nodefor Re. (At future stages, we will refer to this node as we.) However, if this elimination hasalready happened 2e times for di�erent values of we at previous stages, and the elements ofPe;s have not 
hanged sin
e those stages, then we need not perform the elimination again (norrede�ne f at all), sin
e in this 
ase 'e must map all 2e+1 of those di�erent values of we intoPe;s and hen
e 
annot be one-to-one.If w0e =2 Pe;s, then we may pro
eed without injuring any higher-priority requirement. (Ifw0e = fu(yj) for some j > e at some later stage u, we will simply ignore that yj and renumber61



C2 with the element yj+1 as yj instead, thereby possibly injuring a lower-priority requirementon
e.) Let g be the embedding of T 0s[w0e℄ into Tt[ye℄. (We may assume g(w0e) = ye.) De�nefs+1(x) = g�1(x) for all x in the image of g, and add fresh elements to T 0s+1 to be the range ofall of T [ye℄ under fs+1. For all suÆ
iently large elements x 2 T [ye℄, we may take fs+1(x) = x.Thus fs+1 now maps T [ye℄ to T 0[w0e℄.We also must rede�ne fs+1 on the set A = f�1s (T 0s[w0e℄). Now sin
e fs is an isomorphismfrom Ts to T 0s, A �= T 0s[w0e℄ must embed into I0 via a lifting of the same g, so we may �nd anembedding h of A into T [ye℄. We add enough elements of T [ye℄ to Ts+1 so that A ,! Ts+1[ye℄,then 
ombine this embedding with fs : Ts[ye℄ ,! T 0s[fs(ye)℄, adding fresh elements to Ts+1 asneeded, to de�ne fs+1 on A. Thus fs+1 maps T [f�1s (w0e)℄ to T 0[fs(ye)℄. This 
ompletes the
onstru
tion.With the rede�nition, we see that now T [ye℄ is not only isomorphi
 to T 0[w0e℄, but a
tually
omputably isomorphi
 to it via f , sin
e f is the identity map on 
o�nitely mu
h of T [ye℄.If 'e were an isomorphism from T to T 0, then f�1 Æ 'e would be a 
omputable isomorphismfrom T [we℄ onto T [ye℄, whi
h is impossible, by our 
hoi
e of we and ye. Hen
e Re is satis�ed.Moreover, if either (1) or (2) holds for w0e, then Re must again be satis�ed. This is 
learfor (1), sin
e levelT (we) = 1. If (2) holds, then some S 2 S embeds into T 0[w0e℄, but not intoT [we℄ (by our 
hoi
e of S). Hen
e 
learly Re is satis�ed.We must show that when we sear
h for a stage t in the 
onstru
tion, we do eventually �ndone. Suppose levelT 0(w0e) = 1, and suppose that no S 2 S embeds into T [f�1s (w0e)℄. By our
hoi
e of S, this guarantees that every �nite subtree of T [f�1s (w0e)℄ embeds into I0. But T 0s[w0e℄is isomorphi
 to Ts[f�1s (w0e)℄, hen
e must embed into I0. Sin
e T [ye℄ �= I0, we will eventually�nd a stage t and an embedding satisfying (3).The rede�nition pro
ess does no injury to any other Re. The only possibility for injuryamong the requirements o

urs when elements of C1 or C2 must be ignored or renamed,as des
ribed above, and when this happens ea
h requirement respe
ts the higher-priorityrequirements, so ultimately ea
h Re is satis�ed.Moreover, rede�nition of f 
an only o

ur �nitely often on any T [x℄, and rede�nition off�1 
an only o

ur �nitely often on any T 0[x0℄, sin
e ea
h requirement is injured only �nitelyoften. (Our 
are in making fs(we) =2 Pe;s ensured this for f�1.) Hen
e f is a bije
tion betweenT and T 0. Sin
e our rede�nitions always respe
ted the partial order we were building on T 0,T 0 is 
omputable and f is an isomorphism. But sin
e ea
h Re holds, there is no 
omputableisomorphism from T to T 0, 
ontradi
ting our assumption that T was 
omputably 
ategori
al.Corollary 4.3 Every 
omputable tree T of �nite height but not of �nite type must havein�nite 
omputable dimension.Proof. Be
ause we proved Proposition 4.1 by 
ontradi
tion, we do not know if there are two
omputable 
opies of T whi
h are �02-isomorphi
 but not 
omputably isomorphi
. Therefore,we 
annot apply Gon
harov's result that a pair of 
omputable stru
tures whi
h are �02-isomorphi
 but not 
omputably isomorphi
 must have 
omputable dimension !. Instead, the62



proof pro
eeds by indu
tion on the height of T . Assume T is a tree of �nite height whi
hdoes not have �nite type. If every su

essor tree in T has �nite type, then we are done bythe results in Se
tion 3. Otherwise, we �x y 2 T at level 1 su
h that T [y℄ does not have �nitetype. By the indu
tion hypothesis, T [y℄ must have in�nite 
omputable dimension.For a 
ontradi
tion, assume that T has �nite 
omputable dimensionm. Fix representativesT 0; : : : ; Tm�1 of the 
omputable isomorphism 
lasses of T and �x nodes yi 2 T i at level 1 su
hthat T [y℄ �= T i[yi℄. To run a diagonalization argument as above, we need to �nd appropriate
.e. sets C i in T i and C in T . We de�ne these sets and spe
ify their exa
t properties below.First, we de�ne C i for a �xed i < m. Let xie denote the nodes at level 1 in T i andassume that yi = xi0. Let U0; : : : ; Um�1 be 
omputable 
opies of T i[xi0℄ de�ned on the samenumbers as T i[xi0℄ whi
h are pairwise not 
omputably isomorphi
 and are not 
omputablyisomorphi
 to T i[xi0℄. Let T ij (for j < m) be the 
omputable tree formed by taking T i andrepla
ing T i[xi0℄ by Uj . Sin
e the 
omputable dimension of T i is m, one of the T ij treesmust be 
omputably isomorphi
 to T i. Without loss of generality, assume it is T i0 and �xan isomorphism f : T i0 ! T i. f must send U0 to some su

essor tree T i[xij0℄ with xij0 6= xi0.Thus, T i[xij0℄ is a su

essor tree in T i0 and f must send this tree to some T i[xij1℄. Repeatingthis pro
ess, we get a 
.e. set of nodes xijk for su

essor trees in T i whi
h are 
omputablyisomorphi
 to U0. We denote these nodes by wie and we let C i be the 
.e. set of these nodes.Se
ond, we de�ne C. Let xe, for e 2 !, denote the nodes at level 1 in T and assume thaty = x0. Let V0; : : : ; Vm�1 be 
omputable 
opies of T [x0℄ whi
h are not 
omputably isomorphi
to any of the trees U0; : : : ; Um�1 used in the de�nition of C i for any i. (It does not matter if wereuse 
omputable isomorphism types when de�ning C i and Cj for i 6= j, but we need to havedi�erent 
omputable isomorphism types when we de�ne C. There are enough 
omputableisomorphism types to a

omplish these requirements be
ause T [x0℄ has in�nite 
omputabledimension.) Let Tj (for j < m) be the 
omputable tree formed by taking T and repla
ingT [x0℄ by Vj . By the same argument as in the last paragraph, we obtain a 
.e. set C of nodesue at level 1 in T su
h that T [ue℄ is 
omputably isomorphi
 to (without loss of generality) V0.We 
an sum up the important properties of these 
.e. sets by:� T i[wie℄ �= T [y℄ for e 2 ! and i < m;� T [ue℄ �= T [y℄ for e 2 !;� T [uk℄ �= T i[wie℄ for e; k 2 ! and i < m, but not by a 
omputable isomorphism.We build T 0 �= T whi
h is not 
omputably isomorphi
 to any T i by an argument verysimilar to the one given above. We build T 0 in stages together with a �02-isomorphism f :T ! T 0. We index the witnesses in C as uhe;ii with e 2 ! and i < m and we use the nodeswie to diagonalize against 'e being an isomorphism from T i to T 0. The strategy to defeat 'eand T i is to wait for 'e(wie) to 
onverge to some vie 2 T 0 at stage s. Let a = f�1s (vie). Wehave that fs maps Ts[a℄ to T 0s[vie℄ and maps Ts[uhe;ii℄ to T 0s[fs(uhe;ii)℄. As above, we either �ndeviden
e that we have an easy win or else we �nd an embedding of T 0s[vie℄ into T [uhe;ii℄. Inthe latter 
ase, we use this embedding to de�ne fs+1 so that it swaps the a
tion of fs on the63



su

essor trees, by making T 0[vie℄ start to 
opy T [uhe;ii℄ and making T 0[fs(uhe;ii)℄ start to 
opyT [a℄. As above, this su

essfully diagonalizes sin
e we know that T i[wie℄ is not 
omputablyisomorphi
 to T [uhe;ii℄. The formal details of this argument are essentially as above.We note that for trees T in whi
h nodes at levels � 1 are not of �nite type, these proofsonly establish the existen
e of in�nitely many 
omputable isomorphism 
lasses of 
opies of T ,without giving us any a
tual idea how to 
onstru
t 
opies in su
h 
lasses. To 
onstru
t 
opiesin new 
lasses would require a dire
t proof in the style of the Lemmas of Se
tion 3, insteadof the less-edifying proofs by 
ontradi
tion in Proposition 4.1 and Corollary 4.3.5 �0n-
ategori
ityThe goal of this se
tion is to prove the following theorem.Theorem 5.1 For ea
h n � 1, there is a 
omputable �nite height tree T su
h that T is�0n+1-
ategori
al but not �0n-
ategori
al.We a
tually prove a slightly stronger statement by 
onsidering a more restri
tive de�nitionof trees. In this se
tion, we de�ne a tree to be a set T � !<! whi
h is 
losed under initialsegments. Su
h trees are obviously trees in the earlier sense, but they have the additionalfeature that the su

essor relation is 
omputable. Therefore, we really establish Theorem 5.1for 
omputable �nite height trees whi
h have a 
omputable su

essor relation.Proof. The strategy for this proof is to show by indu
tion on n � 1 that for any in�nite and
oin�nite �0n (if n is odd) or �0n (if n is even) relation P (x), there are 
omputable trees TP andSP su
h that TP and SP are �0n+1-isomorphi
 but any isomorphism between them 
omputesP (x). For the purposes of presenting a general outline, suppose n is odd, so TP needs to 
odea �0n relation P (x).TP will be !-bran
hing at the root, with the property that for any node � at level 1, TP [� ℄has one of two distin
t isomorphism types. Trees of one type are 
alled 
oded �0n trees andtrees of the other type are 
alled un
oded �0n trees. There will be a 
omputable sequen
e ofnodes �x 2 TP su
h that ea
h �x is at level 1 andP (x), TP [�x℄ is a 
oded�0n tree:We will be able to say exa
tly what the isomorphism type of TP is. It !-bran
hes atthe root and has in�nitely many nodes � at level 1 for whi
h TP [� ℄ is a 
oded �0n tree andin�nitely many nodes at level 1 for whi
h TP [� ℄ is an un
oded �0n tree. This des
ription of theisomorphism type of TP will allow us to build a 
omputable tree SP whi
h is isomorphi
 toTP , but for whi
h we know exa
tly whi
h nodes at level 1 
orrespond to 
oded �0n trees andwhi
h do not. Therefore, we will be able to 
ompute P (x) from any isomorphism between SPand TP . 64



To �ll in the details of this outline, we �rst show how to 
ode a �01 relation. Next, weshow how to pass from the 
oding of a �01 relation to a 
oding for a �02 relation, and howto pass from the 
oding of a �02 relation to the 
oding of a �03 relation. Finally, we outlinethe general pro
edure for 
oding a �0n+1 relation from the 
oding of a �0n relation, and thepro
edure for 
oding a �0n+1 relation from the 
oding of a �0n relation.First, we show how to 
ode an in�nite and 
oin�nite �01 relation P (x). Assume that8x(P (x), 9dR(x; d))where R is 
omputable. Let TP � !<! be the 
omputable set given by the 
losure of thefollowing 
onditions under initial segments.1. For all n;m, hn;mi 2 TP .2. For all n;m, hn;m; 0i 2 TP if and only if m is the least number su
h that R(n;m) holds.TP has height 4 and is !-bran
hing at the root. If P (n) holds, then TP [hni℄ is a tree of height3 whi
h !-bran
hes at the root and has a unique node at level 2 (in the restri
ted tree). Werefer to any tree with this isomorphism type as a 
oded �01 tree. If P (n) does not hold, thenTP [hni℄ is !-bran
hing at the root and has no nodes at level 2. We refer to any tree with thisisomorphism type as an un
oded �01 tree. Noti
e that the 
oded and un
oded �01 trees arenot isomorphi
.To give a slightly more general perspe
tive, we need to distinguish 
oding a �01 relationand 
oding a �01 senten
e. To 
ode the �01 relation P , we build a tree TP whi
h is !-bran
hingand for ea
h hni 2 TP , we let TP [hni℄ 
ode the �01 senten
e P (n). That is, we e�e
tivelygenerate a tree TP [hni℄ whi
h is a 
oded �01 tree if the �01 senten
e P (n) is true and is anun
oded �01 tree if the �01 senten
e P (n) is false.The isomorphism type of TP is uniquely determined by the following fa
ts: the root of TPis !-bran
hing, and for every � 2 T at level 1, TP [� ℄ is either a 
oded �01 tree or an un
oded�01 tree, with in�nitely many of ea
h type. Furthermore, TP has the property thatP (n) , TP [hni℄ is a 
oded�01 tree:To see that TP is �02-
ategori
al, suppose that T is 
omputable and isomorphi
 to TP .For any � 2 T at level 1, T [� ℄ is a 
oded �01 tree if and only if 9�0; �1(� � �0 � �1). 00
an determine whi
h nodes � 2 T are at level 1 and 
an tell whether T [� ℄ is a 
oded orun
oded �01 tree. If T [� ℄ is a 
oded �01 tree, then 00 
an determine the unique node at level2 in T [� ℄. Of 
ourse, 00 
an also determine this information in TP , so we 
an easily build the�02 isomorphism.To see that TP need not be �01-
ategori
al, assume P (x) is non
omputable. Let SP � !<!be the 
losure of the following 
onditions under initial segments.1. For all n;m, hn;mi 2 SP .2. If n is even, then hn; 0; 0i 2 SP . 65



SP is a 
omputable tree and by the des
ription of the isomorphism type of TP , SP �= TP . Inaddition, SP [hni℄ is a 
oded�01 tree , n is even:For any isomorphism f : TP ! SP , P (n) holds if and only if f(hni) = hmi for some evennumber m. Therefore, the fa
t that P is non
omputable implies that f 
annot be �01.We turn to 
oding an in�nite and 
oin�nite �02 relation P (x) su
h thatP (x), 8
9dR(x; 
; d);where R is 
omputable. Let TP � !<! be the 
losure of the following 
onditions under initialsegments. (We give both an informal and a formal des
ription of these 
onditions. Later, wewill trust the reader to �ll in the formal des
riptions.)1. TP is !-bran
hing at the root. Formally, let h1i 2 TP and hpni 2 TP for all primes pand all n � 1. To 
larify the 
oding below, view h1i as h20i.2. For all n and m, TP [h2n;mi℄ is the tree de�ned above for 
oding the �01 senten
e 8
 �m9dR(n; 
; d). Formally, for all i, h2n;m; ii 2 TP and h2n;m; i; 0i 2 TP if and only if iis the least number su
h that 8
 � m9d � iR(n; 
; d).3. For all odd primes p and all n � 1, TP [hpni℄ 
onsists of n � 1 
opies of the 
oded�01 tree and in�nitely many 
opies of the un
oded �01 tree. Formally, for all m and i,hpn;m; ii 2 TP , and hpn;m; i; 0i 2 TP if and only if i < n � 1.If P (n) holds, then TP [h2ni℄ is !-bran
hing at the root, and every node at level 1 (in thisrestri
ted tree) is the base of a 
oded �01 tree. We 
all any tree with this isomorphism type a
oded �02 tree.For an odd prime p and n � 1, the tree TP [hpni℄ is !-bran
hing at the root and at level1 has exa
tly n� 1 many 
oded �01 trees and in�nitely many un
oded �01 trees. We 
all anytree with this isomorphism type an (n � 1)-un
oded �02 tree. Noti
e that if P (n) does nothold, then TP [h2ni℄ is an m-un
oded �02 tree for some m.Just as in the �01 
ase, we have given a pro
edure for e�e
tively 
onstru
ting a tree TP [h2ni℄from the �02 senten
e P (n). This tree is a 
oded �02 tree if the �02 senten
e P (n) holds andit is an m-un
oded �02 tree (for some m) if the �02 senten
e P (n) is false. The other trees ofthe form TP [hpni℄ are added so that the isomorphism type of TP will be independent of the
hoi
e of P , as long as P is in�nite.We 
an now des
ribe the isomorphism type of TP pre
isely. TP is !-bran
hing at the rootand 
onsists of in�nitely many 
oded �02 trees and in�nitely many m-un
oded �02 trees forea
h m. Furthermore, we haveP (n) , TP [h2ni℄ is a 
oded�02 tree:To see that TP is �03-
ategori
al, �x a 
omputable tree T whi
h is isomorphi
 to TP . Forany � 2 T at level 1, T [� ℄ is a 
oded �02 tree if and only if8��(� � � ^ :9Æ(� � Æ � �))! T [�℄ is a 
oded�01 tree�:66



Sin
e the property of being a �01 tree 
an be expressed in a �01 manner, this predi
ate is �02.Similarly, the predi
ate whi
h says T [� ℄ is an n-un
oded �02 tree (for a �xed value of n) is �02.Formally, T [� ℄ is an n-un
oded �02 tree if and only if there are disjoint �0; : : : ; �n�1 su
h that� � �i and T [�i℄ is a 
oded �01 tree and for all disjoint �0; : : : ; �n su
h that � � �i, at leastone �i is not the root of a 
oded �01 tree. Sin
e expressing T [�℄ is a 
oded �01 tree is a �01statement, this entire expression is the 
onjun
tion of a �01 and a �01 statement, and hen
e is�02.Assume that T is a 
omputable tree whi
h is isomorphi
 to TP . By the 
omments above,000 
an determine whi
h nodes at level 1 in TP and T are the base of 
oded �02 trees and whi
hare the base of n-un
oded �02 trees. On
e we mat
h these nodes up, we 
an use 00 to buildthe isomorphism above level 1, sin
e we are essentially ba
k in the 
ase of �01 trees.Be
ause we 
an des
ribe the isomorphism type of TP pre
isely, we 
an build a 
omputabletree SP � !<! whi
h is isomorphi
 to TP and for whi
hA = fxjSP [hxi℄ is a 
oded�02 tree gis 
omputable. To see that TP need not be �02-
ategori
al, 
onsider the 
ase when P (x) is�02-
omplete. If f : TP ! SP is an isomorphism, then P (x), f(x) 2 A. Therefore, f 
annotbe �02 without 
ontradi
ting the �02-
ompleteness of P .The last example we 
onsider before the general 
ase is how to 
ode the �03 relationP (x), 9b8
9dR(x; b; 
; d):We �rst 
ode P (x) into a 
omputable tree TP � !<! as follows.1. TP is !-bran
hing at the root. In this 
ase, we let hni 2 TP for all n.2. For ea
h n: TP [hni℄ is !-bran
hing at the root; for ea
h m, TP [hni℄ has in�nitely manynodes at level 1 ea
h of whi
h is the root of the tree for the �02 senten
e 8
9dR(n;m; 
; d);and for ea
h m, TP [hni℄ has in�nitely many nodes at level 1 ea
h of whi
h is the root ofthe m-un
oded �02 tree.If P (n) holds, then TP [hni℄ 
onsists of in�nitely many 
oded �02 trees as well as in�nitelymany m-un
oded �02 trees for ea
h m. We refer to any tree with this isomorphism type asa 
oded �03 tree. If P (n) does not hold, then TP [hni℄ 
onsists of in�nitely many m-un
oded�02 trees for ea
h m, and nothing else. We refer to any tree with this isomorphism type as anun
oded �03 tree. As above, we are 
oding the �03 senten
es P (n) by e�e
tively 
onstru
tinga tree TP [hni℄ whi
h is a 
oded �03 tree if the �03 senten
e P (n) is true and is an un
oded �03tree if the �03 senten
e P (n) is false.We 
an des
ribe the isomorphism type of TP pre
isely as follows. TP is !-bran
hing atthe root and 
onsists of in�nitely many 
oded �03 trees and in�nitely many un
oded �03 trees.To see that TP is �04-
ategori
al, let T be any 
omputable tree whi
h is isomorphi
 to TP .For any � 2 T at level 1, T [� ℄ is a 
oded �03 tree if and only if9�2(� < �2 ^ level(�2) = 2 ^ T [�2℄ is a 
oded�02 tree):67



Sin
e determining if T [�2℄ is a 
oded �02 tree is �02, this predi
ate is �03. Therefore, 0000 
andetermine whi
h nodes at level 1 in T and TP are the base of a 
oded �03 tree and whi
h arethe base of an un
oded �03 tree. On
e these nodes are mat
hed up 
orre
tly, 000 
an build therest of the isomorphism as in the previous 
ase. Therefore, TP is �04-
ategori
al.Sin
e we 
an des
ribe the isomorphism type of TP exa
tly, we 
an build a 
omputable treeSP � !<! whi
h is isomorphi
 to TP and su
h thatA = fnjSP [hni℄ is a 
oded�03 treegis 
omputable. As above, if P (x) is �03-
omplete, there 
annot be a �03 isomorphism betweenTP and SP .We now present two general 
onstru
tions. First, we use a 
onstru
tion similar to the �02
oding to pass from a �0n 
oding to a �0n+1 
oding. Let P (x) be an in�nite and 
oin�nite�0n+1 relation su
h that P (x), 8aR(x; a)where R is �0n. Assume that we have de�ned the isomorphism types for a 
oded �0n treeand an un
oded �0n tree and that su
h trees are not isomorphi
. Assume that these trees arede�ned in su
h a way that given any �0n senten
e we 
an e�e
tively 
onstru
t a tree whi
his a 
oded �0n tree if the senten
e is true and is an un
oded �0n tree if the senten
e is false.Furthermore, assume that there is a �0n senten
e whi
h is true in the 
oded �0n tree and falsein the un
oded �0n tree. We de�ne TP as the 
losure of the following 
onditions under initialsegments.1. TP is !-bran
hing at the root. Formally, we put h1i 2 TP and hpui 2 TP for all primesp and u � 1.2. For all u and m, TP [h2u;mi℄ is 
onstru
ted to 
ode the �0n senten
e 8a � mR(u; a).3. For all odd primes p and u � 1, TP [hpui℄ 
onsists of (u� 1) 
opies of the 
oded �0n treeand in�nitely many 
opies of the un
oded �0n tree.If P (u) holds, then the root of TP [h2ui℄ is !-bran
hing and the nodes at level 1 in this treeare all roots of 
oded �0n trees. We refer to any tree with this isomorphism type as a 
oded�0n+1 tree.If P (u) does not hold, then the root of TP [h2ui℄ is !-bran
hing, and the trees above thenodes at level 1 
ontain in�nitely many 
opies of the un
oded �0n tree and for some m,exa
tly m 
opies of the 
oded �0n tree. We refer to any tree with this isomorphism type as anm-un
oded �0n+1 tree.The isomorphism type of TP is uniquely determined by the fa
t that the root is !-bran
hingand TP 
onsists of in�nitely many 
opies of the 
oded �0n+1 tree and in�nitely many 
opiesof the m-un
oded �0n+1 tree for ea
h m.For any 
omputable tree T isomorphi
 to TP and any � 2 T at level 1, T [� ℄ is a 
oded�0n+1 tree if for all m, there are distin
t nodes �0; : : : ; �m su
h that for all i < m,� < �i ^ level(�i) = 2 ^ TP [�i℄ is a 
oded�0n tree: (1)68



This 
ondition is �0n+1 by our assumption on the 
omplexity of determining if a tree is a 
oded�0n tree. Furthermore, T [� ℄ is an m-un
oded �0n+1 tree if there exist distin
t nodes �1; : : : ; �msu
h that for all 1 � i � m, equation (1) holds (for m = 0 this 
he
k is va
uous), but for all
hoi
es of nodes �1; : : : ; �m+1, there is some 1 � i � m+ 1 su
h that(� < �i ^ level(�i) = 2)! TP [�i℄ is an un
oded�0n tree:Altogether, this 
ondition is the 
onjun
tion of a �0n statement and a �0n statement.To see that TP is �0n+2-
ategori
al, noti
e that ea
h of the 
onditions in the previousparagraph 
an be determined by 0(n+1). Therefore, given any 
omputable tree T isomorphi
to TP , 0(n+1) 
an mat
h up the nodes at level 1 
orre
tly. The fa
t that the rest of theisomorphism 
an be built follows by indu
tion.To see that Tp is not �0n+1-
ategori
al, 
onsider the 
ase when P (x) is �0n+1-
omplete.Be
ause we know the isomorphism type of TP exa
tly, we 
an build a 
omputable tree SPsu
h that A = fmjSP [hmi℄ is a 
oded�0n+1 tree gis 
omputable. If f : TP ! SP is an isomorphism, then P (x) holds if and only if f(h2xi) = hmifor some m 2 A. Therefore, f 
annot be �0n without 
ontradi
ting the fa
t that P is �0n+1-
omplete.It remains to show how to pass from a �0n 
oding to a �0n+1 
oding. Let P (x) be an in�niteand 
oin�nite �0n+1-
omplete relation given byP (x), 9aR(x; a)where R is �0n. Assume that we have determined the isomorphism types for the 
oded andm-un
oded �0n trees with the 
orresponding 
omplexity results as above. We de�ne the
omputable tree TP as the downward 
losure of the following 
onditions.1. TP is !-bran
hing at the root. Formally, for all u, hui 2 TP .2. For ea
h u: TP [hui℄ is !-bran
hing at the root; for ea
h m, TP [hui℄ has in�nitely manynodes at level 1 ea
h of whi
h is the root of tree 
oding the �0n senten
e R(u;m); andfor ea
h m, TP [hui℄ has in�nitely many nodes at level 1 ea
h of whi
h is the root of anm-un
oded �0n tree.If P (u) holds, then TP [hui℄ is !-bran
hing at the root and 
ontains in�nitely many 
opiesof the 
oded �0n tree and in�nitely many 
opies of the m-un
oded �0n tree for ea
h m. Werefer to any tree with this isomorphism type as a 
oded �0n+1 tree.If P (u) does not hold, then TP [hui℄ is !-bran
hing at the root and 
onsists of in�nitelymany 
opies of the m-un
oded �0n tree for ea
h m. In parti
ular, there are no 
oded �0n treesin TP [hui℄. We refer to any tree with this isomorphism type as an un
oded �0n+1 tree.Let T be a 
omputable tree isomorphi
 to TP and suppose � 2 T is a level 1 node. T [� ℄is a �0n+1 
oded tree if and only if there is a �2 2 T su
h that� < �2 ^ level(�2) = 2 ^ T [�2℄ is a 
oded�0n tree:69



By assumption on the 
omplexity of �0n trees, this 
ondition is �0n+1. As above, this 
onditionimplies that TP is �0n+2-
ategori
al. To show that TP is not �0n+1-
ategori
al, we de�ne a treeSP and argue as above.6 Trees Under the In�mum Fun
tionWe end this paper with a brief dis
ussion about trees de�ned using the in�mum fun
tion anda 
onje
ture about when they are 
omputably 
ategori
al. We have already mentioned (seeSe
tion 1) that if (T;^) is 
omputable, then the 
orresponding (T;�) is also 
omputable.However, it is simple to build a tree T in whi
h � is 
omputable and ^ is not. Start with 0 asthe root, and make every even number a su

essor of 0 at level 1. To diagonalize against thepossibility that 'e 
omputes ^, we wait until 'e(h4e+2; 4e+4i)#= 0, and if this ever happens,we add the next available odd number x to T at level 1 with x � 4e + 2 and x � 4e+ 4. Twill have domain ! and height 3, and � will be 
omputable, but our diagonalization ensuresthat ^ is not 
omputable.The notion of an embedding depends strongly on whether we de�ne trees using � or ^.Consider the following two trees:
I

0 1
IIt is easy to embed I0 into I1 with respe
t to �, but there is no embedding of I0 into I1respe
ting ^. (The in�mum of any pair of distin
t nodes in I0 is the root, whereas no possibleimage of I0 in I1 has the same property.) For the remainder of this se
tion, therefore, we willspeak of �-embeddings and ^-embeddings, to distinguish these two types of embeddings. Inthe rest of the paper, of 
ourse, \embedding" always means �-embedding. Noti
e that foran isomorphism, it does not matter whi
h notion we use. That is, any isomorphism betweentrees under � is also an isomorphism of the same trees under ^ (and 
onversely).The simple example above 
reates problems when one investigates 
omputable 
ategori
ity.Consider the tree T whi
h 
onsists of a root with in�nitely many 
opies of I0 and in�nitelymany 
opies of I1 (and nothing else) as su

essor trees above the root. This tree has height 4,and (T;�) is not of �nite type, hen
e not 
omputably 
ategori
al, by Theorem 1.8. However,(T;^) is 
omputably 
ategori
al. Clearly we 
an build a 
omputable 
opy of (T;^), andgiven any two 
omputable 
opies, we 
an �nd the root of ea
h, then identify su

essor trees ofea
h type in ea
h 
opy and mat
h them up. In parti
ular, every su

essor tree 
ontains threepairwise-in
omparable nodes a, b, and 
, and on
e those nodes have appeared, we simply
ompute a^ b, a^ 
, and b^ 
. The su

essor tree is of type I0 i� these three in�ma are equal.We do have the following result. 70



Lemma 6.1 Any 
omputably 
ategori
al tree (T;�) will still be 
omputably 
ategori
al whenre-interpreted as (T;^), assuming only that the fun
tion ^ so de�ned is 
omputable.Proof. If a 
omputable stru
ture (T 0;^0) is isomorphi
 to (T;^), then the 
orresponding(T 0;�0) is also 
omputable, hen
e isomorphi
 to (T;�) via some 
omputable '. As notedabove, the isomorphism ' must also preserve in�ma, so it is an isomorphism of (T;^) onto(T 0;^0) as required.To determine 
omputable 
ategori
ity for trees under the in�mum fun
tion, therefore,we need to 
onsider ^-embeddings rather than �-embeddings. Fortunately, one of our maintools, Kruskal's Theorem (stated as Theorem 3.4), yields not only �-embeddings but also^-embeddings. The �rst step, therefore, is to re�ne the notion of being of �nite type byreferring to ^ instead of �.De�nition 6.2 1. A tree T is of strongly �nite ^-type if it satis�es De�nition 1.6 whenthe word \embedding" is repla
ed everywhere by \^-embedding."2. A tree T is of �nite ^-type if it satis�es De�nition 1.7 when the word \embedding" isrepla
ed everywhere by \^-embedding" and \strongly �nite type" is repla
ed everywhereby \strongly �nite ^-type."Noti
e that in our example from the previous page, (T;^) has �nite ^-type but (T;�) doesnot have �nite �-type.We 
onje
ture that with these de�nitions, the proofs from Se
tions 2, 3, and 4 will gothrough with relatively few modi�
ations, as long as one always refers to ^-embeddings and(strongly) �nite ^-type. Thus we would have the analogue of Theorem 1.8:Conje
ture 6.3 For a 
omputable tree (T;^) of �nite height, the following are equivalent:1. T is of �nite ^-type;2. (T;^) is 
omputably 
ategori
al;3. (T;^) has �nite 
omputable dimension;4. (T;^) is relatively 
omputably 
ategori
al.In [24℄, Miller proved the 
orresponding result for 
omputable trees (T;^) of in�niteheight: the 
omputable dimension of (T;^) must be !. Together with Conje
ture 6.3, thiswould answer the question of 
omputable 
ategori
ity for all trees under the in�mum fun
tion.71
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