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Abstra
tWe prove that no 
omputable tree of in�nite height is 
omputably
ategori
al, and indeed that all su
h trees have 
omputable dimension!. Moreover, this dimension is e�e
tively !, in the sense that givenany e�e
tive listing of 
omputable presentations of the same tree, we
an e�e
tively �nd another 
omputable presentation of it whi
h is not
omputably isomorphi
 to any of the presentations on the list.1 Introdu
tionIn a �nite language, a 
ountable stru
ture A whose universe A is a subset of! is 
omputable if A is a 
omputable set and for all fun
tions f and relationsR in the language, fA is a 
omputable fun
tion and RA is a 
omputablerelation.Any 
omputable stru
ture will be isomorphi
 to in�nitely many other
omputable stru
tures. It may happen, however, that two 
omputable stru
-tures are isomorphi
, yet that the only isomorphisms between them are non-
omputable (as maps from one domain to the other). If so, then these stru
-tures lie in distin
t 
omputable isomorphism 
lasses of the isomorphism typeof the stru
ture. On the other hand, if there exists a 
omputable fun
tiontaking one stru
ture isomorphi
ally to the other, then the two stru
tures liein the same 
omputable isomorphism 
lass.The 
omputable dimension of a 
omputable stru
ture is the number of
omputable isomorphism 
lasses of that stru
ture. The most 
ommon 
om-putable dimensions are 1 and !, but for ea
h n 2 !, there do exist stru
tureswith 
omputable dimension n, by a result of Gon
harov ([8℄). If the 
om-putable dimension of A is 1, we say that A is 
omputably 
ategori
al. Thisnotion is somewhat analogous to the 
on
ept of 
ategori
ity in ordinary modeltheory: a theory is 
ategori
al in a given power � if all models of the theoryof power � are isomorphi
. Computable 
ategori
ity is a property of stru
-tures, not of theories: a 
omputable stru
ture A is 
omputably 
ategori
alif every other 
omputable stru
ture whi
h is isomorphi
 to A is 
omputablyisomorphi
 to A.A standard example of a 
ategori
al theory is the theory of dense lin-ear orders without end points, whi
h is 
ategori
al in power !. One provesthis by taking two arbitrary 
ountable dense linear orders and building anisomorphism between them by a ba
k-and-forth 
onstru
tion. The same 
on-2



stru
tion allows us to prove that the stru
ture Q is 
omputably 
ategori
al.(More formally, let (!;�) be a 
omputable linear order isomorphi
 to (Q; <).Then (!;�) is 
omputably 
ategori
al.)Chara
terizations of 
omputable 
ategori
ity have been found for 
ertaintypes of stru
tures. Gon
harov and Dzgoev ([9℄) and Remmel ([15℄) provedthat a linear order is 
omputably 
ategori
al pre
isely if it 
ontains �nitelymany su

essivities (that is, if only �nitely many elements have an immediatesu

essor in the linear order). Remmel also proved that a Boolean algebrais 
omputably 
ategori
al if and only if it 
ontains only �nitely many atoms([16℄).In the present paper we 
onsider 
omputable 
ategori
ity of trees, andprove that no tree of in�nite height is 
omputably 
ategori
al. The questionof 
omputable 
ategori
ity of trees of �nite height is the subje
t of joint workby Lempp, M
Coy, Solomon, and the author, and will appear separately.To prove that a tree T is not 
omputably 
ategori
al, we will 
onstru
t anew tree T 0 isomorphi
 to T , satisfying the following requirements Re:Re : 'e total =) there exists x 2 T 0 su
h that levelT 0(x) 6= levelT ('e(x)).Clearly Re implies that 'e is not an isomorphism from T 0 to T . If we 
anestablish Re for every e, then, we will have proven that T is not 
omputably
ategori
al.Our notation is standard, but our de�nitions demand attention. A tree
onsists of a universe T with a stri
t partial order � on T su
h that forevery x 2 T , the set of prede
essors of x in T is well-ordered by �, and su
hthat T 
ontains a least element under �. (Hen
e the tree is 
omputable ifT is a 
omputable set and � a 
omputable relation.) In this paper, T willrepresent the 
omputable tree whi
h we wish to prove not to be 
omputably
ategori
al.If two nodes x and y in T are in
omparable under �, then we write x ? y.For ea
h node x 2 T , we de�ne the level of x in T to be the order type of theset of prede
essors of x in T . We view our trees as growing upwards, with asingle element r (the root, or least element under �) at the base. Thus thelevel of the root is 0, its immediate su

essors under � are at level 1, and soon. The height of T is de�ned as follows:ht(T ) = supx2T (levelT (x) + 1):Thus, the height of T will be the least ordinal � su
h that no node of T haslevel �. In this paper we only 
onsider trees of in�nite height. The level of3



a node of T is generally not a 
omputable fun
tion on T . (For 
omputabletrees of height � ! + 1, though, it is a �1 fun
tion, sin
e there exists a
omputable fun
tion f(x; s) = jfy < s : y � xgj su
h that for all x 2 T ,levelT (x) = lims f(x; s):)The reader should note that di�erent de�nitions of subtree and tree ho-momorphism have been used for di�erent purposes in the literature. In thispaper a homomorphism from one tree (T;�) to another tree (T 0;�0) will bea map f : T ! T 0 whi
h respe
ts the partial orders:x � y () f(x) �0 f(y):(An embedding is a one-to-one homomorphism.) In other papers, a tree issometimes de�ned using the in�mum fun
tion ^, where the in�mum x ^ yof x and y is the greatest z su
h that z � x and z � y. Any tree underone de�nition is also a tree under the other de�nition, but when the in�mumfun
tion is used, all homomorphisms are required to respe
t the in�mumfun
tion. This is a stri
tly stronger requirement: all maps respe
ting ^respe
t �, be
ause x � y () x ^ y = x;but not 
onversely. Kruskal's Theorem, whi
h we use in se
tion 2, proves theexisten
e of the stronger type of embedding.If the in�mum fu
tion is 
omputable, then the relation � is 
omputable,sin
e it is de�nable in terms of ^ without quanti�ers. Therefore, if the
omputable trees (T;�) and (T 0;�0) are isomorphi
 but not 
omputablyisomorphi
, then the 
orresponding stru
tures (T;^) and (T 0;^0) are alsoisomorphi
, but not 
omputably isomorphi
. (Noti
e, however, that (T;^)and (T 0;^0) need not be 
omputable, sin
e 
omputability of � does notguarantee that we 
an 
ompute the in�mum fun
tion.) When we build T 0,we will ensure that not only �0 but also ^0 are 
omputable. Thus, ourtheorem suÆ
es to prove that even when tree is de�ned using the in�mum,no tree of in�nite height is 
omputably 
ategori
al. The de�nitions of treeand tree homomorphism using the in�mum are probably more 
ommon inthe literature. We adopt the de�nitions using � be
ause for the purposes ofour proof, they will be far more useful.Our de�nition of subtree arises from our de�nition of homomorphism.On
e again, therefore, it diverges from mu
h of the literature: for our pur-poses, a tree (T 0;�0) is a subtree of (T;�) if T 0 � T and the in
lusion map4



respe
ts the partial orders. Thus the in�mum of two elements in T may notbe the same as their in�mum in T 0. Also, the root of T may be distin
tfrom the root of T 0, as in the 
ase of the subtrees T [x℄, whi
h we will be
onsidering frequently. If x is a node in T , then the subtree T [x℄ is just thetree T [x℄ = fy 2 T : x � yg:The partial order on T [x℄ is the restri
tion to T [x℄ of the partial order � onT . Therefore T [x℄ is a subtree of T with root x. We de�ne the height of Tabove x by: htx(T ) = ht(T [x℄):The reason for our use of � rather than ^ to de�ne homomorphism andsubtree is twofold. First,� is the basi
 relation we used to de�ne the notion ofa tree; ^ was derived from�. If ^ were the basi
 fun
tion, then 
omputabilityquestions would be very di�erent. Se
ond, during our proofs about a treeT we will be 
onsidering many subsets of T whi
h we will want to regardas subtrees. Under our de�nition, they will be subtrees (as will any subsetof T with a �-least element), but under the ^-de�nition some would not besubtrees.A path 
 through T is a maximal linearly ordered subset of T . It maybe �nite or in�nite. Any tree 
ontaining an in�nite path must have in�niteheight. A node is extendible if it lies on an in�nite path through T , andnon-extendible otherwise. The extendible nodes of a tree T (if any exist)form a subtree of T , whi
h we denote by Text. Noti
e, however, that sin
ewe allow T to be in�nite-bran
hing, the height of T above a node may be !even if the node is nonextendible.
5



2 Kruskal's TheoremAlthough our results 
on
ern in�nite trees, we will need the ability to ma-nipulate �nite subtrees. For this purpose Kruskal's Theorem is essential. Allembeddings mentioned in this se
tion are homomorphisms with respe
t toboth � and ^.Theorem 2.1 (Kruskal's Theorem) (See [12℄, [17℄.) Let fTi : i 2 !g bean in�nite 
olle
tion of �nite trees. Then there exist i < j in ! su
h that Ti
an be embedded in Tj.Every version of Kruskal's Theorem whi
h we will en
ounter has an ana-logue of the following 
orollary:Corollary 2.2 Let fTi : i 2 !g be an in�nite 
olle
tion of �nite trees. Thenthere exists n 2 ! su
h that for every i > n, Ti 
an be embedded in some Tjwith j > i, and some Tk with k < i 
an be embedded in Ti.Proof. If the set fi 2 ! : (8j > i) Ti does not embed in Tjgwere in�nite, it would itself 
ontradi
t Kruskal's Theorem. The same is trueof fi 2 ! : (8k < i) Tk does not embed in Tig:We 
an extend Kruskal's Theorem to a version dealing with in�nite trees.Corollary 2.3 Let fTi : i 2 !g be an in�nite 
olle
tion of trees. (Thesetrees need not be �nite, nor even �nitely bran
hing.) Then there exists ani 2 ! su
h that for every �nite subtree T � Ti, there exists j > i for whi
hT embeds in Tj.Proof. Suppose fTi : i 2 !g were a 
olle
tion of trees 
ontradi
ting this
orollary. Then for ea
h i, we would have some �nite subtree Si � Ti whi
hdid not embed into any Tj with j > i. In parti
ular, for ea
h i < j, Si wouldnot embed in Sj. Thus the 
olle
tion fSi : i 2 !g would 
ontradi
t Kruskal'sTheorem. 6



Corollary 2.4 Let fTi : i 2 !g be as in Corollary 2.3. Then there is ann 2 ! su
h that for every i > n and every �nite subtree T � Ti, there existsj > i su
h that T embeds into Tj.Proof. If not, then we 
ould �nd an in
reasing sequen
e i0 < i1 < i2 < � � �su
h that fTik : k 2 !g 
ontradi
ted Corollary 2.3.In this paper we will want to embed trees in su
h a way that nodes withp prede
essors are mapped to nodes with more than p prede
essors. That is,the level in the tree T of the node x should be less than the level in T 0 of itsimage under the embedding of T into T 0. To map nodes to other nodes atgreater levels, we need the following stronger version of Kruskal's Theorem,in whi
h one is allowed to \label" nodes of ea
h tree. For our purposes, alabelling of a tree T is simply a map from T to !. Proofs of this result appearin [12℄ and [17℄.Theorem 2.5 (Kruskal) Let fTi : i 2 !g be an in�nite 
olle
tion of �nitetrees, ea
h with a labelling li. Then there exist i < j in ! and an embeddingf : Ti ! Tj su
h that for every x 2 Ti, li(x) � lj(f(x)).From Theorem 2.5 we derive the following result:Corollary 2.6 Let fTi : i 2 !g be an in�nite 
olle
tion of �nite trees su
hthat supi ht(Ti) = !. Then there is a number m 2 ! su
h that for everyindex i and every node x 2 Ti with levelTi(x) = m, there exists an embeddingf of Ti into some Tj with j > i, su
h thatlevelTj(f(x)) > levelTi(x):Proof. Suppose no m 2 ! satis�ed the theorem. Then for everym, we wouldhave an index im and a node xm 2 T(im) with levelT(im)(xm) = m su
h that:8 embeddings f : T(im) ! Tj with j > im; levelTj(f(xm)) = levelT(im)(xm):(1)Now the set fi0; i1; i2 : : :g will be in�nite, sin
e ea
h Ti has �nite height.Moreover, the index im satis�es Equation 1 not only for xm but also for allprede
essors of xm. Therefore we 
an 
hoose im+1 > im for all m.For ea
h m, de�ne the labelling lm on the tree T(im) bylm(x) = � 0; if levelTim (x) < m1; otherwise7



Thus lm(xm) = 1 for all m. However, for any embedding f : T(im) ! T(ik)with k > m, we havelevelTik (f(xm)) = levelT(im)(xm) = m < k:This for
es lk(f(xm)) = 0. Thus the sequen
e fTi0; Ti1; Ti2; : : :g 
ontradi
tsTheorem 2.5.The same result holds for all y above the level m:Corollary 2.7 Let fTi : i 2 !g be as in Corollary 2.6. Then there is anumber m 2 ! su
h that for every index i and every node y 2 Ti withlevelTi(y) � m, there exists an embedding f of Ti into some Tj with j > i,su
h that levelTj(f(y)) > levelTi(y):Proof. The 
on
lusion follows for every y 2 Ti with levelTi(y) � m, simplyby �nding that x � y in Ti with levelTi(x) = m and applying the embeddinggiven by Corollary 2.6 for that x.Finally, we 
ombine the version for in�nite trees with the version forembedding nodes at greater levels.Corollary 2.8 Let fTi : i 2 !g be any 
olle
tion of trees. Then there existan n and an m with the property that for all indi
es i > n, for every �nitesubtree S � Ti, and for any node x 2 S with levelS(x) � m, there is anembedding g : S ! Tj of S into some Tj with j > i, su
h thatlevelTj(g(x)) > levelS(x):Proof. Suppose the statement were false. Now if g is an embedding of S intoTj, it is impossible to have levelTj(g(x)) < levelS(x). Therefore, the negationof the statement is as follows:(8n)(8m)(9i > n)(9 �nite S � Ti)(9x 2 S)� levelS(x) � m &(8j > i)(8 embeddings g : S ! Tj)[levelTj(g(x)) = levelS(x)℄ �We apply this negation �rst with n = 0 and m = 0, yielding an indexi0 > 0 and a node x0 at level� 0 in some �nite subtree S0 of Ti0. Indu
tively,8



we apply the negation with n = ik and m = k + 1 to get an index ik+1 > ikand a 
orresponding node xk+1 at level � k + 1 of a �nite subtree Sk+1 ofTi(k+1). From the negation, we see that every embedding of any Sk into anyTj with j > ik �xes the level of xk. In parti
ular, the same holds for anyembedding of Sk into any Sj with j > k. However, we know thatht(Sk) > levelSk (xk) � k;so supk ht(Sk) = !. Thus the set fSk : k 2 !g 
ontradi
ts Corollary 2.7.We remark that in fa
t Kruskal's Theorem proves the existen
e of anembedding of Ti into Tj whi
h respe
ts not only � but also ^. The samefollows for all our 
orollaries. Therefore, if one prefers to 
onsider 
omputabletrees under ^ rather than under �, all our results in the remainder of thepaper will go through un
hanged.Finally, for 
omputability-theoreti
 purposes, we note that if S and T are�nite trees (and we have strong indi
es for ea
h, i.e. we know the number ofnodes of ea
h), then the statement9 an embedding g : S ! Tis de
idable, uniformly in S and T . From the de
idability of this statement,we 
on
lude further that if S is �nite with known strong index and T isany 
omputable tree, then the question of embeddability of S into T is a�1 question: it asks whether there exists a �nite subtree of T into whi
h Sembeds. Therefore, if we know that there exists an embedding of S into T ,then we 
an e�e
tively �nd su
h an embedding, via an algorithm uniform inS and T .
9



3 !-Bran
hing Nodes with htx(T ) = !We �rst 
onsider 
omputable trees of height !. The general theorem thatno su
h tree is 
omputably 
ategori
al will be proven in the next se
tion. Inthis se
tion, to prepare for that proof, we prove that a signi�
ant sub
lass ofsu
h trees 
annot be 
omputably 
ategori
al.We de�ne the limit-supremum of a sequen
e hniii2! to belim supi (ni) = infj supi>j (ni)T will be a given 
omputable tree under the partial order�, with height !,whi
h is !-bran
hing at a node x0. (That is, x0 has in�nitely many immediatesu

essors x1; x2; : : :.) We assume further that lim supi ht(T [xi℄) = !. This
an o

ur two ways: either in�nitely many T [xi℄ have height !, or there existtrees T [xi℄ of arbitrarily large �nite heights.Sin
e the universe of T is 
omputable, we may take it to be !, pulling ba
kvia a 1-1 
omputable fun
tion if ne
essary to make this so. We will 
onstru
ta 
omputable tree T 0 isomorphi
 to T , su
h that there is no 
omputableisomorphism between them.The isomorphism f from T to T 0 will be a �02 fun
tion, the limit of a
omputable sequen
e of �nite partial 1-1 fun
tions fs, su
h that the domainsDs = dom(fs) � T form a strong array of �nite sets. We will ensure thatDs � Ds+1 for ea
h s, although fs+1 need not agree with fs on Ds. (Ifit did so for all s, then f would be a 
omputable isomorphism, whi
h ispre
isely what we wish to avoid!) Also, we will for
e range(f) = !, so thatthe universe of T 0 will be !. The ordering �0 on T 0 will be given by lifting theordering � from T via f , thereby guaranteeing that f is an isomorphism. Tomake �0 
omputable, we for
e the approximations fs to satisfy the following
ondition:Condition 3.1 For all a; b 2 range(fs), we have a; b 2 range(fs+1) andf�1s+1(a) � f�1s+1(b) () f�1s (a) � f�1s (b):To ensure that T and T 0 are not 
omputably isomorphi
, we impose therequirements Re.Re : 'e total =) (9x 2 T 0) [levelT 0(x) 6= levelT ('e(x))℄:This will suÆ
e to prove the proposition.10



Proposition 3.2 Let T be a 
omputable tree of height ! 
ontaining an !-bran
hing node x0 with immediate su

essors x1; x2; : : :, su
h thatlim supi ht(T [xi℄) = !:Then T is not 
omputably 
ategori
al.Proof. As previously remarked, we may assume the universe of T to be !.A su

essor tree of x0 is a tree of the form T [xi℄ with i � 1. (fx1; x2; : : :gare all the immediate su

essors of x0, as stated above. This set need not be
omputable.) Corollary 2.8, applied to the su

essor trees, provides m and nin ! su
h that for every �nite subtree S � T [xi℄ with i > n and every nodex 2 S with levelS(x) � m, there is an embedding of S into some T [xj℄ withj > i whi
h maps x to a node of greater level. We �x these values of m andn for the rest of the proof. (Noti
e that therefore the proof is not uniform inT .)Let Ts be the subtree of T with nodes fr; x0; x1; : : : xng [ f0; 1; 2; : : : sg,under �, where r is the root of T .For our purposes, the �nite subtrees S will generally be of the formDs[y℄,where Ds � Ts is the domain of fs and y is an immediate su

essor of x0in Ds (although not ne
essarily in T ). We will 
all Ds[y℄ a su

essor treeat stage s. Noti
e that it may happen that two su

essor trees whi
h aredistin
t at stage s a
quire a 
ommon root at stage s+1, e.g. if s+1 = xi forsome i, and thus merge into a single su

essor tree at stage s + 1. A givensu

essor tree at stage s, however, 
an only be merged this way �nitely often,sin
e ea
h of its nodes has �nite level in T .The following 
onstru
tion yields a 
omputable tree T 0 whi
h is isomor-phi
 to T but satis�es every requirement Re, proving that T is not 
om-putably 
ategori
al. The witness nodes we will be nodes in T [x0℄, and willbe approximated at stage s by a node we;s. The su

essor tree at stage s
ontaining we;s will be denoted Se;s. This is the su

essor tree whi
h we usein order to satisfy requirement Re. The sequen
e hwe;sis2! will 
onverge tosome we, and ea
h su

essor tree in T will 
ontain at most one we. Theisomorphism f from T to T 0 will be approximated at stage s by a �nitemap fs with domain Ds. If 'e;s(fs(we;s)) 
onverges to a node at the samelevel of Ts as the level of fs(we;s) in T 0s, then we rede�ne fs+1 and we;s+1with fs+1(we;s+1) = fs(we;s) at a higher level in T 0s+1. (The level of a nodein T 0s is just the level of its preimage under fs in Ts.) Doing this requires11



us to rede�ne fs+1 on the entire su

essor tree 
ontaining we;s, in order tosatisfy Condition 3.1, and we will appeal to Corollary 2.8 to ensure that thene
essary embedding exists. Thus f(we) will be the witness required by Re.Figure 3.3
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Figure 3.3 gives an example of our basi
 strategy. Se;s is the su

essor treewhi
h we use to satisfy Re. We suppose that we have found at stage s that'e(fs(we;s)) = 6, whi
h lies at level 2 in Ds. This is bad, be
ause fs(we;s) liesat level 2 in D0s, so it appears that 'e might be an isomorphism from T 0 toT . Se;s is the su

essor tree above the node 4 in Ds, and we use Corollary 2.8to �nd an embedding of Se;s upwards into the su

essor tree above the node10 in Ds+1. (The embedding is indi
ated by the arrow to D0s+1.) We use thisembedding to make levelD0s+1(fs+1(we;s+1)) > levelD0s(fs(we;s)), by de�ning12



fs+1 so that fs+1(9) = fs(4), fs+1(12) = fs(6), and fs+1(we;s+1) = fs(we;s).We add new values to range(fs+1) for fs+1(4), fs+1(6), fs+1(8), and fs+1(10).Thus levelDs('e(fs+1(we;s+1))) 6= levelD0s+1(fs+1(we;s+1)).Constru
tion: f0 is the identity map with dom(f0) = T0. The witnessnodes we;0 and the su

essor trees Se;0 are unde�ned for all e. We let D0 =dom(f0). (At ea
h stage s, Ds and Ts will both be subtrees of T , withTs � Ds.) We immediately de�ne the su

essor trees T0[xi℄ with 1 � i � nto be frozen.At stage s + 1, we 
onsider the su

essor trees of x0 in Ds. For ea
hsu

essor tree S (if any) of height � m whi
h is not frozen and does not
ontain Se;s for any e � s, we 
hoose the least e � s su
h that Se;s isunde�ned, let Se;s+1 = S and 
hoose we;s+1 to be the <-least node at thehighest level of S. Thus levelSe;s+1(we;s+1) � m.We then 
onsider in turn ea
h e for whi
h Se;s was de�ned.Step 1: If there is an i < e and a z 2 Ts+1 su
h that x0 � z � wi;s andz � we;s, then we immediately make Sj;s+1 and wj;s+1 unde�ned for all j � e,and de
lare all Sj;s with j > e frozen.(This step ensures that if two su

essor trees Si;s and Se;s have a
quireda 
ommon root above x0, thus be
oming the same su

essor tree, then weuse the single new su

essor tree to play against requirement Ri only.)Step 2: Otherwise, we 
onsider fs(we;s), the potential witness for require-ment Re. If 'e;s(fs(we;s)) diverges, or 
onverges to an element not in Ds, orif levelDs('e;s(fs(we;s))) 6= levelDs(we;s), then we de�ne:we;s+1 = we;sfs+1 = fs on Se;sSe;s+1 = fy 2 Ds [ Ts+1 : (y ^ we;s+1) � x0g:(Here y ^ we;s+1 represents the in�mum in Ds [ Ts+1, whi
h is a �nite tree.Taking the in�mum over all of T would not be 
omputable.)(This Se;s+1 is just the same su

essor tree as Se;s, along with any newelements that may have appeared in this su

essor tree at stage s.)Step 3: If levelDs('e;s(fs(we;s))) = levelDs(we;s), then �nd the least staget > s with Ds � Tt su
h that the following holds:Condition 3.4 There exists a z 2 Tt su
h that:1. z is an immediate su

essor of x0 in Tt, and13



2. Tt[z℄ \Ds = ;, and3. There is an embedding g of Se;s into Tt[z℄ withlevelTt(g(we;s)) > levelDs(we;s):Let Se;s+1 = S, with we;s+1 = g(we;s). (By our 
hoi
e of g, this for
eslevelTt(we;s+1) > levelDs(we;s). Also, levelSe;s+1(we;s+1) > levelSe;s(we;s) �m.) For every x 2 Se;s, de�ne fs+1(g(x)) = fs(x), and de�ne fs+1(x) to bethe least element whi
h is not yet in range(fs+1)[ range(fs). De
lare Se;s tobe frozen, so that at no subsequent stage s0 will any wi;s0 be de�ned in thesu

essor tree 
ontaining Se;s. Having exe
uted Step 3 for e, we let wj;s+1and Sj;s+1 diverge and freeze Sj;s for all j > e, and do not exe
ute Steps 1,2, or 3 for any j > e.(We exe
ute Step 3 if Re is not satis�ed by fs(we;s). By Corollary 2.8,there must exist a su

essor tree T [xj℄ into whi
h the required embeddingg exists, be
ause levelSe;s(we;s) � m and Se;s � T [xi℄ for some i > n. Thesu

essor trees T [x1℄; : : : T [xn℄ were all frozen right away at stage 0, so noneof them 
ontains Se;s. Thus we have found a z su
h that fs is 
ompletelyunde�ned on the su

essor tree S � Tt 
ontaining z, and Se;s embeds intoS via a map g. We use this embedding to satisfy Re, as in the example ofFigure 3.3. Freezing Se;s ensures that fs0 will never again be rede�ned onSe;s, so that lims0 fs0 must exist.)Having 
ompleted these three steps for ea
h Se;s, we now de�ne Ds+1to be �Se Se;s+1� [ Ds [ Ts+1. For any y 2 Ds su
h that fs+1(y) is notyet de�ned, take fs+1(y) = fs(y). (This in
ludes nodes on already-frozensu

essor trees, nodes on su

essor trees of height � m, and nodes not onT [x0℄.) For ea
h y 2 Ds+1, if fs+1(y) is not yet de�ned, take fs+1(y) to bethe least integer not already in range(fs+1) Thus Ds+1 = dom(fs+1). This
ompletes the 
onstru
tion.We now prove that this 
onstru
tion really does yield a tree T 0 whi
h isisomorphi
 to T but not 
omputably isomorphi
 to it.Lemma 3.5 For every e, the sequen
e we;s 
onverges to a limit we.Proof. Assume by indu
tion that the Lemma holds for every i < e. Noti
ethat in our 
onstru
tion, on
e we;s and Se;s are de�ned, the only way they
an be
ome unde�ned is in Step 1 (if a new node of T [x0℄ appears whi
h is aprede
essor of wi;s for some i < e) or Step 3 (if wi;s 6= wi;s+1 for some i < e).14



On
e we rea
h a stage s0 su
h that wi;s = wi for every i < e and s � s0 andevery prede
essor of every wi (i < e) has appeared in Ts0, we know that on
ewe;s is de�ned for some s � s0, it will stay de�ned at all subsequent stages,although its value may 
hange. Also, we;s is only de�ned at stages s su
hthat wi;s is also de�ned for all i < e.By indu
tion, for every i < e, hwi;sis2! 
onverges to some wi. Pi
k a stages0 su
h that wi;s = wi and levelTs(wi;s) = levelT (wi) for all i < e and s � s0.Now if s � s0 and we;s is not de�ned, then no wj;s with j > e is de�nedeither. But sin
e lim supi ht(T [xi℄) = !, there are in�nitely many su

essortrees of height > m, so a new one, S, with S \ Ds0 = ;, must appear atsome stage s > s0. It will not be frozen, sin
e wi;s = wi for all i < e, so itwill be 
hosen as Se;s, and one of its nodes of maximal height will be we;s.Then we;t is de�ned for every t > s, sin
e every prede
essor of every wi withi < e is already in Ts. Thus, by indu
tion, for every e, we;s is de�ned for allsuÆ
iently large s.On
e it is de�ned at a stage beyond s0, we;s will only be rede�ned at asubsequent stage t+1 if levelTt('e(ft(we;t))) = levelTt(we;t) and Condition 3.4holds. Moreover, even when it is rede�ned, we will still have ft+1(we;t+1) =ft(we;t). Sin
e the tree T has height !, we know that for all t,levelTt('e(ft(we;t))) � levelT ('e(ft(we;t))) < !:But hlevelTt('e(ft(we;t)))it2! is a non-de
reasing sequen
e, so it 
an only
hange value �nitely often. Thus, on
e de�ned, we;s will only be rede�ned�nitely often, so it must 
onverge.Lemma 3.6 For every x, lims fs(x) exists.Proof. We know x 2 Ts � Ds = dom(fs) for all s > x. Furthermore, on
efs(x) is de�ned, the only way we 
an have fs(x) 6= fs+1(x) is if x lies ona su

essor tree Se;s for whi
h we;s is rede�ned or unde�ned at stage s + 1.On
e this happens, Se;s is de
lared frozen, and ft� Se;s = fs+1� Se;s for allt � s + 1. Thus, not only does hfs(x)is2! 
onverge, but in fa
t it 
hangesvalue at most on
e.We de�ne the fun
tion f = lims fs.Lemma 3.7 The fun
tions fs satisfy Condition 3.1. (Hen
e the relation �0de�ned on T 0 = range(f) bya �0 b () (8s)[a; b 2 range(fs) =) f�1s (a) � f�1s (b)℄15



is 
omputable and gives a tree stru
ture on !).Proof. The 
onstru
tion makes it 
lear that range(fs) � range(fs+1) for alls. Now �x a; b 2 range(fs). If f�1s (a) 6= f�1s+1(a), then f�1s (a) must lieon a su

essor tree Se;s su
h that we;s 6= we;s+1. Hen
e fs+1(g(f�1s (a))) =fs(f�1s (a)) = a, and f�1s+1(a) = g(f�1s (a)), where g is the upward embeddingof Se;s into Se;s+1 used in the 
onstru
tion. We 
onsider four 
ases:Case 1. Suppose f�1s (b) 2 Se;s as well. Then also f�1s+1(b) = g(f�1s (b)),and sin
e g is an embedding, we havef�1s+1(a) � f�1s+1(b) () f�1s (a) � f�1s (b):Case 2. Suppose f�1s (b) 2 T [x0℄ � Se;s � fx0g. Then f�1s (b) ? f�1s (a).By Part 2 of Condition 3.4, we know f�1s+1(b) 2 T [x0℄� Se;s+1 �fx0g, so alsof�1s+1(b) ? f�1s+1(a).Case 3. Suppose f�1s (b) � x0. Then f�1s (b) � f�1s (a), and f�1s+1(b) =f�1s (b) � x0 � f�1s+1(a).Case 4. If f�1s (b) ? x0, then f�1s (b) ? f�1s (a), and also f�1s+1(b) =f�1s (b) ? x0 � f�1s+1(a), so f�1s+1(b) ? f�1s+1(a).A similar analysis applies if f�1s (a) = f�1s+1(a) and f�1s (b) 6= f�1s+1(b).Lemma 3.8 The tree (T 0;�0) is a 
omputable tree isomorphi
 to T .Proof. We de�ned every fs to be a 1-1 map, with range(fs) � range(fs+1).By Lemma 3.6, then, f is also 1-1.The range of f is ! sin
e at ea
h of the (in�nitely many) stages at whi
hwe needed a new element for the range of fs, we took the smallest one avail-able. If f�1s+1(y) 6= f�1s (y) for some s, then y = fs(x) for some x on some Se;swhi
h was rede�ned at stage s + 1, and f�1s+1(y) 2 Se;s+1. But Se;s 
an onlybe rede�ned �nitely often, sin
e levelT ('e(f(we))) < !, so eventually f�1s (y)will stabilize, for
ing y 2 range(f).Moreover, dom(f) = SsDs = T , so f is a bije
tion from T to T 0. Sin
ethe partial order �0 on T 0 is de�ned by lifting � from T via f , we knowthat f is an isomorphism. Computability of �0 follows from Lemma 3.7:given a; b 2 T 0, �nd a stage s su
h that a; b 2 range(fs). Then a �0 b ()f�1s (a) � f�1s (b).Lemma 3.9 For every e, either 'e(f(we)) diverges orlevelT 0(f(we)) 6= levelT ('e(f(we))):Thus requirement Re is satis�ed by the element f(we).16



Proof. Let s0 be a stage su
h that for all s � s0, we;s = we and fs(we;s) =f(we). Sin
e we;s is never rede�ned after stage s0, we know that either'e(f(we)) diverges, or levelDs('e(f(we))) 6= levelDs(we) for all s � s0.But sin
e SsDs = T , the latter of these implies that levelT ('e(f(we))) 6=levelT (we). Now levelT (we) = levelT 0(f(we)) sin
e f is an isomorphism, so'e maps the element f(we) of T 0 to an element at a di�erent level in T . ThusRe is satis�ed, and 'e is not an isomorphism from T 0 to T .This 
ompletes the proof of Proposition 3.2.
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4 Trees of Height !4.1 Main TheoremWe now prove the desired result for trees of height !.Theorem 4.1 No tree of height ! is 
omputably 
ategori
al.The theorem will be proved in subse
tion 4.5, after we have establishedthe ne
essary �ve propositions, 
overing �ve di�erent types of tree. We usethe notions of an extendible node and a side tree to de�ne these 
ases. Re
all(from page 5) that a node x 2 T is extendible if there exists an in�nite paththrough T 
ontaining x. The set of all extendible nodes of T , if nonempty,forms a subtree of T , denoted by Text. Text need not be 
omputable, eventhough T is.The side tree above a node x is denoted S[x℄, and is a subtree of T [x℄.S[x℄ = fy 2 T [x℄ : (8z 2 T )[x � z � y =) z =2 Text℄g(x itself may or may not be extendible.) Equivalently, 
onsider the extendibleimmediate su

essors x1; x2; : : : of x. The side tree S[x℄ is pre
isely T [x℄�Si T [xi℄. Thus x itself is the only node of S[x℄ whi
h 
an be extendible inT , and S[x℄ 
ontains no in�nite paths, although it 
an have height ! if it isin�nite-bran
hing. S[x℄ is not ne
essarily 
omputable.4.2 Three Cases Using Proposition 3.2Proposition 4.2 Let T be a 
omputable tree of height !, and suppose fur-ther that T has height ! above some nonextendible node y0. Then T is not
omputably 
ategori
al.Proof. Let T and y0 be as in the proposition. We 
laim there exists an x0 2 Twith !-many immediate su

essors, su
h that htx0(T ) = ! and T has �niteheight above every x � x0. Indeed, 
onsider the subtreeS = fx 2 T : htx(T ) = ! & x is nonextendible & x 6? y0g:S 
ontains a �-least element (either y0 or some prede
essor of y0), so S isindeed a subtree. However, S 
ontains no in�nite paths, so it must 
ontainterminal nodes, all of whi
h will lie above y0. We take x0 to be one of these.18



(x0 is terminal in S, that is; T will have height ! above x0.) Therefore,T has �nite height above every x � x0, and moreover, this x0 must bean !-bran
h point, sin
e otherwise one of its immediate su

essors in Twould also be in S. Let x1; x2; : : : be the immediate su

essors of x0 inT . Then supi ht(T [xi℄) = !, be
ause htx0(T ) = !. But ht(T [xi℄) < !for all i � 1, sin
e otherwise xi would lie in S. Therefore we must havelim supi ht(T [xi℄) = !, and so Proposition 3.2 applies to T and T is not
omputably 
ategori
al.Proposition 4.3 Suppose that the 
omputable tree T of height ! 
ontainsan extendible node x0 su
h that the side tree S[x0℄ has height !. Then T isnot 
omputably 
ategori
al.Proof. If x0 has an immediate su

essor in S[x0℄ above whi
h T has height!, then we apply Proposition 4.2 to this node. If all immediate su

essorsof x0 in S[x0℄ have �nite height, then there must be in�nitely many of them,say x1; x2; : : :. Then lim supi�1 ht(T [xi℄) = !, be
ause supi�1 ht(T [xi℄) =!. Moreover, any immediate su

essor of x0 in T either lies in S[x0℄ or isextendible. Hen
e Proposition 3.2 applies to x0 itself.Proposition 4.4 Suppose that in the 
omputable tree T of height !, thereis a node x0 2 Text with in�nitely many immediate su

essors in Text. ThenT is not 
omputably 
ategori
al.Proof. ht(T [y℄) = ! for every immediate su

essor y of x0 in Text, so Propo-sition 3.2 applies to x0.4.3 An Isolated PathProposition 4.5 Let T be a 
omputable tree of height !. Suppose there isa node x0 2 T whi
h is uniquely extendible, i.e. whi
h lies on exa
tly onein�nite path 
 through T . If all side trees at nodes on 
 above x0 have �niteheight, then T is not 
omputably 
ategori
al.Proof. Let x0 be a uniquely extendible node on an in�nite path 
 throughT , su
h that all side trees at nodes on 
 above x0 have �nite height.Let x0 � x1 � x2 � : : : be all the nodes of 
 above x0. We apply Corollary2.4 to the set of side trees S[xi℄ above nodes of 
, yielding an n su
h that forevery i � n and every �nite subtree S � S[xi℄, there is some j > i for whi
h19



S embeds into S[xj℄. Our diagonalization argument will take pla
e entirelyabove xn. (Noti
e that the sequen
e hxiii2! 
annot ne
essarily be 
omputed,and that the 
hoi
e of n from Corollary 2.4 is nonuniform.)We de�ne Ts = fr; x0; x1; : : : xng [ f0; 1; : : : sg, a tree under �. (As be-fore, r represents the root of T .) We 
omputably approximate the sequen
ehxiii2!. For ea
h s, letfxn = xn;s � xn+1;s � � � � � xls;sgbe the 
hain of maximal length in Ts[xn℄. (If there is more than one su
h
hain, take the �rst su
h in the di
tionary order derived from <.) Sin
e allside trees have �nite height, 
learly xi;s ! xi for ea
h i. Indeed, xi;s = xi forall s su
h that fxn; : : : xmg � Ts, where m = maxj<i(j + ht(S[xj℄)). (How-ever, ht(S[xj℄) need not be 
omputable in j.)The requirements Re are the same as in Proposition 3.2:Re : 'e total =) (9x 2 T 0) [levelT 0(x) 6= levelT ('e(x))℄:This time, however, we will say that Re is satis�ed at stage s only if thewitness node we;s is de�ned and 'e;s(fs(we;s)) 
onverges and lies at a level ofTs di�erent from levelTs(we;s).Instead of simply freezing nodes, as in the proof of Proposition 3.2, wemust freeze them with priority e. Thus, at ea
h stage s, we de�ne envelopesEe;s for ea
h e, to provide negative restraints on rede�ning the isomorphismf on elements of Ee;s. If x lies in the envelope Ee;s, then fs+1(x) 6= fs(x) onlyif ne
essary for the sake of a requirement Ri with i � e. Thus the envelopeswill ensure that the fun
tions fs 
onverge to a limit f with range !.Constru
tion: f0 is the identity map on T0, and the witness nodes we;0are unde�ned for all e. We de�ne Ee;0 = ; for all e.At stage s + 1, we sear
h for the least e � s + 1 su
h that one of thefollowing holds:1. we;s is unde�ned.2. For ea
h i with n � i � ls+1, the following holds:xi;s+1 � we;s =) xi;s+1 � we�1;s:3. we;s is de�ned and 'e;s(fs(we;s))# andlevelDs(we;s) = levelDs('e(fs(we;s))):20



(Su
h an e must exist, be
ause ws+1;s is unde�ned.) Let wi;s+1 = wi;s andEi;s+1 = fi 2 Ds+1 : (9z 2 Ei;s) y � zgfor all i < e, and let wj;s+1 be unde�ned and Ej;s+1 = ; for all j > e.If 
ase (1) holds for e, we let we;s+1 to be the <-least node in Ds[xn℄ withlevelDs[xn℄(we;s+1) � e whi
h does not lie in any Ei;s with i < e and su
h that(9j)[xj;s � we;s+1 & xj;s 6� we�1;s+1℄:We de�ne Ee;s+1 = Ds+1 = Ds [ Ts+1. (If no su
h node exists, then we;s+1remains unde�ned, with Ee;s+1 = ; and Ds+1 = Ds [ Ts+1.)If 
ase (2) holds, we let we;s+1 diverge with Ee;s+1 = ; and Ds+1 =Ds [ Ts+1. (This is the 
ase where we�1;s and we;s appear to lie in thesame side tree along 
, in whi
h 
ase we 
annot embed one upwards withoutdisturbing the other.)Otherwise, 
ase (3) holds. We sear
h for the least t � max(Ds) satisfyingeither of the following two 
onditions. Let mt = maxfk : xk;t � we;sg forea
h t.Condition 4.6 There exists i < e su
h that xmt;t � wi;t:Condition 4.7 There exists an embedding g of Ds[xmt;t℄ into Tt[xmt;t℄ withlevelTt(g(we;s)) > levelDs(we;s):If Condition 4.6 holds for t, then we make we;s+1 unde�ned, and setEe;s+1 = ; and Ds+1 = Ds [ Ts+1.Otherwise, we use the embedding g given by Condition 4.7 to satisfyrequirement Re. Let we;s+1 = g(we;s), and for all y 2 Ds[xmt;t℄, de�nefs+1(g(y)) = fs(y). For those y 2 Ds[xmt;t℄ � range(g), take fs+1(y) tobe the least element of ! that is not yet in range(fs+1) nor in range(fs). LetDs+1 = Ds [ Tt, and let the envelope Ee;s+1 = Ds+1.(For the sake of 
larity, we note that if xmt;t does not lie in Ds, thenDs[xmt;t℄ = fy 2 Ds : xmt;t � yg:We do have we;s 2 Ds[xmt;t℄ by de�nition of mt. If Ds[xmt;t℄ does not have asingle root, then we 
onsider ea
h minimal element in it to have level 0.)21



In all three 
ases, we then de�ne fs+1(y) = fs(y) for those y 2 Ds onwhi
h fs+1 is not yet de�ned. Also, for ea
h y 2 Ds+1 �Ds on whi
h fs+1 isnot yet de�ned, 
hoose the least element of ! whi
h is not yet in range(fs+1)to be fs+1(y). This 
ompletes the 
onstru
tion.(The idea of the 
onstru
tion is that ea
h witness element we;s lies in theside tree above some xi. When we need to satisfy Re, we do so by embeddingthe side tree 
ontaining we;s into another side tree at a higher level. We de�nefs+1 so that fs+1(we;s+1) = fs(we;s). Sin
e levelT ('e(fs(we;s))) is �nite, wewill only have to repeat this pro
ess �nitely often before rea
hing a stage ssu
h that fs(we;s) will satisfy Re permanently.)We �rst must prove that at ea
h stage s at whi
h we sear
h for a t, weeventually �nd one. This requires a lemma guaranteeing our ability to embedtrees upwards in T [xn℄.Lemma 4.8 For every xi � xn and every t, there is an embedding g of thetree Tt[xi℄ into T [xi+1℄.Proof. By the 
hoi
e of n and Corollary 2.4, we know that every �nite subtreeof every S[xj℄ with j � n embeds into some S[xk℄ with k > j. By indu
tion,then, every �nite subtree of every su
h S[xj℄ embeds into in�nitely manyS[xk℄ with k > j. Sin
e there are only �nitely many side trees S[xj0℄; : : : S[xjn℄whi
h interse
t the �nite tree Tt, we 
an embed S[xj0℄ \ Tt into some S[xk0℄,then embed S[xj1℄ \ Tt into some S[xk1℄ with k1 > k0, and so on. The unionof these embeddings is the desired embedding g.Lemma 4.9 Fix any stage s, and take the 
orresponding e 
hosen in the
onstru
tion. Then there exists a t for whi
h Condition 4.7 holds.Proof. Sin
e ea
h sequen
e hxi;tit2! 
onverges to xi, we know that mt 
on-verges to a limit m as t ! 1. Thus we;s 2 S[xm℄, and m � n. Moreover,there exists t su
h that Ds � Tt. By Lemma 4.8, there is an embeddingg : Tt[xm℄! T [xm+1℄, and thenlevelDs(we;s) � levelTt(we;s) < levelT (g(we;s))sin
e levelTt(x) < levelT (g(x)) for every x 2 Tt[xm℄.Lemma 4.10 For every e, the sequen
e hwe;sis2! 
onverges to a limit we,the sequen
e hfs(we)is2! 
onverges to a limit f(we), and either 'e(f(we)) "or levelT ('e(f(we))) 6= levelT (we). (Sin
e levelT (we) = levelT 0(f(we)), thissatis�es Re.) 22



Proof. Assume by indu
tion that there exists a stage s0 su
h that for alls � s0 and all i < e, the hypotheses of the theorem hold: wi;s = wi, fs(wi) =f(wi), and either 'i(f(wi))" or Ri is satis�ed by f(wi) at stage s. Moreover,assume xk;s = xk for every k � j + 1 and every s � s0, where j is maximalwith xj � we�1, Then ms � j+1 for every s � s0, so xms;s 6� wi for all i < eand s � s0. If we;s0 is unde�ned, then at the �rst stage s after s0 at whi
hht(Ds) > ht(Ee�1;s)+levelT (xn), we;s will be de�ned. Moreover, it will neveragain be
ome unde�ned, sin
e Condition 4.6 will never again be satis�ed and
ase (2) will never apply.Now if there is no stage s � s0 su
h that 'e;s(we;s)# andlevelDs(we;s) = levelDs('e;s(fs(we;s)));then neither we;s nor fs(we;s) will ever be rede�ned after s0. Then Re willbe satis�ed by we = lims we;s, be
ause levelT ('e(fs(we;s))) is �nite. Thus thelemma will be satis�ed for e.If there are stages s � s0 where 'e;s(fs(we;s)) # and levelDs(we;s) =levelDs('e;s(fs(we;s))), then Condition 4.6 will not hold at those stages, soat ea
h su
h s we will �nd a t satisfying Condition 4.7 and follow the 
or-responding instru
tions for that t. Thus, we;s+1 will be rede�ned, but withfs+1(we;s+1) = fs(we;s). Moreover, by our 
hoi
e of g, we will havelevelDs+1(we;s+1) > levelDs(we;s):Now levelDs('e;s(fs(we;s))) may in
rease as s in
reases, but only �nitely of-ten, sin
e fs(we;s) is 
onstant after s0 and levelT ('e(fs(we;s))) < !. There-fore, we eventually rea
h a stage s1 withlevelDs1 ('e(fs1(we;s1))) = levelT ('e(fs1(we;s1)));and for all s > s1 + 1, Re will be satis�ed by we;s. Therefore we;s will neveragain be rede�ned, and Re will be satis�ed by we = limswe;s.Lemma 4.11 For every x 2 T , the sequen
e hfs(x)is2! 
onverges to a limit.The limit fun
tion f = lims fs has range !.Proof. Fix x. The 
onstru
tion ensures that x 2 Tx � Dx � Ds = dom(fs)for all s � x. If xn 6� x, then fs(x) = fs+1(x) for all s for whi
h fs(x) isde�ned. 23



Assume, therefore, that xn � x. Let k = maxfi : xi � xg, so x 2 S[xk℄.Let s0 be a stage su
h that for all s � s0 and for all i � k + 1, we havexi;s = xi. Also, let h = maxfi+ht(S[xi℄) : i � k+1g. Then by Lemma 4.10,there exists a stage s1 � s0 su
h that for all s � s1 and for all i � h, we havewi;s = wi.Suppose s � s1 is a stage su
h that fs 6� fs+1, and take the 
orrespondingindex e. Then Condition 4.7 is satis�ed for some t > s, yielding an embeddingg : Ds[xmt;t℄! Tt[xmt;t℄. By the 
onstru
tion, we;s 6= we;s+1, so we must havee > h. This for
es levelDs(we;s) > h, sin
e ea
h wi+1;s is at a level > i, sowe;s =2 Si�k S[xi℄ by 
hoi
e of h. Hen
e xk+1 � we;s, and mt � k + 1 byde�nition of mt (and sin
e t � s0). But then xk+1 = xk+1;t � xmt;t. Sin
ex 2 S[xk℄, we have xk+1 6� x, so xmt;t 6� x. Hen
e x =2 Ds[xmt;t℄, and sox =2 dom(g). Therefore fs+1(x) = fs(x) for all s � s1. We de�ne f = lims fs.To see that range(f) = !, let y 2 !. We assume indu
tively thatf0; 1; : : : y � 1g � range(f). Therefore, if y =2 range(f), there would exista stage at whi
h y would be the least available fresh element, and so theremust be a stage s0 and an x 2 T for whi
h fs0(x) = y. Moreover, theny 2 range(fs) for all s � s0.If there exists some stage s1 > s0 at whi
h fs1�1(x) 6= fs1(x), say for thesake of a requirementRe, then there must be an x0 su
h that fs1(x0) = y. Atea
h su
h s1, we will have x0 2 Ee;s1 . Indeed, by taking s1 so large that allRi with i � e are satis�ed at all stages s � s1, we may assume that x0 2 Ee;sfor all s � s1. But then fs(x0) = fs+1(x0), so y = f(x0) 2 range(f).Thus f is a 1-1 �02 map from T to !, hen
e an isomorphism from T tothe tree (T 0;�0), where T 0 = ! and �0 is just the ordering �, indu
ed on T 0from T 0 by f .Lemma 4.12 The maps fs satisfy Condition 3.1. Thus �0 is 
omputable.Proof. The 
onstru
tion ensures that Ds � Ds+1 for all s. For every x 2Ds � Ds[xn℄, we have fs(x) = fs+1(x). Therefore, Condition 3.1 
learlyholds if either f�1s (a) or f�1s (b) is not in T [xn℄. So take x; y 2 Ds[xn℄, witha = fs(x), b = fs(y), and let x0 = f�1s+1(a) and y0 = f�1s+1(b). We have four
ases, depending on whether or not x = x0 and y = y0.The �rst 
ase, where x = x0 and y = y0, is trivial. Also, if x 6= x0and y 6= y0, then x and y must both lie in Ds[xmt;t℄, for whi
h we �nd anembedding g into some Tt[xmt;t℄. In this 
ase,x � y () g(x) � g(y) () x0 � y024



sin
e g(x) = x0 and g(y) = y0. Thus Condition 3.1 is satis�ed in these two
ases.Suppose x 6= x0 and y = y0. Then x 2 Ds[xmt;t℄. If y 2 Ds[xmt;t℄ also,then x0 = g(x) � g(y) = y0. If not, then either y � xmt;t (in whi
h 
ase y � xand y � g(x) = x0, sin
e range(g) � T [xmt;t℄) or y ? xmt;t (in whi
h 
asey ? x and y ? g(x) = x0, again be
ause range(g) � T [xmt;t℄).The pre
eding paragraph shows that in the third 
ase, not onlyx � y () x0 � y0but also x ? y () x0 ? y0:Hen
e by symmetry, the fourth 
ase, with x = x0 and y 6= y0, is also satis�ed.Thus (T 0;�0) is a 
omputable tree, isomorphi
 to T , whi
h satis�es everyrequirementRe. Hen
e T is not 
omputably 
ategori
al, proving Proposition4.5.4.4 No Isolated PathsAn extendible node whi
h lies on more than one in�nite path is 
alledmultiplyextendible, as opposed to the uniquely extendible nodes of Subse
tion 4.3. Wenow 
onsider the 
ase of a tree in whi
h every extendible node is multiplyextendible. This implies that every extendible node lies on in�nitely manyin�nite paths. (We also assume that the tree 
ontains at least one extendiblenode!)Proposition 4.13 Let T be a 
omputable tree of height ! su
h that Text isnon-empty and �nite-bran
hing and every x 2 Text lies on in�nitely manyin�nite paths through T . If all side trees in T have �nite height, then T isnot 
omputably 
ategori
al.Proof. We use the same requirementsRe as in Propositions 3.2 and 4.5. Theidea of this 
onstru
tion is that for ea
h e, we devote an entire level le of Tto satisfying Re. By the assumptions of the Proposition, we know that thereexists at least one extendible node at level le, and at most �nitely many ofthem. Also, there may exist any number of nonextendible nodes at level le.25



Sin
e we 
annot tell the extendible nodes from the nonextendible ones at anystage s, we 
onsider all the nodes at level le;s at that stage, and denote themby v0e;s; v1e;s; : : : vne;se;s .Now sin
e the Proposition assumes that the side tree above ea
h ex-tendible node has �nite height, and sin
e there exist only �nitely many ex-tendible nodes at levels � le, there must exist a number de su
h that everynode x at level le with htx(Ts) � de must be extendible. We do not knowde, but at ea
h stage we fo
us on those nodes at level le;s in Ds � Ts abovewhi
h Ds has maximal height. Thus, we will eventually be 
onsidering onlyextendible nodes and their su

essors. Above these nodes we look for up-ward embeddings to use to satisfy Re. Sin
e every extendible node x lies onin�nitely many in�nite paths, and sin
e Text is �nite-bran
hing, T [x℄ must
ontain a subtree of type 2<!, and any �nite tree 
an be embedded into 2<!at arbitrarily high levels. Thus we 
an �nd upward embeddings of Ds[x℄above x whenever needed, as long as x is extendible.(For trees de�ned using the in�mum fun
tion, it is not immediate thatthe required embeddings exist. For instan
e, a tree with three nodes at level1 does not embed into 2<!. Therefore, we need the following lemma.Lemma 4.14 Let T be a tree su
h that Text is nonempty and �nite-bran
hingand 
ontains no isolated paths. Then all but �nitely many nodes x 2 Text havethe property that for every �nite S � T [x℄, there exists y � x with y 2 Textsu
h that S embeds into T [y℄.Proof. Suppose the lemma failed, so the the set U of nodes where it fails(with the root r of T adjoined) forms an in�nite subtree of Text. Sin
e Text is�nite-bran
hing, K�onig's Lemma provides an in�nite path through U , whi
hin turn yields an in�nite path through Text 
ontaining in�nitely many nodesr � u0 � u1 � � � � from U . Now for ea
h i, some �nite Si � T [ui℄ embedsinto no T [y℄ with ui � y. In parti
ular, Si does not embed into any T [uj℄with j > i. Su
h a sequen
e would violate Lemma 2.3.It follows that, by 
onsidering only nodes at suÆ
iently high levels, we
an guarantee the existen
e of ^-preserving embeddings. Thus Proposition4.13 also holds for trees de�ned using the in�mum.)The notation is as in the previous proofs, ex
ept that there may be morethan one potential witness for a given requirement Re at a given stage s.We denote these witnesses by w0e;s; w1e;s; : : :wne;se;s . Also, we will keep tra
k26



of the original position of ea
h of these witnesses. When wke;s is de�ned, wewill set vke;s = wke;s, but as wke;s is embedded further up in the tree, vke;s stays�xed. The only stages at whi
h vke;s will be rede�ned are those at whi
ha requirement of higher priority re
eives attention and those at whi
h vke;sa
quires a new prede
essor. For a given e and s, the elements vke;s will be atthe same level for all k, and we will denote this level by le;s.Let r be the root of T . We de�ne Ts = frg [ f0; 1; : : : sg, a tree under �.Again, we will de�ne envelopes Ee;s, in order to ensure that range(f) = !.The requirements Re are as follows:Re : 'e total =) (9x 2 T 0) [levelT 0(x) 6= levelT ('e(x))℄:Re re
eives attention at stage s if some witness node wke;s is embedded up-wards at stage s, if w0e;s is newly de�ned at stage s, or if the height of theenvelope Ee;s in
reases at stage s. When this happens, all a
tions previouslytaken for the sake of requirements Rj with j > e are injured. However, thiswill only o

ur �nitely often for ea
h e.Constru
tion: f0 is the identity map on T0, and the witness nodes wke;0and their original positions vke;0 are unde�ned for all e and k. Also unde�nedare ne;0 and le;0 for all e, and all Ee;0 are empty.At stage s + 1, we exe
ute the following steps for ea
h e � s, startingwith e = 0. If a requirement Re re
eives attention, then we do not exe
utethe steps for any j > e.1. If w0e;s is unde�ned, and there exists an element x of Ds withlevelDs(x) > max[i<eflevelDs(y) : y 2 Ei;sg;then let le;s+1 be its level, and let w0e;s+1; : : : wne;s+1e;s+1 be all the elementsof Ds at level le;s+1. Let vke;s+1 = wke;s+1 for ea
h k. RequirementRe hasnow re
eived attention. Let Ds+1 = Ds [ Ts+1, and set Ee;s+1 = Ds+1.For ea
h j > e we setEj;s+1 = fy 2 Ds : (9z 2 Ej;s) y � zg:2. If w0e;s is unde�ned, and there does not exist any element x at a suf-�
iently high level to satisfy 
ondition (1), then let we;s+1 " also, andset Ee;s+1 = fy 2 Ds : (9z 2 Ee;s) y � zg:Then Re has not re
eived attention at this stage.27



3. Otherwise, w0e;s; : : :wne;se;s are de�ned, as are the 
orresponding vke;s. Findthe least stage t � max(Ds) su
h that one of the following holds:(a) There exists m � ne;s and an embedding g : Ds[vme;s℄ ! Tt[vme;s℄su
h that levelTt(g(wme;s)) � levelDs(wme;s) + s:(b) There exists x 2 Tt with levelTt(x) = le;s and htx(Tt) � s, su
hthat either x =2 Ds or levelDs(x) < le;s.If (b) holds and (a) fails at stage t, let wke;s+1 = wke;s for all k � ne;s,and let le;s+1 = le;s. For ea
h k, if levelDs(vke;s) = le;s, let vke;s+1 =vke;s; otherwise let vke;s+1 be the prede
essor of vke;s at level le;s in Ds.If there exist elements x 2 Ds with levelDs(x) = le;s su
h that x =2fv0e;s+1; : : : vne;se;s+1g, then de�ne those x's to be w1+ne;se;s+1 ; w2+ne;se;s+1 ; : : :, withvke;s+1 = wke;s+1 for ea
h, and de�ne ne;s+1 to be the greatest supers
riptrequired. (If there are no su
h x, then ne;s+1 = ne;s.) De�neEe;s+1 = fy 2 Ds : (9z 2 Ee;s) [y � z℄g:If le+1;s # and ht(Ee;s+1) � le+1;s, then we say that Re has re
eivedattention at stage s+ 1, and for ea
h j > e we setEj;s+1 = fy 2 Ds : (9z 2 Ej;s) [y � z℄g:Otherwise Re has not re
eived attention.If (a) holds at stage t, let m be the least index for whi
h it holds, andlet g be the 
orresponding embedding. If 'e;s(fs(wme;s))", or iflevelDs('e;s(fs(wme;s))) 6= levelDs(wme;s);then we pro
eed exa
tly as in the pre
eding paragraph. Otherwise,Re re
eives attention as follows. For every node y 2 Ds[vme;s℄, de�nefs+1(g(y)) = fs(y) and de�ne fs+1(y) vto be the least element of !whi
h is not already in range(fs+1) [ range(fs). Let wme;s+1 = g(wme;s).We de�ne le;s+1 = le;s. For ea
h k, let vke;s+1 be that prede
essor of vke;sat level le;s in Ds. (Quite possibly, this will be vke;s itself.) Also, if thereare any x 2 Ds at level le;s whi
h are not in fvke;s+1 : k � ne;sg, thende�ne those x's to be w1+ne;se;s+1 ; w2+ne;se;s+1 ; : : :, with vke;s+1 = wke;s+1 for ea
h,and de�ne ne;s+1 to be the greatest supers
ript required. (If there areno su
h x, then ne;s+1 = ne;s.) Finally, let Ds+1 = Ds[ range(g)[Ts+1,and let Ee;s+1 = Ds+1, with Ej;s+1 = ; for all j > e.28



4. If Re has re
eived attention at stage s + 1, we make all nj;s+1, lj;s+1,vkj;s+1 and wkj;s+1 unde�ned for all j > e, and skip all steps for all thosej. Otherwise we in
rement e by 1 and return to Step 1.On
e we have either given attention to a requirement or 
ompleted thesteps with e = s, we de�ne fs+1(y) = fs(y) for those y 2 Ds on whi
h fs+1is not yet de�ned. Also, for ea
h y 2 Ds+1 � Ds on whi
h fs+1 is not yetde�ned, 
hoose the least element of ! whi
h is not yet in range(fs+1) to befs+1(y). This 
ompletes the 
onstru
tion.Lemma 4.15 For ea
h s and ea
h e � s, either 3(a) or 3(b) must hold forsome t.Proof. Suppose there exists an extendible node y among fv0e;s; : : : vne;se;s g. Thenby the assumption of the proposition, there is a 
opy of 2<! embedded intoT [y℄, and any �nite tree 
an be embedded into 2<! with the root mappingto a node at an arbitrarily high level of 2<!. Thus 3(a) will eventually hold.Otherwise, none of v0e;s; : : : vne;se;s is extendible. Now some node x on levelle;s of T must be extendible. If x 2 Ds, then we must have levelDs(x) < le;s,sin
e no node at level le;s in Ds is extendible. Otherwise x =2 Ds, and eitherway we will eventually rea
h a stage t at whi
h 3(b) holds of x.Lemma 4.16 For every e the following hold:� lims ht(Ee;s) exists and is �nite.� The sequen
e hle;sis2! 
onverges to some le 2 !.� For every k 2 !, either hwke;sis2! and hvke;sis2! 
onverge to elements wkeand vke in !, or there exists a stage t su
h that wke;s " and vke;s " for alls > t.� The requirement Re re
eives attention at only �nitely many stages, andis satis�ed.Proof. We pro
eed by indu
tion on e. Fix e, and assume s0 is a stage satis-fying all of the following 
onditions for every s � s0 and every i < e:1. Ri does not re
eive attention at stage s;2. li;s = li; 29



3. Every v 2 Text with levelT (v) = le satis�es levelTs(v) = le, and hen
eis of the form vke;s for some k;4. vki;s = vki and wki;s = wki for all k su
h that vki;s 2 Text (Noti
e that ea
hlevel of Text is �nite, sin
e the proposition assumes that Text is �nitelybran
hing. Hen
e only �nitely many vki;s lie in Text.);5. ht(Ts) > le�1.Condition 3 simply says that we have waited until all prede
essors ofea
h v 2 Text at level le have appeared in Ts0 . This is possible be
ause Textis �nite-bran
hing. Noti
e that this 
ondition implies the same 
ondition forall i � e.Now le;s is never rede�ned in the 
onstru
tion, and it 
an only be
omeunde�ned at stages at whi
h some Ri with i < e re
eives attention. Hen
ele;s = le;s0+1 for all s > s0, so le;s 
onverges to a limit le = le;s0+1. Also, afterstage s0 in the 
onstru
tion, vke;s 
an only be rede�ned to be a prede
essorof itself, and that only when it has a
quired a new prede
essor. But byCondition 3, ea
h vke;s a
quires no new prede
essors in T after stage s0, soea
h sequen
e hvke;sis2! 
onverges to a limit vke = vke;s0 .Similarly, wke;s is never unde�ned after stage s0, although it may be re-de�ned at 
ertain stages at whi
h Re re
eives attention. If vke;s =2 Text, thenhtvke;s(T ) is �nite, and the 
orresponding wke;s 
an only be embedded �nitelyoften by step 3(a), sin
e ea
h embedding (at a stage s + 1) moves it up byat least s levels in Ds. Hen
e all those sequen
es hwke;sis2! 
onverge.For ea
h of the �nitely many k with vke;s 2 Text, it is possible for 3(a) tohold for k at in�nitely many stages. However, we only a
tually apply theembedding g to rede�ne wke;s at stages s + 1 su
h that 'e;s(fs(wke;s)) # andlevelDs('e;s(fs(wke;s))) = levelDs(wke;s). By the 
onstru
tion, we always havefs+1(wke;s+1) = fs(wke;s), even if wke;s+1 6= wke;s. At ea
h stage s + 1 at whi
hwke;s is rede�ned, we havelevelDs+1(wke;s+1) � levelDs(wke;s) + s:If this happens suÆ
iently often, then we must rea
h a stage s1 at whi
hlevelDs1 (wke;s1) > levelT ('e;s1(fs1(we;s1))), sin
e T has height !, and afterstage s1, we will never rede�ne wke;s again, even if 3(a) does apply. Hen
eea
h of these sequen
es hwke;sis2! does 
onverge to a limit wke .Now there must be an element of Text on level le, and this element willbe designated at some stage s as vke;s for some k. We note �rst that sin
e all30



side trees are �nite and Text is �nitely-bran
hing, there is a d su
h that everynonextendible node x at any level � le satis�es htx(T ) < d. (Also, assumed is suÆ
iently large that le;d = le.) On
e we rea
h stages s � d, therefore,3(a) will never again hold for any m with vme;s nonextendible, and 3(b) willnot hold for any nonextendible x. Thus only the �nitely many extendiblenodes vke;s will satisfy either 3(a) or 3(b) at any subsequent stage. But everyextendible node v at level le in T already sati�es levelTs0(v) = le, by indu
tivehypothesis, so 3(b) will never hold again. By Lemma 4.15, there must existan m, with vme extendible, whi
h satis�es 3(a) at in�nitely many stages. (Ifthere is more than one su
h, 
hoose the least of them, just as we did at ea
hstage of the 
onstru
tion.)If 'e(fs(wme;s)) " for the 
orresponding wme , then wme;s is never rede�ned,and fs+1(wme ) = fs(wme ) for all s, so 'e(f(wme )) ", where f = lims fs asde�ned below. Hen
e Re is satis�ed, sin
e 'e is not total. On the otherhand, if 'e(fs(wme;s))#, then for every stage s at whi
hlevelDs('e;s(fs(wme;s))) = levelDs(wme;s);either there will be a subsequent stage s0 at whi
h 3(a) applies to vme;s0 andRe re
eives attention and wme;s0 is embedded at a greater level, or else(8s0 > s)[levelDs0 (wme;s0) < levelDs0 ('e;s0(fs0(wme;s0)))℄:In the latter 
ase, wme;s0 will never again be rede�ned, leaving Re satis�ed bythe witness f(wme ). In the former 
ase, we again havelevelDs0+1('e(fs0+1(wme;s0+1))) < levelDs0 (wme;s0):But levelDs('e(f(wme ))) � levelT ('e(f(wme ))) < !;so eventually we rea
h a stage s with levelT ('e(f(wme ))) < levelDs(wme;s).After this stage, wme;s is never rede�ned, leavinglevelT ('e(f(wme ))) < levelT (wme ) = levelT 0(f(wme )):Thus requirement Re is satis�ed.We note that sin
e ea
h sequen
e hwke;sis2! 
onverges to wke , none of them
hanges value more than �nitely often. Moreover, the stage d designatedabove has the property that only �nitely many elements wke;s are ever rede-�ned after stage d, namely those 
orresponding to extendible vke .31



Moreover, sin
e there are only �nitely many stages s at whi
h any of theelements wke;s is rede�ned, we eventually rea
h a stage s1 after whi
h none ofthem is ever rede�ned. Now Ee;s1 is �nite. Let s2 be a stage su
h that(8y 2 T )[(9z 2 Ee;s1)[y � z℄ =) y 2 Ts2 ℄:That is, every prede
essor of ea
h of the (�nitely many) elementsx 2 Ee;s1 ap-pears in Ts2 . Then for all s � s2, we have Ee;s = Ee;s2 . Hen
e lims ht(Ee;s) =ht(Ee;s2). Thus Re only re
eives attention �nitely often.This 
ompletes the indu
tion.Lemma 4.17 For ea
h x, the sequen
e hfs(x)is2! 
onverges. The limit fun
-tion f = lims fs has range !.Proof. We need to show that both lims fs(x) and lims f�1s (y) exist for all xand y in !.First of all, we have x 2 Ts � Ds for every s � x, so fs(x)# for all suÆ-
iently large s. Also, by the 
onstru
tion, we have range(fs) � range(fs+1)for every s. Moreover, ea
h time we need a new element for the range offs+1, we take the least available one, so 
learly every y 2 ! lies in range(fs)for all suÆ
iently large s.So suppose fs(x) 6= fs+1(x) for some s. The only way this 
an o

urin our 
onstru
tion is if 3(a) holds for some e and m, and we exe
ute anupwards embedding g of Ds[vme;s℄ into T [vme;s℄ at stage s+1 in order to satisfyRe. If this happens, then Ee;s+1 = Ds+1 � range(g), so x 2 Ee;s+1. Similarly,if f�1s (y) 6= f�1s+1(y) for some s, then f�1s+1(y) 2 Ee;s+1.The only way we 
ould then have ft(x) 6= ft+1(x) or f�1t (y) 6= f�1t+1(y) forany t > s is if some Ri with i � e re
eives attention at stage t + 1. This
ould happen for the following reasons:Case 1: Step 3(a) applies to Ri for some i � e, and we exe
ute the
orresponding upward embedding g. In this 
ase, Ei;t+1 = Dt+1, so x 2 Ei;t+1and f�1s+1(y) = g(x) 2 Ei;t+1.Case 2: w0i;t " and w0i;t+1 #, for some i � e. However, although Ri doesre
eive attention in this 
ase, the 
onstru
tion leaves Ee;t � Be;t+1. Hen
ex 2 Ee;t+1, and ft+1(x) = ft(x). Similarly, f�1s+1(y) = f�1s (y) 2 Ee;t+1.Case 3: ht(Ei;t+1) > li+1;t for some i < e. Again, the 
onstru
tion leavesEe;t � Ee;t+1, so x 2 Ee;t+1 and ft+1(x) = ft(x) and f�1s+1(y) = f�1s (y) 2Ee;t+1. 32



Thus, for every t > s, we have both x and f�1t (y) in Evi;t for some i � e.Therefore, ft+1(x) 6= ft(x) and f�1t+1(y) 6= f�1t (y) ea
h 
an o

ur only for thesake of an upwards embedding on behalf of some Ri with i � e. By Lemma4.16, this 
an only o

ur �nitely often. Hen
e the sequen
es hfs(x)is2! andhf�1s (y)is2! both 
onverge, making f = lims fs a �02-bije
tion from ! to !.As usual, we lift the partial order � from T to an order �0 on T 0, makingf an isomorphism from T to T 0.Lemma 4.18 The fun
tions fs satisfy Condition 3.1. Hen
e �0 is 
om-putable.Proof. We have already seen that range(fs) � range(fs+1). Take a; b 2range(fs). The only way for f�1s+1(b) 6= f�1s (b) is if f�1s (b) lies in some subtreeDs[vme;s℄ whi
h is embedded upward via some g as part of Step 3(a) for somee at stage s+1. If f�1s (a) is also embedded upward at stage s+1, then sin
eg is a homomorphism of trees, we have:f�1s (a) � f�1s (b) () g(f�1s (a)) � g(f�1s (b)) () f�1s+1(a) � f�1s+1(b):Otherwise, f�1s (a) =2 Ds[vme;s℄. In this 
ase:f�1s (a) � f�1s (b) () f�1s (a) � vme;s() f�1s+1(a) � vme;s() f�1s+1(a) � f�1s+1(b):The 
ase f�1s+1(b) = f�1s (b) is simpler, sin
e this implies f�1s (b) =2 Ds[vme;s℄.Thus, if f�1s (a) � f�1s (b), we know that f�1s (a) = f�1s+1(a), so f�1s+1(a) �f�1s+1(b) and 
onversely as well.Thus (T 0;�0) is a 
omputable tree, isomorphi
 to T via f , yet not 
om-putably isomorphi
 to T , sin
e every requirement Re is satis�ed. Therefore,T is not 
omputably 
ategori
al. This 
ompletes the proof of Proposition4.13. 33



4.5 Proof of the TheoremProof of Theorem 4.1. We need only 
on�rm that the pre
eding propositions
over all possible 
ases. First, if T 
ontains no extendible nodes, then Propo-sition 4.2 applies to the root of T , sin
e ht(T ) = !. If Text is nonempty andin�nite-bran
hing, then Proposition 4.4 
overs this 
ase. If Text is nonemptyand �nite-bran
hing, then we ask whether there exist side trees of height !.If so, then Proposition 4.3 gives the result. Otherwise, every side tree has�nite height. If every extendible node lies on in�nitely many in�nite paths,we apply Proposition 4.13. If there exists a node x 2 Text whi
h lies on only�nitely many in�nite paths through T , then by following those �nitely manyin�nite paths upwards until they all diverge, we �nd a node x0 2 Text whi
h�ts Proposition 4.5.
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5 Trees of Height > !Having established that no tree of height ! is 
omputably 
ategori
al, wenow prove the same result for trees of height > !. Re
all that for trees T ofheight !, we 
onsidered two 
ases in whi
h T 
ontains an in�nite path, andused guessing pro
edures to �nd that (or those) paths. Now the existen
e ofa node x! at level ! simpli�es matters 
onsiderably, sin
e the prede
essorsof x! form a 
omputable in�nite 
hain in T . (Te
hni
ally, this 
hain is nota path, sin
e it is not a maximal 
hain, but it is still perfe
tly useful forour purposes.) We will appeal again to Kruskal's Theorem to guarantee theexisten
e of the ne
essary embeddings upwards along this 
hain, and usethem to satisfy the requirements.On the other hand, having ht(T ) > ! 
reates a di�erent set of problems.Previously, with every node in T sitting at a �nite level, we knew that ea
hrequirementwould only require �nitely many upwards embeddings in order tobe satis�ed. Now, it is possible that the node 'e;s(fs(we;s)) lies at an in�nitelevel in T , in whi
h 
ase we might have to rede�ne fs(we;s) to lie at higherlevels in T 0 in�nitely often, thereby injuring the lower-priority requirementsin�nitely many times. (Also, this would prevent fs(we) from 
onverging,ruining the isomorphism from T to T 0.) We avoid this diÆ
ulty by wat
hingfor prede
essors of 'e;s(fs(we;s)) and using their preimages (under 'e) asnew witness nodes. Eventually we will �nd su
h a prede
essor sitting at a�nite level of T , and for this one we will only need �nitely many upwardsembeddings.Of 
ourse, the preimage under 'e of a prede
essor of 'e;s(fs(we;s)) willnot ne
essarily be a prede
essor of fs(we;s)) in T 0. However, if indeed it isnot a prede
essor, then 
learly 'e was not an isomorphism. We 
an 
he
ke�e
tively whether or not this is the 
ase, and if it is not a prede
essor, thenRe is automati
ally satis�ed.Theorem 5.1 No 
omputable tree of in�nite height is 
omputably 
ategori-
al.Proof. Theorem 4.1 
overs the 
ase of a tree of height !, so assume that T isa tree under � with ht(T ) > !. Then T 
ontains a node x! at level !. Theset S of prede
essors of x! is a 
omputable set, ordered in order type !.Ea
h of our requirements Re guarantees that 'e is not an isomorphism35



from T 0 to T , just as before, but the exa
t statement is slightly di�erent:Re : 'e bije
tive =) either (9x 2 T 0) [levelT 0(x) 6= levelT ('e(x))℄ or(9x; y 2 T 0)[x 6�0 y and 'e(x) � 'e(y)℄:If the se
ond 
lause of the 
on
lusion applies, or if there exists an s forwhi
h 'e;s is not one-to-one, we will say that Re is �nitely satis�ed, sin
e ea
hof these fa
ts will be
ome evident at some �nite stage of the 
onstru
tion.In 
ontrast, we 
an never be sure at any �nite stage whether or not we havepermanently satis�ed the �rst 
lause of the 
on
lusion, or whether 'e is totalor onto.Let r = x0 � x1 � � � � be all the prede
essors of x! in T . We applyCorollary 2.4 to the 
olle
tion of trees fSi : i 2 !g, whereSi = T [xi℄� T [xi+1℄:(Thus the tree Si has root xi and 
ontains those nodes lying above xi but notabove xi+1.) Clearly Si is 
omputable. In the 
onstru
tion below, we willwrite Si;s for Si \Ds. Let n be the number given by the 
orollary, su
h thatevery �nite subtree of every Si with i � n embeds into some Sj with j > i.Constru
tion: f0 is the identity map on T0 = fxi : i � ng [ fx!g, andthe witness nodes we;0 and their tra
es ve;0 are unde�ned for all e. For ea
hs we de�ne Ts+1 = Ts [ fsg.At stage s + 1, we say that a requirement Re (e � s) is �nitely satis�edif there exist distin
t numbers x � s and y � s in the domain of 'e;s su
hthat 'e;s(x) = 'e;s(y), or su
h that x �0 y and 'e;s(x) 6� 'e;s(y), or su
h thatx 6�0 y and 'e;s(x) � 'e;s(y). (In any of these three 
ases, we know rightaway that 'e is not an isomorphism.) Sear
h for the least e � s + 1 su
hthat Re is not yet �nitely satis�ed and one of the following 
ases holds:1. we;s is unde�ned; or2. we;s is de�ned and levelDs(we;s) � levelDs(ve;s) + 1 and 'e;s(fs(we;s))#and levelDs(we;s) = levelDs('e(fs(we;s)));or3. we;s is de�ned and 'e;s(fs(we;s)) # and there exist nodes w 2 Ds andw0 2 range(fs) su
h that w � 'e;s(fs(we;s)) and 'e;s(w0) #= w andlevelDs(w) = 1 + levelDs(ve;s). 36



(Su
h an e must exist, be
ause ws+1;s is unde�ned.) We say that Re re
eivesattention at this stage. For all i < e, let wi;s+1 = wi;s and vi;s+1 = vi;s. Forall j > e, let wj;s+1 and vj;s+1 be unde�ned. We pro
eed a

ording to whi
hof the three 
ases above held.1. If we;s is unde�ned,, we sear
h for the�-least node w inDs[xn℄ satisyingthe following 
onditions:� w � x!;� w 6� wi;s for every i < e su
h that Ri is not yet �nitely satis�ed;� for every x < e, either w 6� x or x! � x; and� for every y < e, there exists x 2 Ds su
h that fs(x) = y and eitherw 6� x or x! � x.Let ve;s+1 = we;s+1 = w. (If there is no su
h w, then leave we;s+1unde�ned.) Let Ds+1 = Ds [ Ts+1.2. If we;s is de�ned and 'e;s(fs(we;s))# andlevelDs(we;s) = levelDs('e(fs(we;s)));then sear
h for the least t > s su
h that there exists x < t with ve;s �x � x! for whi
h Ds[ve;s℄ embeds into Tt[x℄ via an embedding g su
hthat g(ve;s) = x and g(x!) = x!. Sin
e ve;s � x, 
learlylevelTt(g(we;s)) > levelDs(we;s):Fix this t, x, and g.We use the embedding g to satisfy (for the time being) the �rst 
lauseof Re. Let Ds+1 = Ds [ Tt, ve;s+1 = ve;s, and we;s+1 = g(we;s), andfor all y 2 Ds[ve;s℄ � Ds[x!℄, de�ne fs+1(g(y)) = fs(y). For thosey 2 Ds+1[ve;s℄�Ds[x!℄� range(g), take fs+1(y) to be the least elementof ! that is not yet in range(fs+1) nor in range(fs). Noti
e that althoughwe have temporarily ful�lled Re, we do not state that Re is satis�ed,sin
e possibly levelT ('e(fs(we;s+1))) > levelTt('e(fs(we;s+1))): We will
ontinue to s
rutinize Re at subsequent stages.3. Otherwise, we have the nodes w 2 Ds and w0 2 range(fs) given in Case(3). Let Ds+1 = Ds [ Ts+1. Sin
e Re is not �nitely satis�ed, we musthave f�1s (w0) � we;s. De�ne we;s+1 = f�1s (w0), and let ve;s+1 = ve;s.37



In all three 
ases, we then de�ne fs+1(y) = fs(y) for those y 2 Ds onwhi
h fs+1 is not yet de�ned. Also, for ea
h y 2 Ds+1 �Ds on whi
h fs+1 isnot yet de�ned, 
hoose the least element of ! whi
h is not yet in range(fs+1)to be fs+1(y). For ea
h e su
h that we;s+1 is de�ned, let ve;s+1 = we;s+1 ^ x!.This 
ompletes the 
onstru
tion.(This 
onstru
tion is most 
omparable to that of Proposition 4.5, in whi
hwe assumed that T 
ontained an isolated in�nite path. Here the path may notbe isolated, but the node x! allows us to identify it anyway. The twist whi
hwe must add appears in Case (3) of the 
onstru
tion, in whi
h we ensurethat the lims we;s will lie at a �nite level, or else that 'e fails to preserve therelation �0.)We �rst must prove that at ea
h stage s at whi
h Case (2) applies, wedo eventually �nd an embedding, This requires a lemma guaranteeing ourability to embed trees upwards in T [xn℄.Lemma 5.2 For every xi � xn and every t, there is an embedding g of thetree Ds[xi℄ into T [xi+1℄ with g(x!) = x!.Proof. By the 
hoi
e of n and Corollary 2.4, we know that every �nite subtreeof every Sj with j � n embeds into some Sk with k > j. By indu
tion, then,every �nite subtree of every su
h Sj embeds into in�nitely many Sk withk > j. We may also assume that in ea
h su
h embedding, xj is mapped toxk. Sin
e there are only �nitely many side trees Sj0; : : : Sjn whi
h interse
tthe �nite tree Ds, we 
an embed Sj0 \Ds into some Sk0, then embed Sj1 \Dsinto some Sk1 with k1 > k0, and so on. The union of these embeddings withthe identity map on Ds[x!℄ respe
ts the order � (sin
e ea
h xji is mappedto some other prede
essor xk of x!), and is the desired embedding g.Having thus guaranteed that every stage will eventually terminate, weturn to the question of 
onvergen
e.Lemma 5.3 For every e, either Re is �nitely satis�ed at some stage s, orelse:� the sequen
e hve;sis2! 
onverges to a limit ve � x!, and vi � ve forevery i < e su
h that Ri is not �nitely satis�ed;� the sequen
e hwe;sis2! 
onverges to a limit we with ve � we; and� the sequen
e hfs(we)is2! 
onverges to a limit f(we).38



Proof. We pro
eed by indu
tion on e. Suppose that Re is never �nitelysatis�ed, and let s0 be a stage so large that for all s � s0 and all i < e,the hypotheses of the theorem hold. (In parti
ular, assume that vi;s = vi,wi;s = wi, and fs(wi) = f(wi) for all s � s0.) Sin
e x! has in�nitely manyprede
essors, there must exist a stage s1 > s0 at whi
h ve;s1 and we;s1 arede�ned. Moreover, they will never again be
ome unde�ned, sin
e no Riwith i < e will ever again re
eive attention. Indeed, ve;s = ve;s1 for everys � s1, sin
e Cases (2) and (3) both de�ne ve;s+1 = ve;s, so we may writeve = ve;s1. We may also assume that 'e;s1(fs1(we;s1) 
onverges, sin
e if thereis no su
h s1, then Re will never again re
eive attention and the theorem willbe satis�ed.)Noti
e that ve;s+1 be
omes unde�ned at any stage at whi
h vi;s+1 6= vi;sfor some i < e. Now if s is the last stage at whi
h ve;s is unde�ned, thenve;s+1 = we;s+1 6� wi;s for every i < e. Hen
e ve;s+1 6� vi;s+1 for any su
h i.However, ve;s+1 � x!, for
ing vi;s+1 � ve;s+1 for ea
h su
h i. The 
onstru
tionnever allows ve;t+1#6= ve;t#, so we must have vi � ve, as the theorem demands.Noti
e that at any stage s+ 1 > s1 at whi
h Re satis�es Case (2), it willre
eive attention and the resulting embedding will guarantee fs+1(we;s+1) =fs(we;s). Hen
e 'e(fs+1(we;s+1)) = 'e(fs(we;s)) for all su
h s. Also, at anystage at whi
h Re satis�es Case (3), either Re will be �nitely satis�ed or'e(fs+1(we;s+1)) = 'e(w0)#= w � 'e(fs(we;s))where w and w0 are as given in Case (3).Thus, 'e(fs+1(we;s+1)) � 'e(fs(we;s)) in T for every s+1 > s1. Sin
e T isa tree, the in�nite nonin
reasing sequen
e h'e(fs(we;s))is�s1 must 
onvergeto a limit, so there exists a stage s2 after whi
h this sequen
e is 
onstant. The
onstru
tion then makes it 
lear that Case (3) will never apply after stage s2.This implies that no more nodes w are found whi
h satisfy the hypothesesof Case (3). Therefore, either there is no prede
essor w of 'e(fs2(we;s2)) inT with levelT (w) = 1 + levelT (ve), in whi
h 
ase 'e(fs2(we;s2)) must lie at a�nite level of T , or else any su
h prede
essor does not lie in the range of 'e,in whi
h 
ase 'e is not bije
tive. (Re
all that we are assuming here that Reis not �nitely satis�ed.) In the latter 
ase, neither Case (2) nor Case (3) willever again apply to Re, so we;s = we;s2 for every s � s2.In the former 
ase, where 'e(fs2(we;s2)) lies at a �nite level of T , we knowthat Case (3) will never again apply, so Case (2) will only apply �nitelymany more times. (Ea
h time Case (2) applies, we have levelDs+1(we;s+1) >39



levelDs(we;s), but Case (2) is impossible when levelDs(we;s) > 1+levelT (ve).)Hen
e we will rea
h a stage after whi
hRe never again re
eives attention, andthus hwe;sis�s2 
onverges to a limit we. We also note that ve � we;s � we;s+1for every s � s2, so that ve � we, as the theorem 
laims. Furthermore,we already saw that fs+1(we;s+1) = fs(we;s) for every s � s1, so 
learly thesequen
e hfs(we)is�s2 
onverges. This 
ompletes the proof of the lemma.Lemma 5.4 The fun
tions fs 
onverge to a limit f whi
h is bije
tive.Proof. Every x lies in Ds for all s > x, so fs(x) will be de�ned for allsuÆ
iently large s. Also, ea
h time a fresh element y was needed for therange of fs, we 
hose the least y available. On
e f�1s (y) is de�ned, y willremain in range(fs) at all subsequent stages, sin
e the embeddings in Case(2) always preserve the range.In Case (1) we ensured that ve � x only if e � x or x! � x. In thelatter 
ase, fs(x) will never be rede�ned. In the former 
ase, we may havefs+1(x) 6= fs(x) at stages s + 1 at whi
h Case (2) applies to a requirementRe with e � x. However, Lemma 5.3 shows that there are only �nitely manysu
h stages. Similarly, Case (1) and this lemma ensure that f�1s+1(y) will onlybe rede�ned �nitely often.Thus f = lims fs has domain and range !. Inje
tivity follows from theinje
tivity of ea
h fs.Lemma 5.5 For every e, either Re is �nitely satis�ed at some stage s,or 'e(f(we)) " or levelT ('e(f(we))) 6= levelT (we). (Sin
e levelT (we) =levelT 0(f(we)), this guarantees that Re is satis�ed.)Proof. Suppose 'e(f(we)) 
onverges. (We also 
ontinue to assume that Reis not �nitely satis�ed, so that 'e is one-to-one and maps �0 to �.) Let t0be so large that Re never re
eives attention after stage t0.Let le = levelT (ve). If levelT (we) > le+1, then let u be the prede
essor ofwe at level le+1 in T . Now sin
e 'e is assumed to be total, we know that thereis some w 2 T su
h that 'e(f(u)) #= w. If levelT (w) 6= levelT (u), then Reholds, sin
e levelT (u) = levelT 0(f(u)). Otherwise, levelT (w) = levelT (u) =le+1, and Case (3) must apply to w at some stage, with w0 = f(u). (Noti
ethat w � 'e(f(we)) sin
e by assumption 'e maps the ordering �0 on T 0 to �on T .) This 
ontradi
ts our 
hoi
e of t0, 
ompleting the proof of the lemma.40



Lemma 5.6 The maps fs satisfy Condition 3.1. Thus �0 is 
omputable.Proof. The 
onstru
tion ensures that Ds � Ds+1 for all s. For every x 2Ds � Ds[xn℄, we have fs(x) = fs+1(x). Therefore, Condition 3.1 
learlyholds if either f�1s (a) or f�1s (b) is not in T [xn℄. So take x; y 2 Ds[xn℄, witha = fs(x), b = fs(y), and let x0 = f�1s+1(a) and y0 = f�1s+1(b). We have four
ases, depending on whether or not x = x0 and y = y0.The �rst 
ase, where x = x0 and y = y0, is trivial. Also, if x 6= x0 andy 6= y0, then x and y must both lie in Ds[ve;s℄ � Ds[x!℄, where Re re
eivesattention in Case (2) at stage s + 1. In this 
ase, we �nd an embedding ginto some Tt[x℄ with xn � x � x!. Thusx � y () g(x) � g(y) () x0 � y0sin
e g(x) = x0 and g(y) = y0. Thus Condition 3.1 is satis�ed in these two
ases.Suppose x 6= x0 and y = y0. Then x 2 Ds[ve;s℄ as above. If y 2 Ds[ve;s℄�Ds[x!℄, then x0 = g(x) � g(y) = y0. If not, then either y � ve;s (in whi
h
ase y � x and y � g(x) = x0, sin
e range(g) � T [ve;s℄) or y ? xmt;t (inwhi
h 
ase y ? x and y ? g(x) = x0, again be
ause range(g) � T [xmt;t℄), orx! � y. In this last 
ase the 
onsition is satis�ed, sin
ex � y () x � x! () g(x) � g(x!) = x! () x0 � y = y0:The pre
eding paragraph shows that in the third 
ase, not onlyx � y () x0 � y0but also x ? y () x0 ? y0:Hen
e by symmetry, the fourth 
ase, with x = x0 and y 6= y0, is also satis�ed.Thus (T 0;�0) is a 
omputable tree, isomorphi
 to T via the �2 fun
tion f ,and T 0 satis�es every requirementRe. Hen
e T is not 
omputably 
ategori
al,proving Theorem 5.1.Intuitively it 
an be diÆ
ult to see where the a
tion o

urs in the proofof Theorem 5.1, parti
ularly in Lemma 5.3, whi
h is the heart of the proof.41



Essentially the argument for 
onvergen
e of we;s 
omes down to the fa
t thatea
h time Re re
eives attention in Case (3), we generate another elementin a des
ending sequen
e in T , and the de�nition of tree guarantees thatthis sequen
e must be �nite. (In fa
t, we 
an say more: on
e the a
tualprede
essors of 'e(fs(we;s)) at all levels � le in T have appeared, and on
e'�1e has 
onverged on all of them, Re will never again re
eive attention inCase (3).) Thereafter, any more upwards embeddings of we;s would 
auseCase (3) to apply again, whi
h we know 
annot o

ur, so Case (2) mustnever again apply either. We 
on
lude that Re must be satis�ed, be
asueif 'e really were an isomorphism, either (2) or (3) would apply at somesubsequent stage. In the ar
hite
ture of this proof, therefore, it is the well-ordering of the prede
essors of ea
h element of T whi
h drives the resulthome. (One 
ould write a similar proof for Proposition 4.5, but the onegiven was more straightforward and o�ered a better insight into the reasonswhy the Proposition held, perhaps at some 
ost in elegan
e.)
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6 E�e
tively In�nite DimensionRe
all that the 
omputable dimension of a 
omputable stru
ture is the num-ber of 
omputable isomorphism 
lasses of 
omputable 
opies of that stru
-ture. Theorem 4.1 shows that every 
omputable tree of in�nite height has
omputable dimension at least 2. A theorem of Gon
harov from [7℄ statesthat if A is a 
omputable stru
ture whi
h has two 
omputable 
opies thatare �02-isomorphi
 but not 
omputably isomorphi
, then A has 
omputabledimension !. The isomorphisms whi
h we 
onstru
ted in our proofs are all�02, so in fa
t the these trees all have 
omputable dimension !.It is possible to strengthen this statement even further, by avoiding 
ount-ably many isomorphism 
lasses simultaneously. That is, given a uniformlypresented list fTi : i 2 !g of 
omputable 
opies of T , one 
an 
onstru
tanother 
omputable 
opy T 0 of T whi
h is not 
omputably isomorphi
 to anyTi. Thus, the 
omputable dimension of T is e�e
tively in�nite; one mighteven 
all it e�e
tively un
ountable, for, although there are only 
ountablymany 
omputable isomorphism 
lasses, there is no e�e
tive enumeration ofthem.Proposition 6.1 Let T be a tree of in�nite height, and let fTig be a 
om-putable (�nite or in�nite) sequen
e of 
omputable trees isomorphi
 to T .Then there exists a 
omputable tree T 0 isomorphi
 to T , su
h that no Tiis 
omputably isomorphi
 to T 0.(The fa
t that the set fTig is allowed to be in�nite gives rise to the terme�e
tively un
ountable. If we 
ould only prove this proposition for �nite setsfTig, then we would only say that the dimension was e�e
tively in�nite.)Proof. For trees of height !, the 
onstru
tion pro
eeds exa
tly as in Propo-sitions 3.2, 4.5, and 4.13, a

ording to whi
h of these propositions appliesto T . We let T0 play the role of T as a template for T 0, 
onstru
tingT 0 to be isomorphi
 to T0 via a �02-isomorphism f = lims fs, with Ds =domain(fs) � T0. The only di�eren
e is that instead of 
he
king whetherlevelDs(we;s) = levelDs('e(fs(we;s))) at ea
h stage s, we have witness ele-ments we;i;s 2 T0 to ensure that 'e is not an isomorphism from T 0 to Ti, andwe 
he
k at ea
h stage s whetherlevelDs(we;i;s) = levelTi;s('e(fs(we;i;s))):43



If it is, then we pro
eed to embed we;i;s further upwards in T0, whi
h pushesfs(we;i;s) further up in T 0. Eventually 'e(fs(we;i;s)) rea
hes its �nal level in Ti,and one last upwards embedding guarantees that 'e is not an isomorphismfrom T 0 to Ti.The 
ase of a tree of height > ! requires similar modi�
ations. At stages+1 of that 
onstru
tion, we say that a requirement Re;i is �nitely satis�edif there exist distin
t numbers x � s and y � s in the domain of 'e;s su
hthat 'e;s(x) = 'e;s(y), or su
h that x �0 y and 'e;s(x) 6�i 'e;s(y), or su
hthat x 6�0 y and 'e;s(x) �i 'e;s(y). (Here �i denotes the partial order on thetree Ti, so ea
h of these 
onditions ensures that 'e is not an isomorphismfrom T 0 to Ti.) Then we sear
h for the least pair he; ii � s+1 su
h that Re;iis not yet �nitely satis�ed and one of the following 
ases holds:1. we;i;s is unde�ned; or2. levelDs(we;i;s) � levelDs(ve;i;s) + 1 and 'e;s(fs(we;i;s))# andlevelDs(we;i;s) = levelTi;s('e(fs(we;i;s)));or3. 'e;s(fs(we;i;s)) # and there exist nodes w 2 Ti;s and w0 2 range(fs)su
h that w �i 'e;s(fs(we;i;s)) and 'e;s(w0) #= w and levelTi;s(w) =1 + levelDs(ve;i;s).Corresponding adjustments through the rest of the proof guarantee that ea
hRe;i is satis�ed, so that 'e is not an isomorphism from T 0 to Ti.
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