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Abstract. We introduce the notion of a locally computable structure,
a natural way of generalizing the notions of computable model theory
to uncountable structures S by presenting the finitely generated sub-
structures of S effectively. Our discussion emphasizes definitions and
examples, but does prove two significant results. First, our notion of m-
extensional local computability of S ensures that the Σn-theory of S will
be Σn for all n ≤ m+1. Second, our notion of perfect local computability
is equivalent (for countable structures) to the classic definition of com-
putable presentability.
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1 Introduction

Turing computability has always been restricted to maps on countable sets.
This restriction is inherent in the nature of a Turing machine: a computation
is performed in a finite length of time, so that even if the available input was
a countable binary sequence, only a finite initial segment of that sequence was
actually used in the computation. Thus only that finite segment was relevant
to the computation. To be sure, there are approaches that have defined natural
notions of computable functions on the real numbers. These include the bitmap
model, detailed in [2], and the Blum-Shub-Smale model (see [1]). These are
elegant in several respects, but also omit certain basic functions, and moreover,
each was built with the real numbers (viewed either as 2ω or as the real line)
specifically in mind, rather than arbitrary uncountable structures.
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68470-00-37, and 80209-04-12.



Nevertheless, mathematicians are hardly daunted by the prospect of doing
actual computations on R. When faced with a real number whose binary expan-
sion is not immediately accessible, they do not flinch; they simply call that real
“x.” All field operations can then be performed with ease within the subfield of
R generated by x; the mathematician only needs to know whether x is algebraic
or transcendental, and, in the former case, what its minimal polynomial over Q

is. Similar devices handle the situation of several unknown reals at once. The
binary expansions of these reals are not required for the algebraic operations.

In this paper we formalize this process, and generalize it to arbitrary struc-
tures in finite languages. Starting with the notion of a computable model, which
is entirely in keeping with Turing’s notion of computability, we will view the real
numbers and other fields as locally computable structures. No claim is made that
operations on the reals can be performed globally, but we develop a definition in
which countable objects are used to describe all finitely generated substructures
of a (potentially uncountable) structure S. Then the local computability of S is
determined by the computability of the countable objects. In cases such as the
field R, where every finitely generated substructure is computably presentable,
we will say that we have a computable cover of the structure. Indeed, for R, a
single algorithm can list out all elements of this cover.

The term “cover” is borrowed from the definition of a manifold, and the
analogy, while imprecise, can be useful for intuitions about our definitions. For
instance, for a topological space M , being a manifold does not just require the
existence of a cover by open subsets of Rn, but also that the charts within M

given by the cover should fit together in a nice way: the transition functions
between open subsets of Rn, defined whenever two charts in M intersect, should
be continuous (or differentiable, or C∞, depending on how nicely we wish the
manifold to behave). In short, it is not sufficient just to describe the local be-
havior of M ; one must ensure that where the descriptions overlap, they agree
with one another in a reasonable way.

For us, it will certainly be true that finitely generated substructures of a
structure S can overlap. Therefore, our description of finitely generated sub-
structures of S will include an account of which such substructures extend to
others. Since any two finitely generated substructures of S lie within a single
larger finitely generated substructure, it is sufficient for our purposes to consider
the question of extensions among them. Topological notions do not fit our set-
ting very well, but embeddings among finitely generated computable structures
are themselves inherently computable, since they are determined by their values
on the generators of the domain. (This is our main reason for considering only
finitely generated substructures of S, in fact, rather than all countable substruc-
tures.) In order for a structure to be called locally computable, we will require
not only that the finitely generated substructures be computably presentable
in a uniform way, but also that there be a computable enumeration of the em-
beddings among them corresponding to extensions in the structure S. Various
strengthenings of this requirement will allow us to prove stronger theorems about
certain of the structures.



The technical content of this paper is not especially high, and for reasons of
space we have emphasized our definitions and new concepts, and omitted many
of the proofs. The most involved proof, for Theorem 2, is included in Appendix
A. When computability-theoretic notions arise, we refer the reader to [4], the
standard source, for notation and definitions. A good overview of the field of
computable model theory is given in [3].

2 Local Computability

Let T be a ∀-axiomatizable theory in a language with n symbols. (If T is finitely
axiomatizable but not ∀-axiomatizable, we can Skolemize to give it a set of ∀-
axioms, while keeping the language finite.) We first consider simple covers of a
model S of T . These describe only the finitely generated substructures of S, with
no attention paid to any relations between those substructures.

Definition 1. A simple cover of S is a (finite or countable) collection A of
finitely generated models A0,A1, . . . of T , such that:

– every finitely generated substructure of S is isomorphic to some Ai ∈ A; and

– every Ai ∈ A embeds isomorphically into S.

A simple cover A is computable if every Ai ∈ A is a computable structure
whose domain is an initial segment of ω. A is uniformly computable if the se-
quence 〈(Ai, ai)〉i∈ω can be given uniformly: there must exist a computable func-
tion which, on input i, outputs a tuple of elements 〈e1, . . . , en, 〈a0, . . . , aki

〉〉 ∈
ωn ×A<ω

i such that {a0, . . . , aki
} generates Ai and ϕej

computes the j-th func-
tion, relation, or constant in Ai.

The intention is that S itself should not be finitely generated, of course,
although the definition is still valid in this case. Indeed, S is not at all required
to be countable, since a single Ai may be isomorphic to many substructures of
S. For countable structures S, a related notion is Fräıssé’s concept of the age
of S, i.e. the set of all finitely generated substructures of S. We note that all
elements of A will be models of T ; this was the reason for which we demanded
that T be ∀-axiomatizable.

Notice that the definition requires that the generators of Ai be given as a
tuple 〈a0, . . . , aki

〉, so that ki is computable uniformly in i and we know how
many values from Aj are needed to define an embedding in IA

ij . (In the language
of [4], the definition requires the canonical index for the set {a0, . . . , aki

}.)
As an example, it is straightforward to show that the best-known uncountable

structure in mathematics is locally computable. We omit the proof, since most
of its ingredients have long been established.

Proposition 1. The field R = (R, +, ·,−, r, 0, 1) of real numbers is locally com-
putable. ⊓⊔



Notice that we have added the operations of negation and inversion (r, for re-
ciprocal) to the usual language of fields, in order to get a Π1 axiom set.

It is also useful to see a negative example. Although the real numbers form a
locally computable field, Adding the usual < relation to the field R of Proposition
1 destroys local computability.

Proposition 2. The ordered field (R, <) of real numbers, with R as in Propo-
sition 1, has no computable simple cover, uniform or otherwise.

Proof. Let b be any noncomputable real number. We claim that the ordered
subfield B of R generated by b has no computable presentation. Suppose A
were a computable presentation of B, with a ∈ A representing b. Then just
from knowing the additive and multiplicative identity elements in A, we could
compute the representation in A of any rational number p

q
. But then we could

compute the n-th bit of the binary expansion of a, uniformly in n, just by using
the computable relation < in A to compare a to various dyadic rationals. But
this is also the n-th bit of the binary expansion of b, which was assumed to be
noncomputable. Therefore no such A can exist. ⊓⊔

We will be concerned mainly with the full definition of a cover, in which we
also describe how the substructures of S fit together.

Definition 2. An embedding f : Ai →֒ Aj lifts to the inclusion B ⊆ C, via
isomorphisms β : Ai ։ B and γ : Aj ։ C, if if the diagram below commutes:

Ai -f Aj

6 6β ∼= γ ∼=

B - C⊆

with γ ◦ f = β.

A cover of S consists of a simple cover A = {A0,A1, . . .} of S, along with sets
IA
ij (for all Ai,Aj ∈ A) of injective homomorphisms f : Ai →֒ Aj , such that:

– for all finitely generated substructures B ⊆ C of S, there exist i, j ∈ ω and
an f ∈ IA

ij which lifts to B ⊆ C via some isomorphisms β : Ai ։ B and
γ : Aj ։ C; and

– for every i and j, every f ∈ IA
ij lifts to an inclusion B ⊆ C in S via some

isomorphisms β and γ.

This cover is uniformly computable if A is a uniformly computable simple cover
of S and there exists a c.e. set W such that for all i, j ∈ ω,

IA

ij = {ϕe↾Ai : 〈i, j, e〉 ∈ W}.

A structure B is locally computable if it has a uniformly computable cover.

If A is a computable simple cover, then every embedding of any Ai into any
Aj is determined by its values on the generators of Ai. Since Ai is finitely
generated, all such embeddings are computable, and therefore it is reasonable to



call A a computable cover without any further requirements on the sets IA
ij . For

a uniformly computable cover, on the other hand, the sets IA
ij will play a key

role in our development of the subject, and it should be kept in mind that IA
ij

need not contain every possible embedding of Ai into Aj .
It is an easy exercise to see that the second condition of Definition 2 follows

trivially from the definition of a simple cover, for any embedding f : Ai →֒ Aj .
We include this second condition here because it is the dual of the first, and in
the rest of our study of local computability, this duality between inclusion maps
within S and embeddings among structures in A will appear repeatedly.

Lemma 1. A structure S has a uniformly computable cover (i.e. is locally com-
putable) iff S has a uniformly computable simple cover.

Proof. Given a uniformly computable simple cover A = {A0,A1, . . .}, we adjoin
all finitely generated substructures of each Ai. The embeddings are precisely the
inclusion maps from each substructure of Ai into Ai. It is quickly seen that this
yields a uniformly computable cover. ⊓⊔

In light of this lemma, one naturally asks why we bothered to give Definition
2. The answer is that local computability will be the m = 0 case in the following
definition, which uses the enumeration of the sets IA

ij extensively. Indeed, it is
the enumeration of the embeddings, rather than that of the finitely generated
substructures of S, which will be the heart of our study of local computability.

Definition 3. Let A be a cover of a structure S. Every embedding β of any
Ai ∈ A into S will be called 0-extensional. For each m ≥ 0, we say that such an
embedding β, with image B ⊆ S, is (m + 1)-extensional if:

– for every j ∈ ω, every f ∈ IA
ij lifts to an inclusion B ⊆ C in S via β and an

m-extensional match γ with domain Aj; and
– for every finitely generated C with B ⊆ C ⊆ S, there exists j ∈ ω and f ∈ IA

ij

which lifts to B ⊆ C via β and some m-extensional match γ.

A uniformly computable cover A of S is m-extensional if every Ai ∈ A

m-extensionally matches some substructure of S and every finitely generated
substructure of S m-extensionally matches some Ai ∈ A. If such a cover exists,
we say that S is m-extensionally locally computable (or just m-extensional). A
structure is ω-extensionally locally computable if it is m-extensionally locally
computable for every m ∈ ω.

Notice that S is 0-extensional iff S is locally computable, iff S has a uniformly
computable simple cover (by Lemma 1). Definition 3 will be used in Proposi-
tion 4 to derive results about the complexity of the theory of S. The idea of
1-extensionality is that the embeddings in the sets IA

ij (for all j) correspond
precisely to the finitely generated superstructures of B in S, rather than just to
some possible extension of some B′ ∼= B within S to some superstructure of B′

in S. The distinction is best illustrated by the negative example of Proposition
3 below. However, Proposition 5 will show that the definition holds for the field



of complex numbers. Indeed, the set IA
ij of embeddings of one Ai in the cover

into another Aj is just the set of all embeddings of Ai into Aj , and this set is
actually computable, uniformly in i and j.

m-extensionality is the obvious iteration of this notion. The extra conditions
for extensionality strengthen the idea that each finitely generated substructure
of S is represented by some Ai ∈ A: not only are they isomorphic, but the
embeddings (given by IA) of Ai into other structures in A coincide exactly with
the extensions of B to larger finitely generated substructures of S.

Proposition 3. The field R of real numbers is not 1-extensionally locally com-
putable.

Proof. Suppose that A were a 1-extensional cover of R. Fix any noncomputable
real number t ∈ R. Definition 3 gives an Ai ∈ A which 1-extensionally matches
(via some isomorphism β) the subfield B of R generated by t, and we may assume
we know i and β−1(t), since they constitute finitely much information.

Now we can enumerate the lower cut of rationals q < t in R, knowing that
extensions of B in R correspond to embeddings f ∈ IA

ij (for all j) in the 1-
extensional cover. For any rational q ∈ R:

|=R q < t ⇐⇒ |=R (∃x)x2 = t − q

⇐⇒ (∃ f.g. C)[B ⊆ C ⊂ R & |=C (∃x)x2 = t − q]

⇐⇒ (∃j)(∃f ∈ IA

ij) |=Aj
(∃x)x2 = f(β−1(t − q))

⇐⇒ (∃j)(∃f ∈ IA

ij)(∃a ∈ Aj) |=Aj
a2 = f(β−1(t)) − f(β−1(q)).

A similar argument holds for the upper cut of rationals q > t, using square roots
of (q − t) in R. This contradicts the noncomputability of t. (Of course, β and
f fix the rationals, so f(β−1(q)) ∈ Aj is just the element of Aj representing q.
This f(β−1(q)), lying in dom(Aj), is a natural number, but the element of Aj

representing any particular rational q can easily be computed from the numerator
and denominator of q, uniformly in j, by using the functions of Aj .) ⊓⊔

So the extensional local computability of C in Proposition 5 does not follow
solely from the existential closure of the structure; after all, R, viewed as a real
closed field, is also existentially closed. The difficulty for R is that real closed
fields have an implicit order on their elements, whether it is included in the
language of the structure or not, and as we saw in Proposition 2, adding the
order relation to R destroys local computability. R itself can still be locally
computable, because the relation < cannot be defined in R without quantifiers
(even though it is both Σ1-definable and Π1-definable!) and existential questions
about R can be left unanswered by a uniformly computable cover. An extensional
cover, on the other hand, answers all such questions, as we now see.

Proposition 4. For m ∈ ω, any m-extensionally locally computable structure
S, and any n ≤ m + 1, the Σn-theory of S,

{ϕ ∈ Th(S) : ϕ is a Σn sentence},



is itself a Σn set in the arithmetic hierarchy. (For n > 0, this means that the
Σn-theory is 1-reducible to ∅(n), and for n = 0, the Σ0-theory is computable.)

Proof. Let 〈Ai〉i∈ω be an m-extensionally computable cover of S. For arbitrary
n ≤ m + 1, the key fact is simply that for any formula ϕ(x),

|=S (∃x)ϕ(x) iff (∃ f.g. B ⊆ S)(∃ b ∈ Bj) |=S ϕ(b).

When we have alternating quantifiers, we need to take superstructures at each
step. For an arbitrary formula ϕ(x, y),

|=S (∃x)(∀y)ϕ(x, y)

iff (∃ f.g. B ⊆ S)(∃ x ∈ Bk) |=S (∀y)ϕ(x, y)

iff (∃ f.g. B ⊆ S)(∃ x ∈ Bk)(∀ f.g. C s.t. B ⊆ C ⊆ S)(∀y ∈ Cp) |=S ϕ(x, y)

If the original sentence was Σ2, then the matrix (after all the quantifiers) will be
the truth in S of the quantifier-free formula ϕ(x, y). In this case, ϕ(x, y) holds
in S iff it holds in C, so we can add the following:

iff (∃ f.g. B ⊆ S)(∃ x ∈ Bk)(∀ f.g. C s.t. B ⊆ C ⊆ S)(∀y ∈ Cp) |=C ϕ(x, y)

iff (∃i)(∃ b ∈ Ak
i )(∀j)(∀f ∈ IA

ij)(∀c ∈ Ap
j ) |=Aj

ϕ(f(b), c).

The definition of 1-extensional cover shows these last two lines to be equivalent.
Specifically, if the last line holds, then the witness Ai has a 1-extensional match
β onto some B ⊆ S, and Definition 3, applied to any Aj and f ∈ IA

ij , provides
a 0-extensional match γ from Aj onto some C ⊇ B such that γ ◦ f = β. Then
ϕ(γ(f(b)), γ(c)) must hold in C, since ϕ(f(b), c) holds in Aj and γ is an iso-
morphism. Conversely, if the next-to-last line holds, a similar argument applies,
since there is some 1-extensional match onto the witness B from some Ai ∈ A.
This completes the proof of the result on 1-extensional structures.

The obvious iteration of this process, applied to any Σn sentence about S,
yields a statement consisting of a Σn-sequence of quantifiers over structures in
A, their elements, and the sets IA

ij , followed by a quantifier-free statement about
an Aj ∈ A. The argument requires that each Ai correspond to some B via an
(n−1)-extensional map, so that the extensions must then correspond via (n−2)-
extensional maps, and so on down to 0-extensional maps once all the quantifiers
have been moved outside the turnstile |=. Therefore, for an m-extensionally
locally computable S with m ≥ (n − 1), the Σn statement yielded by iterating
the process holds iff the original Σn sentence held in S. Since the structures in A,
the sets IA

ij and the atomic diagram of such an Aj are all computable uniformly
in i and j, the truth of the original Σn-sentence in S is itself a Σn fact. Moreover,
this process is entirely uniform in n. ⊓⊔

Notice that this argument does not extend to values n > m + 1. For m = 0
a specific counterexample appears in Proposition 3.



Theorem 1. For m ∈ ω, any m-extensionally locally computable structure S,
any finite tuple p of parameters from S, and any n ≤ m, the Σn-theory of S
over p,

{ϕ ∈ Th(S, p) : ϕ is a Σn sentence},

is itself Σn, uniformly in n and in an appropriate description of the parameters
(as discussed after the proof).

Proof. Let B be generated by p in S, and fix an m-extensional match β : Al ։ B
for some Al ∈ A. As before, we give an example by evaluating the truth in S
of an arbitrary Σ2 sentence with the parameters p, assuming now that m ≥ 2.
By an argument similar to that in the proof of Proposition 4, the Σ2 sentence
(∃x)(∀y)ϕ(p, x, y) holds in S iff

(∃i)(∃h ∈ IA

li )(∃b ∈ Ak
i )(∀j)(∀f ∈ IA

ij)(∀c ∈ Am
j )

|=Aj
ϕ(f(h(a)), f(b), c),

which is a Σ2 condition, uniformly in a and l. The obvious iteration works for
any n ≤ m, but no longer applies when n = m + 1. In the example above, as
long as S is 2-extensional, we need β to be 2-extensional, so that Ai will have
a 1-extensional match in its turn. Adding the parameters forces us to start by
fixing an Al ∈ A and a β, whereas in Proposition 4 we were allowed simply to
search for any Ai and a single embedding into an Aj . Hence parameters require
one more level of extensionality.

Of course, knowing an original parameter pi ∈ B is useless to us; we need
to know l and the value ai = β−1(pi) in Al. For finitely many parameters,
this constitutes only finitely much information, but we also wish to consider
uniformity. It does not make sense to ask that parameters from a potentially
uncountable structure S be given uniformly. Instead, our formal statement of
uniformity is that if we are given an l and finitely many parameters a from Al,
then for any n and any n-extensional match β mapping Al into S, the Σn-theory
of S over the parameters β(a1), . . . , β(ak) is Σn uniformly in l and a and n. ⊓⊔

We view Theorem 1 as the strongest argument yet that local computability,
and in particular perfect local computability, is the correct analogue in uncount-
able structures to computable presentability in countable structures. The point
of a computable presentation of a structure is not just that it allows us to
compute the atomic theory and enumerate the Σ1-theory and so on, but that
it actually allows us to do over specific elements of the structure: the atomic
diagram is computable, and the Σn diagram is Σn, uniformly in n. For an un-
countable S, of course, there is no effective way to name all individual elements,
so it is hopeless to expect the entire atomic diagram to be computable. An m-
extensional cover, however, gives us a way of describing individual elements and
tuples of them: using the cover, we name an Al which m-extensionally matches
the substructure of S generated by the tuple, and specify which elements of Al

correspond to the tuple.



To state the same fact differently, having an m-extensional cover tells us
exactly what information we need about the tuple p from S in order to compute
the atomic theory of S over p, or to enumerate its Σ1 theory over p, etc. For
the field of complex numbers, for instance, an Ai is given by its transcendence
degree and the minimal polynomial of a single additional element generating the
rest of Ai over a transcendence basis. If we can determine this information for
the subfield Q(p) ⊂ C, and know which elements correspond to p, then without
further information we can give a Σn description of the Σn-theory of (C, p).
Indeed, there is another perfect cover of the field C, more difficult to describe
than the one in Proposition 5, in which every finite tuple p from C corresponds,
via a perfect match, to the generators of a particular Ai in the cover. Using this
cover, one would only need to know the minimal polynomial of each pi+1 over
Q(p1, . . . , pi), or else to know that no such minimal polynomial exists. Similarly,
each m-extensional cover of any S says, “if you tell me this particular information
about your tuple p from S, I will give you a Σn-presentation of the Σn facts
about p in S, for each n ≤ m.”

Corollary 1. For any ω-extensionally locally computable structure S, and any
finite parameter set p from S, the Σn-theory of (S, p) is Σn for every n, uniformly
in n and in p (as described above). In particular, this holds for any S with a
correspondence system, including any perfectly locally computable S. ⊓⊔

Corollary 2. Any two structures with the same ω-extensional cover are elemen-
tarily equivalent and realize the same types. Also, any two structures with the
same m-extensional cover have the same (m + 1)-quantifier theory. ⊓⊔

We add one more version of local computability, even stronger than ω-
extensional local computability, whose main interest stems from Theorem 2.

Definition 4. Let A be a uniformly computable cover for a structure S. A set
M is a correspondence system for A and S if it satisfies all of the following:

1. Each element of M is an embedding of some Ai ∈ A into S; and
2. Every Ai ∈ A is the domain of some β ∈ M ; and
3. Every finitely generated B ⊆ S is the image of some β ∈ M ; and
4. For every i and j and every β ∈ M with domain Ai, every f ∈ IA

ij lifts to
an inclusion β(Ai) ⊆ γ(Aj) via β and some γ ∈ M ; and

5. For every i, every β ∈ M with domain Ai, and every finitely generated C ⊆ S
containing β(Ai), there exist a j and an f ∈ IA

ij which lifts to β(Ai) ⊆ C via
β and some γ : Aj ։ C ∈ M .

The correspondence system is perfect if it also satisfies

6. For every finitely generated B ⊆ S, if β : Ai ։ B and γ : Aj ։ B both lie
in M and have image B, then γ−1 ◦ β ∈ IA

ij .

If a perfect correspondence system exists, then its elements are called perfect
matches between their domains and their images. S is then said to be perfectly
locally computable, with perfect cover A.



This concept is related to extensionality, clearly, and any element β of a
correspondence system M is quickly seen to be an m-extensional match for every
m ∈ ω. However, perfect local computability is stronger than ω-extensional local
computability in two distinct ways. First, for the map β to be an m-extensional
match, we only needed the existence of (m − 1)-extensional matches γ to relate
the embeddings f ∈ IA

ij (for all j) to the finitely generated extensions of the
image of β in S, and for different values of m, we could use different maps γ.
Here Conditions 4 and 5 require that the isomorphisms γ be in M themselves,
hence that they satisfy the same conditions. The second difference is Condition
6, which is not related to Definition 3, but appears necessary for Theorem 2.

Proposition 5. Every algebraically closed field of characteristic 0, and in par-
ticular the field C, is perfectly locally computable. ⊓⊔

Theorem 2. Let S be a countable structure. Then S is computably presentable
iff S is perfectly locally computable.

The proof appears in Appendix A.
To close, we state without proof several more relevant results.

Proposition 6. Let Rc be the ordered field containing all computable real num-
bers. Then Rc has a computable cover, but no uniformly computable cover. ⊓⊔

Lemma 2. There exist countable structures S and S′ with the same uniformly
computable cover, such that S is computable (and hence perfectly locally com-
putable), but S′ is not computably presentable, indeed not even 1-extensional. ⊓⊔

Lemma 3. There exist 2ω-many countable structures, all with the same uni-
formly computable cover, which are pairwise elementarily non-equivalent. Indeed,
these structures all have distinct Σ2-theories, and every Turing degree is the de-
gree of the Σ2-theory of some such structure. ⊓⊔

Finally, the converse of each statement in Theorem 1 is false.

Proposition 7. There exists a tree T which is not 1-extensionally locally com-
putable, yet such that for every m and every finite tuple p from T , the Σm-theory
of (T, p) is itself Σm.
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3 Appendix A: Proof of Theorem 2.

The forward direction is not difficult. Suppose that B is a computable presenta-
tion of S. Let Bi be the substructure of B generated by the i-th tuple (b)i of ω<ω.
Then the domain of Bi is a computably enumerable set. Enumerate its elements,
and let Ai be the domain of the enumeration. (That is, Ai is an initial segment
of ω from which we have a bijection βi onto the domain of Bi, all computable
uniformly in i.) Then we may define computable structures Ai, uniformly in i

and each with domain Ai, isomorphic to each Bi via the map βi. Next, we define
IA
ij to be the set of functions

{β−1
j ◦ βi : (b)i ⊆ Bj}.

The condition (b)i ⊆ Bj is Σ1, so this is a c.e. set, uniformly in i and j. Clearly
all elements of IA

ij are embeddings of Ai into Aj .
Next we claim that the set M = {βi : i ∈ ω} is a perfect correspondence

system for B and A. Clearly the first three conditions of Definition 4 are satisfied.
Fix i, and suppose first that f ∈ IA

ij . Then f = β−1
j ◦ βi, and this map entered

IA
ij because Bi ⊆ Bj . But then βj ◦ f = βi, and of course βj ∈ M . Conversely,

any finitely generated superstructure of Bi within S must be Bj for some j, and
again βj : Aj ։ Bj is the necessary element of M , with f = β−1

j ◦ βi ∈ IA
ij .

Condition 6 of Definition 4 is immediate. Thus M is a perfect correspondence
system.

For the converse, suppose that A is a perfect cover for S, with a perfect

correspondence system M . We let I
A

be the closure of IA under composition,

so that if f ∈ I
A

ij and g ∈ I
A

jk, then g ◦ f ∈ I
A

ik. Clearly I
A

is also computably
enumerable, and one checks quickly that M is also a perfect correspondence

system for the cover A with I
A

in place of IA.
We will build a computable structure B and prove by a back-and-forth ar-

gument that B ∼= S. To start, we let B0 = A0 and i0 = 0. Then we proceed
recursively.

Given Bs, let s = 〈t, u, v〉, and fix i = it and k = is, so that Bt = Ai and

Bs = Ak. We begin stage s + 1 by listing out those maps in I
A

with domain

Bt until we find the u-th element on this list. Let f ∈ I
A

ij (for some j) be this
element. (Of course t ≤ s, so Bt is defined. Also, if there were only finitely

many maps in I
A

with domain Ai, then Definition 4 would imply that S is
itself finitely generated, hence isomorphic to some Ai ∈ A, hence computably
presentable. Therefore we may assume that we do find such an f .)

We will incorporate this f into Bs+1 as follows. We now search for some m

such that there exist embeddings g ∈ I
A

km and p ∈ I
A

jm such that

p ◦ f = g ◦ gs−1 ◦ · · · ◦ gt.

The existence of such g and p is shown in Lemma 4 below. We then define is+1 =
m and Bs+1 = Am, with fs = p ◦ f : Bts+1

→֒ Bs+1 and gs = g : Bs →֒ Bs+1.



This completes stage s + 1, and we say that f has been incorporated into B at

this stage. Notice that every f ∈ I
A

whose domain is Ait
(= Bt) for any t will

be incorporated into B at infinitely many stages.

Lemma 4. In this situation, the required g and p do exist.

Proof. M is a correspondence system, hence contains a map βi embedding Ai

into S. We are given maps f ∈ I
A

ij and gs−1 ◦ · · · ◦ gt ∈ I
A

ik, so there exist maps
βj , βk ∈ M embedding Aj and Ak into S with

βj ◦ f = βi = βk ◦ gs−1 ◦ · · · ◦ gt.

Let C ⊂ S be the substructure generated by the images of βj and βk together.

Then by Definition 4, there exist Am,An ∈ A, maps g ∈ I
A

km and fn ∈ I
A

jn, and
isomorphisms βm : Am ։ C and βn : An ։ C, both in M , with βm ◦ g = βk

and βn ◦ fn = βj . But by Condition 6 of Definition 4, I
A

nm must contain the

embedding β−1
m ◦ βn. The embedding p = (β−1

m ◦ βn) ◦ fn lies in I
A

jm, since I
A

is
closed under composition, and for x ∈ Ai we have as required:

p(f(x)) = β−1
m (βn(fn(f(x))))

= β−1
m (βj(f(x)))

= β−1
m (βi(x))

= β−1
m (βk ◦ gs−1 ◦ · · · ◦ gt(x))

= β−1
m ((βm ◦ g) ◦ gs−1 ◦ · · · ◦ gt(x))

= g ◦ gs−1 ◦ · · · ◦ gt(x). ⊓⊔

The structure B itself is the union of the chain of structures Bs under the
embeddings gs+1 : Bs →֒ Bs+1. To build this B computably, at stage 〈u, v〉
we consider the element t (if any) which is been enumerated into the domain
of Bu by stage v. (Note that Bu might be finite, so we cannot just wait for
its next element to appear.) For each of the finitely many elements x which
has already entered B at some stage 〈u′, v′〉 < 〈u, v〉, we check whether either
x = g′u ◦gu′−1 ◦ · · ·◦gu+1(t) (if u′ > u) or t = gu ◦gu−1 ◦ · · ·◦gu′+1(x) (if u′ < u).
If either of these holds, we do nothing at this stage; if neither holds, then we add
a fresh element to B and identify it with t ∈ Bu. Iterating this process over all
stages 〈u, v〉 builds the domain of B, and we define the functions and relations
on it in the obvious way. Notice that for every s the embeddings of Bs and Bs+1

into B are compatible with the map gs : Bs →֒ Bs+1, and that we can compute
these embeddings uniformly in s, so from here on we will view each Bs as a
substructure of B.

Next we build the isomorphism α : B ։ S, by going back and forth. Of
course, α need not be computable. At every stage s+1, the image Ss of the cur-
rent approximation αs will be a finitely generated substructure of S, its domain
will be some Bt, and αs will lie in M . We will ensure that the extension of αs

is compatible with the inclusion maps gt : Bt →֒ Bt+1, so that at the end of the



construction, we may define α(x) for x ∈ B simply by finding some s and t with
x ∈ Bt = dom(αs) and letting α(x) = αs(x).

In this situation, suppose first that dom(αs) = Bt = Ai with range(αs) = Ss,
a substructure of S, and assume that we wish to extend αs to Bt+1. (Recall that
Bt+1 = Am for some m.) Now we have an embedding gt : Bt →֒ Bt+1, which lies

in I
A

im, by the construction of B. Since M is a correspondence system, we may
choose αs+1 to be an element of M mapping Am onto some superstructure Ss+1

of Ss, with αs+1 ◦ gt = αs.
Going backwards is harder. Suppose that dom(αs) = Bt = Ai and that we

wish to extend αs to αs+1 by adding a new element y ∈ S to Ss = range(αs).

Since M is a correspondence system containing αs, there exists Aj ∈ A, f ∈ I
A

ij ,
and a map β ∈ M such that β maps Aj onto the substructure of S generated

by y and Ss, with β ◦ f = αs. Now since f ∈ I
A

, there is some stage s′ > t at
which f is incorporated into B. When this happened, we defined an embedding

fs′ = p ◦ f : Bt →֒ Bs′+1, with p ∈ I
A

jm for some m, and with fs′ ∈ I
A

im because

I
A

is closed under composition. But since β lies in the correspondence system M ,
there exists γ ∈ M with domain Bs′+1 such that β = γ ◦ p. We define αs+1 = γ,
with domain Bs′+1 and let Ss+1 = range(αs+1), noting that for x ∈ dom(αs),

αs+1(gs′ ◦ · · · ◦ gt(x)) = γ(p ◦ f(x)) = β(f(x)) = αs(x).

(The first equality follows from Lemma 4.) Finally, y ∈ range(β) ⊆ range(γ) =
range(αs+1). This completes the back-and-forth construction, so S and B really
are isomorphic, and S is computably presentable.


