Classes of structures with universe a subset of ω_1 Ekaterina Fokina¹, Sy-David Friedman², Julia Knight³, Russell Miller⁴, and Antonio Montalbán⁵ August 28, 2012 #### Abstract We continue recent work on computable structure theory in the setting of ω_1 . We prove the analog of a result from [5] saying that isomorphism of computable structures lies "on top" among Σ_1^1 equivalence relations relations on ω . Our equivalence relations are on ω_1 . In the standard setting, Σ_1^1 sets are characterized in terms of paths through trees. In the setting of ω_1 , we use a new characterization of Σ_1^1 sets that involves clubs in ω_1 . ### 1 Introduction There is some recent work on computable structure theory in the setting of ω_1 [9], [3], [10]. We assume at least that all subsets of ω are constructible, and in some places, we assume that all subsets of ω_1 are constructible. The basic definitions come from " α -recursion" theory, where $\alpha = \omega_1$ (see [16]). #### Definition 1.1. - A set or relation on ω_1 is computably enumerable, or c.e., if it is defined in (L_{ω_1}, \in) by a Σ_1 -formula $\varphi(\overline{c}, x)$, with finitely many parameters—a Σ_1 formula is finitary, with only existential and bounded quantifiers. - A set or relation is computable if it and its complement are both computably enumerable. - A (partial) function is computable if its graph is c.e. Results of Gödel give us a 1-1 function g from ω_1 onto L_{ω_1} such that the relation $g(\alpha) \in g(\beta)$ is computable. The function g gives us ordinal codes for $^{^1\}mathrm{First}$ author's acknowledgements. $^{^2{\}rm The}$ second author thanks both the Templeton Foundation for its support through the Infinity Project #13152, and the Austrian Science Fund (FWF) for its support through Project P24654-N25. ³The third, fourth and fifth authors acknowledge support from the Infinity Project. sets, so that computing on ω_1 is really the same as computing on L_{ω_1} . There is also a computable function ℓ taking α to the code for L_{α} . Using the fact that L_{ω_1} is closed under α -sequences for any countable ordinal α , we may allow relations and functions of arity α , where α is any countable ordinal. As in the standard setting, we have indices for c.e. sets. We have a c.e. set C of codes for pairs (φ, \overline{c}) , representing Σ_1 definitions— $\varphi(\overline{u}, x)$ is a Σ_1 -formula and \overline{c} is a tuple of parameters appropriate for \overline{u} . We have a computable function h mapping ω_1 onto C. The ordinal α is a c.e. index for the set X if $h(\alpha)$ is the code for a pair (φ, \overline{c}) , where $\varphi(\overline{c}, x)$ is a Σ_1 definition of X in (L_{ω_1}, \in) . We write W_{α} for the c.e. set with index α . Suppose W_{α} is determined by the pair (φ, \overline{c}) ; i.e., $\varphi(\overline{c}, x)$ is a Σ_1 definition. We say that x is in W_{α} at stage β , and we write $x \in W_{\alpha,\beta}$, if L_{β} contains x, the parameters \overline{c} , and witnesses making the formula $\varphi(\overline{c}, x)$ true. The relation $x \in W_{\alpha,\beta}$ is computable. Let $U \subseteq (\omega_1)^2$ consist of the pairs (α, β) s.t. $\beta \in W_{\alpha}$. Then U is m-complete c.e. It is not computable, since the "halting set" $K = \{\alpha : \alpha \in W_{\alpha}\}$ is c.e. and not computable. In the setting of ω_1 , we have a good notion of relative computability. #### Definition 1.2. - A relation is c.e. relative to X if it is Σ_1 -definable in (L_{ω_1}, \in, X) . - A relation is computable relative to X if it and its complement are both c.e. relative to X. - A (partial or total) function is computable relative to X if the graph is c.e. relative to X. A c.e. index for R relative to X is an ordinal α s.t. $g(h(\alpha)) = (\varphi, \overline{c})$, where φ is a Σ_1 formula (in the language with \in and a predicate symbol for X), and $\varphi(\overline{c}, x)$ defines R in (L_{ω_1}, \in, X) . We write W_{α}^X for the c.e.set with index α relative to X. As in the standard setting, we have a universal c.e. set of partial computations using oracle information. Let U consist of the codes for triples (σ, α, β) s.t. $\sigma \in 2^{\rho}$ (for some countable ordinal ρ), and for X with characteristic function extending $\sigma, \beta \in W_{\alpha}^X$. Then U is c.e. **Definition 1.3.** The jump of X is $$X' = \{(\alpha, x) : x \in W_{\alpha}^X\}.$$ We can iterate the jump function through countable levels. We let $X^{(0)} = X$, $X^{(\alpha+1)} = (X^{(\alpha)})'$, and for limit α , $X^{(\alpha)}$ is the set of codes for pairs (β, x) s.t. $\beta < \alpha$ and $x \in X^{(\beta)}$. As L_{ω_1} is closed under countable sequences, it follows that for countable limit λ , $X^{(\lambda)}$ is the least upper bound of the $X^{(\alpha)}$ for $\alpha < \lambda$, in the ordering of relative computability. #### 1.1 Computable structures We consider structures with universe a subset of ω_1 . As in the standard setting, we usually identify a structure with its atomic diagram. A structure is computable if the atomic diagram is computable. We see that the ordered field of reals has a computable copy with universe ω_1 . If we think of the reals as a subset of L_{ω_1} , where each number is represented by a rational cut, this is a computable structure. The field of complex numbers has a computable copy. We may even add exponential functions such as exp, noting that any analytic function is determined by the countable sequence of coefficients of a power series. In the standard setting, Morley [14] and Millar [13] showed that for any countable complete decidable elementary first order theory T, there is a decidable saturated model iff there is a computable enumeration of the complete types consistent with T. In the setting of ω_1 , we have the following. **Proposition 1.4.** For any countable complete elementary first order theory T (with infinite models), T has a decidable saturated model with universe ω_1 . In the standard setting, the first non-computable ordinal, ω_1^{CK} , is the next admissible ordinal after ω . In the setting of ω_1 , the first non-computable ordinal comes much before the next admissible after ω_1 . Shore gave a proof of this, which is included in $[9]^1$. In the standard setting, the *Harrison ordering* is a computable ordering of type $\omega_1^{CK}(1+\eta)$. This ordering has initial segments isomorphic to all computable well orderings. In the setting of ω_1 , we have the following. **Theorem 1.5** (Greenberg-Knight-Shore). There is a computable ordering \mathcal{H} with initial segments isomorphic to all computable ordinals. Sketch of proof. We take a uniformly computable list of linear orderings, representing all computable isomorphism types, and carry out a finite-injury priority construction to produce \mathcal{H} with an initial segment that is a sum of intervals representing the well ordered \mathcal{A}_{α} , in order, followed by various other intervals that are not well ordered. The following result holds in the standard setting [5]. **Theorem 1.6** (Fokina-Friedman-Harizanov-Knight-McCoy-Montalbán). For any Σ_1^1 equivalence relation E on ω , there is a uniformly computable sequence of trees $(T_n)_{n\in\omega}$ (subtrees of $\omega^{<\omega}$) such that $$mEn \Leftrightarrow T_m \cong T_n$$. In [5], the result for trees is used to show that isomorphism on computable members of certain other classes lies on top in the same way: notably torsion-free Abelian groups and Abelian p-groups. We shall lift Theorem 1.6 to the setting of ω_1 . ¹Here is the argument: Let α be the least admissible after ω_1 . Then the set of computable wellorderings of ω_1 is an element of L_{α} and the function f that takes such a wellordering to its length is Σ_1 definable over L_{α} ; it follows that the range of f is bounded in α . **Theorem 1.7.** Assume V = L. For any Σ_1^1 equivalence relation E on ω_1 , there is a uniformly computable sequence of structures $M^*(\alpha)_{\alpha < \omega_1}$ (with universe ω_1) such that $\alpha E\beta$ iff $M^*(\alpha) \cong M^*(\beta)$. ## 2 Σ_1^1 sets Recall that in the standard setting, a set $S \subseteq \omega$ is Σ^1_1 if there is a computable relation R(x,u) such that $$n \in S \Leftrightarrow (\exists f \in \omega^{\omega}) (\forall s \in \omega) R(n, f \upharpoonright s)$$. Kleene showed the following. **Theorem 2.1** (Kleene). If S is Σ_1^1 , then there is a uniformly computable sequence of trees $(T_x)_{x\in\omega}$ such that $x\in S$ iff T_x has a path. In the standard setting, a computable tree with no path has a tree rank that is a computable ordinal. The ordinal tree ranks were crucial to the proof of Theorem 1.6. In our setting, we do not have enough computable ordinals, so we will need a new idea. We take the following as our definition of Σ_1^1 subset of ω_1 . **Definition 2.2.** A set $S \subseteq \omega_1$ is Σ_1^1 if there is a computable relation R, on ordinals and functions $f \in \omega_1^{\omega_1}$, such that $x \in S$ iff $(\exists f \in \omega_1^{\omega_1})$ $(\forall \beta \in \omega_1)$ $R(x, f \upharpoonright \beta)$. **Lemma 2.3.** For any Σ_1^1 set $S \subseteq \omega_1$, there is a uniformly computable sequence $(T_x)_{x < \omega_1}$ of subtrees of $\omega_1^{<\omega_1}$ such that $x \in S$ iff T_x has an ω_1 -branch. *Proof.* We do just what Kleene did. Let T_x consist of those $\sigma \in \omega_1^{<\omega_1}$ such that $\forall \beta < length(\sigma) R(x, \sigma \upharpoonright \beta)$. We show that all Σ_1^1 sets $S \subseteq \omega_1$ are m-reducible to the isomorphism relation on computable subtrees of $\omega_1^{<\omega_1}$. In fact, there is a special tree T such that for any Σ_1^1 set S, there is a uniformly computable sequence of trees $(T_x)_{x<\omega_1}$ such that $x \in S$ iff $T_x \cong T$. #### Description of the special tree T The tree T has just one node \emptyset at level 0. This node has \aleph_1 successors. For each node above level 0, there are \aleph_1 copies. Half of the copies are terminal, while the other half have \aleph_1 successors. Let T be the set of functions σ from countable ordinals to $\omega_1 \times \{0,1,2\}$ such that if σ has last term $(\beta,0)$, then σ is terminal, and if σ has limit length α , with terms $(\beta,1)$ for arbitrarily large $\beta < \alpha$, then σ is also terminal. The elements of T are the sequences σ mapping countable ordinals α to $\omega_1 \times \{0,1,2\}$ such that if there is a term $(\beta,0)$, then σ has length $\beta+1$, and if there are infinitely many terms $(\beta_i,1)$ and $\beta=\sup\{\beta_i\}$, then σ has length β . In [5], we combined subtrees of $\omega^{<\omega}$, using a kind of product. We define the analogous product for subtrees of $\omega_1^{<\omega_1}$. **Definition 2.4.** Suppose T_1, T_2 are subtrees of $\omega_1^{<\omega_1}$. Then $T_1^*T_2$ is the subtree of $(\omega_1 \times \omega_1)^{<\omega_1}$ consisting of the functions τ such that for some $\sigma_1 \in T_1$ and $\sigma_2 \in T_2$, both of length α , τ has length α and for all $\beta < \alpha$, $\tau(\beta) = (\sigma_1(\beta), \sigma_2(\beta))$. It is easy to see that the tree $T_1^*T_2$ has an ω_1 -branch iff T_1 and T_2 each have an ω_1 -branch. **Lemma 2.5.** Let T be the special tree defined above. For any tree $P \subseteq \omega_1^{<\omega_1}$, if P has an ω_1 -branch, then $P^*T \cong T$, and if P has no ω_1 -branch, then P^*T also has no ω_1 -branch. Combining the two lemmas, we get the following. **Proposition 2.6.** For any Σ_1^1 set $S \subseteq \omega_1$, there is a uniformly computable sequence of trees $(T_{\alpha})_{\alpha < \omega_1}$ such that $\alpha \in S$ iff $T_{\alpha} \cong T$. The structures that we produce for our main result (Theorem 1.7) are not members of any familiar class. The structures in the range of our embedding will each code a sequence of sets $(X_{\beta})_{\beta<\omega_1}$, up to an equivalence relation \sim , which is defined as follows. **Definition 2.7.** For $X, Y \subseteq \omega_1$, $X \sim Y$ iff $X \Delta Y$ is not stationary. **Lemma 2.8.** For any Σ_1^1 set $X \subseteq \omega_1$, there is a uniformly computable sequence $(S_\alpha)_{\alpha < \omega_1}$ of subsets of ω_1 such that $\alpha \in X$ iff S_α contains a club. *Proof.* Choose a uniformly computable sequence of trees $(T_{\alpha})_{\alpha<\omega_1}$ as in Lemma 2.3. Thus $\alpha\in S$ iff T_{α} has an ω_1 -branch. For ordinals $\alpha<\beta\leq\omega_1$ we let T_{α}^{β} be the interpretation of the tree T_{α} in L_{β} , using its Δ_1 definition. In particular, $T_{\alpha}^{\omega_1}=T_{\alpha}$. Now let S_{α} be the set of countable ordinals $\beta > \alpha$ such that for some countable $\gamma > \beta$, - 1. $L_{\gamma} \models ZF^-$ (ZF minus Power Set), - 2. $\omega_1^{L_{\gamma}} = \beta$, - 3. T_{α}^{β} is a tree which has a branch of length β in L_{γ} . First, suppose that T_{α} has an ω_1 -branch b. We must show that S_{α} contains a club. Suppose that M is a countable elementary substructure of L_{ω_2} such that $b \in M$. Then the transitive collapse, denoted by \overline{M} , has the form L_{γ} . Let $\beta = \omega_1^{\overline{M}}$. Since b is an ω_1 -branch through the tree $T_{\alpha} = T_{\alpha}^{\omega_1}$, $b \upharpoonright \beta$ is a β -branch through the tree T_{α}^{β} that belongs to L_{γ} and therefore γ witnesses that β belongs to S_{α} . Now form a continuous chain $(M_i)_{i<\omega_1}$ of countable elementary substructures of L_{ω_2} . Let \overline{M}_i be the transitive collapse of M_i . Then $\overline{M}_i = L_{\gamma_i}$, for some countable ordinal γ_i . Let $\beta_i = \omega_1^{L_{\gamma_i}}$. Then the sequence $(\beta_i)_{i<\omega_1}$ enumerates a club c in ω_1 . For each i, the image of b under the transitive collapse of M_i , $\pi_i(b)$, is a β_i -branch through $T_{\alpha}^{\beta_i}$ belonging to L_{γ_i} , witnessing that β_i belongs to S_{α} . Thus c is the required club. Conversely, we must show that if T_{α} has no ω_1 -branch, then S_{α} does not contain a club. Suppose that c is a club and we will show that some element of c does not belong to S_{α} . Let M be the least elementary substructure of L_{ω_2} such that $c, \alpha, \omega_1 \in M$. In L_{ω_2} , T_{α} has no ω_1 -branch, so the same holds in M. Again, we take the transitive collapse $\pi(M) = \overline{M} = L_{\overline{\gamma}}$. We have $\beta = \omega_1^{\overline{M}} \in c$ and T_{α}^{β} has no β -branch in $L_{\overline{\gamma}}$. We claim that β does not belong to S_{α} . Indeed, suppose otherwise and that the ordinal γ witnesses this. Then γ must be greater than $\overline{\gamma}$, as T_{α}^{β} has no β -branch in $L_{\overline{\gamma}}$. But if γ is greater than $\overline{\gamma}$, then β is countable in L_{γ} , as M was chosen to be the least elementary substructure of L_{ω_2} containing the parameters c, α, ω_1 . We have reached the desired contradiction. Let E be a Σ_1^1 equivalence relation on ω_1 . We identify pairs of ordinals with single ordinals and let S be as above, so that $\alpha E\beta$ iff $S_{\alpha,\beta}$ contains a club. For any $X \subseteq \omega_1$, let L(X) be the \aleph_1 -like linear order formed by stacking ω_1 many copies of the rational order, and at limit stage α putting in a supremum iff $\alpha \in X$. **Lemma 2.9.** For $X, Y \subseteq \omega_1$, $L(X) \cong L(Y)$ iff $X \sim Y$. *Proof.* Suppose $L(X) \cong L(Y)$. Then for a club C of α 's, $\alpha \in X$ iff $\alpha \in Y$. Therefore, $X \sim Y$. Suppose $L(X) \ncong L(Y)$. Then there is no club C of α 's such that $\alpha \in X$ iff $\alpha \in Y$. If there were, then we could build an isomorphism between L(X) an L(Y). This means that $X\Delta Y$ is stationary, so $X \not\sim Y$. We use ideas from [5]. For any finite chain $c = (\alpha, \gamma_1, \gamma_2, \dots, \gamma_n, \beta)$, let $$S(c) = S_{\alpha, \gamma_1} \cap S_{\gamma_1, \gamma_2} \cap \ldots \cap S_{\gamma_n, \beta}$$ If $\alpha' E \alpha$, then $S_{\alpha',\alpha}$ contains a club. Therefore, for each finite chain c from α to β , $S_{\alpha',\alpha} \cap S(c) \sim S(c)$. It follows that if we define $S^*(\alpha,\beta)$ to be the set of the S(c), where c is a chain starting with α and ending with β , and $\alpha E \alpha'$, then $S^*(\alpha,\beta)$ agrees with $S^*(\alpha',\beta)$, in the sense that they have the same elements modulo the ideal of nonstationary sets. Let $M(\alpha,\beta)$ be the structure that is the "free union" of ω_1 copies of the linear orders L(X) for $X \in S^*(\alpha,\beta)$. One way to make this precise is to let $M(\alpha,\beta)$ consist of two disjoint sets A,B of size ω_1 , with a relation $R(a,b_0,b_1)$ for a in A and b_0,b_1 in B so that for each fixed a, R(a,-,-) defines a linear order of B isomorphic to one of the L(X), for $X \in S^*(\alpha,\beta)$, and each such order occurs for exactly ω_1 -many such a in A. Alternatively, we may let $M(\alpha, \beta)$ have an equivalence relation with an ordering on each equivalence class, so that for each set $X \in S^*(\alpha, \beta)$, the ordering L(X) is copied in uncountably many equivalence classes, and for each equivalence class, the ordering on the equivalence class is isomorphic to L(X) for some $X \in S^*(\alpha, \beta)$. We note that in either case, the language of the structures $M(\alpha, \beta)$ is finite. #### Lemma 2.10. - 1. If $\alpha E \alpha'$, then for all β , $M(\alpha, \beta) \cong M(\alpha', \beta)$. - 2. If it is not the case that $\alpha E \alpha'$, then $M(\alpha, \alpha) \ncong M(\alpha', \alpha)$. *Proof.* (1) is clear. For (2), we note that if it is not the case that $\alpha E \alpha'$, then there is no set $X \in S^*(\alpha, \alpha')$ that contains a club, but there is such a set in $S^*(\alpha, \alpha)$. From this it follows that $M(\alpha, \alpha)$ is not isomorphic to $M(\alpha, \alpha')$. The structures $M(\alpha, \beta)$ have a finite language. Finally, let $M^*(\alpha)$ be the *sequence* (not the free union) of structures $M(\alpha, \beta)$, for $\beta < \omega_1$. We could add to the language a disjoint family of unary predicates $(U_\beta)_{\beta<\omega_1}$, where U_β is the universe of a copy of $M(\alpha, \beta)$. We would like to keep the language finite. So, instead of this, we let $M^*(\alpha)$ be a structure that includes a copy of ω_1 with the usual ordering, and has a predicate associating to each $\beta < \omega_1$ one of a family of sets, disjoint from ω_1 and disjoint from each other. We put a copy of $M(\alpha, \beta)$ on the set associated with β . **Lemma 2.11.** For all $\alpha, \alpha', \alpha E \alpha'$ iff $M^*(\alpha) \cong M^*(\alpha')$. *Proof.* If $\alpha E \alpha'$, then for all β , $M(\alpha, \beta) \cong M(\alpha', \beta)$. Then $M^*(\alpha) \cong M^*(\alpha')$. If it is not the case that $\alpha E \alpha'$, then $M(\alpha, \alpha) \not\cong M(\alpha', \alpha)$. Then we have $M^*(\alpha) \not\cong M^*(\alpha')$. Our structures $M^*(\alpha)$ are in a finite relational language, and we may use standard coding tricks to transform them into undirected graphs. We represent each element by a point attached to a triangle. For an n-place relation symbol R, we represent each n-tuple of elements by a special point, attached by chains of length $1, 2, \ldots, n$ to the points representing the elements. ## 3 Turing computable embeddings H. Friedman and Stanley [6] introduced the notion of Borel embedding for comparing classification problems for classes of countable structures. The notion of Turing computable embedding [2] allows some finer distinctions. Here we define the analogue of Turing computable embedding for structures with universe a subset of ω_1 . We write $K \leq_{tc} K'$ if there is a computable operator Φ taking structures in K to structures in K' such that for $A, B \in K$, $A \cong B$ iff $\Phi(A) \cong \Phi(B)$. In the standard setting, the class of undirected graphs lies on top among classes of countable structures under \leq_{tc} . The same is true in our setting. Let L be a computable relational language—L may be uncountable, and it may include symbols of arity α for computable ordinals α . When we say that the language is computable, we mean that the set of relation symbols is computable, and we have a computable function assigning a countable ordinal arity to each symbol. Let Mod(L) be the class of L structures with universe a subset of ω_1 . Let UG be the class of undirected graphs. #### Proposition 3.1. $Mod(L) \leq_{tc} UG$ Proof. We first give a transformation that replaces the language L by one with just finitely many relations of finite arity. We have a predicate U, for elements of the structure M. We have a predicate O with an ordering of type ω_1 . We have another predicate S for special points. For each predicate symbol R, say of arity α , and each α -tuple in U, we have a special point in S. There is a relation Q that holds of $x \in O$, $p \in S$ and $a \in U$ if p is the special point corresponding to some R of arity α and some $\sigma \in M^{\alpha}$ just in case $a = \sigma(\beta)$ and x is the β^{th} element of O. We let T be the set of special points in S such that the relation R in M of the tuple. The unary predicates U, O, and S are disjoint, and the universe of our structure M^* is the union. Beyond these, we have a binary relation—the ordering on O, a ternary relation Q, and the set $T \subseteq S$. So, the language is finite. It is not difficult to see that $M_1 \cong M_2$ iff $M_1^* \cong M_2^*$. We can apply Marker's transformation to pass from the structures M^* to undirected graphs, still preserving isomorphism. In [6], H. Friedman and Stanley give a Borel embedding of undirected graphs into fields (of arbitrary characteristic). The embedding is effective. Moreover, we can use the same idea to give an embedding in our uncountable setting. **Proposition 3.2.** If K is the class of undirected graphs, and K' is the class of fields of characteristic 0 (or any other desired characteristic), then $K \leq_{tc} K'$. Proof. Let F^* be a large algebraically closed field of the desired characteristic, with independent transcendentals b_{α} , for $\alpha < \omega_1$. For a graph G, with universe a subset of ω_1 , we let $\Phi(G)$ be the subfield of F^* generated by the elements b_{α} , for $\alpha \in G$, the elements algebraic over a single one of these b_{α} , and elements $\sqrt{d+d'}$, where for some b_{α} and b_{β} that we have included, there is an edge between the corresponding graph elements, and d is inter-algebraic with b_{α} while d' is inter-algebraic with b_{β} . In [6], H. Friedman and Stanley give a Borel embedding of undirected graphs into linear orderings. This embedding is effective. We can use the same idea, with modifications, to give an embedding in our uncountable setting. **Proposition 3.3.** If K is the class of undirected graphs and K' is the class of linear orderings, then $K \leq_{tc} K'$. Proof. By Proposition 1.4, we have a saturated model Q of the theory of dense linear orderings without endpoints. (We are assuming V = L, so we have CH.) We want more than this. Consider the theory of a structure whose universe is the union of disjoint predicates U and V, where on V, there is a dense linear ordering without endpoints, and there is a function mapping f from V onto U such that for each $u \in U$, $f^{-1}(u)$ is dense in V. We consider a computable saturated model Q^* of this theory, with universe ω_1 . We have a type ω_1 ordering of U, inherited from the ordering on ω_1 , and we identify the elements of U with the countable ordinals. Let Q_{α} be $f^{-1}(u)$, where u is the α^{th} element of U. The sets Q_0 and Q_1 play a special role. We make a list of the atomic types of countable graphs t_{α} , $\alpha < \omega_1$. Consider the lexicographic ordering on $(Q^*)^{<\omega_1}$. The ordering corresponding to a given graph G will be a sub-ordering $\Phi(G)$ of this. Consider the sequences σ of length $2\beta + 2$ such that for some β -tuple \overline{a} from G, satisfying the atomic type t_{α} , we have - 1. for $\gamma < \beta$, $\sigma(2\gamma) \in Q_0$, and $\sigma(2\gamma + 1) \in Q_{2+a_{\gamma}}$, - 2. $\sigma(2\beta) \in Q_1$, - 3. $\sigma(2\beta+1)$ is an element of U identified with an ordinal less than α . The elements of $\Phi(G)$ are the sequences σ of the form above. We say that σ represents \overline{a} if σ is related to \overline{a} in the way described. The ordering L(G) is made up of intervals having the order type α , for the various atomic types t_{α} realized in G. It takes some effort to show that $G_1 \cong G_2$ iff $\Phi(G_1) \cong \Phi(G_2)$. First, suppose $G_1 \cong G_2$ via f. To show that $\Phi(G_1) \cong \Phi(G_2)$, we consider the set of countable partial isomorphisms p, where for some countable family of $\sigma_i \in L(G_1)$, where σ_i represents $\overline{a}_i \in G_1$, - 1. if $p(\sigma_i) = \tau_i$, where σ_i represents \overline{a} , then τ_i represents the corresponding sequence $f(\overline{a}_i)$, - 2. if σ_i represents \overline{a}_i , realizing type t_{α} , then p maps the full interval of type α containing σ_i to the corresponding interval of type α containing τ_i . The fact that Q^* is saturated allows us to show that the family of countable partial isomorphisms has the back-and-forth property. Next, suppose $L(G_1)\cong L(G_2)$ via f. We must define an isomorphism g from G_1 onto G_2 . The universes of G_1 and G_2 are subsets of ω_1 , so we have lists of elements $(a_{\alpha})_{\alpha<\omega_1}$ and $(b_{\alpha})_{\alpha<\omega_1}$. At step α , we have a countable partial isomorphism with a_{α} is in the domain and b_{α} in the range. Take $\sigma\in L(G_1)$ representing the sequence (a_0) , of atomic type t_{δ} . Then $\sigma=r_0q_0r_1\beta$, where $r_0\in Q_0,\ q_0\in Q_{2+a_0},\ r_1\in Q_1,\ \text{and}\ \beta<\delta$. Then $f(\sigma)$ is a sequence of length 4, of the form r'_0,q'_0,r'_1,β , where $r'_0\in Q_0,\ q'_0\in Q_d,\ r'_1\in Q_{2+d},\ \text{for some}\ d\in G_2$. We let $g(a_0)=d$. If $b_0=d$, then we are done. Otherwise, we consider a sequence $\tau\in L(G_2)$ of length 6 such that $\tau\supseteq r'_0q'_0$ and τ represents (d,b_0) . The pre-image of this τ under f has the form $(r_0q_0r''_1q_1,r_2,\delta'')$, where $q_1\in Q_{2+c}$, for some c. We let $g(c) = b_0$. We continue in this way, letting f guide us in finding the appropriate image or pre-image for the next element. ### 4 Results on fields Here we consider arbitrary ω_1 -computable fields of characteristic 0. The domain of each field is either ω_1 or possibly just ω , and the field operations are all ω_1 -computable. We believe that our results carry over equally well to fields of positive characteristic. **Lemma 4.1.** Every ω_1 -computable field has a computable transcendence basis over its prime subfield Q (which is ω_1 -computable, being countable). *Proof.* For each $\alpha \in F$ we define $\alpha \in B$ iff $$(\forall \langle \beta_1, \dots, \beta_n \rangle \in \alpha^{<\omega})(\forall p \in Q[X_1, \dots, X_n, Y])$$ $$[p(\beta_1, \dots, \beta_n, \alpha) = 0 \implies p(\beta_1, \dots, \beta_n, Y) = 0].$$ This statement quantifies only over countable sets which we can enumerate uniformly and know when we have finished enumerating each one. It says that α lies in B iff α satisfies no nonzero polynomial over the subfield $Q(\beta : \beta < \alpha)$ generated by all elements $< \alpha$. Clearly this B is a transcendence basis for F. Corollary 4.2. The field C is relatively ω_1 -computably categorical. Proof. Given any two ω_1 -computable fields $E \cong F \cong C$, use the lemma to find computable transcendence bases B for E and C for F. Let f be any computable bijection from B onto C (for instance, let $f(\alpha)$ be the least element of C which is $> f(\beta)$ for every $\beta < \alpha$). This f extends effectively to an isomorphism from E onto F: for each element $x \in E - B$ in order, find the minimal polynomial p(X) of x over $Q(B \cap x)$ (using the splitting algorithm provided by Kronecker for purely transcendental field extensions of Q), and map x to the least root in F of the image of p(X) in F[X] under the map f on the coefficients of p(X). By normality of F over Q(C), at every step this map still extends to an isomorphism from E into F, so we always find such a root in F. Moreover, since f maps B onto the transcendence basis C for F, f must map E onto all of F: every $g \in F$ has a minimal polynomial $p(X) \in Q(C)[X]$ of some degree g, and the roots g, ..., g of its preimage in g must map one-to-one to the g-many roots of g, in g, forcing g is g. The foregoing proof relativizes to the degree of any field $E \cong C$, yielding relative ω_1 -computable categoricity. **Theorem 4.3.** Let F be any ω_1 -computable field with a subfield K isomorphic to C, and assume that F is countably generated over K. Then F is relatively ω_1 -computably categorical. Proof. Say F = K(C), where C is countable and $C \cap K = \emptyset$. In general K will not be computable. Notice that for each $c \in C$, F cannot contain the algebraic closure of K(c), because this field is not countably generated over K. So we may fix a countable set $S \subseteq K$ with the property that, for every $c \in C$, S contains some tuple x_0, \ldots, x_n such that F does not contain the algebraic closure of the set $\{x_0, \ldots, x_n, c\}$. Therefore, an arbitrary element $x \in F$ lies in K iff K contains the algebraic closure of $S \cup \{x\}$. Since $S \cup \{x\}$ is countable, we will recognize at some countable stage that F contains this algebraic closure (if indeed $x \in F$). Therefore, K is computably enumerable within F. We next define a subfield F_0 of K as follows. Write $C = \{c_1, c_2, \ldots\}$. For each i > 0, if c_i is transcendental over the field $K(c_1, \ldots, c_{i-1})$, then add nothing to F_0 ; otherwise, add to F_0 a finite set of elements y_1, \ldots, y_n from K such that the minimal polynomial of c_i over $K(c_1, \ldots, c_{i-1})$ has coefficients in $Q(y_1, \ldots, y_n, c_1, \ldots, c_{i-1})$. Since C is countable, this only adds countably many elements in all, and we let $F_0 \subseteq K$ be the algebraic closure of the subfield of K generated by these elements along with the elements of S. Thus F_0 is also countable. We claim that every automorphism of K which fixes F_0 pointwise extends to an automorphism of F which is the identity on C. To see this, let h_0 be such an automorphism of K. Define h to extend h_0 by setting $h(c_i) = c_i$ for all i. We claim that this h extends to an automorphism of all of F. For each s > 0, if c_s is transcendental over $K(c_1, \ldots, c_{s-1})$, then it is clear that setting $h_s(c_s) = c_s$ extends to an automorphism h_s of $K(c_1, \ldots, c_s)$. If c_s is algebraic over $K(c_1, \ldots, c_{s-1})$, then by our choice of F_0 , the minimal polynomial p(X) of c_s over all of $K(c_1, \ldots, c_{s-1})$ lies in $F_0(c_1, \ldots, c_{s-1})[X]$. So $$K(c_1, \dots, c_s) \cong K(c_1, \dots, c_{s-1})[X]/(p(X))$$ $\cong (F_0(c_1, \dots, c_{s-1})[X]/(p(X)))(K - K_0).$ Since h_s is the identity on $F_0(c_1, \ldots, c_{s-1})$, it is clearly an automorphism of the last of these fields, and so it is also an automorphism of the first field, as desired. Thus, the union h of all these h_s is an automorphism of K(C), which is to say, of F. Now let E be any field isomorphic to F, with domain ω_1 , and suppose ρ is a noncomputable isomorphism from F onto E. We give the details for the case where E is computable; they relativize directly to an arbitrary E. Let E_0 be the countable image $\rho(F_0)$, and let $T = \rho(S)$. We start be defining $f_0 = \rho \upharpoonright (F_0(C))$, which is computable because F_0 and C are countable. Next, we enumerate K as defined above, and similarly enumerate its image $\rho(K)$ within E, using the set T. At stage $\sigma + 1$, we wait for a new element x to appear in K (using our enumeration) on which f_{σ} is not defined. When this happens, we find the first element y to appear in our enumeration of $\rho(K)$ which is not already in $rg(f_{\sigma})$, and define $f_{\sigma+1}(x) = y$. At this stage we also find all elements of F which are algebraic over the portion of K which has appeared so far (including x) but not in the domain of f_{σ} , and define $f_{\sigma+1}$ of each of these to be a root of the corresponding polynomial in E. (We can do this effectively, simply enumerating F until all of the countably many polynomials over this portion of K have their full complement of roots.) Thus we extend the domain of $f_{\sigma+1}$ to include a larger algebraically closed subfield $K_{\sigma+1}$ of K than previously. In addition, we extend $f_{\sigma+1}$ to have the appropriate values on all elements generated by C over $K_{\sigma+1}$; again, it is not difficult to find all of these elements in countably many steps. This completes stage $\sigma+1$. It is clear that this defines a map $f = \cup f_{\sigma}$ on all of F, whose restriction to K is an isomorphism from K onto $\rho(K)$ (because we always chose the next new element of $\rho(K)$ in our enumeration to be the image of the next new element of K). The map f is also defined and equal to ρ on C (as well as on F_0), and is defined on all elements generated by C over K as well. That is, f is defined on all of F. Since ρ and f are equal on F_0 , our argument above shows that the automorphism $(\rho^{-1} \circ f) \upharpoonright K$ of K extends to an automorphism τ of all of F, which is the identity on C. But then $f = \rho \circ \tau$, so f is an isomorphism from F onto E as desired. At the other extreme from algebraically closed fields, namely fields purely transcendental over Q, the opposite result holds. **Proposition 4.4.** The purely transcendental field extension $F = Q(X_{\alpha} : \alpha \in \omega_1)$ is not ω_1 -computably categorical. *Proof.* We may assume that F is a presentation with the transcendence basis $\{X_{\alpha}: \alpha < \omega_1\}$ computable. (Lemma 4.1 only guarantees the existence of some computable transcendence basis, not necessarily of one generating the entire field.) We buld a computable field $E \cong F$ with no computable isomorphism from E onto F. X_{α} will be our witness that the computable function ϕ_{α} is not such an isomorphism. At the start, we build E_0 to be F itself, although we only use half the elements of ω_1 to do so. (Let E_0 be the isomorphic image of F under the map $\lambda + n \mapsto \lambda + 2n$ for all limit ordinals λ .) We write $y_{\alpha} \in E_0$ for the image of x_{α} under this map. Then, for each α , we wait for $\phi_{\alpha}(y_{\alpha})$ to converge, say to some $z_{\alpha} \in F$. When this happens, we find β_1, \ldots, β_n such that $z_{\alpha} \in Q(x_{\beta_1}, \ldots, x_{\beta_n})$, and ask whether the polynomial $p(X) = X^2 - z_{\alpha}$ factors over the subfield $Q(x_{\beta_1}, \ldots, x_{\beta_n})$. (Kronecker gives a splitting algorithm for this field, since we know that x_{β_i} to be algebraically independent over Q.) If so, then z_{α} has a square root in F, and so we do not change anything in E, but define $y'_{\alpha} = y_{\alpha}$. If not, then we adjoin to E a new element y'_{α} whose square in E is y_{α} , and use half of the currently unused elements to close E under the field operations. This completes the construction. Now $E = Q(y'_{\alpha} : \alpha < \omega_1)$ is isomorphic to F via the map $y'_{\alpha} \mapsto x_{\alpha}$. However, if $\phi_{\alpha}(y_{\alpha}) \downarrow$, then y_{α} has a square root in E iff $\phi_{\alpha}(y_{\alpha})$ has no square root in F. Thus no ϕ_{α} can be an isomorphism from E onto F. ### References - [1] C. J. Ash, J. F. Knight, M. Manasse, T. Slaman, "Generic copies of countable structures", *APAL*, vol. 42(1989), pp. 195-205. - [2] W. Calvert, D. Cummins, J. F. Knight, and S. Miller, "Comparing classes of finite structures", *Algebra and Logic*, vol. 43(2004), pp. 365-373. - [3] J. Carson, J. Johnson, J. F. Knight, K. Lange, C. McCoy, and J. Wallbaum, "The arithmetical hierarchy in the setting of ω_1 ", preprint. - [4] J. Chisholm, "Effective model theory vs. recursive model theory," J. Symb. Logic vol. 55(1990), pp. 1168-1191. - [5] E. Fokina, S-D. Friedman, V. Harizanov, J. F. Knight, A. Montalbán, C. McCoy, "Isomorphism relations on computable structures", to appear in J. Symb. Logic. - [6] H. Friedman and L. Stanley, "A Borel reducibility theory for classes of countable structures", J. Symb. Logic, vol. 54(1989), pp. 894-914. - [7] A. Frölich and J. C. Shepherdson, "Effective procedures in field theory", Philos. Trans. Royal Soc. London, Ser. A., vol. 248(1956), pp. 894-914. - [8] S. S. Goncharov and A. T. Nurtazin, "Constructive models of complete decidable theories", *Algebra and Logic*, vol. 12(1973), pp. 67-77. - [9] N. Greenberg and J. F. Knight, "Computable structure theory using admissible recursion theory on $\omega + 1$ ", to appear in *Proceedings of EMU*. - [10] J. Johnson, PhD thesis at Notre Dame. - [11] G. Metakides and A. Nerode, "Recursively enumerable vector spaces", *Annals of Math. Logic*, vol. 11(1977), pp. 141-171. - [12] G. Metikides and A. Nerode, "Effective content of field theory", Annals of Math. Logic, vol. 17(1979), pp. 289-320. - [13] T. S. Millar, "Foundations of recursive model theory", APAL, vol. 13(1978), pp. 45-72. - [14] M. Morley, "Decidable models", Israel J. of Math., vol. 25(1976), pp. 233-240. - [15] A. T. Nurtazin, Completable Classes and Criteria for Autostability, PhD thesis, Alma-Ata, 1974. - [16] G. Sacks, *Higher Recursion Theory*, Perspectives in Mathematical Logic, Springer-Verlag, 1990. - [17] B. van der Waerden, "Eine Bemerkung über die Unzerlegbarkeit von Polynomen," *Math. Ann.*, vol. 1-2(1930), pp. 738-739. Authors 1 and 2: Kurt Gödel Research Center, Währinger Strasse 25, 1090 Wien, Austria ekaterina.
fokina@univie.ac.at sdf@logic.univie.ac.at Author 3: University of Notre Dame, 255 Hurley Hall, Notre Dame, Indiana 46556, USA knight. 1@nd.edu Author 4: Queens College CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA Russell. Miller@qc.cuny.edu Author 5: University of California at Berkeley, Evans Hall #3840, Berkeley, CA 94720, USA antonio@math.berkeley.edu