The Computable Dimension of Trees of
Infinite Height

Russell Miller*
July 23, 2004

*The first four sections of this article appeared as a chapter of a Ph.D. thesis at the
University of Chicago under the supervision of Robert I. Soare. Thanks are also due to
Bakhadyr Khoussainov, who originally posed the question of computable categoricity of
trees and aided in the research, and to Richard Shore for useful conversations. Later the
author was partially supported by a VIGRE postdoc under NSF grant number 9983660
to Cornell University.

Abstract

We prove that no computable tree of infinite height is computably
categorical, and indeed that all such trees have computable dimension
w. Moreover, this dimension is effectively w, in the sense that given
any effective listing of computable presentations of the same tree, we
can effectively find another computable presentation of it which is not
computably isomorphic to any of the presentations on the list.

1 Introduction

In a finite language, a countable structure A4 whose universe A is a subset of
w is computable if Ais a computable set and for all functions f and relations
R in the language, f# is a computable function and R4 is a computable
relation.

Any computable structure will be isomorphic to infinitely many other
computable structures. It may happen, however, that two computable struc-
tures are isomorphic, yet that the only isomorphisms between them are non-
computable (as maps from one domain to the other). If so, then these struc-
tures lie in distinct computable isomorphism classes of the isomorphism type
of the structure. On the other hand, if there exists a computable function
taking one structure isomorphically to the other, then the two structures lie
in the same computable isomorphism class.

The computable dimension of a computable structure is the number of
computable isomorphism classes of that structure. The most common com-
putable dimensions are 1 and w, but for each n € w, there do exist structures
with computable dimension n, by a result of Goncharov ([8]). If the com-
putable dimension of A is 1, we say that A is computably categorical. This
notion is somewhat analogous to the concept of categoricity in ordinary model
theory: a theory is categorical in a given power if all models of the theory
of power g are isomorphic. Computable categoricity is a property of struc-
tures, not of theories: a computable structure A is computably categorical
if every other computable structure which is isomorphic to A is computably
isomorphic to A.

A standard example of a categorical theory is the theory of dense lin-
ear orders without end points, which is categorical in power w. One proves
this by taking two arbitrary countable dense linear orders and building an
isomorphism between them by a back-and-forth construction. The same con-

struction allows us to prove that the structure Q is computably categorical.
(More formally, let (w, <) be a computable linear order isomorphic to (Q, <).
Then (w, <) is computably categorical.)

Characterizations of computable categoricity have been found for certain
types of structures. Goncharov and Dzgoev ([9]) and Remmel ([15]) proved
that a linear order is computably categorical precisely if it contains finitely
many successivities (that is, if only finitely many elements have an immediate
successor in the linear order). Remmel also proved that a Boolean algebra
is computably categorical if and only if it contains only finitely many atoms
([16))

In the present paper we consider computable categoricity of trees, and
prove that no tree of infinite height is computably categorical. The question
of computable categoricity of trees of finite height is the subject of joint work
by Lempp, McCoy, Solomon, and the author, and will appear separately.

To prove that a tree T'is not computably categorical, we will construct a
new tree T" isomorphic to T, satisfying the following requirements R.:

Re : @. total = there exists & € T’ such that levely/(x) # levelp(p.(z)).

Clearly R. implies that ¢, is not an isomorphism from 7" to T. If we can
establish R, for every e, then, we will have proven that 7" is not computably
categorical.

Our notation is standard, but our definitions demand attention. A tree
consists of a universe T' with a strict partial order < on T such that for
every x € T', the set of predecessors of x in 1" is well-ordered by <, and such
that T' contains a least element under <. (Hence the tree is computable if
T is a computable set and < a computable relation.) In this paper, T will
represent the computable tree which we wish to prove not to be computably
categorical.

If two nodes x and y in 1" are incomparable under <, then we write « L y.
For each node x € T', we define the level of x in T to be the order type of the
set of predecessors of x in T'. We view our trees as growing upwards, with a
single element r (the root, or least element under <) at the base. Thus the
level of the root is 0, its immediate successors under < are at level 1, and so

on. The height of T' is defined as follows:
ht(T') = sup(levelp(x) + 1).

zeT

Thus, the height of T" will be the least ordinal « such that no node of T" has
level . In this paper we only consider trees of infinite height. The level of

a node of T' is generally not a computable function on T'. (For computable
trees of height < w 4+ 1, though, it is a ¥; function, since there exists a
computable function f(x,s) = [{y < s:y < «}| such that for all x € T,

levelp(x) = lignf(x, s).)

The reader should note that different definitions of subtree and tree ho-
momorphism have been used for different purposes in the literature. In this
paper a homomorphism from one tree (T, <) to another tree (1", <’) will be
amap f: T — T which respects the partial orders:

=y = [flz) <" fy).

(An embedding is a one-to-one homomorphism.) In other papers, a tree is
sometimes defined using the infimum function A, where the infimum = A y
of z and y is the greatest z such that z < = and z < y. Any tree under
one definition is also a tree under the other definition, but when the infimum
function is used, all homomorphisms are required to respect the infimum
function. This is a strictly stronger requirement: all maps respecting A
respect <, because
TRy &= xAy=uxa,

but not conversely. Kruskal’s Theorem, which we use in section 2, proves the
existence of the stronger type of embedding.

If the infimum fuction is computable, then the relation < is computable,
since it is definable in terms of A without quantifiers. Therefore, if the
computable trees (7, <) and (7", <') are isomorphic but not computably
isomorphic, then the corresponding structures (7, A) and (717, A\’) are also
isomorphic, but not computably isomorphic. (Notice, however, that (T, A)
and (T’,A") need not be computable, since computability of < does not
guarantee that we can compute the infimum function.) When we build 7",
we will ensure that not only <’ but also A’ are computable. Thus, our
theorem suffices to prove that even when tree is defined using the infimum,
no tree of infinite height is computably categorical. The definitions of tree
and tree homomorphism using the infimum are probably more common in
the literature. We adopt the definitions using < because for the purposes of
our proof, they will be far more useful.

Our definition of subtree arises from our definition of homomorphism.
Once again, therefore, it diverges from much of the literature: for our pur-
poses, a tree (17, <') is a subtree of (T, <) if T" C T and the inclusion map

4

respects the partial orders. Thus the infimum of two elements in 7" may not
be the same as their infimum in 7. Also, the root of T" may be distinct
from the root of 7", as in the case of the subtrees T[z], which we will be
considering frequently. If is a node in 7', then the subtree T'[z] is just the
tree

Tel={yeT:xz =2y}

The partial order on T'[z] is the restriction to T'[x] of the partial order < on
T. Therefore T[x] is a subtree of T" with root x. We define the height of T
above x by:

ht,(T') = ht(T[x]).

The reason for our use of < rather than A to define homomorphism and
subtree is twofold. First, < is the basic relation we used to define the notion of
a tree; A was derived from <. If A were the basic function, then computability
questions would be very different. Second, during our proofs about a tree
T we will be considering many subsets of T" which we will want to regard
as subtrees. Under our definition, they will be subtrees (as will any subset
of T' with a <-least element), but under the A-definition some would not be
subtrees.

A path ~ through T is a maximal linearly ordered subset of T'. It may
be finite or infinite. Any tree containing an infinite path must have infinite
height. A node is extendible if it lies on an infinite path through T, and
non-extendible otherwise. The extendible nodes of a tree T' (if any exist)
form a subtree of T', which we denote by T.i. Notice, however, that since
we allow T' to be infinite-branching, the height of T" above a node may be w
even if the node is nonextendible.

2 Kruskal’s Theorem

Although our results concern infinite trees, we will need the ability to ma-
nipulate finite subtrees. For this purpose Kruskal’s Theorem is essential. All
embeddings mentioned in this section are homomorphisms with respect to
both < and A.

Theorem 2.1 (Kruskal’s Theorem) (See [12], [17].) Let {T; : 1 € w} be
an infinite collection of finite trees. Then there exist 1 < j in w such that T;
can be embedded in T).

Every version of Kruskal’s Theorem which we will encounter has an ana-
logue of the following corollary:

Corollary 2.2 Let {T; :1 € w} be an infinite collection of finite trees. Then
there exists n € w such that for every 1 > n, T; can be embedded in some T}
with 7 > 1, and some T}, with k <t can be embedded in T;.

Proof. If the set
{t €w:(¥j >1i)T; does not embed in T;}

were infinite, it would itself contradict Kruskal’s Theorem. The same is true
of
{t € w: (Vk <) T} does not embed in T;}.

We can extend Kruskal’s Theorem to a version dealing with infinite trees.

Corollary 2.3 Let {T; : i € w} be an infinite collection of trees. (These
trees need not be finite, nor even finitely branching.) Then there exists an
1 € w such that for every finite subtree T' C T;, there exists 7 > 1 for which
T embeds in Tj;.

Proof. Suppose {T; : © € w} were a collection of trees contradicting this
corollary. Then for each ¢, we would have some finite subtree S; C T; which
did not embed into any 7} with 7 > 4. In particular, for each 1 < 7, 5; would
not embed in 5. Thus the collection {5; : i € w} would contradict Kruskal’s
Theorem. |

Corollary 2.4 Let {T; : i € w} be as in Corollary 2.5. Then there is an
n € w such that for every 1 > n and every finite subtree T C T}, there exists
J > 1 such that T embeds into T).

Proof. Tf not, then we could find an increasing sequence 19 < 11 < 15 < - - -
such that {7}, : k € w} contradicted Corollary 2.3. n

In this paper we will want to embed trees in such a way that nodes with
p predecessors are mapped to nodes with more than p predecessors. That is,
the level in the tree T of the node should be less than the level in T of its
image under the embedding of T into 7”. To map nodes to other nodes at
greater levels, we need the following stronger version of Kruskal’s Theorem,
in which one is allowed to “label” nodes of each tree. For our purposes, a
labelling of a tree T'is simply a map from T' to w. Proofs of this result appear

in [12] and [17].

Theorem 2.5 (Kruskal) Let {T; :i € w} be an infinite collection of finite
trees, each with a labelling [;. Then there exist 1 < j in w and an embedding

[T, = T; such that for every x € T;, Li(x) < Li(f(x)).
From Theorem 2.5 we derive the following result:

Corollary 2.6 Let {T; : i € w} be an infinite collection of finite trees such
that sup, ht(T;) = w. Then there is a number m € w such that for every
index i and every node x € T; with levely, () = m, there exists an embedding
[of T; into some T; with 7 > 1, such that

levely, (f(x)) > levelr,(z).

Proof. Suppose no m € w satisfied the theorem. Then for every m, we would
have an index 7,, and a node x,, € 1{;,,) with levelT(l.m)(:L'm) = m such that:

V embeddings f: T{;,,) — T; with j > i, levelr, (f(zn)) = levelT(l.m)(:Jcm).
0
Now the set {ig,71,42...} will be infinite, since each T; has finite height.
Moreover, the index ¢, satisfies Equation 1 not only for x,, but also for all
predecessors of x,,. Therefore we can choose 1,11 > 1,, for all m.
For each m, define the labelling /,, on the tree T(;,) by

L(x) = { 0, iflevely, (z)<m

1, otherwise

7

Thus I, (2,,,) = 1 for all m. However, for any embedding f : T(;,,) — T{s,)
with & > m, we have

levelTik (flem)) = levelT(l.m) () =m < k.

This forces (x(f(x,,)) = 0. Thus the sequence {T},,T;,,T},,...} contradicts
Theorem 2.5. |

The same result holds for all y above the level m:

Corollary 2.7 Let {T; : « € w} be as in Corollary 2.6. Then there is a
number m € w such that for every index 1 and every node y € T; with
levely. (y) > m, there exists an embedding f of T; into some T; with j > 1,
such that

levely, (f(y)) > levelr,(y).

Proof. The conclusion follows for every y € T; with levelr,(y) > m, simply
by finding that @ <y in T; with levely,(2) = m and applying the embedding
given by Corollary 2.6 for that z. []

Finally, we combine the version for infinite trees with the version for
embedding nodes at greater levels.

Corollary 2.8 Let {T; : 1 € w} be any collection of trees. Then there exist
an n and an m with the property that for all indices 1 > n, for every finite
subtree S C T;, and for any node x € S with levels(x) > m, there is an
embedding g : S — T; of S into some T; with j > 1, such that

levelr, (g(z)) > levels(x).

Proof. Suppose the statement were false. Now if g is an embedding of S into
1}, it is impossible to have levelr, (g(x)) < levels(z). Therefore, the negation
of the statement is as follows:

(VYn)(Ym)(F > n)(3 finite S C T;)(Jz € 5)
levelg(z) > m &
(Vg > 1)(V embeddings g : S — T})[levelr, (g(x)) = level s(x)]

We apply this negation first with n = 0 and m = 0, yielding an index
19 > 0 and a node x¢ at level > 0 in some finite subtree Sy of T;,. Inductively,

8

we apply the negation with n = 1 and m = k + 1 to get an index 1541 > 13
and a corresponding node zjy; at level > k + 1 of a finite subtree Siiy of
L5ty - From the negation, we see that every embedding of any 5 into any
T; with 7 > 1} fixes the level of x;. In particular, the same holds for any
embedding of Sy into any S; with 7 > k. However, we know that

ht(Sk) > levelg, (vx) > k,
so sup, ht(Sg) = w. Thus the set {S; : k € w} contradicts Corollary 2.7. m

We remark that in fact Kruskal’s Theorem proves the existence of an
embedding of T; into T which respects not only < but also A. The same
follows for all our corollaries. Therefore, if one prefers to consider computable
trees under A rather than under <, all our results in the remainder of the
paper will go through unchanged.

Finally, for computability-theoretic purposes, we note that if S and 7" are
finite trees (and we have strong indices for each, i.e. we know the number of
nodes of each), then the statement

3 an embedding g : S — T

is decidable, uniformly in S and T'. From the decidability of this statement,
we conclude further that if S is finite with known strong index and T is
any computable tree, then the question of embeddability of 5 into T' is a
Y1 question: it asks whether there exists a finite subtree of T into which S
embeds. Therefore, if we know that there exists an embedding of S into T,
then we can effectively find such an embedding, via an algorithm uniform in

S and 7.

3 w-Branching Nodes with ht, (7T') = w

We first consider computable trees of height w. The general theorem that
no such tree is computably categorical will be proven in the next section. In
this section, to prepare for that proof, we prove that a significant subclass of
such trees cannot be computably categorical.

We define the limit-supremum of a sequence (n;);e., to be

lim sup(n;) = inf sup(n;)
; Iy

T will be a given computable tree under the partial order <., with height w,
which is w-branching at a node xq. (That is, 29 has infinitely many immediate
SUCCESSOTS X1, Tg,....) We assume further that limsup; ht(7[z;]) = w. This
can occur two ways: either infinitely many 7T'[x;] have height w, or there exist
trees T'[x;] of arbitrarily large finite heights.

Since the universe of T'is computable, we may take it to be w, pulling back
via a 1-1 computable function if necessary to make this so. We will construct
a computable tree 7" isomorphic to T', such that there is no computable
isomorphism between them.

The isomorphism f from T to 7" will be a AY function, the limit of a
computable sequence of finite partial 1-1 functions f,, such that the domains
Ds = dom(fs) C T form a strong array of finite sets. We will ensure that
Ds C Dgyq for each s, although fs11 need not agree with f, on D,. (If
it did so for all s, then f would be a computable isomorphism, which is
precisely what we wish to avoid!) Also, we will force range(f) = w, so that
the universe of 7" will be w. The ordering <’ on T” will be given by lifting the
ordering < from T' via f, thereby guaranteeing that f is an isomorphism. To
make <’ computable, we force the approximations f, to satisfy the following
condition:

Condition 3.1 For all a,b € range(fs), we have a,b € range(fs+1) and
fon(@) =[G (0) = [T (@) < [7H(b).

To ensure that 7" and 7" are not computably isomorphic, we impose the
requirements R..

R.: . total = (Jx € T") [levelr(z) # levelp(p(x))].

This will suffice to prove the proposition.

10

Proposition 3.2 Let T be a computable tree of height w containing an w-
branching node xq with immediate successors xy,q,. .., such that

lim sup ht(7'[z;]) = w.

K3

Then T is not computably categorical.

Proof. As previously remarked, we may assume the universe of T' to be w.
A successor tree of xg is a tree of the form T[z;] with ¢ > 1. ({@1,22,...}
are all the immediate successors of xg, as stated above. This set need not be
computable.) Corollary 2.8, applied to the successor trees, provides m and n
in w such that for every finite subtree S C T'[x;] with ¢ > n and every node
x € S with levelg(x) > m, there is an embedding of S into some T'[x;] with
J > 1 which maps x to a node of greater level. We fix these values of m and
n for the rest of the proof. (Notice that therefore the proof is not uniform in
T.)

Let T, be the subtree of T" with nodes {r,zq,x1,...2,} U{0,1,2,...5s},
under <, where r is the root of T

For our purposes, the finite subtrees S will generally be of the form Dj[y],
where Dy O T is the domain of f, and y is an immediate successor of xq
in Dy (although not necessarily in T'). We will call D[y] a successor tree
at stage s. Notice that it may happen that two successor trees which are
distinct at stage s acquire a common root at stage s+ 1, e.g. if s +1 = z; for
some ¢, and thus merge into a single successor tree at stage s + 1. A given
successor tree at stage s, however, can only be merged this way finitely often,
since each of its nodes has finite level in T

The following construction yields a computable tree T" which is isomor-
phic to T but satisfies every requirement R., proving that T is not com-
putably categorical. The witness nodes w, will be nodes in T[xz¢], and will
be approximated at stage s by a node w. ;. The successor tree at stage s
containing w, , will be denoted S, ;. This is the successor tree which we use
in order to satisfy requirement R.. The sequence (w, s)sc, will converge to
some w,, and each successor tree in 1" will contain at most one w.. The
isomorphism f from T to T’ will be approximated at stage s by a finite
map fs with domain D,. If . s(fs(wes)) converges to a node at the same
level of T, as the level of fi(w.s) in T!, then we redefine fs11 and w41
with fep1(we 1) = fo(wes) at a higher level in T, ;. (The level of a node
in T} is just the level of its preimage under f; in Ts.) Doing this requires

11

us to redefine f,4; on the entire successor tree containing w, ,, in order to
satisfy Condition 3.1, and we will appeal to Corollary 2.8 to ensure that the
necessary embedding exists. Thus f(w.) will be the witness required by R..

Figure 3.3

_ BATREETS
8=w 6 LS e S
D es D / :

S S

st1

15=w

est+l

Figure 3.3 gives an example of our basic strategy. S, s is the successor tree
which we use to satisfy R.. We suppose that we have found at stage s that
©e(fs(we,s)) = 6, which lies at level 2 in D;. This is bad, because fs(w, 5) lies
at level 2 in D!, so it appears that ¢, might be an isomorphism from 7" to
T. S.sis the successor tree above the node 4 in D,, and we use Corollary 2.8
to find an embedding of S, ; upwards into the successor tree above the node
10 in Dytq. (The embedding is indicated by the arrow to D ,.) We use this
embedding to make 16V61D2+1(f5+1(w575+1)) > levelp (fs(wes)), by defining

12

We add new values to range(fs1) for for1(4), fs+1(6), fs+1(8), and fs11(10).

Thus levelp (@e(for1(West1))) # leveID/ For1(West1))-
Construction: f is the identity map with dom(fo) = Tp. The witness

fs-l-l so that fs-l-l(g) = f5(4)7 fs+1(12) J(C()7 and fs-l-l(we S-I-l) = fS(w&S)'
|

nodes w, o and the successor trees S, are undefined for aH e. We let Dy =
dom(fy). (At each stage s, Dy and Ty will both be subtrees of T, with
Ts C Ds.) We immediately define the successor trees Ty[x;] with 1 < i <n
to be frozen.

At stage s + 1, we consider the successor trees of z¢ in D,. For each
successor tree S (if any) of height > m which is not frozen and does not
contain S, for any e < s, we choose the least ¢ < s such that 5., is
undefined, let S, .41 = S and choose w, ;41 to be the <-least node at the
highest level of S. Thus levels, _,, (we 1) = m.

We then consider in turn each e for which S, ; was defined.

Step 1: If there is an ¢ < e and a z € T4y such that xg < z < w;; and
2 < we,s, then we immediately make S; ;41 and w; ;11 undefined for all 7 > e,
and declare all 5;; with j > e frozen.

(This step ensures that if two successor trees S; s and S, s have acquired
a common root above xg, thus becoming the same successor tree, then we
use the single new successor tree to play against requirement R; only.)

Step 2: Otherwise, we consider fs(w.), the potential witness for require-
ment Re. If g s(fs(wes)) diverges, or converges to an element not in Ds, or

if levelp (@es(fs(wes))) # levelp, (we), then we define:

We,s4+1 = We,s

fs—l—l = fs on Se,s
55754_1 == {y - DS U Ts-l—l : (y A w575_|_1) - 1’0}.

(Here y A we 541 represents the infimum in Dy U Tsyq, which is a finite tree.
Taking the infimum over all of T" would not be computable.)

(This Ses41 is just the same successor tree as S., along with any new
elements that may have appeared in this successor tree at stage s.)

Step 3: If level p, (e s(fs(wes))) = levelp (wes), then find the least stage
t > s with Ds C T; such that the following holds:

Condition 3.4 There exists a z € T, such that:

1. z is an immediate successor of xg in 1Ty, and

13

2. Tyz]Nn Dy =0, and
3. There is an embedding g of S. s into Ty[z] with

levelp, (g(wes)) > levelp, (we).

Let Sesp1 = 5, with we 511 = g(wes). (By our choice of g, this forces
levelr,(we s41) > levelp, (wes). Also, levels, . (wesp1) > levels, (wes) >
m.) For every x € S.;, define fo11(g(2)) = fs(x), and define fi11(x) to be
the least element which is not yet in range(fs41) U range(fs). Declare S, ; to
be frozen, so that at no subsequent stage s’ will any w; s be defined in the
successor tree containing S.,. Having executed Step 3 for e, we let w; 44
and S; 41 diverge and freeze 5, for all j > e, and do not execute Steps 1,
2, or 3 for any j > e.

(We execute Step 3 if R. is not satisfied by fs(w.s). By Corollary 2.8,
there must exist a successor tree T[z;] into which the required embedding
g exists, because levelg, s(w.s) > m and S.; C T[x;] for some ¢ > n. The
successor trees T[x4],...T[x,] were all frozen right away at stage 0, so none
of them contains S. ;. Thus we have found a z such that f; is completely
undefined on the successor tree S C T} containing z, and S, ; embeds into
S via a map ¢g. We use this embedding to satisfy R., as in the example of
Figure 3.3. Freezing S, ensures that fy will never again be redefined on
Se,s, so that limy fy must exist.)

Having completed these three steps for each S.,, we now define D,y
to be (Ue 56754_1) U Ds U Tspy. For any y € Dj such that fi11(y) is not
vet defined, take foy1(y) = fs(y). (This includes nodes on already-frozen
successor trees, nodes on successor trees of height < m, and nodes not on
Txo].) For each y € Dy, if fo41(y) is not yet defined, take f;11(y) to be
the least integer not already in range(fs41) Thus Dsyy = dom(fsq1). This
completes the construction.

We now prove that this construction really does yield a tree T which is
isomorphic to T but not computably isomorphic to it.

Lemma 3.5 For every e, the sequence w. , converges to a limit w..

Proof. Assume by induction that the Lemma holds for every ¢« < e. Notice
that in our construction, once w,, and 5., are defined, the only way they
can become undefined is in Step 1 (if a new node of T[xzg] appears which is a
predecessor of w; ; for some ¢ < e) or Step 3 (if w; s # w; 541 for some 1 < e).

14

Once we reach a stage so such that w; ; = w; for every 1 < e and s > 54 and
every predecessor of every w; (i < e) has appeared in T, we know that once
w, s 1s defined for some s > sq, it will stay defined at all subsequent stages,
although its value may change. Also, w,, is only defined at stages s such
that w; 5 is also defined for all ¢ < e.

By induction, for every i < e, (w; s)se. converges to some w;. Pick a stage
s such that w; s = w; and levely (w;) = levelp(w;) for all i < e and s > sq.
Now if s > sg and w,, is not defined, then no w;, with 5 > e is defined
either. But since lim sup; ht(7[x;]) = w, there are infinitely many successor
trees of height > m, so a new one, S, with SN D,, =), must appear at
some stage s > sg. It will not be frozen, since w; , = w; for all 1 < e, so it
will be chosen as S, ,, and one of its nodes of maximal height will be w, ;.
Then w,; 1s defined for every ¢ > s, since every predecessor of every w; with
1 < e is already in T. Thus, by induction, for every e, w, , is defined for all
sufficiently large s.

Once it is defined at a stage beyond sg, w. s will only be redefined at a
subsequent stage t+1 if level 7, (¢c (fi(wey))) = levelp,(w.) and Condition 3.4
holds. Moreover, even when it is redefined, we will still have fi11(we 1) =
fi(wey). Since the tree T' has height w, we know that for all ¢,

levelr, (pe(fi(we))) < levelr(pe(filwer))) < w.

But (levely, (pe(fi(wet))))tew is a non-decreasing sequence, so it can only
change value finitely often. Thus, once defined, w, , will only be redefined
finitely often, so it must converge. []

Lemma 3.6 For every x, lim, fy(x) exists.

Proof. We know x € Ty C Dy = dom(fs) for all s > x. Furthermore, once
fs(x) is defined, the only way we can have fs(x) # fop1(x) is if @ lies on
a successor tree S, ; for which w, s is redefined or undefined at stage s + 1.
Once this happens, S, is declared frozen, and f;[Scs = foy1] S, for all
t > s+ 1. Thus, not only does (fs(x))se. converge, but in fact it changes
value at most once. [

We define the function f = lim, f;.

Lemma 3.7 The functions fs satisfy Condition 3.1. (Hence the relation <’
defined on T' = range(f) by

a<'b < (Vs)la,b e range(f,) = f7'(a) < f71(b)]

15

is computable and gives a tree structure on w).

Proof. The construction makes it clear that range(fs) C range(fs41) for all
s. Now fix a,b € range(f,). If f7'(a) # fii(a), then f;'(a) must lie
on a successor tree S, such that w.; # w.s11. Hence for1(g(f71(a))) =
fs(f7H(a)) = a, and [} (a) = g(f;'(a)), where g is the upward embedding
of S. s into S, 441 used in the construction. We consider four cases:

Case 1. Suppose f;'(b) € S., as well. Then also [} (b) = g(f;(b)),

S
and since g is an embedding, we have

fola) =[G (0) = [T (a) < f71(D).

Case 2. Suppose f71(b) € T[xo) — Ses — {xo}. Then f7H(b) L f7(a).
By Part 2 of Condition 3.4, we know [} (b) € T[xo) — Se 541 — {20}, so also
fia () L (a).

Case 3. Suppose [;'(b) < xo. Then f7'(b) < f7'(a), and f}(b) =
foH () 2 wo < [(a).

Case 4. If f71(b) L o, then f7'(b) L f;'(a), and also f(b) =
foH0) Loag < fs_-l—ll(a)v SO s_-I—ll(b) L fs_—l—ll(a)‘

A similar analysis applies if f7'(a) = f}(a) and f71(b) # f4(b). =

Lemma 3.8 The tree (1',<') is a computable tree isomorphic to T.

Proof. We defined every f; to be a 1-1 map, with range(fs) C range(fss1)-
By Lemma 3.6, then, f is also 1-1.

The range of f is w since at each of the (infinitely many) stages at which
we needed a new element for the range of f;, we took the smallest one avail-
able. If f 2} (y) # f;'(y) for some s, then y = f,(x) for some z on some S,
which was redefined at stage s 4+ 1, and fs__l_ll(y) € Sest1. But S, can only
be redefined finitely often, since levelp(¢.(f(we))) < w, so eventually f;*(y)
will stabilize, forcing y € range(f).

Moreover, dom(f) = |J, Ds =1, so f is a bijection from T to 7”. Since
the partial order <" on 7" is defined by lifting < from T via f, we know
that f is an isomorphism. Computability of <’ follows from Lemma 3.7:
given a,b € T’ find a stage s such that a,b € range(f;). Then ¢ <’ b <—

Ja) < STHb). .
Lemma 3.9 For every e, either p.(f(w.)) diverges or

levelp:(f(w.)) # levelr(we(f(we))).
Thus requirement R. is satisfied by the element f(w.).

16

Proof. Let sy be a stage such that for all s > s, we s = we and fs(w,s) =
f(we). Since w. s is never redefined after stage sg, we know that either
we(f(we)) diverges, or levelp (pc(f(w.))) # levelp (w.) for all s > sq.
But since |J, Ds; = T, the latter of these implies that levelr(p.(f(w.))) #
levelp(w.). Now levelp(w.) = levelp/(f(w.)) since f is an isomorphism, so
e maps the element f(w.) of T” to an element at a different level in 7. Thus
R. is satisfied, and ¢, is not an isomorphism from 7" to T. []

This completes the proof of Proposition 3.2.

17

4 'Trees of Height w

4.1 Main Theorem

We now prove the desired result for trees of height w.
Theorem 4.1 No tree of height w is computably categorical.

The theorem will be proved in subsection 4.5, after we have established
the necessary five propositions, covering five different types of tree. We use
the notions of an extendible node and a side tree to define these cases. Recall
(from page 5) that a node « € T is extendible if there exists an infinite path
through T' containing x. The set of all extendible nodes of T, if nonempty,
forms a subtree of T', denoted by Tiy. Texy need not be computable, even
though T is.

The side tree above a node x is denoted S[z], and is a subtree of T[z].
Sl = fy € Tlol: (V2 € Tw <2 <y = = ¢ Tuu]}

(x itself may or may not be extendible.) Equivalently, consider the extendible
immediate successors w1, xg,... of x. The side tree S[z] is precisely T[x] —
U; T'[a;]. Thus « itself is the only node of S[x] which can be extendible in
T, and S[z] contains no infinite paths, although it can have height w if it is
infinite-branching. S[x] is not necessarily computable.

4.2 Three Cases Using Proposition 3.2

Proposition 4.2 Let T be a computable tree of height w, and suppose fur-
ther that T has height w above some nonextendible node yo. Then T is not
computably categorical.

Proof. Let T and yg be as in the proposition. We claim there exists an o € T
with w-many immediate successors, such that ht,,(7') = w and T has finite
height above every = > x¢. Indeed, consider the subtree

S ={ax €T :ht,(T)=w & x is nonextendible & x [yo}.

S contains a —<-least element (either yo or some predecessor of yp), so S is
indeed a subtree. However, S contains no infinite paths, so it must contain
terminal nodes, all of which will lie above yo. We take xg to be one of these.

18

(o is terminal in S, that is; 7" will have height w above w,.) Therefore,
T has finite height above every x > x9, and moreover, this xy must be
an w-branch point, since otherwise one of its immediate successors in T’
would also be in S. Let x1,z3,... be the immediate successors of g in
T. Then sup, ht(T[z;]) = w, because ht, (T) = w. But ht(T]z;]) < w
for all ¢« > 1, since otherwise x; would lie in S. Therefore we must have
lim sup; ht(7[x;]) = w, and so Proposition 3.2 applies to T and T is not
computably categorical. []

Proposition 4.3 Suppose that the computable tree T of height w contains
an extendible node xo such that the side tree Slxo] has height w. Then T is
not computably categorical.

Proof. 1f xo has an immediate successor in S[xg] above which T' has height
w, then we apply Proposition 4.2 to this node. If all immediate successors
of 2o in S[xg] have finite height, then there must be infinitely many of them,

say 1,Tg,.... Then limsup,s; ht(T[z;]) = w, because sup,, ht(T[z;]) =
w. Moreover, any immediate successor of x¢ in T either lies in S[xg] or is
extendible. Hence Proposition 3.2 applies to xg itself.]

Proposition 4.4 Suppose that in the computable tree T of height w, there
is a node xq € Ty with infinitely many immediate successors in Tey. Then
T is not computably categorical.

Proof. ht(T]y]) = w for every immediate successor y of xg in Tey, so Propo-
sition 3.2 applies to zg. []

4.3 An Isolated Path

Proposition 4.5 Let T be a computable tree of height w. Suppose there is
a node xo € T which is uniquely extendible, i.e. which lies on exactly one
infinite path v through T. If all side trees at nodes on v above xo have finite
height, then T' is not computably categorical.

Proof. Let x¢ be a uniquely extendible node on an infinite path 4 through
T, such that all side trees at nodes on v above z(y have finite height.

Let xg < 21 < 3 < ... be all the nodes of v above z¢. We apply Corollary
2.4 to the set of side trees S[z;] above nodes of v, yielding an n such that for
every ¢ > n and every finite subtree S C S[x;], there is some j > ¢ for which

19

S embeds into S[xz;]. Our diagonalization argument will take place entirely
above x,. (Notice that the sequence (z;);c., cannot necessarily be computed,
and that the choice of n from Corollary 2.4 is nonuniform.)

We define Ts = {r,xo, 1,...2,} U{0,1,...s}, a tree under <. (As be-
fore, r represents the root of T'.) We computably approximate the sequence
(2;)iew. For each s, let

{xn = Tn,s < Tp+1,s <= xls,s}

be the chain of maximal length in Ti[x,]. (If there is more than one such
chain, take the first such in the dictionary order derived from <.) Since all
side trees have finite height, clearly z; ; — x; for each 1. Indeed, z; ; = x; for
all s such that {x,,...2,} C Ts, where m = max;;(j + ht(5[z;])). (How-
ever, ht(S[x;]) need not be computable in j.)

The requirements R, are the same as in Proposition 3.2:

Re: e total = (Fz € T") [levely:(z) # levelr(p.(x))].

This time, however, we will say that R. is satisfied at stage s only if the
witness node w, ; is defined and @, s(fs(w.s)) converges and lies at a level of
T, different from levelr, (w.).

Instead of simply freezing nodes, as in the proof of Proposition 3.2, we
must freeze them with priority e. Thus, at each stage s, we define envelopes
E. s for each e, to provide negative restraints on redefining the isomorphism
f on elements of . ;. If x lies in the envelope F. ;, then foi1(x) # fs(x) only
if necessary for the sake of a requirement R; with ¢ < e. Thus the envelopes
will ensure that the functions f; converge to a limit f with range w.

Construction: f; is the identity map on 7j, and the witness nodes w. g
are undefined for all e. We define F.o = () for all e.

At stage s + 1, we search for the least e < s+ 1 such that one of the
following holds:

1. w. s is undefined.

2. For each ¢ with n <1 <14, the following holds:
Tistl 2 Wes = Tispl = Weol,s

3. wes is defined and @ s(fs(wes)) | and

levelp, (we s) = levelp (e(fs(wes))).

20

(Such an e must exist, because ws;y s is undefined.) Let w; ;41 = w; s and
Ei,s—l—l = {Z € D5_|_1 : (EIZ € Ei75) Y j Z}

for all i < e, and let w; 11 be undefined and £, 41 =0 for all j > e.
If case (1) holds for e, we let w, 511 to be the <-least node in D;[x,] with
levelp z,)(we s41) > € which does not lie in any F; ; with ¢ < e and such that

(EI])[x],s j We, s+1 & Tjs ﬁ we—l,s—l—l]-

We define . ;41 = Dsp1 = Dy U Tsyq. (If no such node exists, then we s41
remains undefined, with F. ;1 =0 and Dy = Dy U Tiyq.)

If case (2) holds, we let w41 diverge with F. .y = @ and Dy =
Ds U Tsyq. (This is the case where w._;, and w. s appear to lie in the
same side tree along ~, in which case we cannot embed one upwards without
disturbing the other.)

Otherwise, case (3) holds. We search for the least t > max(D;) satisfying
either of the following two conditions. Let m; = max{k : zy; < w.,} for
each ¢.

Condition 4.6 There exists 1 < e such that T, 1 = w;;.
Condition 4.7 There exists an embedding g of Ds|xm, 4] into Ti[wm, 1] with
levelp, (g(wes)) > levelp, (we).

If Condition 4.6 holds for ¢, then we make w, s1; undefined, and set
Eesyr=0and Doy = Dy U To4.

Otherwise, we use the embedding ¢ given by Condition 4.7 to satisfy
requirement R.. Let w.s11 = g(w.s), and for all y € Dg[a,,,], define

for1(g(y)) = fi(y). TFor those y € D[z,] — range(g), take fo1(y) to
be the least element of w that is not yet in range(fs11) nor in range(fs). Let

Dgi1 = Dy UTy, and let the envelope E, 41 = Dgyy.
(For the sake of clarity, we note that if x,,, ; does not lie in D;, then

DS[xmtﬂf] = {y €D, Tt y}'

We do have w, s € Ds[xp, 4] by definition of my. If D[z, +] does not have a
single root, then we consider each minimal element in it to have level 0.)

21

In all three cases, we then define fs11(y) = fs(y) for those y € D, on
which f;11 1s not yet defined. Also, for each y € Ds1y — D on which fg 1s
not yet defined, choose the least element of w which is not yet in range(fs41)
to be fs11(y). This completes the construction.

(The idea of the construction is that each witness element w. ; lies in the
side tree above some z;. When we need to satisfy R., we do so by embedding
the side tree containing w, ; into another side tree at a higher level. We define
fsg1 so that fopi(wesi1) = fs(wes). Since levelr(we(fs(wes))) is finite, we
will only have to repeat this process finitely often before reaching a stage s
such that fs(w.,) will satisfy R. permanently.)

We first must prove that at each stage s at which we search for a ¢, we
eventually find one. This requires a lemma guaranteeing our ability to embed
trees upwards in T'[z,].

Lemma 4.8 For every x; = x, and every t, there is an embedding g of the
tree Ty[x;] into T[x;44].

Proof. By the choice of n and Corollary 2.4, we know that every finite subtree
of every S[z;] with 7 > n embeds into some S[zx] with & > j. By induction,
then, every finite subtree of every such S[x;] embeds into infinitely many
S[xg] with k& > j. Since there are only finitely many side trees S[x;], ... S[x;,]
which intersect the finite tree T, we can embed S[xj,] N T} into some S[xy,],
then embed S[x;,] N T} into some S|z, | with k1 > ko, and so on. The union
of these embeddings is the desired embedding g. |

Lemma 4.9 Fix any stage s, and take the corresponding e chosen in the
construction. Then there exists a t for which Condition 4.7 holds.

Proof. Since each sequence (x;+)te., converges to x;, we know that m; con-
verges to a limit m as ¢ — oco. Thus w. s € S[x,], and m > n. Moreover,
there exists ¢ such that Dy C T;,. By Lemma 4.8, there is an embedding
g : Ti[xm] = T]xms1], and then

levelp, (w, s) < levelr,(w,s) < levelp(g(we,s))
since levely, () < levelp(g(x)) for every x € Ty[x,,].]

Lemma 4.10 For every e, the sequence (wes)sc., converges to a limit w.,
the sequence (fs(w.))sew converges to a limit f(w.), and either o (f(we)) T

or levelr(p.(f(we))) # levelr(w.). (Since levelp(w.) = levelq:(f(w,)), this
satisfies R..)

22

Proof. Assume by induction that there exists a stage sg such that for all
s > sg and all © < e, the hypotheses of the theorem hold: w; s = w;, fi(w;) =
f(w;), and either ¢;(f(w;)) T or R, is satisfied by f(w;) at stage s. Moreover,
assume zy, = 2 for every £ < j + 1 and every s > sg, where 7 is maximal
with x; < we_y, Then my; > 741 for every s > s¢, s0 @, s 2 w; for all z < e
and s > sg. If w,,, 1s undefined, then at the first stage s after sq at which
ht(Ds) > ht(FEe_1)+ levelp(a,), we s will be defined. Moreover, it will never
again become undefined, since Condition 4.6 will never again be satisfied and
case (2) will never apply.
Now if there is no stage s > sg such that ¢, s(w.)] and

levelp, (we s) = levelp (@ s(fs(wes))),

then neither w, s nor fs(w.) will ever be redefined after so. Then R, will
be satisfied by w. = lim; w, 5, because level (. (fs(wes))) is finite. Thus the
lemma will be satisfied for e.

If there are stages s > so where ¢ (fs(wes)) | and levelp (w.s) =
levelp, (e s(fs(wes))), then Condition 4.6 will not hold at those stages, so
at each such s we will find a ¢ satisfying Condition 4.7 and follow the cor-
responding instructions for that {. Thus, w, 41 will be redefined, but with
for1(wWe st1) = fs(wes). Moreover, by our choice of g, we will have

levelp_, (we,s41) > levelp, (we).

Now levelp_ (e s(fs(wes))) may increase as s increases, but only finitely of-
ten, since fs(w,) is constant after so and levelp(@.(fs(wes))) < w. There-
fore, we eventually reach a stage s; with

levelp, (¢e(fs (wes,))) = levelr(pe(fs, (wes,))),

and for all s > s; + 1, R, will be satisfied by w, ;. Therefore w, s will never
again be redefined, and R, will be satisfied by w. = lim; w, . [|

Lemma 4.11 For every x € T, the sequence (fs(x))se. converges to a limit.
The limit function f = lim, f, has range w.

Proof. Fix x. The construction ensures that « € T, C D, C D, = dom(f)
for all s > a. If x, £ x, then fi(x) = foy1(x) for all s for which fs(x) is
defined.

23

Assume, therefore, that z, < . Let k = max{i : #; < a2}, so x € S[ay].
Let so be a stage such that for all s > sy and for all © < k 4+ 1, we have
x5 = x;. Also, let h = max{i+ ht(S[z;]) : ¢« < k+1}. Then by Lemma 4.10,
there exists a stage s; > sg such that for all s > s; and for all + < h, we have
Wi s = W;.

Suppose s > sy is a stage such that f; fsy1, and take the corresponding
index e. Then Condition 4.7 is satisfied for some ¢t > s, yielding an embedding
g : Ds[@m,] = Ti[m,+]. By the construction, w, s # we s41, s0 we must have
e > h. This forces levelp_ (w.s) > h, since each w;11, is at a level > ¢, so
wes & Uicp S[xs] by choice of h. Hence ap41 = we,, and my > k + 1 by
definition of m; (and since ¢ > sg). But then apy; = xpy1s < Ty, 4. Since
x € Sxy], we have xpy1 A @, 80 2, + A ©. Hence x ¢ Da,,,+], and so
x ¢ dom(g). Therefore foii(x) = fs(x) for all s > s;. We define f = lim, f;.

To see that range(f) = w, let y € w. We assume inductively that
{0,1,...y — 1} C range(f). Therefore, if y ¢ range(f), there would exist
a stage at which y would be the least available fresh element, and so there
must be a stage sp and an x € T for which f, () = y. Moreover, then
y € range(fs) for all s > sq.

If there exists some stage s; > so at which f, _1(z) # f5, (2), say for the
sake of a requirement R., then there must be an 2’ such that f;, (z') = y. At
each such sy, we will have 2’ € E, . Indeed, by taking s; so large that all
R; with ¢ < e are satisfied at all stages s > s;, we may assume that 2’ € F,
for all s > s;. But then fi(2') = for1(2’), so y = f(a') € range(f). [|

Thus fis a 1-1 AY map from 7' to w, hence an isomorphism from 7' to
the tree (7", <), where T’ = w and <’ is just the ordering <, induced on 7’
from T" by f.

Lemma 4.12 The maps fs satisfy Condition 3.1. Thus <" is computable.

Proof. The construction ensures that Dy C Dyyq for all s. For every = €
Ds — Dslx,], we have fs(x) = fsp1(x). Therefore, Condition 3.1 clearly
holds if either f7'(a) or f7'(b) is not in T[z,]. So take x,y € D,[z,], with
a= fy(z), b= fi(y), and let 2’ = f(a) and v’ = f}(b). We have four
cases, depending on whether or not x = 2’ and y = y'.

The first case, where + = 2’ and y = ¢/, is trivial. Also, if © # 2/
and y # y', then @ and y must both lie in D2, +], for which we find an

embedding ¢ into some Ty[x,,, ¢]. In this case,

r=y <= g(z)2gly) = ' =<y

24

since g(x) = 2’ and g(y) = y'. Thus Condition 3.1 is satisfied in these two
cases.

Suppose # # 2’ and y = y'. Then @ € Di[wp,4]. If y € Ds[anm, 4] also,
then «' = g(x) < g(y) = y'. If not, then either y < x,,, + (in which case y < «
and y < g(x) = 2/, since range(g) C T[@m,+]) or y L x,+ (in which case
y Lxandy L g(x) =2, again because range(g) C T,)

The preceding paragraph shows that in the third case, not only

r<y < 2 <y

but also
rly < 2 Ly

Hence by symmetry, the fourth case, with & = 2’ and y # v/, is also satisfied.
|

Thus (77, <") is a computable tree, isomorphic to T', which satisfies every
requirement R.. Hence T' is not computably categorical, proving Proposition

4.5. []

4.4 No Isolated Paths

An extendible node which lies on more than one infinite path is called multiply
extendible, as opposed to the uniquely extendible nodes of Subsection 4.3. We
now consider the case of a tree in which every extendible node is multiply
extendible. This implies that every extendible node lies on infinitely many
infinite paths. (We also assume that the tree contains at least one extendible

node!)

Proposition 4.13 Let T be a computable tree of height w such that T, is
non-empty and finite-branching and every x € T, lies on infinitely many
infinite paths through T'. 1If all side trees in T have finite height, then T is
not computably categorical.

Proof. We use the same requirements R, as in Propositions 3.2 and 4.5. The
idea of this construction is that for each e, we devote an entire level [, of T’
to satisfying R.. By the assumptions of the Proposition, we know that there
exists at least one extendible node at level [., and at most finitely many of
them. Also, there may exist any number of nonextendible nodes at level [..

25

Since we cannot tell the extendible nodes from the nonextendible ones at any
stage s, we consider all the nodes at level [, ; at that stage, and denote them
by v? vl

s Ve gne- Veys .

Now since the Proposition assumes that the side tree above each ex-
tendible node has finite height, and since there exist only finitely many ex-
tendible nodes at levels < [, there must exist a number d. such that every
node x at level [, with ht,(7s) > d. must be extendible. We do not know
d., but at each stage we focus on those nodes at level [, ; in D, D T above
which Dy has maximal height. Thus, we will eventually be considering only
extendible nodes and their successors. Above these nodes we look for up-
ward embeddings to use to satisfy R.. Since every extendible node x lies on
infinitely many infinite paths, and since Tey is finite-branching, T'[x] must
contain a subtree of type 2<%, and any finite tree can be embedded into 2<¢
at arbitrarily high levels. Thus we can find upward embeddings of D[x]
above whenever needed, as long as z is extendible.

(For trees defined using the infimum function, it is not immediate that
the required embeddings exist. For instance, a tree with three nodes at level
1 does not embed into 2<¥. Therefore, we need the following lemma.

Lemma 4.14 Let T be a tree such that Ty is nonempty and finite-branching
and contains no isolated paths. Then all but finitely many nodes x € Ty have
the property that for every finite S C T[x], there exists y = x with y € Ty
such that S embeds into Ty].

Proof. Suppose the lemma failed, so the the set U of nodes where it fails
(with the root r of T" adjoined) forms an infinite subtree of Teyi. Since Toy is
finite-branching, Konig’s Lemma provides an infinite path through U, which
in turn yields an infinite path through 7. containing infinitely many nodes
r < ug < u; < -+ from U. Now for each i, some finite S; C T'[u;] embeds
into no T[y] with u; < y. In particular, S; does not embed into any 7'[u;]
with 5 > 7. Such a sequence would violate Lemma 2.3.]

It follows that, by considering only nodes at sufficiently high levels, we
can guarantee the existence of A-preserving embeddings. Thus Proposition
4.13 also holds for trees defined using the infimum.)

The notation is as in the previous proofs, except that there may be more
than one potential witness for a given requirement R. at a given stage s.

We denote these witnesses by w? _,w!wc%*. Also, we will keep track

€,57? e,s?

26

k

€,5

of the original position of each of these witnesses. When w
k

is defined, we
575 stays
fixed. The only stages at which vis will be redefined are those at which
a requirement of higher priority receives attention and those at which vis

: ko ok
will set v = w; , but as w;

is embedded further up in the tree, v

acquires a new predecessor. For a given e and s, the elements vés will be at
the same level for all £, and we will denote this level by [;.

Let r be the root of T. We define T, = {r}U{0,1,...s}, a tree under <.
Again, we will define envelopes F, ;, in order to ensure that range(f) = w.

The requirements R, are as follows:

R.: . total = (Jx € T") [levelr(z) # levelp(p(x))].

575 is embedded up-
is newly defined at stage s, or if the height of the

Re receives attention at stage s if some witness node w
wards at stage s, if w?,
envelope . ; increases at stage s. When this happens, all actions previously
taken for the sake of requirements R; with 7 > e are injured. However, this
will only occur finitely often for each e.

Construction: fjis the identity map on Ty, and the witness nodes wso
and their original positions Uf,o are undefined for all e and k. Also undefined
are n.g and [, o for all e, and all £, o are empty.

At stage s + 1, we execute the following steps for each e < s, starting
with e = 0. If a requirement R, receives attention, then we do not execute

the steps for any 5 > e.

L. If w?, is undefined, and there exists an element x of D, with

levelp, () > max U{levelps(y) cy € Bt
1<e

Ne,s+1

e,s+1

of Dy at level [, ;1. Let UQS_H = wss_l_l for each k. Requirement R, has

now received attention. Let D,y = D, U1y, and set F. ;11 = Dgyq.
For each 5 > e we set

Bijsnn={y € Ds: (32 € E;,) y < 2}

then let l. 41 be its level, and let w?, ... w be all the elements

2. If wgs is undefined, and there does not exist any element x at a suf-
ficiently high level to satisfy condition (1), then let w, ;41 T also, and
set

FEesy1={y€eDs:(Fz€ E.5) y 2z}

Then R. has not received attention at this stage.

27

3. Otherwise, w?,...wc5° are defined, as are the corresponding v* .. Find

the least stage ¢ > max(D;) such that one of the following holds

(a) There exists m < n., and an embedding g : D,[v]] — Ti[v]]
such that
levelr, (g(w,)) > levelp (w) + s.

(b) There exists @ € T} with levely,(x) = l. s and ht,(T}) > s, such
that either « ¢ D; or levelp (x) < . ;.

If (b) holds and (a) fails at stage ¢, let wf
and let [541 = les For each k, 1f levelp, (v k) = lw, let Ue,s-l—l =
vés; otherwise let vF 41 be the predecessor of ves at level [, s in Dy.

If there exist elements @ € D, with levelp (x) = [, such that = ¢

0 1+ne,s 2+ne,s .
{02,411, ... v 551}, then define those @’s to be w, 1", w. 15", ..., with

Vg o411 = 575“ for each, and define n. ;41 to be the greatest superscript
required. (If there are no such z, then n. 541 = n.s.) Define

FEesi1={ye Ds:(Fz€ E.;) [y = =]}
If ley15s 4 and ht(Ees41) > le1s, then we say that R, has received
attention at stage s 4+ 1, and for each j > e we set

Ejspr={y € D, : (32 € Ej,) [y 2 2]}
Otherwise R. has not received attention.
If (a) holds at stage ¢, let m be the least index for which it holds, and
let g be the corresponding embedding. If ¢, ,(fs(w,)) T, or if

levele(S‘Q@,S(fS(was))) 7£ levele(was%

then we proceed exactly as in the preceding paragraph. Otherwise,
R. receives attention as follows. For every node y € D,[v™], define
fsr1(9(y)) = fs(y) and define fo11(y) vto be the least element of w
which is not already in range(fs41) U range(fs). Let wl, = g(w,).

1 —w forallk<n65,

We define [, ;41 = [. 5. For each k, let UQS_H be that predecessor of vés
at level [, s in D;. (Quite possibly, this will be vés itself.) Also, if there

are any « € Dy at level [, ; which are not in {vfs_l_l : k < ns}, then

1—|—n675 2+ne,s
e,s+1 » we,s—l—l 9t e,s+1 — e,s+1

and define n. 411 to be the greatest superscrlpt required. (If there are
no such x, then n. 541 = n.s.) Finally, let Dy = DsUrange(g)UTsyq,
and let K, 511 = Dgyq, with E; 1y = 0 for all j > e.

define those z’s to be w ., with Vb = w" for each,

28

4. If R. has received attention at stage s 4+ 1, we make all n; 41, {541,
Uf,s-l—l and wf,s+1 undefined for all 7 > e, and skip all steps for all those
j. Otherwise we increment e by 1 and return to Step 1.

Once we have either given attention to a requirement or completed the
steps with e = s, we define fs11(y) = fs(y) for those y € D, on which fi44
is not yet defined. Also, for each y € Dsyy — D, on which fs1, is not yet
defined, choose the least element of w which is not yet in range(fs;+1) to be
fs+1(y). This completes the construction.

Lemma 4.15 For each s and each e < s, either 3(a) or 3(b) must hold for
some t.

Proof. Suppose there exists an extendible node y among {vgs, ...ve5"}. Then
by the assumption of the proposition, there is a copy of 2<“ embedded into
Ty], and any finite tree can be embedded into 2<“ with the root mapping
to a node at an arbitrarily high level of 2<“. Thus 3(a) will eventually hold.
Otherwise, none of v, ... ves® is extendible. Now some node z on level
les of T must be extendible. If & € D,, then we must have levelp_ (x) < [,
since no node at level . s in D; is extendible. Otherwise x ¢ D;, and either

way we will eventually reach a stage ¢ at which 3(b) holds of .]

Lemma 4.16 For every e the following hold:
o lim, ht(FE. ;) exists and is finite.
o The sequence (l.s)sew converges to some l. € w.

o For every k € w, either <w§75>5€w and <v§5>sew converge to elements w*
and v* in w, or there exists a stage t such that wssT and UQST for all
s> 1.

o The requirement R, receives attention at only finitely many stages, and
is satisfied.

Proof. We proceed by induction on e. Fix e, and assume sq is a stage satis-
fying all of the following conditions for every s > sg and every 1 < e:

1. R; does not receive attention at stage s;

2. liﬁ = li;

29

3. Every v € Toy with levelyp(v) = [, satisfies levely, (v) = [., and hence
is of the form vés for some k;

4. vF = vf and wﬁs = wf for all k£ such that Uﬁs € Text (Notice that each

level of Text 1s finite, since the proposition assumes that 7.y is finitely

k

branching. Hence only finitely many v}, lie in Tey.);

5. ht(Ts) > le_1.

Condition 3 simply says that we have waited until all predecessors of
each v € Ty at level [, have appeared in T ,. This is possible because Tyt
is finite-branching. Notice that this condition implies the same condition for
all 7 <ee.

Now [, ;5 is never redefined in the construction, and it can only become
undefined at stages at which some R; with 7 < e receives attention. Hence
le,s = lc 5041 for all s > sq, so [, s converges to a limit [, = [, ;,41. Also, after
stage so in the construction, v¥

€,5

can only be redefined to be a predecessor
of itself, and that only when it has acquired a new predecessor. But by

acquires no new predecessors in T after stage s, so
k

€,50 "

Condition 3, each vés
each sequence (v}),e. converges to a limit v} = v

Similarly, wss
defined at certain stages at which R, receives attention. If vis ¢ Tex, then
ht,x (T') is finite, and the corresponding wss can only be embedded finitely
often by step 3(a), since each embedding (at a stage s + 1) moves it up by
at least s levels in D,. Hence all those sequences <w§75>5€w converge.

For each of the finitely many &k with vés € Text, it is possible for 3(a) to

is never undefined after stage sg, although it may be re-

hold for k£ at infinitely many stages. However, we only actually apply the
embedding ¢ to redefine w?, at stages s + 1 such that ¢, (fs(wf,)) | and
levelps(c,ow(fs(wss))) = levelps(wss). By the construction, we always have
Jorr(wF 1) = fo(wk,), even if wF | # wk, . At each stage s + 1 at which

w* is redefined, we have
?

1evelDS+1(w§5+1) > 16V61D5(w§,s) + s

If this happens sufficiently often, then we must reach a stage s; at which
levelpﬁ(wsﬂ) > levely(pes, (fs,(wes,))), since T' has height w, and after
stage s;, we will never redefine wss again, even if 3(a) does apply. Hence
each of these sequences <w§75>5€w does converge to a limit w”.

Now there must be an element of T,y on level [., and this element will

be designated at some stage s as vés for some k. We note first that since all

30

side trees are finite and Ty is finitely-branching, there is a d such that every
nonextendible node x at any level < [, satisfies ht,(T) < d. (Also, assume
d is sufficiently large that [. 4 = [..) Once we reach stages s > d, therefore,
3(a) will never again hold for any m with v, nonextendible, and 3(b) will
not hold for any nonextendible . Thus only the finitely many extendible
nodes vés will satisfy either 3(a) or 3(b) at any subsequent stage. But every
extendible node v at level /. in T already satifies levelr, (v) = [, by inductive
hypothesis, so 3(b) will never hold again. By Lemma 4.15, there must exist
an m, with v extendible, which satisfies 3(a) at infinitely many stages. (If
there is more than one such, choose the least of them, just as we did at each
stage of the construction.)

If (fs(w?)) 1T for the corresponding w*, then w?’ is never redefined,
and fsp1(w?) = fo(w?) for all s, so @ (f(w™)) T, where f = lim; f; as
defined below. Hence R, is satisfied, since @, is not total. On the other
hand, if p.(fs(w))], then for every stage s at which

levele(S‘Q@,S(fS(ijs))) = levele(ijs)v

either there will be a subsequent stage s’ at which 3(a) applies to v, and
Re receives attention and w{", is embedded at a greater level, or else

(Vs > s)[levelp , (w"y) < levelp,(pe,s (fo(wy)))]-

In the latter case, w”", will never again be redefined, leaving R. satisfied by
the witness f(w["). In the former case, we again have

16V61DS,+1 (c,oe(fslﬂ(w:;,_l_l))) < 1evelDS,(wZS,).

But
levelp, (. (F(w7"))) < levelr (g f(w"))) < .

so eventually we reach a stage s with levelp(g.(f(w?))) < levelp, (w!)).

€,5

After this stage, w’, is never redefined, leaving

levelp(pe(f(w))) < levelp(w?) = levelp(f(w)).

Thus requirement R, is satisfied.

We note that since each sequence <w§75>5€w converges to w”, none of them
changes value more than finitely often. Moreover, the stage d designated
above has the property that only finitely many elements wss
fined after stage d, namely those corresponding to extendible v*.

are ever rede-

31

Moreover, since there are only finitely many stages s at which any of the
elements wss is redefined, we eventually reach a stage s; after which none of
them is ever redefined. Now F, , is finite. Let s; be a stage such that

(VyeT)[(Fz € Eey,)y 2 2] = yeTs,].

That is, every predecessor of each of the (finitely many) elements « € E, 5, ap-
pears in Ts,. Then for all s > s3, we have F. ; = F.,. Hence limght(F. ;) =
ht(E.s,). Thus R, only receives attention finitely often.

This completes the induction. []

Lemma 4.17 For each x, the sequence (fs(x))se. converges. The limit func-
tion f =limy fs has range w.

Proof. We need to show that both limy fs(z) and lim, f;'(y) exist for all =
and y in w.

First of all, we have @ € T, C D, for every s > «, so fs(x)| for all suffi-
ciently large s. Also, by the construction, we have range(fs) C range(fst1)
for every s. Moreover, each time we need a new element for the range of
fst1, we take the least available one, so clearly every y € w lies in range(fs)
for all sufficiently large s.

So suppose fs(x) # foy1(x) for some s. The only way this can occur
in our construction is if 3(a) holds for some e and m, and we execute an
upwards embedding g of D,[v] into T'[v]"] at stage s + 1 in order to satisfy
Re. If this happens, then F. ;41 = D41 2 range(g), so @ € E. s41. Similarly,
if fs_l(y) + fs__l_ll(y) for some s, then f;:l(y) € Fesia.

The only way we could then have fi(z) # fiyi(2) or f; ' (y) # [(y) for
any t > s is if some R; with ¢ < e receives attention at stage ¢ + 1. This
could happen for the following reasons:

Case 1: Step 3(a) applies to R; for some i < e, and we execute the
corresponding upward embedding ¢g. In this case, E; ;41 = Diyq,80 ¢ € Fj 444
and [(y) = 9(2) € B

Case 2: w?t T and w?,t-l—l 1, for some 1 < e. However, although R; does
receive attention in this case, the construction leaves F.; C B, . Hence
v € Pepry, and fipi(@) = fi(w). Similarly, f25(y) = f71(y) € Eeerr.

Case 3: ht(FE;141) > liy1+ for some @ < e. Again, the construction leaves
Eey C Eepyr, 50 v € Eeypy and fpi(z) = fi(z) and [(y) = f7'(y) €
Eety1-

32

Thus, for every ¢ > s, we have both x and f;'(y) in Ev;; for some i < e.
Therefore, fii1(x) # fi(z) and f7}(y) # f7'(y) each can occur only for the
sake of an upwards embedding on behalf of some R; with : < e. By Lemma
4.16, this can only occur finitely often. Hence the sequences (fs())se. and
(f71(y))sew both converge, making f = lim, fs a AY-bijection from w to w.

|

As usual, we lift the partial order < from T' to an order <’ on 7", making
f an isomorphism from T to T".

Lemma 4.18 The functions f, satisfy Condition 3.1. Hence <’ is com-
putable.

Proof. We have already seen that range(f) C range(fs41). Take a,b €
range(f;). The only way for [} (b) # f7'(b) is if f;7'(D) lies in some subtree
D,[v7"] which is embedded upward via some g as part of Step 3(a) for some

€,5

e at stage s+ 1. If f7!(a) is also embedded upward at stage s+ 1, then since
g is a homomorphism of trees, we have:

F7Ha) = 710 = g(f7 @) < g(£7(0) = f3ila) < L34(0).
Otherwise, f;'(a) ¢ D,[v]"]. In this case:
FoHa) < f7H0) = [T (a) <ol

— fs-l—l (a) <
it

a) < f5+1()-

The case f'(b) = f71(b) is simpler, since this implies f;!(b) ¢ D,[v"
Thus, if f7'(a) < f;7'(b), we know that f'(a) = f(a), so fii(a) <
[31(b) and conversely as well. u

Thus (7", <') is a computable tree, isomorphic to T via f, yet not com-
putably isomorphic to T', since every requirement R, is satisfied. Therefore,
T is not computably categorical. This completes the proof of Proposition

4.13.]

33

4.5 Proof of the Theorem

Proof of Theorem 4.1. We need only confirm that the preceding propositions
cover all possible cases. First, if T' contains no extendible nodes, then Propo-
sition 4.2 applies to the root of T', since ht(T') = w. If Tey is nonempty and
infinite-branching, then Proposition 4.4 covers this case. If Ty is nonempty
and finite-branching, then we ask whether there exist side trees of height w.
If so, then Proposition 4.3 gives the result. Otherwise, every side tree has
finite height. If every extendible node lies on infinitely many infinite paths,
we apply Proposition 4.13. If there exists a node @ € T,y which lies on only
finitely many infinite paths through 7', then by following those finitely many
infinite paths upwards until they all diverge, we find a node xy € Tey¢ which
fits Proposition 4.5.]

34

5 Trees of Height > w

Having established that no tree of height w is computably categorical, we
now prove the same result for trees of height > w. Recall that for trees T' of
height w, we considered two cases in which T' contains an infinite path, and
used guessing procedures to find that (or those) paths. Now the existence of
a node x, at level w simplifies matters considerably, since the predecessors
of x, form a computable infinite chain in T'. (Technically, this chain is not
a path, since it is not a maximal chain, but it is still perfectly useful for
our purposes.) We will appeal again to Kruskal’s Theorem to guarantee the
existence of the necessary embeddings upwards along this chain, and use
them to satisfy the requirements.

On the other hand, having ht(7') > w creates a different set of problems.
Previously, with every node in T sitting at a finite level, we knew that each
requirement would only require finitely many upwards embeddings in order to
be satisfied. Now, it is possible that the node ¢, s(fs(w.;)) lies at an infinite
level in T, in which case we might have to redefine f;(w. ;) to lie at higher
levels in 7" infinitely often, thereby injuring the lower-priority requirements
infinitely many times. (Also, this would prevent f;(w.) from converging,
ruining the isomorphism from T to T".) We avoid this difficulty by watching
for predecessors of ¢ (fs(w.s)) and using their preimages (under ¢.) as
new witness nodes. FEventually we will find such a predecessor sitting at a
finite level of T', and for this one we will only need finitely many upwards
embeddings.

Of course, the preimage under ¢. of a predecessor of ¢ s(fs(w.s)) will
not necessarily be a predecessor of fs(w.s)) in T’. However, if indeed it is
not a predecessor, then clearly ¢, was not an isomorphism. We can check
effectively whether or not this is the case, and if it is not a predecessor, then
R is automatically satisfied.

Theorem 5.1 No computable tree of infinite height is computably categori-
cal.

Proof. Theorem 4.1 covers the case of a tree of height w, so assume that 7' is

a tree under < with ht(7') > w. Then T contains a node z,, at level w. The

set S of predecessors of x,, is a computable set, ordered in order type w.
Each of our requirements R. guarantees that . is not an isomorphism

35

from 7" to T', just as before, but the exact statement is slightly different:

R.: @e bijective => either (Jz € T") [levelr/(x) # levelr(pc(x))] or
(Fr,y € T)[x A"y and ge(x) < @c(y)].

If the second clause of the conclusion applies, or if there exists an s for
which ¢, ; is not one-to-one, we will say that R, is finitely satisfied, since each
of these facts will become evident at some finite stage of the construction.
In contrast, we can never be sure at any finite stage whether or not we have
permanently satisfied the first clause of the conclusion, or whether . is total
or onto.

Let r = 29 < 21 < --- be all the predecessors of x, in T. We apply
Corollary 2.4 to the collection of trees {S; : ¢ € w}, where

SZ' = T[J}Z] - T[J}H_l].

(Thus the tree S; has root @; and contains those nodes lying above x; but not
above x;41.) Clearly S; is computable. In the construction below, we will
write .S; ; for S; N D,. Let n be the number given by the corollary, such that
every finite subtree of every S; with ¢+ > n embeds into some S; with j > ¢.

Construction: fq is the identity map on Ty = {z; : ¢« <n} U {z,}, and
the witness nodes w, ¢ and their traces v, o are undefined for all e. For each
s we define Ty = T, U {s}.

At stage s + 1, we say that a requirement R. (e < s) is finitely satisfied
if there exist distinct numbers ¢ < s and y < s in the domain of ¢, s such
that @ s(2) = @ s(y), or such that @ <" y and ¢, s(2) £ @es(y), or such that
x Ay and p.s(x) < @es(y). (In any of these three cases, we know right
away that ¢, is not an isomorphism.) Search for the least e < s+ 1 such
that R. is not yet finitely satisfied and one of the following cases holds:

1. w. s is undefined; or

2. w,; is defined and levelp (w.) <levelp (ves) + 1 and ¢, s(fs(wes))d
and

16V61DS (w&s) = 16V61DS (S«Qe(fs(we,S)));

or

3. we;s is defined and ¢, 5(fs(wes))) and there exist nodes w € Dy and
w' € range(fs) such that w < ¢ (fs(wes)) and . (w') |= w and
levelp, (w) =1 + levelp,(ve,s).

36

(Such an e must exist, because w41 s is undefined.) We say that R. receives
altention at this stage. For all + < e, let w; ;41 = w; s and v; ;41 = v;,. For
all j > e, let w; 41 and v; 441 be undefined. We proceed according to which
of the three cases above held.

1. If w, s is undefined,, we search for the <-least node w in Ds[z,] satisying
the following conditions:

o W < Ty,
o w £ w;, for every 1 < e such that R, is not yet finitely satisfied;
o for every = < e, either w £ = or z, < x; and

e for every y < e, there exists # € D, such that f;(z) = y and either
w A xorx, =T,

Let ves41 = Wesyr = w. (If there is no such w, then leave w541

undefined.) Let Dypy = Dy U Tsyq.
2. If w. s is defined and ¢, s(fs(wes)){ and

level p, (w&s) = levelp, (S«Qe(fs(we,S)))v

then search for the least ¢ > s such that there exists + < ¢ with v, <
x < x, for which Dg[v.] embeds into Ti[z] via an embedding g such
that g(v.s) =« and g(x,) = x,. Since v.; < x, clearly

levelp, (g(wes)) > levelp, (we).

Fix this ¢, x, and g¢.

We use the embedding ¢ to satisfy (for the time being) the first clause
of Re. Let Dsi1 = Ds UTy, vesi1 = ves, and we 511 = g(wes), and
for all y € Dglves] — Ds[xw], define foi1(g(y)) = fs(y). For those
y € Dsi1[ves] — Ds[xy,] —range(qg), take fo11(y) to be the least element
of w that is not yet in range(fs41) nor in range(f5). Notice that although
we have temporarily fulfilled R., we do not state that R. is satisfied,
since possibly levelr(¢e(fs(wesq1))) > levelq (@e(fs(wesi1))). We will
continue to scrutinize R. at subsequent stages.

3. Otherwise, we have the nodes w € D, and w’ € range(fs) given in Case
(3). Let Dsy1 = Ds U Ts4q. Since R, is not finitely satisfied, we must
have f7'(w') < we ;. Define w41 = f71(w'), and let ve o411 = ve .

37

In all three cases, we then define fs11(y) = fs(y) for those y € D, on
which f;11 1s not yet defined. Also, for each y € Ds1y — D on which fg 1s
not yet defined, choose the least element of w which is not yet in range(fs41)
to be fsy1(y). For each e such that w, ;41 is defined, let v, 511 = we 541 A 2.
This completes the construction.

(This construction is most comparable to that of Proposition 4.5, in which
we assumed that 7" contained an isolated infinite path. Here the path may not
be isolated, but the node z,, allows us to identify it anyway. The twist which
we must add appears in Case (3) of the construction, in which we ensure
that the limg w, ; will lie at a finite level, or else that ¢, fails to preserve the
relation <'.)

We first must prove that at each stage s at which Case (2) applies, we
do eventually find an embedding, This requires a lemma guaranteeing our
ability to embed trees upwards in T'[z,].

Lemma 5.2 For every x; = x, and every t, there is an embedding g of the
tree Dg[x;] into T[x;4q] with g(x,) = ..

Proof. By the choice of n and Corollary 2.4, we know that every finite subtree
of every S; with j > n embeds into some S; with & > j. By induction, then,
every finite subtree of every such S; embeds into infinitely many S; with
k> 7. We may also assume that in each such embedding, x; is mapped to
x. Since there are only finitely many side trees 5;,,....S;, which intersect
the finite tree D, we can embed 5, N D into some Sy, , then embed S;, N D,
into some S, with ky > ko, and so on. The union of these embeddings with
the identity map on Dj[x,] respects the order < (since each x;, is mapped
to some other predecessor xj of x,), and is the desired embedding g. []

Having thus guaranteed that every stage will eventually terminate, we
turn to the question of convergence.

Lemma 5.3 For every e, either R, is finitely satisfied at some stage s, or
else:

o the sequence (Ve s)se, converges to a limit v. < x,, and v; < v, for
every 1 < e such that R; is not finitely satisfied;

o lhe sequence (W s)se, converges to a limit w. with v < w.; and

o the sequence (fs(w.))sew converges to a limit f(w.).

38

Proof. We proceed by induction on e. Suppose that R. is never finitely
satisfied, and let sy be a stage so large that for all s > sg and all 1 < e,
the hypotheses of the theorem hold. (In particular, assume that v, , = v,
w; s = w;, and fs(w;) = f(w;) for all s > s0.) Since x,, has infinitely many
predecessors, there must exist a stage s; > so at which v, ,, and w,, are
defined. Moreover, they will never again become undefined, since no R;
with ¢ < e will ever again receive attention. Indeed, v., = v, for every
s > 81, since Cases (2) and (3) both define v, 541 = v, 5O We may write
Ve = V5. We may also assume that o, g (fs, (we,s,) converges, since if there
is no such sy, then R, will never again receive attention and the theorem will
be satisfied.)

Notice that v. 11 becomes undefined at any stage at which v; 41 # vis
for some ¢ < e. Now if s is the last stage at which v, ; is undefined, then
Ve sl = Wesp1 2 Wi for every 1 < e. Hence v, 511 A vi 41 for any such 1.
However, v, s41 < 2, forcing v; o41 < v, 511 for each such 7. The construction
never allows v, ;11 L7 ve ¢, so we must have v; < v, as the theorem demands.

Notice that at any stage s + 1 > s; at which R, satisfies Case (2), it will
receive attention and the resulting embedding will guarantee foi1(we s41) =
fs(wes). Hence po(for1(west1)) = pe(fs(wes)) for all such s. Also, at any
stage at which R, satisfies Case (3), either R, will be finitely satisfied or

Pelforr(wesp1)) = pe(w') = w < e(fs(we5))

where w and w’ are as given in Case (3).

Thus, @e(fst1(west1)) = @e(fs(wes)) in T for every s+1 > s1. Since T'is
a tree, the infinite nonincreasing sequence (@ (fs(we,s)))s>s, must converge
to a limit, so there exists a stage s, after which this sequence is constant. The
construction then makes it clear that Case (3) will never apply after stage s».
This implies that no more nodes w are found which satisfy the hypotheses
of Case (3). Therefore, either there is no predecessor w of . (fs,(wes,)) in
T with levelp(w) = 1 + levelyp(v.), in which case ¢ (fs,(wes,)) must lie at a
finite level of T', or else any such predecessor does not lie in the range of .,
in which case ¢, is not bijective. (Recall that we are assuming here that R.
is not finitely satisfied.) In the latter case, neither Case (2) nor Case (3) will
ever again apply to R, so w. , = w.,, for every s > s,.

In the former case, where @ (fs,(w, s,)) lies at a finite level of T', we know
that Case (3) will never again apply, so Case (2) will only apply finitely
many more times. (Each time Case (2) applies, we have levelp_, (wesq1) >

39

levelp, (w, 5), but Case (2) is impossible when level p_(w.) > 14 levely(v.).)
Hence we will reach a stage after which R. never again receives attention, and
thus (we s)s>s, converges to a limit w.. We also note that ve < we, = wesq1
for every s > s3, so that v. < w., as the theorem claims. Furthermore,
we already saw that foy1(west1) = fs(wes) for every s > sq, so clearly the
sequence (fs(we))s>s, converges. This completes the proof of the lemma. m

Lemma 5.4 The functions f, converge to a limit f which is bijective.

Proof. Every x lies in D for all s > a, so fs(x) will be defined for all
sufficiently large s. Also, each time a fresh element y was needed for the
range of f;, we chose the least y available. Once f;'(y) is defined, y will
remain in range(f;) at all subsequent stages, since the embeddings in Case
(2) always preserve the range.

In Case (1) we ensured that v. < only if e < 2 or z, < z. In the
latter case, fs(x) will never be redefined. In the former case, we may have
fsr1(x) # fs(x) at stages s + 1 at which Case (2) applies to a requirement
Re with e < . However, Lemma 5.3 shows that there are only finitely many
such stages. Similarly, Case (1) and this lemma ensure that f; (y) will only
be redefined finitely often.

Thus f = limg f; has domain and range w. Injectivity follows from the
injectivity of each f;. []

Lemma 5.5 For every e, either R, is finitely satisfied at some stage s,

or w.(f(we)) T or levelr(pe(f(we))) # levelp(we). (Since levelp(w.) =
levelp:(f(w,)), this guarantees that R. is satisfied.)

Proof. Suppose @.(f(w.)) converges. (We also continue to assume that R,
is not finitely satisfied, so that . is one-to-one and maps <’ to <.) Let g
be so large that R. never receives attention after stage to.
Let [, = levely(v.). If levelp(w.) > l.+ 1, then let u be the predecessor of
w, at level [.4+11n T'. Now since ¢, is assumed to be total, we know that there
is some w € T such that ¢.(f(u)) = w. If levelp(w) # levelr(u), then R,
holds, since levelp(u) = levely/(f(u)). Otherwise, levelp(w) = levely(u) =
[+ 1, and Case (3) must apply to w at some stage, with «w’ = f(u). (Notice
that w < @.(f(w.)) since by assumption ¢. maps the ordering <" on 7’ to <
on T.) This contradicts our choice of to, completing the proof of the lemma.
|

40

Lemma 5.6 The maps fs satisfy Condition 3.1. Thus <’ is computable.

Proof. The construction ensures that Dy C Dyyq for all s. For every = €
Ds — Dslx,], we have fs(x) = fsp1(x). Therefore, Condition 3.1 clearly
holds if either f7'(a) or f7'(b) is not in T[z,]. So take x,y € D,[z,], with
a= fy(z), b= fi(y), and let 2’ = f(a) and v’ = f}(b). We have four
cases, depending on whether or not x = 2’ and y = y'.

The first case, where @ = 2’ and y = ¢/, is trivial. Also, if © # 2’ and
y # y', then x and y must both lie in Djv.] — Ds[x,], where R. receives
attention in Case (2) at stage s + 1. In this case, we find an embedding ¢

into some T}[z] with x,, < 2 < z,. Thus

/

2y = g(z) Zgly) = 2 =y

since g(x) = 2’ and g(y) = y'. Thus Condition 3.1 is satisfied in these two
cases.

Suppose © # ¢’ and y = y'. Then « € D[v. 5] as above. If y € Dlv. 5] —
Ds[xy], then 2’ = g(x) < g(y) = y'. If not, then either y < v, (in which
case y < x and y < g(x) = ', since range(g) C T[ves]) or y L &, + (in
which case y L @ and y L g(a) = 2/, again because range(g) C T[xm,4]), or
2, = y. In this last case the consition is satisfied, since

<y = v<z, <= g(v)<g(z,) =2, = ' <y=y.
The preceding paragraph shows that in the third case, not only
r<y <= 2’ <y

but also
v ly < 2 Ly.
Hence by symmetry, the fourth case, with & = 2’ and y # v/, is also satisfied.
|

Thus (7", <') is a computable tree, isomorphic to T' via the A, function f,
and 7" satisfies every requirement R.. Hence T' is not computably categorical,
proving Theorem 5.1. |

Intuitively it can be difficult to see where the action occurs in the proof
of Theorem 5.1, particularly in Lemma 5.3, which is the heart of the proof.

41

Essentially the argument for convergence of w, s comes down to the fact that
each time R, receives attention in Case (3), we generate another element
in a descending sequence in T, and the definition of tree guarantees that
this sequence must be finite. (In fact, we can say more: once the actual
predecessors of ¢ (fs(w.s)) at all levels < [. in T have appeared, and once
©-! has converged on all of them, R, will never again receive attention in
Case (3).) Thereafter, any more upwards embeddings of w. , would cause
Case (3) to apply again, which we know cannot occur, so Case (2) must
never again apply either. We conclude that R, must be satisfied, becasue
if ¢, really were an isomorphism, either (2) or (3) would apply at some
subsequent stage. In the architecture of this proof, therefore, it is the well-
ordering of the predecessors of each element of T" which drives the result
home. (One could write a similar proof for Proposition 4.5, but the one
given was more straightforward and offered a better insight into the reasons
why the Proposition held, perhaps at some cost in elegance.)

42

6 Effectively Infinite Dimension

Recall that the computable dimension of a computable structure is the num-
ber of computable isomorphism classes of computable copies of that struc-
ture. Theorem 4.1 shows that every computable tree of infinite height has
computable dimension at least 2. A theorem of Goncharov from [7] states
that if A is a computable structure which has two computable copies that
are AY-isomorphic but not computably isomorphic, then A has computable
dimension w. The isomorphisms which we constructed in our proofs are all
AY, so in fact the these trees all have computable dimension w.

It is possible to strengthen this statement even further, by avoiding count-
ably many isomorphism classes simultaneously. That is, given a uniformly
presented list {7} : i € w} of computable copies of T, one can construct
another computable copy 1" of T" which is not computably isomorphic to any
T;. Thus, the computable dimension of T' is effectively infinite; one might
even call it effectively uncountable, for, although there are only countably
many computable isomorphism classes, there is no effective enumeration of
them.

Proposition 6.1 Let T' be a tree of infinite height, and let {T;} be a com-
putable (finite or infinite) sequence of computable trees isomorphic to T.
Then there exists a computable tree T' isomorphic to T, such that no T;
is computably isomorphic to T".

(The fact that the set {T;} is allowed to be infinite gives rise to the term
effectively uncountable. If we could only prove this proposition for finite sets
{T:;}, then we would only say that the dimension was effectively infinite.)

Proof. For trees of height w, the construction proceeds exactly as in Propo-
sitions 3.2, 4.5, and 4.13, according to which of these propositions applies
to T. We let Ty play the role of T as a template for T’, constructing
T’ to be isomorphic to Ty via a Aj-isomorphism f = lim, fs, with D, =
domain(f;) C Tp. The only difference is that instead of checking whether
levelp, (wes) = levelp, (pe(fs(wes))) at each stage s, we have witness ele-
ments w.; s € Ty to ensure that ¢, is not an isomorphism from 7" to T, and
we check at each stage s whether

levelp_(we;s) = levele(c,oe(fs(w&m))).

43

If it is, then we proceed to embed w. ; , further upwards in T, which pushes
fs(we ;) further up in 7", Eventually @ (fs(we . s)) reaches its final level in T;,
and one last upwards embedding guarantees that ¢, is not an isomorphism
from 7" to T;.

The case of a tree of height > w requires similar modifications. At stage
s+ 1 of that construction, we say that a requirement R.; is finitely satisfied
if there exist distinct numbers ¢ < s and y < s in the domain of ¢, s such
that @.s(x) = @es(y), or such that © <" y and ¢ (x) 4; pes(y), or such
that @ £" y and @, 5(2) <; @es(y). (Here <; denotes the partial order on the
tree T}, so each of these conditions ensures that ¢, is not an isomorphism
from T" to T;.) Then we search for the least pair (e,7) < s+ 1 such that R,
is not yet finitely satisfied and one of the following cases holds:

1. w.; s is undefined; or
2. levelp (we,;s) <levelp, (ve;s)+ 1 and @ s(fs(weis))d and

levelp, (we,is) = levelr, (pe(fs(we,is)));
or

3. @es(fs(weis)) L and there exist nodes w € T, and w' € range(f;)
such that w <; @es(fs(weys)) and @ (w') |= w and levely, (w) =
L+ levelp, (ve,is)-

Corresponding adjustments through the rest of the proof guarantee that each
R, is satisfied, so that o, is not an isomorphism from 7" to T;. []

44

References

1]

2]

[10]

[11]

C. J. Ash; Categoricity in Hyperarithmetical Degrees, Annals of Pure
and Applied Logic 34 (1987), 1-14.

J. N. Crossley, A. B. Manaster, & M. F. Moses; Recursive Categoricity
and Recursive Stability, Annals of Pure and Applied Logic 31 (1986),
191-204.

R. Downey; On Presentations of Algebraic Structures, in Complexity,
Logic, and Recursion Theory, ed. A. Sorbi (New York: Dekker, 1997),
157-205.

Y. L. Ershov & S. S. Goncharov; Constructive Models (New York:
Kluwer Academic/Plenum Press, 2000).

S. S. Goncharov; Autostability and Computable Families of Construc-
tivizations, Algebra and Logic 14 (1975), 647-680 (Russian), 392-409
(English translation).

S. S. Goncharov; Autostable Models and Algorithmic Dimensions, Hand-
book of Recursive Mathematics, vol. 1 (Amsterdam: Elsevier, 1998),
261-287.

S. 5. Goncharov; Nonequivalent Constructivizations, Proc. Math. Inst.

Sib. Branch Acad. Sei. (Novosibirsk: Nauka, 1982).

S. S. Goncharov; The Problem of the Number of Non-self-equivalent
Constructivizations, Algebra i Logika 19 (1980), 621-639.

S. S. Goncharov & V. D. Dzgoev; Autostability of Models, Algebra and
Logic 19 (1980), 45-58 (Russian), 28-37 (English translation).

B. Khoussainov & R. A. Shore; Computable Isomorphisms, Degree Spec-
tra of Relations, and Scott Families, Annals of Pure and Applied Logic
93 (1998), 153-193.

B. Khoussainov & R. A. Shore; Effective Model Theory: The Number
of Models and their Complexity, Models And Computability: Invited
Papers from Logic Colloquium 97, ed. S. B. Cooper & J. K. Truss,
LMSLNS 259 (Cambridge: Cambridge University Press, 1999), 193-
240.

45

[12]

[13]

J.B. Kruskal; Well Quasi-Ordering, the Tree Theorem, and Vazsonyi’s
Conjecture, Transactions of the American Mathematical Society 95

(1960), 210-225.

S. Lempp, C. McCoy, R. G. Miller, & R. Solomon; Computable Cate-
goricity of Trees of Finite Height, to appear.

C. St. J. A. Nash-Williams; On Well-quasi-ordering Finite Trees, Proc.
Cambridge Phil. Soc. 59 (1963), 833-835.

J. B. Remmel; Recursively Categorical Linear Orderings, Proceedings of
the American Mathematical Society 83 (1981), 387-391.

J. B. Remmel; Recursive [somorphism Types of Recursive Boolean Al-

gebras, Journal of Symbolic Logic 46 (1981), 572-594.

S. G. Simpson; Nonprovability of Certain Combinatorial Properties of
Finite Trees, Harvey Friedman’s Research on the Foundations of Mathe-
matics, ed. L. A. Harrington, M. D. Morley, A. Scedrov & S. G. Simpson
(Amsterdam: North-Holland, 1985), 87-117.

R. I. Soare; Recursively Enumerable Sets and Degrees (New York:
Springer-Verlag, 1987).

46

