
A COMPUTABLE FUNCTOR FROM GRAPHS TO FIELDS
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Abstract. We construct a fully faithful functor from the category of graphs to the category
of fields. Using this functor, we resolve a longstanding open problem in computable model
theory, by showing that for every nontrivial countable structure S, there exists a countable
field F with the same essential computable-model-theoretic properties as S. Along the
way, we develop a new “computable category theory”, and prove that our functor and its
partially-defined inverse (restricted to the categories of countable graphs and countable fields)
are computable functors.

1. Introduction

1.A. A functor from graphs to fields. Let Graphs be the category of symmetric irreflex-
ive graphs in which morphisms are isomorphisms onto induced subgraphs (see Section 2.A).
Let Fields be the category of fields, with field homomorphisms as the morphisms. Using
arithmetic geometry, we will prove the following:

Theorem 1.1. There exists a fully faithful functor F : Graphs→ Fields.

(The definitions of “full” and “faithful” are reviewed in Section 2.B.) In particular, given a
graph G, the functor produces a field with the same automorphism group as G.

1.B. Computable functors. For applications to computable model theory, we are interested
in graphs and fields whose underlying set is ω := {0, 1, 2, . . .}. These form full subcategories
Graphsω and Fieldsω. The functor F of Theorem 1.1 will be constructed so that it restricts
to a functor Fω : Graphsω → Fieldsω. Let Eω denote the essential image of Fω (see
Section 2.B for definitions). Then we may view Fω as a functor from Graphsω to Eω. We
will also a define a functor Gω : Eω → Graphsω, and we would like to say that Fω and Gω
are computable and are inverse to each other in some computable way.

To guide us to the correct formulation of such statements, we create a new “type-2 com-
putable category theory”; see Section 3. The adjective “type-2”, borrowed from computable
analysis (see Remark 3.2), indicates that we work with noncomputable objects; indeed,
Graphsω and Fieldsω each contain uncountably many noncomputable objects. The effec-
tiveness in our definitions really arises in the concept of a computable functor, a functor in
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which the processes of transforming objects to objects and morphisms to morphisms are given
by Turing functionals: roughly speaking, each output should be computable given an oracle
for the input (see Definition 3.1). Our computable category theory includes also a notion
of computable isomorphism of functors (see Definition 3.3). Using this lexicon, we can now
state our main result on the computability of the functors:

Theorem 1.2.
(a) The functors Fω and Gω are computable in the sense of Definition 3.1.
(b) The composition GωFω is computably isomorphic to 1Graphsω , and FωGω is computably

isomorphic to 1Eω .

We may summarize Theorem 1.2 by saying that Fω and Gω give a computable equivalence
of categories between Graphsω and Eω (see Definition 3.4). In fact, we will define Gω so that
GωFω equals 1Graphsω , but computable isomorphism in place of equality here suffices for the
applications in Section 9.

Here is one concrete consequence of Theorem 1.2:

Corollary 1.3. If a field F ∈ Fieldsω is isomorphic to a field in the image of Fω, then one
can compute from F a graph G ∈ Graphsω and an isomorphism F → Fω(G).

Proof. Apply the isomorphism GωFω ' 1Graphsω of Theorem 1.2(b) to G := Gω(F ). �

Specializing Corollary 1.3 to the case in which F is computable yields the following:

Corollary 1.4. Every computable field isomorphic to a field in the image of Fω is computably
isomorphic to Fω(G) for some computable G ∈ Graphsω.

Following [Kni86, §4], we call a structure automorphically trivial if there exists a finite subset
S0 of its domain S such that every permutation of S fixing S0 pointwise is an automorphism.

Proposition 1.5. Let F ∈ Eω; that is, F is isomorphic to a field in the image of Fω. Let
I := {G ∈ Graphsw : Fω(G) ' F}, so I 6= ∅.
(a) The set I is an isomorphism class in Graphsw.
(b) Either every graph in I is automorphically trivial and computable, or there exists a graph

in I of the same Turing degree as F .

Proofs of Theorem 1.2 and Proposition 1.5 appear in Section 7.

Remark 1.6. As will be explained in Section 3.C, there have been other attempts to give
effective versions of category theory (and, more succesfully, to give a categorical underpinning
to computability theory). To our knowledge, however, ours is the first attempt to define
effectiveness for functors using type-2 Turing computation.

1.C. Computable model theory. One of the goals of computable model theory is to help
distinguish various classes of countable structures according to the algorithmic complexity of
those structures. The class of algebraically closed fields of characteristic 0, for example, is
viewed throughout model theory as a particularly simple class, and its computability-theoretic
properties confirm this view: every countable algebraically closed field can be computably
presented, all of them are relatively ∆0

2-categorical, and the only one that is not relatively
computably categorical has infinite computable dimension. (All these terms are defined in
Section 9.) In contrast, the theory of linear orders is a good deal more complex: there do exist
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countable linear orders with no computable presentation, and linear orders with much higher
degrees of categoricity than 0′. In this view, the theory of graphs is even more complicated:
for example, every computable linear order has computable dimension either 1 or ω, whereas
for computable (symmetric irreflexive) graphs all computable dimensions ≤ ω are known to
occur.

We will discuss specific properties such as computable presentability and computable
dimension when we come to prove results about them, in Section 9. For now, we simply
note that a substantial body of results has been established on the possibility of transferring
these properties from one class of countable structures to another. After much piecemeal
work by assorted authors, most of these results were gathered together and brought to
completion in the work [HKSS02], by Hirschfeldt, Khoussainov, Shore, and Slinko. There
it was proven that the class of symmetric irreflexive graphs is complete, in the very strong
sense of their Definition 1.21. The authors gave a coding procedure that, given any countable
structure S with domain ω (in an arbitrary computable language, with one quite trivial
restriction) as its input, produced a countable graph G on the same domain with the same
computable-model-theoretic properties as S. Several other natural properties have been
introduced since then (the automorphism spectrum, in [HMM10, Definition 1.1], and the
categoricity spectrum, in [FKM10, Definition 1.2], for example), and each of these has also
turned out to be preserved under the construction from [HKSS02]. The method they gave
was quite robust, in this sense, and one may expect that it will also be found to preserve
other properties that are yet to be defined.

Having established the completeness of the class of countable graphs in this sense, the
authors went on to consider many other everyday classes of countable first-order structures.
By doing a similar coding from graphs into other classes, they succeeded in proving the
completeness (in this same sense) of the following classes:

• countable directed graphs;
• countable partial orderings;
• countable lattices;
• countable rings (with zero-divisors);
• countable integral domains of arbitrary characteristic;
• countable commutative semigroups;
• countable 2-step nilpotent groups.

(We note again that in some cases, these results had been established in earlier work by other
authors. In certain of these cases, the language must be augmented by a finite number of
constant symbols.) On the other hand, various existing and subsequent results demonstrated
that none of the following classes is complete in this sense:

• countable linear orders (e.g., by results in [GD80, Theorem 2], [Rem81, Corollary 1],
and [Ric81, Theorem 3.3]);
• countable Boolean algebras (see [DJ94, Theorem 1], or use [Ric81, Theorem 3.1]);
• countable trees, either as partial orders or under the meet relation ∧ (by [Ric81,
Theorem 3.4] or [LMMS05, Theorem 1.8]);
• algebraic field extensions of Q or of Fp (see [Mil09, Corollary 5.5], for example);
• field extensions of Q of finite transcendence degree (see [Mil09, §6]);
• countable archimedean ordered fields (by Theorem 3.3.1 in Levin’s thesis [Lev09]).
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In addition, Goncharov announces in [Gon81] that every computable abelian group has
computable dimension 1 or ω, though it seems that a detailed proof does not exist in print.
This result would add the class of countable abelian groups to the list of non-complete classes.

Conspicuously absent from both of the lists above is the class of countable fields. The
question whether this class possesses the completeness property has remained open, despite
substantial interest since the publication of [HKSS02]: see the introduction to [LMMS05]. In
this paper we resolve the question, using the computable functors of Section 1.B:

Theorem 1.7. The class of countable fields has the completeness property of [HKSS02,
Definition 1.21].

Proving the many specific aspects of this theorem will take most of Section 9. Our proof
of Theorem 1.7 shows more specifically that the class of countable fields of characteristic 0
has the completeness property.

Remark 1.8. The constructions in [HKSS02] too can be expressed in terms of our computable
category theory.

1.D. Structure of the paper. Section 2 introduces notation and definitions. Section 3
introduces the key definitions of our computable category theory, and discusses its relation to
other work in the literature.

Section 4 defines some algebraic curves used in Section 5 to construct F , and proves
arithmetic properties of these curves that are used in Section 6 to construct G and prove
enough properties of F and G to prove Theorem 1.1. Section 7 constructs the computable
analogues Fω and Gω, and proves Theorem 1.2. Section 8 is something of a side remark:
it proves that for every G ∈ Graphsω, the field Fω(G) is isomorphic to a subfield of R;
but Fω cannot be viewed as a functor to the category of ordered fields if morphisms in the
latter are required to respect the orderings. Finally, Section 9 explains the implications of
our functors for computable model theory. Many of the results there follow formally from
[HKSS02, Theorem 3.1] and Theorem 1.2, so they could be stated more generally in terms of
any computable equivalence of categories of structures, but for concreteness, we state them
specifically for the categories of graphs and fields.

2. Notation and definitions

2.A. Graphs. Given a set I, let
(
I
2

)
be the set of 2-element subsets of I. A (symmetric,

irreflexive) graph is a set V equipped with a subset E ⊆
(
V
2

)
; then {(i, j) ∈ V ×V : {i, j} ∈ E}

is a symmetric irreflexive relation on V . If G is a graph (V,E), then #G := #V ; call G finite
if V is finite. Define a morphism of graphs (V,E)→ (V ′, E ′) to be an injection f : V ↪→ V ′

such that for each {i, j} ∈
(
V
2

)
, we have {i, j} ∈ E if and only if {f(i), f(j)} ∈ E ′. In

other words, a morphism of graphs (V,E)→ (V ′, E ′) is an isomorphism from (V,E) onto an
induced subgraph of (V ′, E ′). These notions define a category Graphs.

2.B. Category theory. A full subcategory of a categoryC is a category consisting of some the
objects of C but all of the morphisms between pairs of these chosen objects. Let F : C→ D
be a functor. Then F is full (respectively, faithful) if for any two objects C1, C2 ∈ C, the
map Hom(C1, C2)→ Hom(F (C1),F (C2)) is surjective (respectively, injective). The essential
image of F is the full subcategory of D consisting of objects D ∈ D that are isomorphic to
F (C) for some C ∈ C.
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2.C. Fields and arithmetic geometry. Let Fields be the category of fields, with field
homomorphisms as the morphisms. If X is a k-variety, and L ⊇ k is a field extension, let XL

denote the base extension; concretely, XL is the L-variety defined by the same equations as
X, but with coefficients considered to be in L. A k-variety is integral if it is irreducible and
the ring of functions on any Zariski open subset has no nilpotent elements. A k-variety is
geometrically integral if it remains integral after any extension of the ground field; for example,
the affine curve x2 − 2y2 = 0 over Q is integral but not geometrically integral. If X is an
integral k-variety, let k(X) denote its function field. If (Xi)i∈I is a collection of geometrically
integral k-varieties indexed by a set I, let k(

∏
Xi) denote the direct limit of the function

fields k(
∏

i∈J Xi) over all finite subsets J ⊆ I. If X is a geometrically integral curve, let
gX ∈ Z≥0 be its geometric genus, defined as the dimension of the space of global 1-forms on
the regular projective model of X.

2.D. Computable model theory. Given a structure M , let dom(M) be its domain (un-
derlying set), and let ∆(M) be its atomic diagram (the set of atomic sentences true in M).
If M is a countable structure with dom(M) = ω, let degM be the Turing degree of ∆(M),
and define the spectrum of M as SpecM := {degN : N 'M and dom(N) = ω}. Given two
such structures M and N , we say that M is computable from N , or write M ≤T N , if ∆(M)
is computable under a ∆(N)-oracle, or equivalently degM ≤T degN .

3. Computable category theory

3.A. Computable functors. By a category of structures on ω, we mean a subcategory
C of the category of all first-order L-structures with domain ω := {0, 1, 2, . . .}, for some
computable language L. (In some cases, one might allow also finite subsets of ω as domains.)
Here are two examples:

• Let Graphsω be the category whose objects are the (symmetric irreflexive) graphs
having underlying set ω, and whose morphisms are isomorphisms onto induced
subgraphs.
• Let Fieldsω be the category whose objects are the fields having underlying set ω, and
whose morphisms are field homomorphisms.

There is nothing particularly effective about these categories. The requirement that the
domain equal ω gives us the opportunity to consider computability questions about the
structures in a category, but a graph G on ω with a noncomputable edge relation would be
an object of Graphsω in perfectly good standing. Also, even for computable sets E ⊆ ω2,
there is no general way to determine whether E actually is the edge relation of a symmetric
irreflexive graph.

Effectiveness considerations arise when we consider functors between these categories. A
functor maps objects to objects and morphisms to morphisms, and we would like this process
to be effective.

Definition 3.1. Let C and C′ be categories of structures on ω (with respect to possibly
different languages L and L′). A computable functor is a functor F : C→ C′ for which there
exist Turing functionals Φ and Ψ such that
(i) for every S ∈ C, the function ΦS computes (the atomic diagram of) the structure F (S);

and
(ii) for every morphism g : S → T in C, we have ΨS⊕g⊕T = F (g) in C′.
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Computing the atomic diagram of F (S) is equivalent to computing every function and
relation from L′ on F (S) (and, in case L′ is infinite, doing so uniformly and also computing
the value of each constant symbol). One could state (i) by saying that, for every n ∈ ω,
the function ΦS(〈n, ~x〉) is the value on input ~x of the nth symbol of the language L′, as
interpreted in F (S). For relation symbols, this value is Boolean, while for constants and
function symbols, it is an element of F (S), i.e., a natural number. Condition (ii) states that
ΨS⊕g⊕T computes the morphism F (g) in C′, viewed as a map from dom(S) into dom(T ).
Note that one is allowed to use the objects S and T , in addition to the morphism g between
them, to compute F (g); this is natural if one thinks of the source and target as being part
of the data describing a function. Our proofs in Section 7 that Fω and Gω are computable
also illustrate why including S and T is appropriate.

Remark 3.2. Our computable functors may also be called type-2 computable functors. The
terminology “type-2” comes from computable analysis, where this concept of computability
is common; the book [PER89] is a standard reference for this topic. Computable analysis
considers real numbers, given by fast-converging Cauchy sequences of rationals. Two such
sequences may well represent the same real number, and equality of real numbers is not
computable; that is, no Turing functional Φ has the property that, for all fast-converging
Cauchy sequences f and g with respective limits x and y in R,

Φf⊕g(0) =

{
1, if x = y;
0, if x 6= y;

cf. [PER89, p. 23, Fact 3]. On the other hand, there does exist a Turing functional Ψ such
that, for all such f and g, Ψf⊕g is itself a fast-converging Cauchy sequence with limit x+ y,
so addition is a type-2 computable function on R, as are the other arithmetic operations and
many more standard functions on R. Likewise, here in category theory, we are computing
functions not between natural numbers, but between subsets of natural numbers. This is
clear in the case of the edge relation on a graph, but in fact all countable structures (in
countable first-order languages) turn out to be represented by subsets of ω, just as all real
numbers are.

3.B. Computable morphisms of functors.

Definition 3.3. Let F1,F2 : C→ C′ be computable functors. A computable morphism of
functors (or computable natural transformation) from F1 to F2 is a morphism of functors
τ : F1 → F2 such that there exists a Turing functional that on input S ∈ C computes the
morphism τ(S) : F1(S)→ F2(S).

This notion leads in the usual way to the notion of computable isomorphism of functors: this
is a computable morphism of functors having a two-sided inverse that is again a computable
morphism of functors. Then, adapting the definition of equivalence of categories leads to the
following.

Definition 3.4. Let C and C′ be categories of structures on ω. A computable equivalence
of categories from C to C′ is a pair of computable functors F : C → C′ and G : C′ → C
together with computable isomorphisms G F → 1C and FG → 1C′ .

In Definition 3.4, we may refer to F alone as a computable equivalence of categories if the
other functors and isomorphisms exist.
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3.C. Related work. To a certain extent, the concept of computable functor has appeared
before in computable model theory. Turing-computable reducibility (as defined, e.g., in
[KMVB07, §1], by Knight, Miller, and Vanden Boom) can be viewed as a version of it. In
that definition, one class C of computable structures is Turing-computably reducible (or
TC-reducible) to another such class D if there exists a Turing functional Φ that accepts
as input the atomic diagram ∆(S) of a structure S ∈ C and outputs the atomic diagram
Φ∆(S) = ∆(T ) of a structure T ∈ D. Writing F (S) for T , the further requirement is that
S ∼= S ′ if and only if F (S) ∼= F (S ′). So this definition essentially includes the first half
of Definition 3.1 above, although stated only for computable structures, not for arbitrary
structures with domain ω. The second half is related to the preservation of the isomorphism
relation, but here Definition 3.1 is far stronger, requiring the actual computation of an
isomorphism F (g) from F (S) onto F (S ′), given an isomorphism g from S onto S ′. It
would be reasonable to investigate Definition 3.1 more fully, especially in light of the work
in [KMVB07].

In parallel with our research into functors from graphs to fields, Montalbán examined a
notion that he calls effective interpretation. This is detailed in [Mon14, §5], and is very much
in the vein of the traditional model-theoretic notion of interpretation, with effectiveness
conditions added. The functor we build in Section 5 will allow an effective interpretation of
each graph G in the field F (G), since the domain of each graph will be definable uniformly
by an existential formula in the corresponding field and the edge relation of the graph will
likewise be uniformly existentially definable on that domain within that field. Indeed, F will
have a computable left-inverse functor, and it will actually be the case that F (G) always
has an effective interpretation in G, although this is not so obvious at first glance. These
are examples of a more general result, obtained in [HTMMM15, Theorems 5 and 12] by
Harrison-Trainor, Melnikov, Miller, and Montalbán in the wake of the present work, that
the existence of a computable functor from C to C′ is equivalent to the uniform effective
interpretability of all elements of the class C′ in the class C. (So the effective interpretation
of G in F (G) is an outgrowth of the computable left inverse functor for F , not of F itself.)

The results in [HKSS02] are proven largely by the construction of computable functors,
although not described in that way. However, one could also ask the same questions about
categories known not to be complete. For example, there is a natural construction of a
Boolean algebra F (L) from a linear order L, simply by taking the interval algebra of L,
where the morphisms in each category are simply homomorphisms of the structures. On
its face, this functor appears to be neither full nor faithful, based on known results, and
it does not have a precise computable inverse functor on its image, although it may come
close to doing so. It cannot have all of these properties, because there does exist a linear
order whose spectrum is not realized by any Boolean algebra, as shown by Jockusch and
Soare in [JS91, Theorem 1]. (Here we use a generalization of the result in this article, namely,
that a computable equivalence of categories onto a strictly full subcategory allows one to
transfer spectra from objects of the first category to objects of the second. This generalization
appears to have a straightforward direct proof, and in any case it follows from effective
bi-interpretability, hence from [HTMMM15, Theorem 12], using [Mon14, Lemma 5.3].) We
suspect that similar results distinguishing the properties of various everyday classes of
countable structures may yield further insights into effectiveness, fullness, faithfulness, and
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other properties of functors among these classes, especially the incomplete ones listed in
Section 1.C.

4. Curves

Define polynomials

p(u, v) := u4 + 16uv3 + 10v4 + 16v − 4 ∈ Q[u, v], and

q(T, x, y) := x4 + y4 + 1 + T (x4 + xy3 + y + 1) ∈ Q[T, x, y].

Let X be the affine plane curve p(u, v) = 0 over Q. For any field F and t ∈ F , let Yt be the
affine plane curve q(t, x, y) = 0 over F . If we take F = Q(T ) (the field of rational functions
in one indeterminate) and t = T , then we obtain a curve YT over Q(T ); let Y = YT . More
generally, if F ⊇ Q and t is transcendental over Q, then Yt is the base change of Y by the
field homomorphism Q(T )→ F sending T to t, so Yt inherits many properties from Y .

The properties we need of these curves to construct the functor F are contained in parts
(1)–(7) of the following lemma. Later, to prove that for every G ∈ Graphsω the field F (G)
is isomorphic to a subfield of R, we will also need (8).

Lemma 4.1.
(1) Both X and Y are geometrically integral.
(2) We have gX = gY > 1.
(3) Even after base field extension, X and Y have no nontrivial birational automorphisms.
(4) Even after base field extension, there is no birational map from Y to any curve definable

over a finite extension of Q.
(5) We have X(Q) = ∅.
(6) We have u(X(R)) = R.
(7) There exists an open neighborhood U of 0 in R such that for each t ∈ U we have Yt(R) = ∅.
(8) If t ∈ [20,∞), then Yt has a real point with x-coordinate in [1, 2].

Proof. The projective closure X̃ of X specializes under reduction modulo 5 to the curve

X̃5 : u4 + uv3 + vw3 + w4 = 0

in P2
F5
. The projective closure of Y specializes at T = 0 and T =∞ to the curves

Ỹ0 : x4 + y4 + z4 = 0 and Ỹ∞ : x4 + xy3 + yz3 + z4 = 0

in P2
Q, respectively. By [Poo05, Case I with n = 2, d = 4, c = 1], X̃5 and Ỹ∞ are smooth,

projective, geometrically integral plane curves of genus 3 with no nontrivial birational
automorphisms even after base extension. It follows that X and Y have the same properties,
except for being projective.
(1) Explained above.
(2) By the above, gX = gY = 3.
(3) Explained above.
(4) If there were such a birational map, then the specializations Ỹ0 and Ỹ∞ would be

isomorphic over Q. But the former has a nontrivial automorphism (x, y, z) 7→ (−x, y, z).
(5) The given model of X̃ (viewed over Z) reduces modulo 8 to u4 + 2v4 + 4w4 = 0, which

has no solutions in P2(Z/8Z). Now X(Q) ↪→ X̃(Q) = X̃(Z)→ X̃(Z/8Z) = ∅.
8



(6) Fix u ∈ R. Then limv→+∞ p(u, v) = +∞, so by the intermediate value theorem it suffices
to find v ∈ R such that p(u, v) < 0. If |u| <

√
2, then v = 0 works. If |u| ≥

√
2, then

p(u,−u) = −5u4 − 16u− 4 < 0 by calculus.
(7) This follows from Ỹ0(R) = ∅ and compactness.
(8) Suppose that t ≥ 20 and x ∈ [1, 2]. Then q(t, x,−3) ≤ 24 +34 +1+20(24−27−3+1) < 0

but q(t, x, 0) > 0, so there exists y ∈ R with q(t, x, y) = 0. �

5. Construction of the functor

5.A. Construction. We now define a functor F : Graphs→ Fields. Suppose that we are
given a graph G = (V,E). Let K = Q(

∏
i∈V X). Let ui, vi ∈ K correspond to the rational

functions u, v on the ith copy of X. Thus (ui)i∈V is a transcendence basis for K/Q. For
{i, j} ∈

(
V
2

)
, define the K-curve Z{i,j} as Yuiuj if {i, j} ∈ E, and Yui+uj if {i, j} /∈ E. Define

F (G) := K(
∏
Z{i,j}), where the product is over {i, j} ∈

(
V
2

)
. A morphism G→ G′ induces

an obvious field homomorphism F (G)→ F (G′). We obtain a functor F .

Remark 5.1. If G is finite, then #F (G) = ℵ0. If G is infinite, then #F (G) = #G.

5.B. Properties. Here we prove properties of F (G) that will enable us to recover G from
F (G), or more precisely, to prove that F is fully faithful. In the proofs in this section, labels
like (2) refer to the parts of Lemma 4.1.

Lemma 5.2. Fix G. Let L be any field extension of K. Consider the base changes to L of
X and all the curves Yuiuj and Yui+uj . The only nonconstant rational maps between these
curves over L are the identity maps from one of them to itself.

Proof. By (2), all the curves have the same genus. By (3) and Lemma A.2, it suffices to show
that no two distinct curves in this list are birational even after base field extension. By (4),
this is already true for X and Yt for any transcendental t. If t, t′ are algebraically independent
over Q, and Yt and Yt′ become birational after base field extension, then we can specialize
t′ to an element of Q while leaving t transcendental, contradicting (4). The previous two
sentences apply in particular to any t and t′ taken from the uiuj and the ui + uj. �

Lemma 5.3. Let G = (V,E) be a graph. Let xij, yij ∈ F (G) correspond to the rational
functions x, y on Z{i,j}.
(i) We have X(F (G)) = {(ui, vi) : i ∈ V }.
(ii) If {i, j} ∈ E, then Yuiuj(F (G)) = {(xij, yij)} and Yui+uj(F (G)) = ∅.
(iii) If {i, j} /∈ E, then Yuiuj(F (G)) = ∅ and Yui+uj(F (G)) = {(xij, yij)}.

Proof.
(i) By definition, F (G) is the direct limit of K(Z), where Z ranges over finite products of

the Z{i,j}. Thus, by Lemma A.1, each point in X(F (G)) corresponds to a rational map
from some Z to the base change XK . By Lemmas A.3 and 5.2 every such rational map
is constant. In other words, X(F (G)) = X(K).

Similarly, by Lemma A.1, each point in X(K) corresponds to a rational map from
some finite power of X to X. By (5), the rational map is nonconstant. By Lemmas A.3
and 5.2 it is the ith projection for some i. The corresponding point in X(K) is (ui, vi).
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(ii) Suppose that {i, j} ∈ E. The same argument as for (i) shows that Yuiuj(F (G)) =
Yuiuj (K)∪{(xij, yij)}, the last point coming from the identity Z{i,j} → Yuiuj . By (6), we
may embed K in R so that the ui are mapped to algebraically independent real numbers
so close to zero that Yuiuj(R) = ∅ by (7). Thus Yuiuj(K) = ∅. So Yuiuj(F (G)) =
{(xij, yij)}.

The argument for Yui+uj(F (G)) = ∅ is the same, except now that Z{i,j} is not
birational to Yuiuj .

(iii) The argument is the same as for (ii). �

6. Construction of the inverse functor

6.A. Construction. Let E be the essential image of F . We may view F as a functor
Graphs→ E. We now construct an essential inverse G : E→ Graphs of F .

Suppose that F is an object of E. Define V := X(F ). For i ∈ V = X(F ), let ui be the first
coordinate of i. For {i, j} ∈

(
V
2

)
, Lemma 5.3(ii,iii) shows that exactly one of Yuiuj and Yui+uj

has an F -point. Let E be the set of {i, j} ∈
(
V
2

)
for which it is Yuiuj that has a F -point. Let

G (F ) be the graph (V,E).
Suppose that f : F → F ′ is a morphism of E. We want to define a morphism of graphs

g : G (F ) → G (F ′). On vertices, g is the map X(F ) → X(F ′) induced by f . If {i, j} is
an edge of G (F ), then Yuiuj has an F -point, and applying f shows that Yf(ui)f(uj) has an
F ′-point, so {g(i), g(j)} is an edge of G (F ′). If {i, j} is not an edge of G (F ), then the
analogous argument using Yui+uj shows that {g(i), g(j)} is not an edge of G (F ′). Thus g is a
morphism of graphs. Define G (f) := g. This completes the specification of a functor G .

6.B. Properties. For each graph G, let εG : G→ X(F (G)) = G (F (G)) be the map sending
i to (ui, vi).

Proposition 6.1. We have G F ' 1Graphs.

Proof. By Lemma 5.3, εG is a bijection, and in fact a graph isomorphism since the following
are equivalent for a pair {i, j}:

• {i, j} is an edge of G;
• Yuiuj(F (G)) 6= ∅;
• There is an edge between the vertices (ui, vi) and (uj, vj) of G (F (G)).

The isomorphism εG varies functorially with G. �

Proposition 6.2. The functor G is faithful.

Proof. We must show how to recover a morphism f : F → F ′ in E given F , F ′, and G (f).
Without loss of generality, replace F by an isomorphic field to assume that F = F (G), which
is generated by elements ui, vi, xij , yij . Since G (f) is the map X(F )→ X(F ′) induced by f ,
we recover f(ui) and f(vi) for all i. For each edge {i, j} of G, the homomorphism f maps
(xij, yij) ∈ Yuiuj(F ) to a point of Yuiuj(F ′), but by Lemma 5.3(ii) that point is unique, so
we recover f(xij) and f(yij). Similarly, for each non-edge {i, j} of G, Lemma 5.3(iii) lets us
recover f(xij) and f(yij). Together, these determine f . �

Proof of Theorem 1.1. Propositions 6.1 and 6.2 formally imply that F is fully faithful. �
10



7. Computability

The specification of F in Section 5.A sufficed for Theorem 1.1. But for the applications to
computable model theory, for G ∈ Graphsω we need to modify the definition of F (G) to
ensure in particular that its domain is ω and not some other countable set. To do this, we
will iteratively build a standard presentation of a function field starting from a presentation
of its constant field.

Let π : ω × ω ∼→ ω be the standard pairing function. We will repeatedly use the following:
Given a field k with dom(k) ⊆ ω, and given an irreducible polynomial f(x, y) ∈ k[x, y] of
y-degree d ∈ Z>0, the function field of the integral curve f(x, y) = 0 is

k(x)[y]/(f(x, y)) ' k(x)⊕ k(x)y ⊕ · · · ⊕ k(x)yd−1,

and the presentation of k can be extended to a presentation of this function field on the
disjoint union dom(k) t ω.

Let G = (ω,E) ∈ Graphsω. Partition the ω that is to be dom(Fω(G)) into countably
many infinite columns ω[n] := π({n} × ω). Define field operations on K0 := ω[0] so that K0 is
computably isomorphic to Q. For each i ∈ ω, use the elements of ω[2i+2] to extend the field
Ki to Ki+1 := Ki(X) = Ki(ui+1, vi+1) in a uniform way such that π(ui+1, vi+1) > π(ui, vi).
Then K '

⋃
Ki, which has domain

⋃
n even ω

[n]. Let F0 := K. Next, order the pairs (i, j)
with i > j in lexicographic order, hence in order type ω. If (i, j) is the kth such pair (so
k = i(i−1)

2
+ j + 1), inductively define Fk by adjoining the elements of ω[2k−1] to Fk−1 in a

uniform way to form the function field Fk−1(Z{i,j}). Then define Fω(G) :=
⋃
Fk, which has

domain
⋃
ω[n] = ω. The action of Fω on morphisms is defined as for F .

Really all we have done is to identify dom(F (G)) with ω. In fact, we might as well modify
the definition of F so that dom(F (G)) = ω. Then F restricts to Fω.

We record a property of the construction that will be useful in the proof of Theorem 9.7:

Lemma 7.1. Fix G ∈ Graphsω. Let µ : G→ Fω(G) be the injection sending i to ui. Then
µ is computable, its range µ(G) is a computable subset of Fω(G) = ω, and µ−1 (defined on
µ(G)) is computable. Moreover, µ varies functorially with G.

Proof. The uniformity in the construction of the Ki in Fω(G) ensures that µ is computable
even when G is not. (In fact, µ is independent of G.) Given j ∈ Fω(G), we can determine if
j ∈ ω[2i+2] for some i ∈ ω; if so, then compute ui, and check if j = ui. This lets us check if
j ∈ µ(G), and if so computes i such that µ(i) = j. �

For F ∈ Fieldsω, the injection

X(F ) ⊆ F × F = ω × ω π−→ ω

defines a well-ordering on the set X(F ).

Lemma 7.2. If F ∈ Eω, then there is an order-preserving bijection δF : ω → X(F ), and δF
and δ−1

F are computable uniformly from an F -oracle.

Proof. We have F ' Fω(G) for some G ∈ Graphsω. By Lemma 5.3(i), #X(F ) =
#X(Fω(G)) = #G = ℵ0. Given F , the elements of X(F ) can be enumerated by searching
in order; call the ith element δF (i) (starting with i = 0). This defines δF and shows that δF
and δ−1

F are computable. �
11



Lemma 7.3. If G ∈ Graphsω, then the bijection εG : G→ X(Fω(G)) is order-preserving,
and εG = δFω(G).

Proof. The bijection εG is order-preserving by the condition π(ui+1, vi+1) > π(ui, vi). Since
εG and δFω(G) are both order-preserving bijections ω → X(Fω(G)), they are equal. �

Let us now define the promised “inverse” functor Gω : Eω → Graphsω. If F is an object
of Eω, then by transport of structure across the bijection δF : ω → X(F ), the graph G (F )
with vertex set X(F ) becomes a graph Gω(F ) with vertex set ω. If f : F → F ′ is a morphism
of Eω, then again by transport of structure, the morphism G (f) : G (F )→ G (F ′) becomes
Gω(f) : Gω(F )→ Gω(F ′).

Proposition 7.4. We have GωFω = 1Graphsω .

Proof. If G is an object of Graphsω, the composition of sets

G
εG−→ X(Fω(G))

δ−1
Fω(G)−→ Gω(Fω(G))

is the identity ω → ω by Lemma 7.3. Each step is functorial in G by construction. �

Proposition 7.5. The functor Gω : Eω → Graphs is computable.

Proof. Given F ∈ Eω, the construction of Gω(F ) is effective, as we now explain. To compute
whether a given pair {i, j} is an edge of Gω(F ), first use Lemma 7.2 to compute (ui, vi) := δF (i)
and (uj, vj) := δF (j). By Lemma 5.3(ii,iii), exactly one of Yuiuj and Yui+uj has an F -point.
To find out which, search both curves in parallel. When a point is found, which curve it is on
tells us whether {i, j} is an edge.

Given fields F, F ′ and a morphism f : F → F ′ in Eω, the morphism Gω(f) is the composition

ω
δF−→ X(F )

f−→ X(F ′)
δ−1
F ′−→ ω,

which is computable by Lemma 7.2. �

Next is an effective version of Proposition 6.2.

Proposition 7.6. There exists a Turing functional that given F, F ′ ∈ E and g : Gω(F ) →
Gω(F ′) computes the unique morphism f : F → F ′ of Eω such that Gω(f) = g.

Proof. Existence and uniqueness of f follow from Theorem 1.1. Define ui, vi ∈ F by (ui, vi) =
δF (i) ∈ X(F ). Since Gω(f) = g, the map X(F )→ X(F ′) induced by f is the composition

X(F )
δ−1
F−→ Gω(F )

g−→ Gω(F ′)
δF ′−→ X(F ′).

Thus we may compute f(ui) and f(vi) for any given i ∈ ω. For each {i, j}, let (xij, yij) be
the point of Yuiuj(F ) or Yui+uj(F ), according to whether {i, j} is an edge of Gω(F ) or not.
Then f maps (xij, yij) to the unique point of Yf(ui)f(uj)(F

′) or Yf(ui)+f(uj)(F
′), and that point

can be found by a search, so we can compute f(xij) and f(yij). Finally, given any z ∈ F ,
search for u’s, v’s, x’s, y’s as above and a rational function expressing z in terms of them;
evaluate the same rational function on their images under f to compute f(z) in F ′. �

Proposition 7.7. The functor Fω : Graphsω → Fieldsω is computable.
12



Proof. The constructions of the fields Ki and Fi in Section 5 are done by a uniform process,
so Fω(G) has been defined uniformly effectively below a ∆(G)-oracle (specifically, below the
set E of edges in G). This provides the Turing functional Φ in Definition 3.1) for Fω.

Now suppose that we are given graphs G and G′ (or rather, their atomic diagrams) and a
morphism g : G→ G′. By the previous paragraph, Fω(G) and Fω(G′) are computable from
these. Also, Gω(Fω(g)) is computable, since by Proposition 7.4 it equals g. By Proposition 7.6,
we can compute Fω(g). �

Proposition 7.8. The composition FωGω is computably isomorphic to 1Eω .

Proof. For each F ∈ Eω, Proposition 7.4 yields Gω(Fω(Gω(F ))) = Gω(F ). Applying Propo-
sition 7.6 to the equality in each direction yields an isomorphism Fω(Gω(F ))→ F and its
inverse, and shows that they are computable from F . Moreover, the construction is functorial
in F . �

Proof of Theorem 1.2. Combine Propositions 7.7, 7.5, 7.4, and 7.8. �

Proof of Proposition 1.5.
(a) Theorem 1.2(b) shows that Fω : Fieldsω → Graphsω is fully faithful; from this, the

result follows formally.
(b) By Corollary 1.3, there exists G ∈ I with G ≤T F .

First suppose that G is automorphically trivial. Then so is every other G′ ∈ I . For
any automorphically trivial G′, the presence of {i, j} as an edge in G′ is determined by
the answers to the questions of the form “Is i = m?” or “Is j = m?” for m in some finite
set, so G′ is computable.

Now suppose instead that G is not automorphically trivial. Trivially, SpecG contains
degG. A theorem of Knight, namely [Kni86, Theorem 4.1], states that if a structure is
not automorphically trivial, then its spectrum is upwards closed. Thus SpecG contains
degF too. In other words, there exists G′ ∈ I with degG′ = degF . �

8. Ordered fields

Proposition 8.1. For each G ∈ Graphsω, the field Fω(G) is isomorphic to a subfield of R.
Moreover, the field homomorphism Fω(G) ↪→ R may be chosen so that the induced ordering
on Fω(G) is computable from G.

Proof. Given a subfield k ⊆ R, an integral curve Z over k, and a point z ∈ Z(R) having at
least one coordinate transcendental over k, we obtain a k-embedding k(Z) ↪→ R by sending
f to f(z). We will use this observation inductively to show that all the fields Ki and Fi in
Section 5 embed into R.

First, K0 := Q is a subfield of R. By the Lindemann–Weierstrass theorem, the numbers
ei := exp(21/i) for i ∈ {2, 3, . . .} are algebraically independent over Q. By Lemma 4.1(6), X
has a real point with u-coordinate 10e2j+2; choose the one with least v-coordinate. This lets
us inductively extend Kj−1 ↪→ R to Kj = Kj−1(X) ↪→ R so that uj maps to 10e2j+2. Taking
the union embeds F0 = K in R. For the kth pair i > j, we have uiuj, ui + uj ∈ [20,∞) and
e2k+3 ∈ [1, 2], so by Lemma 4.1(8), the curve Z{i,j} has a real point with x-coordinate e2k+3;
choose the one with least y-coordinate. Thus for each k ≥ 1 we may extend the embedding
Fk−1 ↪→ R to Fk ↪→ R. Taking the union yields an embedding Fω(G) ↪→ R.
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Given two distinct elements of Fω(G), expressed in terms of the generators of Fω(G), we
may compute them numerically until we determine which is greater. �

Unfortunately, Proposition 8.1 implies neither that Fω is a functor to the category of
ordered fields (with order-preserving field homomorphisms), nor that our completeness results
hold for ordered fields. The problem is that isomorphisms in the category of ordered fields
are much more restricted than isomorphisms in the category of fields. In fact, we have the
following.

Proposition 8.2. There is no faithful functor from Graphsω to the category of ordered
fields, or even to the category of ordered sets.

Proof. Every (order-preserving) automorphism of a finite totally ordered set is trivial. There-
fore every finite-order automorphism of a totally ordered set acts trivially on every orbit, and
hence is trivial. On the other hand, there exist countable graphs with nontrivial finite-order
automorphisms. �

9. Consequences in computable model theory

Many of the results below rely on [HKSS02, Theorem 3.1], which shows that for every
countable structure A that is not automorphically trivial, there exists a graph G ∈ Graphsω
with the same spectrum and the same d-computable dimension for each Turing degree d,
and with the property that for every relation R on A, there exists a relation on G with the
same degree spectrum as R on A.

9.A. Turing degree spectrum. Recall from Section 2.D the definition of the spectrum:

SpecM := {degN : N 'M and dom(N) = ω}.

Proposition 9.1.
(a) If G ∈ Graphsω, then G ≡T Fω(G).
(b) If g : G→ G′ is a morphism between computable graphs in Graphsω, then g ≡T Fω(g).

Proof. Theorem 1.2 showed that Fω and Gω are computable functors. �

Theorem 9.2. Let G ∈ Graphsω.
(a) If G is automorphically trivial, then SpecG = {0}, and Spec Fω(G) contains all Turing

degrees.
(b) If G is not automorphically trivial, then SpecG = Spec Fω(G).

Proof.
(a) Every automorphically trivial graph is computable, so SpecG = {0}. The field Fω(G)

is computable but not automorphically trivial; Knight’s theorem [Kni86, Theorem 4.1]
applied to Fω(G) yields the result.

(b) Applying Proposition 9.1(a) to every G′ isomorphic to G yields SpecG ⊆ Spec Fω(G).
On the other hand, since G is not automorphically trivial, Proposition 1.5(b) yields
Spec Fω(G) ⊆ SpecG. �

Corollary 9.3. For every countable structure A that is not automorphically trivial, there
exists F ∈ Fieldsω with SpecF = SpecA.
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Proof. Since A is not automorphically trivial, [HKSS02, Theorem 3.1] yields some G ∈
Graphsω such that SpecG = SpecA 6= {0}. By Knight’s theorem, G is not automorphically
trivial, so Theorem 9.2 shows SpecG = Spec Fω(G). Let F := Fω(G). �

9.B. Computable categoricity. Let A be a computable structure, let d be a Turing degree,
and let α be a computable ordinal. If B is any structure on ω, let B(α) denote the α-jump of
the atomic diagram of B. Let Isomd(A) be the set of d-computable isomorphism classes in the
set of computable structures isomorphic to A; then the cardinal # Isomd(A) ∈ {1, 2, . . . ,ℵ0}
is called the d-computable dimension of A [HKSS02, Definition 1.2]. The categoricity spectrum
of A is the set of Turing degrees d such that the d-computable dimension of A is 1. Finally,
A is relatively computably categorical if every structure B ∼= A with domain ω is B-computably
isomorphic to A, and relatively ∆0

α-categorical if every structure B ∼= A with domain ω is
B(α)-computably isomorphic to A.

Theorem 9.4. For every computable structure A, there exists a computable field F such that
(i) for each Turing degree d, the field F has the same d-computable dimension as A;
(ii) F has the same categoricity spectrum as A; and
(iii) for every computable ordinal α, the field F is relatively ∆0

α-categorical if and only if A
is.

Proof. First suppose that A is automorphically trivial. Let F = Q. Then A has d-computable
dimension 1 for every d, and A is relatively ∆0

α-categorical for all α, and the field Q has the
same properties.

From now on, suppose that A is not automorphically trivial. Use [HKSS02, Theorem 3.1]
to replace A by a computable graph G on domain ω, and let F = Fω(G).

(i) The functors Fω and Gω are computable (Theorem 1.2), so they map computable objects
of Graphsω to computable objects of Eω and vice versa, and they respect isomorphism and
d-computable isomorphism of such objects (it will be OK to work in Eω instead of Fieldsω
since all fields in Fieldsω isomorphic to F are in Eω). Thus they induce maps between the
sets Isomd(G) and Isomd(F ). The composition of these maps in either order is the identity
since Gω(Fω(G′)) is computably isomorphic (in fact, equal) to G′ for every G′ ∈ Graphsω
and Fω(Gω(F ′)) is computably isomorphic to F ′ for every F ′ ∈ Eω (Theorem 1.2(b)). Thus
# Isomd(G) = # Isomd(F ).

(ii) This follows from (i), since the categoricity spectrum is defined as the set of d such
that the d-computable dimension equals 1.

(iii) Fix α. If G is not relatively ∆0
α-categorical, then some graph G′ violates the condition

in the definition above, and Fω(G) and Fω(G′) violate the same condition, so Fω(G) is
not relatively ∆0

α-categorical either. On the other hand, if it holds of G, then it holds
immediately of Fω(G) and every other field Fω(G′) with G′ ' G. But for a field F ' Fω(G),
Corollary 1.3 shows that there exists an F -computable isomorphism f : F → Fω(H) for
some graph H that is isomorphic to G and Turing-computable from F . Therefore, there
is a (degH)(α)-computable (hence (degF )(α)-computable) isomorphism g from H onto G,
whose image Fω(g) is a (degF )(α)-computable isomorphism from Fω(H) onto Fω(G). So the
composition Fω(g) ◦ f is a (degF )(α)-computable isomorphism from F onto Fω(G), proving
that Fω(G) is also relatively ∆0

α-categorical. �

Corollary 9.5. Fields realize all computable dimensions ≤ ω.
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Proof. Theorems of Goncharov [Gon77,Gon80] and others have shown long since that com-
putable structures (in fact, graphs) can have every computable dimension from 1 up to ℵ0.
(See [AK00, §12.6] for a summary of these results using the terminology of this article.)
Theorem 9.4 allows us to carry this over to fields. �

The basic definition of computable categoricity of a computable structure A shows com-
putable categoricity to be a Π1

1 property: it is defined by a statement using a universal
quantifier over sets of natural numbers. One can view it as saying that, for all subsets f
of ω2 and all e ∈ ω, either the eth computable function ϕe fails to define a computable
structure, or the function (if any) defined on ω by f fails to be an isomorphism from A
onto the structure defined by ϕe, or else there exists a Turing program which computes
an isomorphism from that structure onto A. All quantifiers over natural numbers can be
absorbed into the universal quantifier over sets, so we view this formula as universal over
sets, i.e., Π1

1, with the superscript 1 signifying quantification over sets.
Sometimes a Π1

1 property is expressible also by a simpler formula. In [DKL+15, Theorem 1],
however, Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky give a proof that computable
categoricity for trees is Π1

1-complete. Theorem 1.2 allows us to transfer this result to fields.

Theorem 9.6. The property of computable categoricity for computable fields is Π1
1-complete.

That is,

{e ∈ ω : ϕe computes the atomic diagram of a computably categorical field}

is a Π1
1 set, and every Π1

1 set is 1-reducible to this set.
In contrast, the property of computable catgeoricity for algebraic fields is just Π0

4-complete
(see [HKMS15, Theorem 5.4]). For fields of infinite transcendence degree, it was shown only
recently, in [MS13, Theorem 3.4], that they could be computably categorical at all, and
it was not known whether they could be computably categorical without being relatively
computably categorical, which is a Σ0

3 property. So Theorem 9.6 represents a significant step
forward.

Proof. Theorem 3.1 of [HKSS02] enables us to build a computable graph corresponding to
an arbitrary computable tree, effectively in the index of the tree, and then Theorem 1.2
builds a computable field that is computably categorical if and only if the graph (and hence
the original tree) was. Thus we have a 1-reduction from a Π1

1-complete set (the indices of
computably categorical trees) to the set of indices of computably categorical fields. �

9.C. Degree spectrum. The degree spectrum DgSpA(R) of a relation R on a computable
structure A is the set of all Turing degrees of images of R under isomorphisms f from A
onto computable structures B. (Understand that here the relation R is generally not in the
language; if it were, then this image would always be computable, just by the definition of
a computable structure. The relation R may be definable in the language of the structure,
however, in which case its definition places an upper bound on the complexity of these images.)
If f is computable, then f(R) is Turing-equivalent to R itself; thus it is the noncomputable
f that give this definition its teeth. Here we show that all degree spectra of relations on
automorphically nontrivial computable structures can be realized as degree spectra of relations
on fields:
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Theorem 9.7. Let A be any computable structure that is not automorphically trivial, and
let R be an n-ary relation on A. Then there exists a field F and an n-ary relation S on F
such that

DgSpA(R) = DgSpF (S).

Proof. As usual, we appeal to [HKSS02, Theorem 3.1] to assume that A is in fact a graph,
hereafter named G. For this proof, Theorem 1.2 is not quite enough; to transfer relations we
need also Lemma 7.1, about the map µ : G→ Fω(G) and its inverse. Let F = Fω(G), and
let S = µ(R) ⊆ F n (apply µ coordinate-wise).

Suppose that g : G → G′ is an isomorphism of computable graphs in Graphsω. In the
diagram of sets

G

g

��

µ // Fω(G)

Fω(g)

��
G′

µ // Fω(G′),

R and S map downwards to relations R′ on G′ and S ′ on Fω(G′), and DgSpG(R) consists of
the degrees degR′ arising in this way from all possible g. By functoriality of µ, the diagram
commutes, so the bottom horizontal µ maps R′ to S ′. Since µ and µ−1 are computable,
R′ ≡T S ′. Thus degR′ = degS ′ ∈ DgSpF (S). Hence DgSpG(R) ⊆ DgSpF (S).

Now suppose that f : F → F ′ is an isomorphism of computable fields in Fieldsω; it maps S
to some S ′; then DgSpF (S) consists of the degrees degS ′ arising in this way. By Corollary 1.4,
there is a computable graph G′ ' G and a computable isomorphism i : F ′ → Fω(G′).
Composing f with a computable isomorphism does not change the resulting Turing degree
degS ′, so we may assume that F ′ equals Fω(G′). Since Fω is fully faithful, f is Fω(g) for
some isomorphism g : G→ G′. This g maps R to some R′, and the previous paragraph shows
that degS ′ = degR′ ∈ DgSpG(R). Hence DgSpF (S) ⊆ DgSpG(R). �

Remark 9.8. It is not true that for every automorphically nontrivial computable structure
A, there exists a computable field F of characteristic 0 such that for every relation S on F ,
there exists a relation R on A with the same degree spectrum. For example, suppose that A
is the random graph or the countable dense linear order; then the degree spectrum of every
relation on A either is {0} or is upwards-closed under ≤T ; see [HM07, Corollary 2.11 and
Proposition 3.6]. On the other hand, in every computable field F of characteristic 0, one can
effectively locate each positive integer n (meaning the sum 1 + · · ·+ 1 of the multiplicative
identity with itself n times — not the element n of the domain ω), and therefore the unary
relation S consisting of those n that lie in the Halting Problem will have degree spectrum
exactly {0′}.

The restriction to automorphically nontrivial structures A in Theorem 9.7 can be bypassed
for unary relations, since on an automorphically trivial computable structure A, each unary
relation has degree spectrum either {0} (if the relation is either finite or cofinite) or else the
set of all Turing degrees. Both of these can easily be realized as spectra of unary relations on
fields. We leave the analysis of n-ary relations on such structures for another time.

Functoriality also allows one to show that a relation R on a countable graph G is relatively
intrinsically Σ0

α if and only if its image h(R) (defined exactly as in the proof of Theorem 9.7)
is relatively intrinsically Σ0

α on the field Fω(G); and similarly for relations that are relatively
17



intrinsically Π0
α, Σ1

m, etc. Likewise, every definable relation on G is mapped to a definable
relation on Fω(G): this is immediate if one views our construction as a bi-interpretation
between the graph and the field.

9.D. Automorphism spectrum. In [HMM10, Definition 1.1], Harizanov, Miller, and Mo-
rozov defined the automorphism spectrum of a computable structure to be the set of all Turing
degrees of nontrivial automorphisms of the structure. They used [HKSS02, Theorem 3.1] to
show that every automorphism spectrum is the automorphism spectrum of a computable
graph. This sets up another application of Theorem 1.2.

Theorem 9.9. For every computable structure A, there is a computable field F with the
same automorphism spectrum as A.

Proof. The theorem follows from the full faithfulness of Fω, along with its preservation of
Turing degrees of automorphisms (Proposition 9.1(b)). �

Appendix A. Algebraic geometry facts

Lemma A.1. If V and W are varieties over a field k, and W is integral, then V (k(W )) is
in bijection with the set of rational maps W 99K V .

Proof. The description of a point in V (k(W )) involves only finitely many elements of k(W ),
and there is a dense open subvariety U ⊆ W on which they are all regular. �

Lemma A.2. Let k be a field of characteristic 0. Let C and D be geometrically integral
curves over k such that gC = gD > 1. Every nonconstant rational map C 99K D is birational.

Proof. This is a well known consequence of Hurwitz’s formula. �

Lemma A.3. Let V1, . . . , Vn be geometrically integral varieties over a field k of characteris-
tic 0. Let C be a geometrically integral curve over k such that gC > 1. Then each rational
map V1 × · · · × Vn 99K C factors through the projection V1 × · · · × Vn → Vi for at least one i.

Proof. By induction, we may assume that n = 2. We may assume that k is algebraically
closed. A rational map φ : V1 × V2 99K C may be viewed as an algebraic family of rational
maps V1 99K C parametrized by (an open subvariety of) V2. By the de Franchis–Severi
theorem [Lan60, pp. 29–30] there are only finitely many nonconstant rational maps V1 99K C,
so they do not vary in algebraic families. Thus either the rational maps in the family are all
the same, in which case φ factors through the first projection, or each rational map in the
family is constant, in which case φ factors through the second projection. �

Remark A.4. Lemma A.3 holds even if char k = p. This can be deduced from the charac-
teristic p analogue of the de Franchis–Severi theorem [Sam66, Théorème 2]: even though
the set of nonconstant rational maps V1 99K C can now be infinite (because of Frobenius
morphisms), they still do not vary in algebraic families.
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