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Abstract

We continue recent work on computable structure theory in the setting
of ω1. We prove the analog of a result from [5] saying that isomorphism
of computable structures lies “on top” among Σ1

1 equivalence relations
relations on ω. Our equivalence relations are on ω1. In the standard
setting, Σ1

1 sets are characterized in terms of paths through trees. In the
setting of ω1, we use a new characterization of Σ1

1 sets that involves clubs
in ω1.

1 Introduction

There is some recent work on computable structure theory in the setting of ω1

[9], [3], [10]. We assume at least that all subsets of ω are constructible, and
in some places, we assume that all subsets of ω1 are constructible. The basic
definitions come from “α-recursion” theory, where α = ω1 (see [16]).

Definition 1.1.

• A set or relation on ω1 is computably enumerable, or c.e., if it is defined
in (Lω1

,∈) by a Σ1-formula ϕ(c, x), with finitely many parameters—a Σ1

formula is finitary, with only existential and bounded quantifiers.

• A set or relation is computable if it and its complement are both com-
putably enumerable.

• A (partial) function is computable if its graph is c.e.

Results of Gödel give us a 1− 1 function g from ω1 onto Lω1
such that the

relation g(α) ∈ g(β) is computable. The function g gives us ordinal codes for
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sets, so that computing on ω1 is really the same as computing on Lω1 . There
is also a computable function ` taking α to the code for Lα. Using the fact
that Lω1

is closed under α-sequences for any countable ordinal α, we may allow
relations and functions of arity α, where α is any countable ordinal.

As in the standard setting, we have indices for c.e. sets. We have a c.e. set
C of codes for pairs (ϕ, c), representing Σ1 definitions—ϕ(u, x) is a Σ1-formula
and c is a tuple of parameters appropriate for u. We have a computable function
h mapping ω1 onto C. The ordinal α is a c.e. index for the set X if h(α) is the
code for a pair (ϕ, c), where ϕ(c, x) is a Σ1 definition of X in (Lω1

,∈). We write
Wα for the c.e. set with index α. Suppose Wα is determined by the pair (ϕ, c);
i.e., ϕ(c, x) is a Σ1 definition. We say that x is in Wα at stage β, and we write
x ∈Wα,β , if Lβ contains x, the parameters c, and witnesses making the formula
ϕ(c, x) true. The relation x ∈ Wα,β is computable. Let U ⊆ (ω1)2 consist of
the pairs (α, β) s.t. β ∈ Wα. Then U is m-complete c.e. It is not computable,
since the “halting set” K = {α : α ∈Wα} is c.e. and not computable.

In the setting of ω1, we have a good notion of relative computability.

Definition 1.2.

• A relation is c.e. relative to X if it is Σ1-definable in (Lω1
,∈, X).

• A relation is computable relative to X if it and its complement are both
c.e. relative to X.

• A (partial or total) function is computable relative to X if the graph is
c.e. relative to X.

A c.e. index for R relative to X is an ordinal α s.t. g(h(α)) = (ϕ, c), where
ϕ is a Σ1 formula (in the language with ∈ and a predicate symbol for X), and
ϕ(c, x) defines R in (Lω1

,∈, X). We write WX
α for the c.e.set with index α

relative to X. As in the standard setting, we have a universal c.e. set of partial
computations using oracle information. Let U consist of the codes for triples
(σ, α, β) s.t. σ ∈ 2ρ (for some countable ordinal ρ), and for X with characteristic
function extending σ, β ∈WX

α . Then U is c.e.

Definition 1.3. The jump of X is X ′ = {(α, x) : x ∈WX
α }.

We can iterate the jump function through countable levels. We let X(0) = X,
X(α+1) = (X(α))′, and for limit α, X(α) is the set of codes for pairs (β, x) s.t.
β < α and x ∈ X(β). As Lω1

is closed under countable sequences, it follows
that for countable limit λ, X(λ) is the least upper bound of the X(α) for α < λ,
in the ordering of relative computability.

1.1 Computable structures

We consider structures with universe a subset of ω1. As in the standard set-
ting, we usually identify a structure with its atomic diagram. A structure is
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computable if the atomic diagram is computable. We see that the ordered field
of reals has a computable copy with universe ω1. If we think of the reals as
a subset of Lω1

, where each number is represented by a rational cut, this is a
computable structure. The field of complex numbers has a computable copy.
We may even add exponential functions such as exp, noting that any analytic
function is determined by the countable sequence of coefficients of a power series.

In the standard setting, Morley [14] and Millar [13] showed that for any
countable complete decidable elementary first order theory T , there is a de-
cidable saturated model iff there is a computable enumeration of the complete
types consistent with T . In the setting of ω1, we have the following.

Proposition 1.4. For any countable complete elementary first order theory T
(with infinite models), T has a decidable saturated model with universe ω1.

In the standard setting, the first non-computable ordinal, ωCK1 , is the next
admissible ordinal after ω. In the setting of ω1, the first non-computable ordinal
comes much before the next admissible after ω1. Shore gave a proof of this,
which is included in [9]1. In the standard setting, the Harrison ordering is a
computable ordering of type ωCK1 (1 + η). This ordering has initial segments
isomorphic to all computable well orderings. In the setting of ω1, we have the
following.

Theorem 1.5 (Greenberg-Knight-Shore). There is a computable ordering H
with initial segments isomorphic to all computable ordinals.

Sketch of proof. We take a uniformly computable list of linear orderings, repre-
senting all computable isomorphism types, and carry out a finite-injury priority
construction to produce H with an initial segment that is a sum of intervals
representing the well ordered Aα, in order, followed by various other intervals
that are not well ordered.

The following result holds in the standard setting [5].

Theorem 1.6 (Fokina-Friedman-Harizanov-Knight-McCoy-Montalbán). For any
Σ1

1 equivalence relation E on ω, there is a uniformly computable sequence of trees
(Tn)n∈ω (subtrees of ω<ω) such that

mEn⇔ Tm ∼= Tn .

In [5], the result for trees is used to show that isomorphism on computable
members of certain other classes lies on top in the same way: notably torsion-free
Abelian groups and Abelian p-groups.

We shall lift Theorem 1.6 to the setting of ω1.

1Here is the argument: Let α be the least admissible after ω1. Then the set of computable
wellorderings of ω1 is an element of Lα and the function f that takes such a wellordering to
its length is Σ1 definable over Lα; it follows that the range of f is bounded in α.
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Theorem 1.7. Assume V = L. For any Σ1
1 equivalence relation E on ω1, there

is a uniformly computable sequence of structures M∗(α)α<ω1 (with universe ω1)
such that αEβ iff M∗(α) ∼= M∗(β).

2 Σ1
1 sets

Recall that in the standard setting, a set S ⊆ ω is Σ1
1 if there is a computable

relation R(x, u) such that

n ∈ S ⇔ (∃f ∈ ωω) (∀s ∈ ω)R(n, f � s) .

Kleene showed the following.

Theorem 2.1 (Kleene). If S is Σ1
1, then there is a uniformly computable se-

quence of trees (Tx)x∈ω such that x ∈ S iff Tx has a path.

In the standard setting, a computable tree with no path has a tree rank that
is a computable ordinal. The ordinal tree ranks were crucial to the proof of
Theorem 1.6. In our setting, we do not have enough computable ordinals, so we
will need a new idea. We take the following as our definition of Σ1

1 subset of ω1.

Definition 2.2. A set S ⊆ ω1 is Σ1
1 if there is a computable relation R, on ordi-

nals and functions f ∈ ωω1
1 , such that x ∈ S iff (∃f ∈ ωω1

1 ) (∀β ∈ ω1)R(x, f � β).

Lemma 2.3. For any Σ1
1 set S ⊆ ω1, there is a uniformly computable sequence

(Tx)x<ω1
of subtrees of ω<ω1

1 such that x ∈ S iff Tx has an ω1-branch.

Proof. We do just what Kleene did. Let Tx consist of those σ ∈ ω<ω1
1 such that

∀β < length(σ)R(x, σ � β).

We show that all Σ1
1 sets S ⊆ ω1 are m-reducible to the isomorphism relation

on computable subtrees of ω<ω1
1 . In fact, there is a special tree T such that for

any Σ1
1 set S, there is a uniformly computable sequence of trees (Tx)x<ω1

such
that x ∈ S iff Tx ∼= T .

Description of the special tree T

The tree T has just one node ∅ at level 0. This node has ℵ1 successors. For
each node above level 0, there are ℵ1 copies. Half of the copies are terminal,
while the other half have ℵ1 successors. Let T be the set of functions σ from
countable ordinals to ω1 × {0, 1, 2} such that if σ has last term (β, 0), then σ
is terminal, and if σ has limit length α, with terms (β, 1) for arbitrarily large
β < α, then σ is also terminal. The elements of T are the sequences σ mapping
countable ordinals α to ω1 × {0, 1, 2} such that if there is a term (β, 0), then σ
has length β+ 1, and if there are infinitely many terms (βi, 1) and β = sup{βi},
then σ has length β.

In [5], we combined subtrees of ω<ω, using a kind of product. We define the
analogous product for subtrees of ω<ω1

1 .
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Definition 2.4. Suppose T1, T2 are subtrees of ω<ω1
1 . Then T ∗1 T2 is the sub-

tree of (ω1×ω1)<ω1 consisting of the functions τ such that for some σ1 ∈ T1 and
σ2 ∈ T2, both of length α, τ has length α and for all β < α, τ(β) = (σ1(β), σ2(β)).

It is easy to see that the tree T ∗1 T2 has an ω1-branch iff T1 and T2 each have
an ω1-branch.

Lemma 2.5. Let T be the special tree defined above. For any tree P ⊆ ω<ω1
1 ,

if P has an ω1-branch, then P ∗T ∼= T , and if P has no ω1-branch, then P ∗T
also has no ω1-branch.

Combining the two lemmas, we get the following.

Proposition 2.6. For any Σ1
1 set S ⊆ ω1, there is a uniformly computable

sequence of trees (Tα)α<ω1 such that α ∈ S iff Tα ∼= T .

The structures that we produce for our main result (Theorem 1.7) are not
members of any familiar class. The structures in the range of our embedding
will each code a sequence of sets (Xβ)β<ω1

, up to an equivalence relation ∼,
which is defined as follows.

Definition 2.7. For X,Y ⊆ ω1, X ∼ Y iff X∆Y is not stationary.

Lemma 2.8. For any Σ1
1 set X ⊆ ω1, there is a uniformly computable sequence

(Sα)α<ω1
of subsets of ω1 such that α ∈ X iff Sα contains a club.

Proof. Choose a uniformly computable sequence of trees (Tα)α<ω1 as in Lemma
2.3. Thus α ∈ S iff Tα has an ω1-branch. For ordinals α < β ≤ ω1 we let T βα be
the interpretation of the tree Tα in Lβ , using its ∆1 definition. In particular,
Tω1
α = Tα.

Now let Sα be the set of countable ordinals β > α such that for some
countable γ > β,

1. Lγ |= ZF− (ZF minus Power Set),

2. ω
Lγ
1 = β,

3. T βα is a tree which has a branch of length β in Lγ .

First, suppose that Tα has an ω1-branch b. We must show that Sα contains
a club.

Suppose that M is a countable elementary substructure of Lω2
such that

b ∈ M . Then the transitive collapse, denoted by M , has the form Lγ . Let

β = ωM1 . Since b is an ω1-branch through the tree Tα = Tω1
α , b � β is a β-branch

through the tree T βα that belongs to Lγ and therefore γ witnesses that β belongs
to Sα.

Now form a continuous chain (Mi)i<ω1
of countable elementary substruc-

tures of Lω2
. Let M i be the transitive collapse of Mi. Then M i = Lγi , for some

countable ordinal γi. Let βi = ω
Lγi
1 . Then the sequence (βi)i<ω1

enumerates
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a club c in ω1. For each i, the image of b under the transitive collapse of Mi,
πi(b), is a βi-branch through T βiα belonging to Lγi , witnessing that βi belongs
to Sα. Thus c is the required club.

Conversely, we must show that if Tα has no ω1-branch, then Sα does not
contain a club. Suppose that c is a club and we will show that some element of c
does not belong to Sα. Let M be the least elementary substructure of Lω2 such
that c, α, ω1 ∈M . In Lω2 , Tα has no ω1-branch, so the same holds in M . Again,

we take the transitive collapse π(M) = M = Lγ . We have β = ωM1 ∈ c and T βα
has no β-branch in Lγ . We claim that β does not belong to Sα. Indeed, suppose
otherwise and that the ordinal γ witnesses this. Then γ must be greater than γ,
as T βα has no β-branch in Lγ . But if γ is greater than γ, then β is countable in
Lγ , as M was chosen to be the least elementary substructure of Lω2 containing
the parameters c, α, ω1. We have reached the desired contradiction.

Let E be a Σ1
1 equivalence relation on ω1. We identify pairs of ordinals with

single ordinals and let S be as above, so that αEβ iff Sα,β contains a club.
For any X ⊆ ω1, let L(X) be the ℵ1-like linear order formed by stacking ω1

many copies of the rational order, and at limit stage α putting in a supremum
iff α ∈ X.

Lemma 2.9. For X,Y ⊆ ω1, L(X) ∼= L(Y ) iff X ∼ Y .

Proof. Suppose L(X) ∼= L(Y ). Then for a club C of α’s, α ∈ X iff α ∈ Y .
Therefore, X ∼ Y . Suppose L(X) 6∼= L(Y ). Then there is no club C of α’s
such that α ∈ X iff α ∈ Y . If there were, then we could build an isomorphism
between L(X) an L(Y ). This means that X∆Y is stationary, so X 6∼ Y .

We use ideas from [5]. For any finite chain c = (α, γ1, γ2, . . . , γn, β), let

S(c) = Sα,γ1 ∩ Sγ1,γ2 ∩ . . . ∩ Sγn,β
If α′Eα, then Sα′,α contains a club. Therefore, for each finite chain c from α
to β, Sα′,α ∩ S(c) ∼ S(c). It follows that if we define S∗(α, β) to be the set of
the S(c), where c is a chain starting with α and ending with β, and αEα′, then
S∗(α, β) agrees with S∗(α′, β), in the sense that they have the same elements
modulo the ideal of nonstationary sets. Let M(α, β) be the structure that is
the “free union” of ω1 copies of the linear orders L(X) for X ∈ S∗(α, β). One
way to make this precise is to let M(α, β) consist of two disjoint sets A,B of
size ω1, with a relation R(a, b0, b1) for a in A and b0, b1 in B so that for each
fixed a, R(a,−,−) defines a linear order of B isomorphic to one of the L(X),
for X ∈ S∗(α, β), and each such order occurs for exactly ω1-many such a in A.

Alternatively, we may let M(α, β) have an equivalence relation with an or-
dering on each equivalence class, so that for each set X ∈ S∗(α, β), the ordering
L(X) is copied in uncountably many equivalence classes, and for each equiv-
alence class, the ordering on the equivalence class is isomorphic to L(X) for
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some X ∈ S∗(α, β). We note that in either case, the language of the structures
M(α, β) is finite.

Lemma 2.10.

1. If αEα′, then for all β, M(α, β) ∼= M(α′, β).

2. If it is not the case that αEα′, then M(α, α) 6∼= M(α′, α).

Proof. (1) is clear. For (2), we note that if it is not the case that αEα′, then
there is no set X ∈ S∗(α, α′) that contains a club, but there is such a set in
S∗(α, α). From this it follows that M(α, α) is not isomorphic to M(α, α′).

The structures M(α, β) have a finite language. Finally, let M∗(α) be the
*sequence* (not the free union) of structures M(α, β), for β < ω1. We could
add to the language a disjoint family of unary predicates (Uβ)β<ω1

, where Uβ
is the universe of a copy of M(α, β). We would like to keep the language finite.
So, instead of this, we let M∗(α) be a structure that includes a copy of ω1 with
the usual ordering, and has a predicate associating to each β < ω1 one of a
family of sets, disjoint from ω1 and disjoint from each other. We put a copy of
M(α, β) on the set associated with β.

Lemma 2.11. For all α, α′, αEα′ iff M∗(α) ∼= M∗(α′).

Proof. If αEα′, then for all β, M(α, β) ∼= M(α′, β). Then M∗(α) ∼= M∗(α′).
If it is not the case that αEα′, then M(α, α) 6∼= M(α′, α). Then we have
M∗(α) 6∼= M∗(α′).

Our structures M∗(α) are in a finite relational language, and we may use
standard coding tricks to transform them into undirected graphs. We represent
each element by a point attached to a triangle. For an n-place relation symbol
R, we represent each n-tuple of elements by a special point, attached by chains
of length 1, 2, . . . , n to the points representing the elements.

3 Turing computable embeddings

H. Friedman and Stanley [6] introduced the notion of Borel embedding for com-
paring classification problems for classes of countable structures. The notion
of Turing computable embedding [2] allows some finer distinctions. Here we
define the analogue of Turing computable embedding for structures with uni-
verse a subset of ω1. We write K ≤tc K ′ if there is a computable operator Φ
taking structures in K to structures in K ′ such that for A,B ∈ K, A ∼= B iff
Φ(A) ∼= Φ(B).

In the standard setting, the class of undirected graphs lies on top among
classes of countable structures under ≤tc. The same is true in our setting. Let
L be a computable relational language—L may be uncountable, and it may
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include symbols of arity α for computable ordinals α. When we say that the
language is computable, we mean that the set of relation symbols is computable,
and we have a computable function assigning a countable ordinal arity to each
symbol. Let Mod(L) be the class of L structures with universe a subset of ω1.
Let UG be the class of undirected graphs.

Proposition 3.1. Mod(L) ≤tc UG

Proof. We first give a transformation that replaces the language L by one with
just finitely many relations of finite arity. We have a predicate U , for elements
of the structure M . We have a predicate O with an ordering of type ω1. We
have another predicate S for special points. For each predicate symbol R, say of
arity α, and each α-tuple in U , we have a special point in S. There is a relation
Q that holds of x ∈ O, p ∈ S and a ∈ U if p is the special point corresponding
to some R of arity α and some σ ∈ Mα just in case a = σ(β) and x is the βth

element of O. We let T be the set of special points in S such that the relation
R in M of the tuple. The unary predicates U , O, and S are disjoint, and the
universe of our structure M∗ is the union. Beyond these, we have a binary
relation—the ordering on O, a ternary relation Q, and the set T ⊆ S. So, the
language is finite. It is not difficult to see that M1

∼= M2 iff M∗1
∼= M∗2 . We can

apply Marker’s transformation to pass from the structures M∗ to undirected
graphs, still preserving isomorphism.

In [6], H. Friedman and Stanley give a Borel embedding of undirected graphs
into fields (of arbitrary characteristic). The embedding is effective. Moreover,
we can use the same idea to give an embedding in our uncountable setting.

Proposition 3.2. If K is the class of undirected graphs, and K ′ is the class of
fields of characteristic 0 (or any other desired characteristic), then K ≤tc K ′.

Proof. Let F ∗ be a large algebraically closed field of the desired characteristic,
with independent transcendentals bα, for α < ω1. For a graph G, with universe
a subset of ω1, we let Φ(G) be the subfield of F ∗ generated by the elements bα,
for α ∈ G, the elements algebraic over a single one of these bα, and elements√
d+ d′, where for some bα and bβ that we have included, there is an edge

between the corresponding graph elements, and d is inter-algebraic with bα
while d′ is inter-algebraic with bβ .

In [6], H. Friedman and Stanley give a Borel embedding of undirected graphs
into linear orderings. This embedding is effective. We can use the same idea,
with modifications, to give an embedding in our uncountable setting.

Proposition 3.3. If K is the class of undirected graphs and K ′ is the class of
linear orderings, then K ≤tc K ′.
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Proof. By Proposition 1.4, we have a saturated model Q of the theory of dense
linear orderings without endpoints. (We are assuming V = L, so we have CH.)
We want more than this. Consider the theory of a structure whose universe is
the union of disjoint predicates U and V , where on V , there is a dense linear
ordering without endpoints, and there is a function mapping f from V onto
U such that for each u ∈ U , f−1(u) is dense in V . We consider a computable
saturated model Q∗ of this theory, with universe ω1. We have a type ω1 ordering
of U , inherited from the ordering on ω1, and we identify the elements of U with
the countable ordinals. Let Qα be f−1(u), where u is the αth element of U .
The sets Q0 and Q1 play a special role. We make a list of the atomic types of
countable graphs tα, α < ω1. Consider the lexicographic ordering on (Q∗)<ω1 .
The ordering corresponding to a given graph G will be a sub-ordering Φ(G) of
this. Consider the sequences σ of length 2β + 2 such that for some β-tuple a
from G, satisfying the atomic type tα, we have

1. for γ < β, σ(2γ) ∈ Q0, and σ(2γ + 1) ∈ Q2+aγ ,

2. σ(2β) ∈ Q1,

3. σ(2β + 1) is an element of U identified with an ordinal less than α.

The elements of Φ(G) are the sequences σ of the form above. We say that
σ represents a if σ is related to a in the way described. The ordering L(G) is
made up of intervals having the order type α, for the various atomic types tα
realized in G. It takes some effort to show that G1

∼= G2 iff Φ(G1) ∼= Φ(G2).
First, suppose G1

∼= G2 via f . To show that Φ(G1) ∼= Φ(G2), we consider
the set of countable partial isomorphisms p, where for some countable family of
σi ∈ L(G1), where σi represents ai ∈ G1,

1. if p(σi) = τi, where σi represents a, then τi represents the corresponding
sequence f(ai),

2. if σi represents ai, realizing type tα, then p maps the full interval of type
α containing σi to the corresponding interval of type α containing τi.

The fact that Q∗ is saturated allows us to show that the family of countable
partial isomorphisms has the back-and-forth property.

Next, suppose L(G1) ∼= L(G2) via f . We must define an isomorphism g
from G1 onto G2. The universes of G1 and G2 are subsets of ω1, so we have
lists of elements (aα)α<ω1

and (bα)α<ω1
. At step α, we have a countable partial

isomorphism with aα is in the domain and bα in the range. Take σ ∈ L(G1)
representing the sequence (a0), of atomic type tδ. Then σ = r0q0r1β, where
r0 ∈ Q0, q0 ∈ Q2+a0 , r1 ∈ Q1, and β < δ. Then f(σ) is a sequence of length 4,
of the form r′0, q

′
0, r
′
1, β, where r′0 ∈ Q0, q′0 ∈ Qd, r′1 ∈ Q2+d, for some d ∈ G2.

We let g(a0) = d. If b0 = d, then we are done. Otherwise, we consider a
sequence τ ∈ L(G2) of length 6 such that τ ⊇ r′0q′0 and τ represents (d, b0). The
pre-image of this τ under f has the form (r0q0r

′′
1 q1, r2, δ

′′), where q1 ∈ Q2+c, for
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some c. We let g(c) = b0. We continue in this way, letting f guide us in finding
the appropriate image or pre-image for the next element.

4 Results on fields

Here we consider arbitrary ω1-computable fields of characteristic 0. The domain
of each field is either ω1 or possibly just ω, and the field operations are all ω1-
computable. We believe that our results carry over equally well to fields of
positive characteristic.

Lemma 4.1. Every ω1-computable field has a computable transcendence basis
over its prime subfield Q (which is ω1-computable, being countable).

Proof. For each α ∈ F we define α ∈ B iff

(∀〈β1, . . . , βn〉 ∈ α<ω)(∀p ∈ Q[X1, . . . , Xn, Y ])

[p(β1, . . . , βn, α) = 0 =⇒ p(β1, . . . , βn, Y ) = 0].

This statement quantifies only over countable sets which we can enumerate
uniformly and know when we have finished enumerating each one. It says that
α lies in B iff α satisfies no nonzero polynomial over the subfield Q(β : β < α)
generated by all elements < α. Clearly this B is a transcendence basis for F .

Corollary 4.2. The field C is relatively ω1-computably categorical.

Proof. Given any two ω1-computable fields E ∼= F ∼= C, use the lemma to find
computable transcendence bases B for E and C for F . Let f be any computable
bijection from B onto C (for instance, let f(α) be the least element of C which
is > f(β) for every β < α). This f extends effectively to an isomorphism from
E onto F : for each element x ∈ E − B in order, find the minimal polynomial
p(X) of x over Q(B ∩ x) (using the splitting algorithm provided by Kronecker
for purely transcendental field extensions of Q), and map x to the least root in
F of the image of p(X) in F [X] under the map f on the coefficients of p(X). By
normality of F over Q(C), at every step this map still extends to an isomorphism
from E into F , so we always find such a root in F . Moreover, since f maps
B onto the transcendence basis C for F , f must map E onto all of F : every
y ∈ F has a minimal polynomial p(X) ∈ Q(C)[X] of some degree d, and the
roots x1, . . . , xd of its preimage in E[X] must map one-to-one to the d-many
roots of p(X) in F , forcing y ∈ rg(f).

The foregoing proof relativizes to the degree of any field E ∼= C, yielding
relative ω1-computable categoricity.

Theorem 4.3. Let F be any ω1-computable field with a subfield K isomorphic
to C, and assume that F is countably generated over K. Then F is relatively
ω1-computably categorical.
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Proof. Say F = K(C), where C is countable and C ∩ K = ∅. In general K
will not be computable. Notice that for each c ∈ C, F cannot contain the
algebraic closure of K(c), because this field is not countably generated over K.
So we may fix a countable set S ⊆ K with the property that, for every c ∈ C,
S contains some tuple x0, . . . , xn such that F does not contain the algebraic
closure of the set {x0, . . . , xn, c}. Therefore, an arbitrary element x ∈ F lies in
K iff K contains the algebraic closure of S ∪ {x}. Since S ∪ {x} is countable,
we will recognize at some countable stage that F contains this algebraic closure
(if indeed x ∈ F ). Therefore, K is computably enumerable within F .

We next define a subfield F0 of K as follows. Write C = {c1, c2, . . .}. For
each i > 0, if ci is transcendental over the field K(c1, . . . , ci−1), then add
nothing to F0; otherwise, add to F0 a finite set of elements y1, . . . , yn from
K such that the minimal polynomial of ci over K(c1, . . . , ci−1) has coefficients
in Q(y1, . . . , yn, c1, . . . , ci−1). Since C is countable, this only adds countably
many elements in all, and we let F0 ⊆ K be the algebraic closure of the subfield
of K generated by these elements along with the elements of S. Thus F0 is also
countable.

We claim that every automorphism of K which fixes F0 pointwise extends
to an automorphism of F which is the identity on C. To see this, let h0 be
such an automorphism of K. Define h to extend h0 by setting h(ci) = ci for
all i. We claim that this h extends to an automorphism of all of F . For each
s > 0, if cs is transcendental over K(c1, . . . , cs−1), then it is clear that setting
hs(cs) = cs extends to an automorphism hs of K(c1, . . . , cs). If cs is algebraic
over K(c1, . . . , cs−1), then by our choice of F0, the minimal polynomial p(X) of
cs over all of K(c1, . . . , cs−1) lies in F0(c1, . . . , cs−1)[X]. So

K(c1, . . . , cs) ∼= K(c1, . . . , cs−1)[X]/(p(X))
∼= (F0(c1, . . . , cs−1)[X]/(p(X)))(K −K0).

Since hs is the identity on F0(c1, . . . , cs−1), it is clearly an automorphism of the
last of these fields, and so it is also an automorphism of the first field, as desired.
Thus, the union h of all these hs is an automorphism of K(C), which is to say,
of F .

Now let E be any field isomorphic to F , with domain ω1, and suppose ρ is
a noncomputable isomorphism from F onto E. We give the details for the case
where E is computable; they relativize directly to an arbitrary E. Let E0 be the
countable image ρ(F0), and let T = ρ(S). We start be defining f0 = ρ � (F0(C)),
which is computable because F0 and C are countable. Next, we enumerate K
as defined above, and similarly enumerate its image ρ(K) within E, using the
set T . At stage σ + 1, we wait for a new element x to appear in K (using our
enumeration) on which fσ is not defined. When this happens, we find the first
element y to appear in our enumeration of ρ(K) which is not already in rg(fσ),
and define fσ+1(x) = y. At this stage we also find all elements of F which are
algebraic over the portion of K which has appeared so far (including x) but
not in the domain of fσ, and define fσ+1 of each of these to be a root of the
corresponding polynomial in E. (We can do this effectively, simply enumerating
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F until all of the countably many polynomials over this portion of K have their
full complement of roots.) Thus we extend the domain of fσ+1 to include a
larger algebraically closed subfield Kσ+1 of K than previously. In addition, we
extend fσ+1 to have the appropriate values on all elements generated by C over
Kσ+1; again, it is not difficult to find all of these elements in countably many
steps. This completes stage σ + 1.

It is clear that this defines a map f = ∪fσ on all of F , whose restriction to
K is an isomorphism from K onto ρ(K) (because we always chose the next new
element of ρ(K) in our enumeration to be the image of the next new element
of K). The map f is also defined and equal to ρ on C (as well as on F0), and
is defined on all elements generated by C over K as well. That is, f is defined
on all of F . Since ρ and f are equal on F0, our argument above shows that the
automorphism (ρ−1 ◦ f) � K of K extends to an automorphism τ of all of F ,
which is the identity on C. But then f = ρ ◦ τ , so f is an isomorphism from F
onto E as desired.

At the other extreme from algebraically closed fields, namely fields purely
transcendental over Q, the opposite result holds.

Proposition 4.4. The purely transcendental field extension
F = Q(Xα : α ∈ ω1) is not ω1-computably categorical.

Proof. We may assume that F is a presentation with the transcendence basis
{Xα : α < ω1} computable. (Lemma 4.1 only guarantees the existence of some
computable transcendence basis, not necessarily of one generating the entire
field.) We buld a computable field E ∼= F with no computable isomorphism
from E onto F . Xα will be our witness that the computable function φα is not
such an isomorphism.

At the start, we build E0 to be F itself, although we only use half the
elements of ω1 to do so. (Let E0 be the isomorphic image of F under the map
λ+ n 7→ λ+ 2n for all limit ordinals λ.) We write yα ∈ E0 for the image of xα
under this map. Then, for each α, we wait for φα(yα) to converge, say to some
zα ∈ F . When this happens, we find β1, . . . , βn such that zα ∈ Q(xβ1

, . . . , xβn),
and ask whether the polynomial p(X) = X2 − zα factors over the subfield
Q(xβ1

, . . . , xβn). (Kronecker gives a splitting algorithm for this field, since we
know that xβi to be algebraically independent over Q.) If so, then zα has a
square root in F , and so we do not change anything in E, but define y′α = yα.
If not, then we adjoin to E a new element y′α whose square in E is yα, and use
half of the currently unused elements to close E under the field operations. This
completes the construction.

Now E = Q(y′α : α < ω1) is isomorphic to F via the map y′α 7→ xα. However,
if φα(yα)↓, then yα has a square root in E iff φα(yα) has no square root in F .
Thus no φα can be an isomorphism from E onto F .
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