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tWe 
onsider embeddings of stru
tures whi
h preserve spe
tra: if g :M! S with S 
omputable, then M should have the same Turing degreespe
trum (as a stru
ture) that g(M) has (as a relation on S). We showthat the 
omputable dense linear order L is universal for all 
ountablelinear orders under this notion of embedding, and we establish a similarresult for the 
omputable random graph G. Su
h stru
tures are said to bespe
trally universal. We use our results to answer a question of Gon
harov,and also to 
hara
terize the possible spe
tra of stru
tures as pre
isely thespe
tra of unary relations on G. Finally, we 
onsider the extent to whi
hall spe
tra of unary relations on the stru
ture L may be realized by su
hembeddings, o�ering partial results and building the �rst known exampleof a stru
ture whose spe
trum 
ontains pre
isely those degrees 
 with
0 �T 000.1 Introdu
tionIn model theory, a model S of a theory T is said to be universal for T if everymodel M of T of 
ardinality � jSj embeds into S. Common examples arethe 
ountable dense linear order without end points (for the theory of linearorders) and the 
ountable atomless Boolean algebra (for the theory of Booleanalgebras).From the standpoint of 
omputability theory, we wish to de�ne a more re-stri
tive notion of universality, requiring not just the existen
e of embeddingsg from ea
h M into S, but also that these embeddings preserve 
omputability-theoreti
 properties of the stru
tures. In parti
ular, we are interested in thespe
trum of the stru
ture M, and the degree spe
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The Turing degree of a 
ountable stru
ture M with domain ! is the Turingdegree of its atomi
 diagram. If the language is �nite, this is the join of thedegrees of the di�erent fun
tions fM and relations RM, where f and R rangeover all fun
tion and relation symbols in the language of M. (We will assumein this paper that the language is �nite, unless otherwise stated.) By de�nition,the spe
trum of (the isomorphism type of)M is the set of all Turing degrees ofisomorphi
 
opies of M:Spe
(M) = fdeg(N ) : N �=Mg:Intuitively, this measures the intrinsi
 diÆ
ulty of 
omputing a 
opy ofM: ea
hdegree d in Spe
(M) is smart enough to build a stru
ture isomorphi
 to M.Conversely, for d to lie in Spe
(M), M must be 
ompli
ated enough to allowsome way of 
oding d into a 
opy of M. As seen in Theorem 1.4 below, therequirement of being \smart enough" is usually the diÆ
ult one when we askwhether d lies in Spe
(M); 
oding is possible in all but 
ertain trivial 
ases.On the other hand, the degree spe
trum of a relation R on a 
omputablestru
ture A is de�ned as:DgSpA(R) = fdeg(S) : (9B �T ;)(B; S) �= (A; R)g:(By 
onvention, for relations one speaks of the \degree spe
trum" rather thanthe \spe
trum." There seems to be no good reason for this distin
tion in ter-minology, but we will not attempt here to unify the terms.) The symbol Rgenerally is not in the language of the stru
ture A; indeed, if it were, thenDgSpA(R) would 
ontain only 0.Again, the intuition we wish to 
apture by de�ning the degree spe
trum ofR is the question of how 
ompli
ated we 
an make the relation R. Of 
ourse, ifthe de�nition allowed B to be any isomorphi
 
opy of A, then we would havemu
h more freedom to in
rease the 
omplexity of the image S of R under theisomorphism from A to B. Restri
ting the de�nition to 
omputable stru
turesB is our way of ruling out su
h tri
ks: for a degree d to lie in DgSpA(R), wemust be able to make the image of R have degree d while keeping the underlyingstru
ture 
omputable.Our goal in 
onsidering the notion of universality is to preserve and relatethese two notions of the spe
trum:De�nition 1.1 We say that a 
omputable model S of a theory T is spe
trallyuniversal if for every 
ountable nontrivial model M of T , there exists an em-bedding g :M! S su
h thatDgSpS (g(M)) = Spe
(M):(Trivial models are de�ned on p. 4 below, where we will see the reasons forex
luding them.) Thus, the embeddings we seek must preserve the spe
trum ofea
h M, mapping it into S in su
h a way that its image has pre
isely the same
omplexity (as measured by our notions of spe
tra) as the original stru
ture M.2



In this paper we prove that the 
omputable dense linear order L (withoutend points) is spe
trally universal for the theory of linear orders, and that the
omputable random graph G is spe
trally universal for the theory of (symmetri
irre
exive) graphs. We will build spe
i�
 
omputable 
opies L and G of thesestru
tures to help simplify our proofs, but by 
omputable 
ategori
ity (as de-s
ribed below), every 
omputable 
opy of L and G will be spe
trally universalfor the respe
tive theory.The two models L and G a
tually satisfy a stronger version of spe
tral uni-versality, in that for ea
h of them one 
an give a 
omputable fun
tion f withthe following property: if M = (!;�Ce ) is a model of the relevant theory withdeg(M) = deg(C), then the ora
le fun
tion �Cf(e) serves as the embedding gdes
ribed above. (Sin
e ea
h of the two relevant languages 
ontains a singlebinary relation symbol, the ora
le and one index e are all that is required to de-s
ribe M.) This is a uniform version of spe
tral universality, in that aside froman M-ora
le and the indi
es for the fun
tions and relations of M, we need nospe
ial information aboutM. Indeed, for every A = (!;�Di ) isomorphi
 to M,with D �T A, we will have (S;�Cf(e)(M)) �= (S;�Df(i)(A)) and �Df(i)(A) �T A.These two properties together are essentially all that is needed to prove spe
-tral universality of S. It remains an open question whether there are spe
trallyuniversal stru
tures for whi
h this uniform version fails.The following lemma is immediate from De�nition 1.1.Lemma 1.2 If S is spe
trally universal for a theory T , then for every modelM of T , there is a unary relation R on S su
h that DgSpS(R) = Spe
(M).Thus, a spe
trally universal model S of T 
an use results about the possiblespe
tra of models of T to help 
lassify the possible degree spe
tra of relationson S, or vi
e versa. Indeed, the genesis of this paper was a question asked byGon
harov:Question 1.3 (Gon
harov) Does there exist a relation R on a 
omputablelinear order A su
h thatDgSpA(R) \�02 = fd �T 00 : d 6= 0g?In Corollary 2.3, we give a positive answer, using the 
onstru
tion in [17℄ of alinear order whose spe
trum has the desired property.We note that ordinarily the spe
tra of stru
tures and the degree spe
traof relations need not be related in su
h ways. Degree spe
tra 
an easily haveupper bounds under Turing redu
ibility; for instan
e, if R is �0n-de�nable inA, then 
learly every degree in DgSpA(R) will be �0n, and similarly for �0n-de�nable relations. In fa
t, Downey had already proven the existen
e of a
omputable linear order B and a relation R su
h that DgSpB(R) 
ontained allnon-
omputable 
.e. degrees but not 0. He applied Lemma 1.2 from [6℄ to thelinear order A built in [17℄, yielding a 
omputable linear order B, and provedthat the degree spe
trum of the adja
en
y relation on B 
ontains pre
isely those
.e. degrees whi
h lie in Spe
(A), that is, all 
.e. degrees ex
ept 0. However, sin
e3



the adja
en
y relation is �01-de�nable, its degree spe
trum 
learly 
annot 
ontainany degrees that are not 
.e. Many results are known about the relationshipbetween de�nability of a relation and upper bounds on its degree spe
trum; werefer the reader to [9℄ for details.In 
ontrast, if the spe
trum of a stru
ture has an upper bound under Turingredu
ibility, then that spe
trum 
an only 
ontain a single degree. For this result,we remind the reader of the following theorem of Knight from [16℄.Theorem 1.4 (Knight) In any 
omputable language, let A be a stru
turewhose domain is an initial segment of !. Then exa
tly one of the followingtwo statements holds:� For any two Turing degrees 
 �T d, if 
 2 Spe
(A), then also d 2 Spe
(A).(That is, the spe
trum of A is upward-
losed under �T .)� There exists a �nite set fa1; : : : ; ang in the domain of A su
h that everypermutation f of ! with f(ai) = ai for i � n is an automorphism of A.In 
omputable model thory, stru
tures satisfying the se
ond of these state-ments are 
alled trivial ; they in
lude all �nite stru
tures, of 
ourse, and alsosome in�nite stru
tures, su
h as the 
omplete graph on 
ountably many verti
es.The following 
orollary of Theorem 1.4 is qui
kly seen.Corollary 1.5 In a �nite language, let A be a stru
ture with domain !. ThenA is trivial if and only if its spe
trum is f0g.The spe
trum of a trivial stru
ture always 
ontains exa
tly one Turing degree,but if the language is in�nite, that degree 
an be non
omputable. In this paperwe use only �nite languages, and so the ex
lusion of trivial stru
tures in De�-nition 1.1 removes only one very simple possible spe
trum from 
onsideration.For �nite stru
tures, every embedding preserves the spe
trum, of 
ourse, but forin�nite trivial stru
tures it 
an be diÆ
ult to preserve the spe
trum, even whenit is possible for all nontrivial stru
tures. Sin
e we regard trivial stru
tures asanomalies anyway, we ex
luded them when de�ning spe
tral universality.Proof of Corollary 1.5. The ba
kwards impli
ation is immediate from Theo-rem 1.4. For the forwards impli
ation, let A be trivial, and 
hoose a setS = fa1; : : : ; ang from its domain to satisfy the de�nition of triviality. Wewill show that A is 
omputable.If R1 is a unary relation symbol in the language, �x any x =2 S. For ea
hy =2 S, let gy be the permutation of ! whi
h permutes x and y and �xes allother points. Then we haveRA1 (y) () RA1 (gy(x)) () RA1 (x)sin
e gy must be an automorphism of A. Thus RA1 is 
omputable. Similarly,for a binary R2, we �x distin
t x1; x2 =2 S, and note that for every distin
t pair4



y1; y2 =2 S and every i � n we haveRA2 (y1; y2) () RA2 (x1; x2);RA2 (y1; y1) () RA2 (x1; x1);RA2 (y1; ai) () RA2 (x1; ai);RA2 (ai; y2) () RA2 (ai; x2);by applying automorphisms whi
h permute x1 with y1 and x2 with y2. (Amoment's thought is required when x1 = y2 or x2 = y1, but the result stillholds.) So RA2 is 
omputable, and it is 
lear how to extend this argument toany k-ary relation.If f is a unary fun
tion symbol, x =2 S is �xed, and y =2 S [ fx; fA(x)g isarbitrary, let gy be as above. ThenfA(y) = fA(gy(x)) = gy(fA(x)):If fA(x) = x, then fA is the identity on S; otherwise it is 
onstant there.Either way fA is 
omputable. The argument for k-ary fun
tions is left to thereader; they are always �nite unions of proje
tions and 
onstant fun
tions on
omputable disjoint subsets of !k.At 
ertain points we will use the 
on
ept of 
omputable 
ategori
ity to sim-plify our arguments. A 
omputable stru
ture A is 
omputably 
ategori
al if forevery 
omputable stru
ture B isomorphi
 to A, there exists a 
omputable iso-morphism from B onto A. We have a similar (but stri
tly stronger) notion forstru
tures that need not be 
omputable: A is relatively 
omputably 
ategori
al iffor every B isomorphi
 to A, there exists an isomorphism from B onto A whi
his 
omputable in the join of deg(A) and deg(B). (In some of the literature, thisnotion is de�ned only for 
omputable stru
tures A, but it makes sense for any
ountable stru
ture.)The subje
ts of the remaining se
tions are the 
ountable dense linear orderL, the random graph G, and (to a lesser extent) the 
ountable atomless Booleanalgebra B, all of whi
h are relatively 
omputably 
ategori
al, hen
e 
omputably
ategori
al. Indeed, the 
lassi
al model-theoreti
 arguments for !-
ategori
ityof their theories are e�e
tive, and therefore build isomorphisms 
omputable inthe degrees of the stru
tures. These 
on
epts are useful here for the followingreason.Lemma 1.6 Let A be 
omputably 
ategori
al, and R a relation on A. Thenfor every degree d in DgSpA(R), there exists a relation S on A itself su
h that(A; R) �= (A; S) and S 2 d.Thus we need not 
onsider other 
omputable 
opies of A when dealing with thedegree spe
trum of R.Proof. Sin
e d lies in DgSpA(R), we have a 
omputable B isomorphi
 to A, anda relation T of degree d su
h that (A; R) �= (B; T ). By 
omputable 
ategori
ity,there is a 
omputable isomorphism f taking B onto A. Let S = f(T ).5



A good referen
e for 
omputable 
ategori
ity is [1℄. For questions aboutnotation, we refer the reader to [20℄, the standard sour
e.2 Linear OrdersLet � be a 
omputable linear order on ! su
h that (!;�) �= �, the 
ountabledense linear order without end points, and let � : (!;�) ! (Q; <) be a 
om-putable isomorphism onto the rational numbers. (Formally, this � 
onsists oftwo 
omputable fun
tions g(n) and h(n) giving the numerator and denominatorof �(n), with h(n) > 0 and g(n) 2Z.) We write L = (!;�).We will use standard notation (a; b) and [a; b℄ for open and 
losed intervals.Sometimes we will adjoin a subs
ript to remind the reader whi
h stru
ture theinterval lies in, e.g., (a; b)L for an open �-interval in L, or [�(a); �(b)℄Qfor a
losed <-interval in Q.Theorem 2.1 This stru
ture L is spe
trally universal for the theory of linearorders.Corollary 2.2 Let A be any 
ountable linear order. Then there exists a unaryrelation R on L su
h that DgSpL(R) = Spe
(A):In [17℄, Miller 
onstru
ted a linear order A su
h that Spe
(A) \ �02 =�02 � f0g. Using Corollary 2.2, this yields a positive answer to Question 1.3of Gon
harov:Corollary 2.3 There exists a 
omputable linear order L with a relation R su
hthat DgSpL(R) \�02 = �02 � f0g:Proof of Theorem 2.1. As part of the proof, we will need to work with a spe
i�
subset of the digits of our rationals. De�ne dn = 3n and
n = � 1; if (9k)n = k(k+1)20; otherwisefor all n. Thus h
ni is the sequen
e 1101001000100001 : : :. Also, we de�neJn = fq 2 Q\ [0; 1℄ : (8 representations h of q) h(dn) = 
ngIn = \m�nJm:(A binary sequen
e h 2 2! represents a real r 2 [0; 1℄ if Pn h(n)2n+1 = r.) Sin
ethe (3n)-th digit is �xed, ea
h Jn 
omprises 2(3n) = 8n distin
t open intervalsin Q, exa
tly 4n of whi
h lie in In. These 4n intervals are the 
omponents of In.6



We will arrange that for every n, all but �nitely many elements of the imageR of the embedding g lie in In. Therefore, if a sequen
e of rationals in R
onverges to a real h, then for ea
h n, 
o�nitely many rationals in the sequen
emust belong to In (and hen
e 
o�nitely many lie in some single 
omponent ofIn, by 
onvergen
e). Hen
e h(dn) = 
n for all n, so that h 
annot be rational.(Sin
e 
m = 1 for some m > n, h 
annot be the left end point of its 
omponentin In; similarly for the right end point.)Constru
tion: The trivial linear orders are pre
isely the �nite ones, so �xany 
ountable in�nite linear order A, and let B be any 
opy of A with domain!. Set 
 = deg(B), so 
 2 Spe
(A). Pi
k a set C 2 
 to serve as an ora
le forB. We will build an embedding g : B ! L as required by De�nition 1.1.Let Bs be the restri
tion of B to the elements f0; : : : ; s � 1g. We begin by�xing the elements p and p0 in ! su
h that �(p) = 0 and �(p0) = 1 (using the� from p. 6), and we de�ne l(p) = 0 and l(p0) = 1. The embedding g will mapB into the interval (p; p0) in L. We now build R �T C, the image of g in L,starting with R0 = ;, so that (R;�� (R� R)) �= B.At stage s+1, Bs 
ontains exa
tly s elements, mapped by g to 
orrespondingelements qi 2 Rs, say with p � q1 � � � � � qs � p0. Set q0 = p and qs+1 = p0 for
onvenien
e, and suppose that the element s added to B at stage s+1 be
omesthe (i + 1)-st element of Bs+1, so that we wish to de�ne g(s) to be an elementfrom (qi; qi+1)L. (Here we use the ora
le C to 
ompute the order on B.) Wede�ne the target set I as follows.If l(qi) > l(qi+1), let l = 1 + l(qi). By indu
tion, �(qi) will lie in someparti
ular 
omponent J within Il�1. Moreover, of the four 
omponents of Ilwithin this J , �(qi) will lie within one of the two 
entral ones. Now the rightmost
omponent of Il within J 
ontains in turn four 
omponents of Il+1, and we de�nethe target set I to be the union of the two 
entral of these four 
omponents.Thus I � Il+1. Below we will enumerate into R an x su
h that �(x) 2 I. Thiswill ensure that �(x) and �(qi) lie in distin
t 
omponents of Il, though in thesame 
omponent of Il�1, allowing us to prove Lemma 2.5 by indu
tion.If l(qi) < l(qi+1), let l = 1+l(qi+1). Analogously to the pre
eding paragraph,we let J be the 
omponent of Il�1 
ontaining �(qi+1), and 
onsider the leftmost
omponent of Il within J . The target set I is now de�ned as the union ofthe 
entral two 
omponents of Il+1 within this leftmost 
omponent of Il in J .Again I � Il, therefore, and �(x) and �(qi+1) will lie in distin
t 
omponents ofIl within the same 
omponent of Il�1.The following diagram illustrates the situation when l(qi) > l(qi+1).� -�(qi+1)s�(qi)s �(x)sIl�2Il�1IlIl+1 7



We sear
h for the least x 2 ! su
h that �(x) 2 I and x > s. Clearly su
h an xmust exist, and we de�ne g(s) = x, enumerate x 2 Rs+1 (so R is still the imageof g), and set l(x) = 1 +max(l(qi); l(qi+1)). This 
ompletes the 
onstru
tion.Noti
e that 
hoosing x in the target set I guarantees that qi � x � qi+1.If l(qi) > l(qi+1), for instan
e, then qi � x be
ause I is 
ontained within a
omponent of Il to the right of the 
omponent of Il in whi
h �(qi) lies. Moreover,by indu
tion, �(qi) and �(qi+1) 
annot lie in the same 
omponent of Il�1; instead�(qi+1) will lie to the right of �(qi)'s 
omponent, be
ause qi � qi+1. Sin
e I is
ontained in the same 
omponent of Il�1 as �(qi), I must be 
ompletely to theleft of �(qi+1), so x � qi+1. A similar argument applies when l(qi+1) > l(qi), sothe map g whi
h we have built is an order-isomorphismof B onto (R;�� (R�R)).The next two lemmas des
ribe two useful properties of R.Lemma 2.4 For every n, all but �nitely many r 2 R satisfy �(r) 2 In.Proof. We have l(p) = 0 and l(p0) = 1, with every r 2 R satisfying p � r � p0.By indu
tion, whenever an x enters R with qi � x � qi+1 (using the notationof the 
onstru
tion), we have l(x) = 1 + max(l(qi); l(qi+1)). Hen
e the �rstelement x to enter R is the only one with l(x) = 2, and if there are only kelements x with l(x) � n, then there 
an be at most k + 1 many more y 2 Rwith l(y) = n+1, for on
e one su
h y is pla
ed in the interval between two su
hx, every subsequent element z from that interval to enter R will have l(z) > l(y).Now it is 
lear from the 
onstru
tion that if l(x) � n, then �(x) 2 In+1. Thelemma follows.Lemma 2.5 Let hriii�0 and htiii�0 be sequen
es of elements of R, stri
tlyin
reasing and stri
tly de
reasing (respe
tively). Then neither supi �(ri) norinfi �(ti) is a rational number.Corollary 2.6 Under the order topology, R is a dis
rete subset of L. That is,no limit point of R (in L) lies in R.Re
all that a limit point of a set S � R is a point u su
h that every open interval
ontaining u interse
ts (S � fug).Proof of Lemma 2.5. We give the details for the in
reasing sequen
e r0 � r1 �� � � . Sin
e all ri � p0, the 
ompleteness of the reals yields a number u =supi �(ri) 2 R. Sin
e ri � ri+1, we know that u 6= �(ri) for all i. But by Lemma2.4, for ea
h n, 
o�nitely many �(ri) must lie in In. Indeed, sin
e In 
onsistsof �nitely many open 
omponents, one of these 
omponents J must 
ontain
o�nitely many �(ri). Therefore u must lie in the 
losure of J .Keeping this n �xed, we pi
k m > n su
h that 
m = 0. Now 
o�nitely many�(ri) must lie in Im as well, so 
o�nitely many lie in Im \ J . However, therightmost 
omponent of Im within J has its right end point within J , be
ause
m = 0. Hen
e u 
annot be the right end point of J , and 
ertainly u 
annotbe the left end point of J , be
ause all �(ri) � u and most �(ri) lie in J . So wehave u 2 J � In. 8



Sin
e this holds for every n, every binary expansion of u has 
n as its dn-thdigit for every n. But sin
e dn = 3n and the sequen
e of 
n's is nonrepeating,u 
annot be rational.With these two lemmas we 
an pro
eed to the heart of our proof.Lemma 2.7 Let B and ~B be two 
opies of A, of Turing degrees 
 and ~
, respe
-tively. Pi
k any sets C 2 
 and ~C 2 ~
, and run the pre
eding 
onstru
tion toprodu
e embeddings g and ~g with images R and ~R. Then (!;�; R) �= (!;�; ~R).Proof. Sin
e g is an embedding, the restri
tion of � to R gives a linear orderisomorphi
 to A, and similarly for ~R. So there exists a �-isomorphism � :R ! ~R. We will extend this (non-
omputably, of 
ourse!) to the requiredisomorphism from (!;�; R) to (!;�; ~R). Immediately we may de�ne � to bethe identity on the 
losed intervals (�1; p℄ and [p0;+1).Next, for ea
h su

essivity of A, the 
orresponding elements q � r of Rbound an open interval (q; r) under � whi
h is entirely 
ontained in R, and isitself a dense order without end points. We extend � to map (q; r) isomorphi
allyonto the interval (�(q); �(r)), for whi
h the same properties must hold.If q 2 R has no immediate R-su

essor, then we let r0 = p0 and let ri+1 bethe �rst element of the interval (q; ri) to appear in R. If u = infi �(ri) in R,then 
learly �(q) � u, and by Lemma 2.5 we know that u =2 Q, so �(q) < u.Thus fx 2 ! : (8i)[q � x � ri℄g is a non-empty open interval, and so mustbe a dense order without end points. The same arguments apply to �(q) 2 ~R,yielding another dense open interval of L with left end point �(q) and irrationalright end point, and we extend � to map the open interval (q; ��1(u)) of Risomorphi
ally onto the 
orresponding interval in ~R.For those q 2 R with no immediate R-prede
essor, we apply the analogouspro
ess to extend � to the open interval fx � q : (8r 2 R)[r � q =) r � x℄g,mapping it onto the 
orresponding interval of ~R. Again, Lemma 2.5 ensuresthat both these open intervals are non-empty, hen
e dense without end points.We apply this same pro
ess with q = p. If R has a left end point r, it must be� p, and we extend � to map the interval (p; r) isomorphi
ally onto the interval(p; �(r)). If R has no left end point, then by the same argument as above,u = inf �(R) is irrational, as is ~u = inf �( ~R). So �(p) < u and �(p) < ~u, and weextend � to map fx � p : �(x) < ug isomorphi
ally onto fx � p : �(x) < ~ug. Asimilar argument extends � to the interval with right end point p0.Now we 
laim that we have extended � to all of !, and that � is a �-isomorphism onto !. (Also, our extensions so far 
learly guarantee that �(R) =~R.) Pi
k any x 2 R. If x has either an immediate R-prede
essor or an imme-diate R-su

essor (or both), then �(x) has been de�ned using that information.Suppose, therefore, that x has neither. We use the same pro
ess as above tobuild sequen
es p = r0 � r1 � � � � and p0 = t0 � t1 � � � � su
h that ri � x � tifor all i and for every r 2 R, either r � ri or r � ti for some i. (It is importantthat these sequen
es be 
hosen as above: ri+1 is the �rst element of the inter-val (ri; x) to appear in R, and similarly for ti+1.) We let u = supi �(ri) and9



v = infi �(ti). By Lemma 2.5, both u and v must be irrational, and we 
laimthat in fa
t u = v. This will prove that there was no su
h x, sin
e we wouldhave to have u � �(x) � v.We �x any positive integer l and show that v � u < 8�l. Now l(ti+1) > l(ti)for every i, by our 
hoi
e of the sequen
e htii, so we �x some j with l(tj) � lsu
h that some ri enters R at a stage s with tj 2 Rs and tj+1 =2 Rs. At stages, therefore, our 
onstru
tion pi
ked ri between ri�1 and tj . If l(ri�1) < l(tj),then ri was 
hosen so that �(ri) and �(tj) lie in the same 
omponent of Il(tj ).These 
omponents ea
h have length 8�l(tj )�1, so �(tj ) � �(ri) < 8�l. On theother hand, if l(ri�1) > l(tj), then we wait for a stage t > s at whi
h tj+1enters R. Suppose rk 2 Rt but rk+1 =2 Rt. Then l(rk) > l(ri�1) > l(tj), so the
onstru
tion pi
ks tj+1 so that �(tj+1) lies in the same 
omponent of Il(rk ) as�(rk). Thus �(tj+1)� �(rk) < 8�l(rk)�1 < 8�l. As promised, therefore, we musthave v � u < 8�l for every l, and so v = u.The same holds in the 
onstru
tion of ~R, of 
ourse, so the � we have built istotal and onto, and is indeed an isomorphism from (!;�; R) onto (!;�; ~R).Now we 
laim that our 
onstru
tion of R ensured R �T C. To determinewhether n 2 R, use the C-ora
le to run this 
onstru
tion through stage n,sin
e only elements > n were allowed to enter R after stage n. Thus R(n) =Rn(n), and so R �T C. Theorem 2.10 below will allow us to 
on
lude that
 2 DgSpL(R). (Corollary 2.6 shows that the in�nite set R is not a �nite unionof intervals in L, so R satis�es (2) of Theorem 2.10.) In fa
t, it is not diÆ
ultto modify the foregoing 
onstru
tion to 
ode the ora
le set C 2 
 into R, sothat we 
ould a
tually build R �T C. Alternatively, one 
an 
ontinue with the
onstru
tion from the proof of Theorem 2.10 to get R �T C uniformly in theC-ora
le. This justi�es the 
laims of uniformity made on page 3.Similarly, for any set ~C in any other degree ~
 2 Spe
(A), we have built~R �T ~C with (!;�; R) �= (!;�; ~R), by Lemma 2.7. Thus Spe
(A) � DgSpL(R).To see that Spe
(A) � DgSpL(R), we suppose that S is a unary relationsu
h that (!;�; R) �= (!;�; S). (By Lemma 1.6, we need not 
onsider other
omputable 
opies of L.) Then the stru
ture (S;�� (S � S)) is a 
opy of A.Say S = fx0 < x1 < � � � g, and let f(n) = xn. Then f �T S, and the stru
ture(!;L), with L(m;n) just if f(m) � f(n), is a 
opy of A of degree �T S. Sin
eA is nontrivial, Theorem 1.4 shows that Spe
(A) is 
losed upward under �T ,so deg(S) 2 Spe
(A). (If A were trivial, then A and S would both be �nite,and so deg(S) = 0 2 Spe
(A) in this 
ase as well.) Thus DgSpL(R) � Spe
(A),proving the theorem.We now 
onsider the 
onverse of Corollary 2.2. Our two main results, Theo-rem 2.10 and Proposition 2.16, show that spe
tra of unary relations on L satisfythe two prin
ipal known 
riteria for spe
tra of linear orders. Theorem 2.10 isalso required to 
omplete the proof of Theorem 2.1, of 
ourse.De�nition 2.8 Let R be a unary relation on L, and x a real number. We saythat R de�nes a lower 
ut at x if there exist a � b in L with �(a) < x < �(b),10



su
h that for all n 2 (a; b)L, R(n) holds if and only if �(n) < x. Also, R de�nesan upper 
ut at x if R de�nes a lower 
ut at x.In the 
ase where x is rational, it would be advisable to adjust this de�nitionto allow ��1(x) to be in either R or R. However, we are only interested in the
ase of an irrational x.Lemma 2.9 If R is a unary relation on L whi
h de�nes either a lower oran upper 
ut at an irrational number, then DgSpL(R) is upward-
losed underTuring redu
ibility.Proof. Suppose R de�nes a lower 
ut. Pi
k degrees d <T 
 with d 2 DgSpL(R),and �x a set C 2 
. By Lemma 1.6, (L; R) �= (L; S) for some relation S of degreed. By the isomorphism, we see that S also de�nes a lower 
ut at some irrationalnumber x. Pi
k a; b 2 L as in De�nition 2.8 for the lower 
ut de�ned by S.We know there exists a real y 2 (�(a); �(b)) whose binary expansion di�ers fromC in only �nitely many pla
es, and this y is irrational sin
e C >T ;. Using aC-ora
le (sin
e S �T C), we de�ne a relation Q on L by:1. On (�1; a℄L and on [b;+1)L, Q = S;2. For all n 2 (a; b)L with �(n) < y, n 2 Q; and3. For all n 2 (a; b)L with y < �(n), n =2 Q.Then (L; S) �= (L; Q). Clearly Q �T C, and from Q we 
an 
ompute the realy, so C �T Q. Therefore 
 2 DgSpL(R).If R de�nes an upper 
ut, then R de�nes a lower 
ut, so again DgSpL(R) =DgSpL(R) is upward-
losed.Theorem 2.10 For any unary relation R on L, the following are equivalent.1. R is not intrinsi
ally 
omputable.2. R 
annot be de�ned by a quanti�er-free formula with parameters from L.3. DgSpL(R) is upward-
losed under Turing redu
ibility.Re
all that R is intrinsi
ally 
omputable if DgSpL(R) 
ontains only the degree0. More generally, for any property P of sets, R is intrinsi
ally P if P holds ofall images of R in isomorphi
 
omputable 
opies of L (see [10℄). For a propertyP whi
h is invariant under Turing equivalen
e, therefore, R is intrinsi
ally P i�P holds of all Turing degrees in DgSpL(R).Proof. The impli
ations 1 =) 2 and 3 =) 1 are immediate. In fa
t, Mosesproved in [18℄ that 1 () 2. To prove that 2 =) 3, �x any degrees d �T 
,and suppose (using Lemma 1.6) that S 2 d and (L; R) �= (L; S). Let M beanother 
omputable 
opy of L, and �x a set C 2 
 to be our ora
le. We willbuild a C-
omputable isomorphism g from L onto M, su
h that g(S) �T C.This will prove the upward-
losure of DgSpL(R).11



In fa
t, it is �ne for M to be L itself, but we give the two 
opies di�erentnames in order to distinguish them. We write �L and �M for the orders onthe two stru
tures. Elements of L will be named a, b, and 
, while elements ofM will be named x, y, and z.The fun
tion g will be extended to a larger domain Ds+1 � L and rangeWs+1 � M at ea
h stage s + 1. This extension will involve two steps. Duringthe �rst, we will extend g to a domain D0s+1 and range W 0s+1; then we extendg from these to Ds+1 and Ws+1 during the se
ond step.Start with g as the empty fun
tion, so D0 =W0 = ;. At stage s+1, we �rstperform Step 1. LetWs = fz1; : : : ; zng, with ea
h zj �M zj+1. Set aj = g�1(zj)for ea
h j. For 
onvenien
e, we will think of z0 and a0 as being �1, i.e., tothe left of all elements of M and L respe
tively, and zn+1 and an+1 as being+1. For ea
h j � n+1, let xj < yj be the two least elements (under <) in the�M-interval (zj ; zj+1)M. Enumerate all these xj and yj (and all of Ws) intoW 0s+1 immediately.Now use a C-ora
le (whi
h 
an 
ompute S, sin
e S �T C) to sear
h for theleast pair hb; 
i of elements in L�Ds satisfying:� b and 
 lie in the same interval (ai; ai+1), for some i � n; and� for this i, b �L 
 () xi �M yi; and� b 2 S () 
 =2 S; and� b 2 S () s 2 C.Let 
i be this 
, and let bi be the least 
orresponding b; these must exist, as weprove below. De�ne g(bi) = xi and g(
i) = yi, thus enumerating bi and 
i intoD0s+1. By the 
onditions given, g is still a partial isomorphism.For ea
h j 6= i, sear
h for the least pair hbj; 
ji of distin
t elements in Lsatisfying:� bj and 
j both lie in the interval (aj; aj+1); and� bj �L 
j () xj �M yj ; and� bj 2 S () 
j 2 S.Again, de�ne g(bj) = xj and g(
j) = yj , thus enumerating bj and 
j into D0s+1.The 
onditions ensure that g is still a partial isomorphism. D0s+1 now 
ontainsDs and all xj and yj (in
luding xi and yi).To see that su
h elements bi and 
i must exist, 
onsider the 
ase when s 2 C.Then we require bi � 
i and bi 2 S and 
i 2 S. If no interval (ai; ai+1)L withi � n 
ontains su
h elements, then for ea
h of these intervals there is a realnumber ti 2 [�(ai); �(ai+1)℄Rsu
h that for all b 2 (ai; ai+1)L,b 2 S () �(b) > ti:If all these ti were rational, then S (and hen
e R) would be de�nable by aquanti�er-free formula using parameters a1; : : : ; an and ��1(t0); : : : ; ��1(tn+1).12



So some ti must be irrational. But then ti must lie stri
tly between ai and ai+1in L, so S de�nes an upper 
ut at ti, and by Lemma 2.9, DgSpL(S) is upward-
losed and we are �nished. Therefore, we may assume that some interval hasno 
orresponding ti at all, and within this interval there exist elements bi and
i satisfying the given 
onditions. A similar analysis applies for the 
ase wheres =2 C. Moreover, no matter whi
h i � n we �nally 
hoose, for ea
h j 6= i there
learly exist bj and 
j satisfying the se
ond set of 
onditions, simply be
ause(aj ; aj+1)L 
ontains in�nitely many elements. So we �nd the elements we need,whi
h 
ompletes Step 1.In Step 2, let z1 �M � � � �M zn be the elements of W 0s+1. As before, setai = g�1(zi) for ea
h i � n, and de�ne a0, z0, an+1, and zn+1 as in Step 1. Forea
h j � n, let xj be the least element (under <) of the interval (zj; zj+1)M,and let Ws+1 = W 0s+1 [ fx0; : : : ; xng. For ea
h j � n, �nd the least element bj(under <) in (aj ; aj+1)L, and de�ne g(bj) = xj. Thus all these bj enter Ds+1.This 
ompletes Step 2, and stage s+ 1.We now 
laim that the map g built by this pro
ess is the isomorphismwe required. First, the entire 
onstru
tion is C-
omputable, and g is neverrede�ned on any domain element, so g �T C. Next, g is total (by Step 2, whi
hensures that the least element not in Ds must enter Ds+1) and onto (sin
eStep 1 enumerates into Ws+1 the least element not in Ws). At every step weensure that g respe
ts �L and �M, by 
hoosing domain elements only from theappropriate intervals in L. So g is a C-
omputable isomorphism.That g(S) �T C is immediate, sin
e both g and S are C-
omputable. To
ompute from g(S) whether s 2 C, we need only 
onsider the elements z1 �M� � � �M zn ofWs, along with z0 and zn+1 as above, and �nd the unique interval(zi; zi+1)M su
h that of the two <-least elements xi �M yi of that interval, onelies in g(S) and the other does not. The 
hoi
e of bi and 
i in the 
onstru
tionguarantees that s 2 C () bi 2 S () xi 2 g(S);so our g(S)-ora
le determines whether s 2 C. The key to this 
oding is thefa
t that the sets Ws (or more spe
i�
ally, 
anoni
al indi
es for these sets,as des
ribed in [20℄, p. 33) are 
omputable uniformly in s. The 
onstru
tionensured this, by de�ning W 0s+1 in Step 1 using only Ws (i.e., without any C-ora
le, and without knowingDs or g), and then by de�ningWs+1 similarly fromW 0s+1 in Step 2. Thus C �T g(S), and so 
 lies in DgSpL(S) = DgSpL(R).The proof of Theorem 2.10 is based on the fa
t that in L, given a �niteset of parameters (su
h as Ws, in Step 1), there are only �nitely many 1-typesover those parameters. In Step 1, for ea
h of these types over Ws (ex
ept thoserealized by the parameters themselves), we added to W 0s+1 two new elementsrealizing that type. Then in Step 2, we added toWs+1 one new element realizingea
h 1-type over W 0s+1 (again ex
epting those types realized by the parametersthemselves). By indu
tion, therefore, ea
h Ws is �nite, allowing this pro
ess to
ontinue.The same pro
ess 
ould be used with n-types, for any n � 1. In Step 1 wewould enumerate elements x1; : : :xn; y1; : : : ; yn into W 0s+1 for ea
h n-type over13



Ws, so that the two n-tuples ~x and ~y both realize that n-type. (We would notin
lude n-types realized by n-tuples of parameters.) Again, given that R is notde�nable without quanti�ers, there is at least one of these types for whi
h we
an �nd a pre-image in R for ~x and a preimage in R for ~y, and de�ne f so asto 
ode C into f(R). We repeat Step 2 similarly with n-tuples for the �nitelymany n-types over W 0s+1. This yields the analogue of Theorem 2.10 for n-aryrelations:Corollary 2.11 A �nitary relation R on L is not intrinsi
ally 
omputable ()R is not de�nable by a quanti�er-free formula with parameters () DgSpL(R)is upward-
losed under Turing redu
ibility.Corollary 2.12 Let P be any 
olle
tion of Turing degrees whi
h is boundedabove under �T . (For instan
e, P 
ould be the �01 degrees, or the �0! degrees,or the hyperarithmeti
al degrees.) Then every �nitary relation on L whi
h isintrinsi
ally P must be intrinsi
ally 
omputable.Corollary 2.13 For every �nitary relation R on L, there exists a stru
ture Ssu
h that Spe
(S) = DgSpL(R).Proof. If R is intrinsi
ally 
omputable, let S be any trivial stru
ture in a �nitelanguage. Otherwise, the 
orollary follows from Corollary 2.11 and Sublemma2.14 below.Sublemma 2.14 Let R be any �nitary relation on any 
omputable, relatively
omputably 
ategori
al stru
ture A (as de�ned on p. 5) in any �nite language. IfDgSpA(R) is upward-
losed, then there exists a stru
ture S su
h that Spe
(S) =DgSpA(R).Proof. Let S = (A; R), a stru
ture in the language of A with one additionalpredi
ate R. Clearly DgSpA(R) � Spe
(S). For the reverse in
lusion, takeany stru
ture M �= S, and let M0 be the redu
t of M to the language ofA. By relative 
omputable 
ategori
ity, there is an M0-
omputable (hen
e M-
omputable) isomorphism f takingM0 onto A. Let S = f(RM); then S �T Mand deg(S) 2 DgSpA(R), so by upward-
losure deg(M) 2 DgSpA(R) as well.We note one more theorem about spe
tra of linear orders, and show that thesame result holds for unary relations on L. The theorem is from Ri
hter in [19℄:Theorem 2.15 (Ri
hter) If A is a linear order su
h that the degree 0 doesnot lie in Spe
(A), then Spe
(A) does not 
ontain a least degree. Indeed Spe
(A)
ontains a minimal pair of degrees.This result also applies to other stru
tures, su
h as trees, whi
h satisfy a
ondition given by Ri
hter on e�e
tive extendability of embeddings.Proposition 2.16 If R is a unary relation on L su
h that the degree 0 doesnot lie in DgSpL(R), then DgSpL(R) does not 
ontain a least degree. IndeedDgSpL(R) 
ontains a minimal pair of degrees.14



Proof. Our proof simply adapts Ri
hter's proof of Theorem 2.15 in [19℄ to spe
-tra of relations on L, building a unary relation S � ! and an isomorphismh : (L; S) ! (L; R) su
h that the in�mum deg(R) ^ deg(S) of the degrees ofR and S under Turing redu
ibility is the degree 0. (That is, R and S form aminimal pair.) We de�ne one-to-one fun
tions hs from �nite sets Bs into L,respe
ting � and with hs � hs+1, su
h that [sBs = !(= jLj) and h = [shs isa bije
tion. We write Ss = h�1s (R) � Bs. At stage 0, let B0 be the empty setand h0 the empty map.At stage s+ 1, we attempt �rst to satisfy a minimal-pair requirement for Rand S. Pi
k i and j su
h that s = hi; ji, and ask whether there exist � 2 2<!,x 2 !, and an embedding � : (dom(�);�; ��1(1)) ! (jLj;�; R) su
h thatlh(�) > maxBs and ��Bs = Ss and ��i (x) 6= �Rj (x). If not, we let h0s+1 = hsand S0s+1 = Ss. If so, we pi
k the shortest su
h � and the 
orresponding � andlet S0s+1 = ��1(1) and h0s+1 = �.Next, to make h a bije
tion, we pi
k the least number z =2 range(h0s+1) andthe least y =2 dom(h0s+1) su
h that y lies in the appropriate interval under �,and let Bs+1 = dom(h0s+1) [ fyg and hs+1 = h0s+1 [ fhy; zig. This 
ompletesthe 
onstru
tion.Clearly this 
onstru
tion builds an automorphism h = [shs of L. (To seethat h has domain jLj, noti
e that at in�nitely many stages we will �nd the �,x, and � for whi
h we sear
h, and dom(hs) will be extended to a longer initialsegment of ! at ea
h su
h stage.) We de�ne S = h�1(R) = [sSs, yieldingdeg(S) 2 DgSpL(R). To see that deg(R) ^ deg(S) = 0, suppose that g = �Si =�Rj is any total fun
tion. To 
ompute g(x), we 
onsider the situation of the
onstru
tion at stage s+1, where s = hi; ji. The set Bs and the fun
tion hs are�nite, so we may use them and sear
h for a string � 2 2<! with lh(�) > maxBsand an embedding � : (dom(�);�; ��1(1)) ! (jLj;�; R) su
h that ��Bs = Ssand ��i (x)#. Su
h � and � must exist, sin
e any suÆ
iently long initial segmentof S 
ould serve as �, with � = h�dom(�). So eventually we �nd su
h a �. Itmay not in fa
t be an initial segment of S, but we know from our 
onstru
tionthat for every su
h � and � and for every x, ��i (x) = �Rj (x). (If not, we wouldhave 
hosen h0s+1 and S0s+1 to violate this equality.) Therefore g(x) = ��i (x),and g is indeed 
omputable. Hen
e the least degree of DgSpL(R), if it existed,would have to be 0, but 0 =2 DgSpL(R).Corollary 2.17 If R is a unary relation on L whi
h is not intrinsi
ally 
om-putable, then there is an in�nite subset D � DgSpL(R) su
h that every pair ofdistin
t degrees in D is a minimal pair.Proof. If DgSpL(R) 
ontains the degree 0, then Theorem 2.10 gives the re-sult. Otherwise, for any �nite k with (L; R) �= (L; Ri) for all i � k, an easymodi�
ation of the proof of Proposition 2.16 allows us to build S su
h that(L; S) �= (L; R) and deg(R1) ^ deg(S) = � � � = deg(Rk) ^ deg(S) = 0. SettingRk+1 = S, we build fdeg(Rk)gk2! by indu
tion as our D.Theorem 2.10 and Proposition 2.16 suggest the possibility of strengtheningCorollary 2.13 by requiring S to be a linear order, sin
e spe
tra of unary relations15



on L must satisfy the main theorems on spe
tra of linear orders. Indeed, apartial result in this dire
tion is immediate: given an in�nite relation R, restri
tthe 
omputable order � from L to R to get a linear order A. By pulling R ba
kto ! via an R-
omputable bije
tion, we get an R-
omputable 
opy of A withdomain !. Thus Spe
(A) 
ontains some degree �T deg(R), and Theorem 1.4shows that deg(R) 2 Spe
(A), so DgSpL(R) � Spe
(A).However, without the reverse in
lusion this result is trivial (just set A = L,sin
e Spe
(L) 
ontains every Turing degree), and the reverse in
lusion neednot hold for the A built by this pro
ess. For intrinsi
ally 
omputable in�niterelations R, this is immediate; for instan
e, let R be a 
losed interval of L. Toemphasize the diÆ
ulties, however, we provide a more interesting example.Let R be a relation on L su
h that �(R) is the following union of intervalsin (Q; <):�(R) = ��1;�12�[" [n=2;000 �n� 1� ; n+ 12� #[" [n2;000 �n; n+ 12� # :Thus, the leftmost interval of �(R) is (�1;�12 ). The next is either (� 1� ; 12 ) if0 =2 ;000, or [0; 12) if 0 2 ;000. The next is either (1� 1� ; 32 ) or [1; 32) depending onwhether 1 2 ;000, and so on. ( 1� is used simply be
ause we need a 
onvenient
omputable irrational number less than 12 .) Now the restri
tion of � to R givesa 
opy of the 
ountable dense linear order. This is the A built from R bythe pro
ess des
ribed above, and its spe
trum 
ontains every Turing degree.However, DgSpL(R) 
annot 
ontain 0, as seen by the following result.Proposition 2.18 For the relation R on L des
ribed above, DgSpL(R) is theset of all those degrees whose jump 
omputes 000.A degree 
 is high if 
0 = 000. (Some de�nitions require 
 �T 00 as well.)So DgSpL(R) might be said to 
ontain those degrees whi
h are high-or-above.This set is 
ertainly upward-
losed under �T , but it is not known whether thereexists a linear order with this spe
trum. Indeed, this proposition and Corollary2.13 
onstitute the �rst proof of the following:Corollary 2.19 There exists a stru
ture S whose spe
trum 
ontains pre
iselythose degrees 
 with 
0 �T 000.This 
omplements a re
ent result in [7℄, whi
h proves the existen
e, for ea
hn 2 !, of a stru
ture whose spe
trum 
ontains exa
tly the non-lown degrees, i.e.,those degrees 
 with 
(n) >T 0(n). Moreover, we 
an use an arbitrary degree din pla
e of 000 in the following proof, thereby building stru
tures with spe
trumf
 : 
0 �T dg.Proof of Proposition 2.18. We will show that 
 is in DgSpL(R) i� ;000 �1 FinSfor some set S 2 
. This latter 
ondition is equivalent to ;00 �T S0. (SeeTheorem III.2.3(v) and Se
tion IV.4 of [20℄ for this result. By de�nition FinS =fe :W Se is �niteg, where WSe is the e-th set 
.e. in the ora
le S under a standardenumeration.) 16



For the forward in
lusion, let (L; R) �= (L; S), with � being the 
omputableorder of L as always. (By Lemma 1.6, we need only 
onsider L.). We will de�nea 1-redu
tion h of ;000 to FinS .Fix an ordering of !<! in order type !. A string � 2 !2n+1 is �-in
reasingif �(0) � �(1) � � � � � �(2n), and � is S-alternating if for all i � 2n:�(i) 2 S () i is even:(In the above, \even" may not be repla
ed by \odd.")The number h(n) will be the index of an ora
le Turing fun
tional � whi
hperforms the following algorithm on input x and ora
le X. First it sear
hes forthe least �0 2 !2n+1 (a

ording to our ordering of !<!) whi
h is �-in
reasingandX-alternating. Then, by indu
tion, having found �y, it sear
hes for the least�y+1 2 !2n+1 whi
h is �-in
reasing and X-alternating and satis�es �y+1(2n) ��y(2n). If it ever �nds �x in this pro
ess, it terminates and outputs 0; otherwiseit diverges. (Thus the domain of �X will always be an initial segment of !.)Now if n 2 ;000, then the (n + 1)-st interval of S in L in
ludes its left endpoint l. Hen
e there exist �-in
reasing S-alternating strings � 2 !2n+1 with�(2n) = l, and for some x, �x will be the least su
h string. Then �Sh(n) willdiverge on all inputs > x, sin
e no �x+1 satisfying our demands will ever befound. Hen
e h(n) 2 FinS .On the other hand, if n =2 ;000, then the (n+1)-st interval of S has no left endpoint. In this 
ase, for every �x we �nd, there will be another sequen
e �x+1found subsequently. (Just 
onsider h�(0); : : : ; �(2n� 1); l0i, for any l0 � �(2n)in the (n + 1)-st interval of S.) Hen
e for this n we will have h(n) =2 FinS ;indeed h(n) 2 TotS . Thus h is a 
omputable 1-redu
tion of ;000 to FinS .For the reverse in
lusion, let C be any set with ;000 �1 FinC via some fun
tionh. We build a unary relation S on (Q; <) with S �T C and (L; ��1(S)) �= (L; R).The right end point of the n-th interval of S will be rn = n� 12 . The leftmostinterval of S is (�1; r0). We show here how to 
onstru
t the next interval ofS, whi
h will have a (possibly irrational) left end point l1 = lims l1;s; all otherintervals are analogous. At stage 0 we enumerate [0; r1) into S and set l1;0 = 0.At stage s+1, we use our C-ora
le to 
he
k whether any elements entered WCh(0)at stage s+1. If not, we do nothing. If so, let l1;s+1 be the �rst rational numberl we �nd su
h that:(1) �14 < l < l1;s; and(2) f�(0); : : : �(s)g \ [l; le;s) = ;; and(3) The binary expansion of l is the same as that of l1;s up through the �rstrepetition of the repeating part of l1;s (where, if l1;s is dyadi
, we use thebinary expansion with in�nitely many 1's); and(4) Let hi; ji = jWCh(0);sj, so hi; ji is the number of times we have alreadymoved l1;s. Consider the i-th element � in some �xed enumeration of thenonempty strings in 2<!. This � must not be the repeating part of anybinary expansion of l. 17



(The last two items will ensure that if WCh(0) is in�nite, then lims l1;s will beirrational.) Su
h an l1;s+1 must exist, and we enumerate all of [l1;s+1; l1;s) intoS. This 
ompletes the 
onstru
tion.We let ln = infs ln;s for ea
h n > 0, with l0 = �1. These are the left endpoints of the intervals of S. For ea
h n, if n 2 ;000, then h(n) 2 FinC , so ln;s isonly rede�ned �nitely many times, and the (n + 1)-st interval of S is [ln; rn),with ln = ln;s for some s.On the other hand, if n =2 ;000, then h(n) =2 FinC , so ln;s was rede�ned in-�nitely many times. In this 
ase ln never entered S (and indeed will be shownbelow to be irrational), so the (n+1)-st interval of S is the open interval (ln; rn).To see that in this 
ase the real number ln must be irrational, suppose it wererational. Then some binary string � would repeat forever beyond a 
ertaindigit in a �xed binary expansion of ln. Choose an s su
h that ln agrees withln;s through the �rst appearan
e of � in the repeating part of ln. Then everysubsequent ln;t also agrees with that mu
h of ln, by requirement (3). However,eventually we rea
h another stage t0 at whi
h requirement (4) ensures that �does not appear in the repeating part of ln;t0, and requirement (3) subsequentlyensures that the repeating part of ln;t0 appears in the same pla
e in every subse-quent ln;t00 . Hen
e � 
annot repeat forever in ln, 
ontradi
ting our assumption.Thus ln is irrational whenever n =2 ;000. This proves that (L; ��1(S)) �= (L; R).This enumeration of S was C-
omputable, and no element x entered S atany stage after stage ��1(x), be
ause of requirement (2). Hen
e S �T C. ButS is not a �nite union of intervals in L, so by Theorem 2.10, 
 lies in DgSpL(R)as required.3 GraphsAn (undire
ted) graph 
onsists of a set of elements, 
alled verti
es or nodes, andan irre
exive symmetri
 binary relation (the adja
en
y or edge relation) on theverti
es. For this 
lass, the natural 
ountably universal stru
ture to use is therandom graph, whi
h by de�nition is the Fra��ss�e limit of the 
lass of all �nitegraphs. (Fra��ss�e limits are dis
ussed in moderate detail in the next se
tion.)The random graph is well des
ribed in ([12℄, 6.4), and is 
hara
terized there asfollows.Theorem 3.1 ([12℄, p. 177) Let G be a 
ountable graph. The following areequivalent.(a) G is (isomorphi
 to) the random graph.(b) For every pair (X;Y ) of disjoint �nite sets of verti
es of G, there is anelement =2 X [ Y whi
h is adja
ent to all verti
es in X but to no verti
esin Y .(
) For every pair (X;Y ) of disjoint �nite sets of verti
es of G, there arein�nitely many elements =2 X [ Y whi
h are adja
ent to all verti
es in Xbut to no verti
es in Y . 18



Part (
) does not appear in [12℄, but is 
learly equivalent to part (b).It follows from this result that every 
ountable graph B embeds into therandom graph, simply by mapping the verti
es b1; b2; b3; : : : of B one at a timeto appropriate nodes of the random graph. Our spe
i�
 
omputable 
opy G ofthe random graph is easily 
onstru
ted. The domain of G is !, as usual. We�x a 
omputable listing (Xi; Yi)i2! of all pairs of �nite disjoint subsets Xi andYi of !, with the properties that every number in Xi [ Yi is < i. The edgerelation EG simply 
ontains all pairs (i; x) and (x; i) su
h that x 2 Xi. This is
omputable and symmetri
 and 
learly satis�es 
ondition (2) of Theorem 3.1,so G is isomorphi
 to the random graph. We de�neZi = fa 2 G : a =2 Xi [ Yi & (8x 2 Xi)(a; x) 2 E & (8y 2 Yi)(a; y) =2 Eg:Thus ea
h Zi is the in�nite 
omputable set of nodes used to ensure that Xi andYi satisfy Theorem 3.1. Also, the Boolean 
ombinations of sets Zi are pre
iselythe subsets of G whi
h are de�nable by quanti�er-free formulas with parameters.Theorem 3.2 The 
omputable random graph G built above is spe
trally univer-sal.Sin
e trivial graphs have spe
trum f0g, we immediately get:Corollary 3.3 Let B be any 
ountable graph. Then there exists a unary relationR on the random graph G 
onstru
ted above, su
h thatDgSpG(R) = Spe
(B):In 
on
ert with results by Hirs
hfeldt, Khoussainov, Shore, and Slinko in[11℄, this yields a far stronger theorem.Theorem 3.4 (Hirs
hfeldt, Khoussainov, Shore, Slinko) For ea
h non-trivial 
ountable stru
ture S (in any 
omputable language, �nite or in�nite),there exists a symmetri
 irre
exive graph with the same spe
trum as S.If the language is �nite, this holds for trivial stru
tures as well. Moreover, in [11℄the authors prove the same result for dire
ted graphs, partial orders, latti
es,rings, integral domains of arbitrary 
hara
teristi
, 
ommutative semigroups, andtwo-step nilpotent groups.Corollary 3.5 Let S be any nontrivial 
ountable stru
ture in any 
omputablelanguage, or any 
ountable stru
ture in any �nite language. Then there existsa unary relation R on the random graph G 
onstru
ted above, su
h thatDgSpG(R) = Spe
(S):Proof of Corollary 3.5. By Theorem 3.4, there exists a 
ountable graph B su
hthat Spe
(B) = Spe
(S). Applying Corollary 3.3 gives the result.19



Proof of Theorem 3.2. Let A be any nontrivial 
ountable graph, and supposethe degree 
 lies in Spe
(A). Fix a set C in 
 and a 
ountable graph B �= Awith domain ! and edge relation F �T C.Constru
tion. Let Bs be the substru
ture with domain f0; : : : ; s� 1g � Bunder the restri
tion of F . We build a (C-
omputable) embedding g of B intoG, starting with R0 = S0 = ;. (The relation R will be the image of g, and Swill be the 
omplement of R.)Having de�ned g on Bs, we 
onsider the vertex s of Bs+1. Using a C-ora
le,we let g(s) be the least node we �nd in G whi
h is adja
ent to all nodes offg(x) : x 2 Bs & F (x; s)g but not adja
ent to any nodes of Ss [ fg(x) : x 2Bs & :F (x; s)g. These two sets are �nite and disjoint, so su
h a node g(s) mustexist.Next we extend Ss to Ss+1, a set of verti
es whi
h will not be allowed intoR at any future stage. For ea
h subset P of Rs+1 [ Ss in turn, we 
hoose jsu
h that P = Xj and (Rs+1 [ Ss)� P = Yj , and sear
h for the least aP 2 Zj .Sin
e G is the random graph, we eventually �nd su
h an aP , and (for ea
h P )we enumerate aP into Ss+1.It is 
lear that this pro
ess 
onstru
ts an embedding g of B into G, withimage R = [sRs. Moreover, S = [sSs is pre
isely the 
omplement of R, sin
eany vertex x whi
h never enters R must eventually be 
hosen as aP for some P ,at or before the stage s + 1 when all verti
es < x have entered Rs+1 [ Ss. Wealso note that R 6= Zi for every i, sin
e on
e we rea
h a stage s+ 1 > i we haveXi[Yi � Rs[Ss, so an element of Zi will be enumerated into Ss+1. This showsthat R 
annot be de�ned in G by any quanti�er-free formula with parameters.Sin
e R and S(= R) are both 
omputably enumerable in C, we haveR �T C.We have not bothered to 
ode C into R in this 
onstru
tion; one 
ould do so,but instead we 
ite Proposition 3.6 and Lemma 3.8 below to see that 
 lies inDgSpG(R). As in the proof of Theorem 2.1, we note that Proposition 3.6 
an beapplied uniformly. That is, with a C-ora
le, one 
ould build R �T C uniformlyin an index e su
h that F = �Ce gives the edge relation on B.As always, in order to demonstrate that Spe
(A) � DgSpG(R), we mustnow show that if B and ~B are isomorphi
 undire
ted graphs of degree 
 and ~
respe
tively, then the relations R and ~R built by this pro
ess satisfy (G; R) �=(G; ~R). Sin
e the maps g and ~g embed B and ~B into G with images R and ~R, weimmediately have an isomorphism � : R! ~R. We extend � to an automorphismof G by a ba
k-and-forth pro
ess, one node at a time, as follows.Assume that � is already de�ned on all of R and on �nitely many nodess1; : : : ; sm of S = R. Take the least node x 2 S not yet in the domain of �, and
hoose s su
h that x entered S at stage s + 1 in the 
onstru
tion of g above.Now, by the 
onstru
tion, no node adja
ent to x 
ould have entered R at anystage after s+ 1, so x is adja
ent to only �nitely many verti
es r1; : : : ; rn in R.Choose a stage t su
h that �(r1); : : : ; �(rn) 2 ~Rt+1 and �(s1); : : : ; �(sm) 2 ~St.Let P = f�(ri) : i � ng [ f�(si) : i � m & x is adja
ent to sig:The 
onstru
tion of ~g 
hose a node aP =2 ~St at stage t + 1 and enumerated20



aP 2 ~St+1, and we de�ne �(x) = aP . This extension of � is still a partialautomorphism of G. (Sin
e �(x) = aP 2 ~St+1, we know that no node of ~R� ~Rt+1
an be adja
ent to �(x); and for nodes in ~Rt+1 [ ~St, the 
hoi
e of P gives theresult.) Moreover, the extension maps x 2 S to �(x) 2 ~S, as required.Iterating this pro
ess by the standard ba
k-and-forth approa
h yields anautomorphism of G mapping R onto ~R, so indeed deg( ~R) 2 DgSpG(R), andSpe
(A) � DgSpG(R). Conversely, let ( ~G; ~R) �= (G; R) with ~G 
omputable.Then the edge relation on ~G is 
omputable, and its restri
tion to ~R yields a
opy of A with domain ~R. To get an ~R-
omputable 
opy of A with domain !,we simply pull this 
opy ba
k to ! via an ~R-
omputable bije
tion. Thus Spe
(A)
ontains a degree �T ~R, and hen
e must 
ontain deg( ~R) itself, by Theorem 1.4,sin
e A is nontrivial. So DgSpG(R) � Spe
(A), and the two spe
tra are equal.In the 
ase of graphs, we 
an prove the 
onverse of Corollary 3.3 as well.Again, Theorem 3.4 is of use; we simply pass to the language of graphs withan additional unary relation. Given a unary relation R on G, we immediatelyhave a stru
ture H = (G; R) in this language, whose spe
trum will be pre
iselyDgSpG(R), by Propositions 3.6 and 3.9 below. We then appeal to Theorem 3.4to show that there is a graph with the same spe
trum. The a
tual 
onverseis Proposition 3.9; everything before that leads up to its proof. We note thatProposition 3.9 be
omes an open question when stated for linear orders insteadof graphs.Also, unlike for linear orders, the restri
tion to nontrivial stru
tures in Def-inition 1.1 is ne
essary for graphs. There do exist in�nite trivial graphs, su
has the 
omplete graph on 
ountably many verti
es, and using Lemma 3.8, onesees that it is impossible for any image of su
h a graph to have degree spe
trumf0g as a relation on G.Proposition 3.6 Let R be a relation on our 
omputable 
opy G of the randomgraph. If R is not intrinsi
ally 
omputable, then DgSpG(R) is upward-
losedunder Turing redu
ibility.Proof. We give the full proof for a unary relation R. The proof is substantiallyanalogous to that of Theorem 2.10. Fix any degrees d �T 
, and suppose (usingLemma 1.6) that S 2 d and (G; R) �= (G; S). Also, �x a set C 2 
 to be ourora
le.Let H be another 
omputable 
opy of the random graph. We will buildan isomorphism g from G to H su
h that C �T g(S). Moreover, g will beC-
omputable, for
ing g(S) �T C. This will prove the proposition. (One 
anjust take H = G, but we will give the two 
opies di�erent names, to distinguishthe domain of g from the range. For 
larity, a, b, and 
 will represent nodes inG, while x, y, and z represent nodes in H. EG and EH will denote the edgerelations on the two graphs.)For any �nite partial binary fun
tion � : H ! 2, we de�ne the 
omputableset Z� � H (by analogy to Zi, from p. 19):Z� = fx 2 H : (8y 2 dom(�))[�(y) = 1 () (x; y) 2 EH℄g:21



Also, we de�ne the 
omputable subset B� of G:B� = fa 2 G : (8y 2 dom(�))[�(y) = 1 () (a; g�1(y)) 2 EG℄g:So, if x 2 Z� and we are sear
hing for an element to be its preimage g�1(x),we need to 
hoose that element from B� (assuming that dom(�) is already
ontained in the range of g).The strategy is as follows. At the start of ea
h stage, g is a partial isomor-phism from G into H, with some �nite domain Ds and range Ws. We partitionH into 
omputable subsets Z�, with � ranging over all binary fun
tions withdomain Ws, and build Ws+1 � Ws 
ontaining exa
tly two new elements fromea
h Z�. For all but one su
h �, those two elements will lie either both in S,or both in S. The two elements for the unique remaining � will be used forour 
oding of C into g(S), as we extend g to a partial isomorphism with rangeWs+1.We start with g as the empty fun
tion, with domain D0 and range W0 bothempty. For every s, stage s+1 
onsists of two steps. In Step 1, we will extend gto a partial isomorphism with domain D0s+1 and range W 0s+1, and then in Step2 we extend g further, to domain Ds+1, and range Ws+1.To begin Step 1, let �1; : : : ; �k be all binary fun
tions (in lexi
ographi
 order)whose domain is pre
isely the range Ws of g. For every j � k, starting withj = 1, 
hoose xj < yj to be the two least elements of Z�j �Ws su
h that neitherxj nor yj is adja
ent to any xm or ym with 1 � m < j. All of these elements xjand yj are immediately enumerated into W 0s+1, sin
e they will enter the rangeof g. We also enumerate all of Ws into W 0s+1 and all of Ds into D0s+1.We show below that there exists a pair hb; 
i of elements of G and an i � ksu
h that:� b and 
 both lie in B�i ; and� neither b nor 
 lies in Ds; and� EG(b; 
) () EH(xi; yi); and� b 2 S () 
 =2 S: (Here we use our C-ora
le, sin
e S �T C.)We �nd the least su
h pair hb; 
i, �x the 
orresponding i, and denote 
 as 
i andb as bi. Both of these now enter D0s+1, and we use bi and 
i to help 
ode C intog(S). If s 2 C and bi 2 S, or if s =2 C and bi =2 S, then de�ne g(bi) = xi andg(
i) = yi. Otherwise, de�ne g(bi) = yi and g(
i) = xi. Thus we haves 2 C () xi 2 g(S);whi
h will be the 
oding of C(s) into g(S). The 
onditions on bi and 
i ensurethat this extension of g is still a partial isomorphism.We then a
t for ea
h j � k with j 6= i, starting with j = 1. We �nd theleast pair of elements bj and 
j in G su
h that� neither bj nor 
j lies in Ds; and 22



� all a already enumerated into D0s+1 satisfy E(a; bj) () E(g(a); xj) andalso E(a; 
j) () E(g(a); yj); and� E(bj ; 
j) () E(xj; yj); and� bj 2 S () 
j 2 S:De�ne g(bj) = xj and g(
j) = yj , thus enumerating bj and 
j into D0s+1.The 
onditions ensure that bj; 
j 2 B�j and that the new g is still a partialisomorphism.To see that the desired elements all exist, note �rst that at least one B�imust have in�nite interse
tion with both S and S. If there were no su
h i, thenS (and hen
e R) would be intrinsi
ally 
omputable, 
ontrary to hypothesis.(In parti
ular, aside from �nitely many elements, S would be de�nable by aquanti�er-free formula using parameters from Ds.)Fix su
h an i. It remains to show that there exist bi and 
i in B�i �Ds, onein S and the other not, su
h thatEG(bi; 
i) () EH(xi; yi):Suppose xi and yi are adja
ent in H. Let a and a be the least elements ofS\ (B�i �Ds) and S\ (B�i �Ds) respe
tively. If a and a are not adja
ent in G,then let a0 be an element of B�i �Ds adja
ent to both a and a. (By Theorem3.1, su
h an a0 must exist.) If a0 2 S, then a0 and a are the desired elements;if a0 2 S, take a0 and a instead. The proof when xi and yi are not adja
ent is
ompletely analogous.The existen
e of bj and 
j for ea
h j 6= i is a similar use of Theorem 3.1,noting that every B� , being in�nite, must have in�nite interse
tion with eitherS or S. (We also use here the fa
t that no xj or yj is adja
ent to any xm or ymwith m 6= j, by the 
hoi
e of xj and yj above.) This 
ompletes Step 1.In Step 2, let �1; : : : ; �n be all binary fun
tions whose domain is pre
iselyW 0s+1. For every j � n, 
hoose the least element zj of Z�j�W 0s+1 and enumeratezj into Ws+1. Now �nd the least element a of G �D0s+1, and �x the i � k su
hthat a 2 B�i . Set ai = a and de�ne g(ai) = zi, thus putting ai into Ds+1. (Thiswill ensure that g has domain !.)Then, for every j 6= i in order, starting with j = 1, �nd the least aj 2G �D0s+1 whi
h lies in B�j and satis�esEG(aj; am) () EH(zj ; zm)for every m < j and for m = i. (By Theorem 3.1, G 
ontains su
h an aj.) Addaj to Ds+1 and set g(aj) = zj. The 
ondition above guarantees that this g isstill a partial isomorphism. Continue until j = n. This 
ompletes Step 2 andstage s+ 1.Sublemma 3.7 The �nite setsWs are 
omputable uniformly in s. (Spe
i�
ally,
anoni
al indi
es for these sets are 
omputable uniformly in s.)23



Proof. We use indu
tion on s, starting with the empty set W0. Let Ws =fy1; : : : ; yng, from whi
h we 
an 
ompute the list �1; : : : ; �k of all binary fun
-tions with domain Ws. (So k = 2n.) During Step 1 of stage s + 1, we de�neW 0s+1 to 
ontain Ws and the two smallest elements of ea
h Z�j �Ws satisfying
omputable 
onditions. Similarly, during Step 2, we de�ne Ws+1 to 
ontain allof W 0s+1 and the least element of ea
h Z�j � W 0s+1. Thus the 
hoi
e of ea
helement added to Ws+1 is entirely 
omputable, with no use of g or any S- orC-ora
le, so we have an algorithm, uniform in s, for 
omputing the 
anoni
alindex for Ws+1.The entire 
onstru
tion is C-
omputable, and for all a 2 G, on
e a appearsin Ds, g(a) is never rede�ned. Thus g is C-
omputable. The 
onstru
tionmakes 
lear that g respe
ts the edge relation on the graphs G and H. To seethat dom(g) = !, suppose that a is the least element of G � dom(g). Then atsome stage s, all smaller elements will lie in Ds, and at stage s + 1, a will be
hosen as ai in Step 2 and will enter Ds+1. Also, every x 2 H will eventuallybe 
hosen as either aj or bj or 
j for some j, sin
e in Step 2 we always 
hoosethe least available element. Thus g is bije
tive, hen
e an isomorphism from Gto H. Moreover, sin
e g and S are both C-
omputable, the bije
tivity makesg(S) �T C.To see that C �T g(S), �x any s. By Sublemma 3.7, we 
an 
ompute Wsuniformly in s, so we 
an 
ompute the list �1; : : : ; �k of all binary fun
tionswhose domain is Ws. Also, Z�j is 
omputable uniformly in j. For ea
h j � k,�nd the two least elements xj < yj of Z�j � Ws satisfying the (
omputable)
onditions for in
lusion in Ws+1. By our 
onstru
tion, there will be exa
tly onei � k su
h that fxi; yig interse
ts both g(S) and g(S), and our 
oding at theend of Step 1 ensures that s 2 C () xi 2 g(S):Thus C �T g(S), proving Proposition 3.6 for unary relations R.For relations of arbitrary (�nite) arity, the proof is essentially the same. Atea
h stage, we 
onsider n-types instead of 1-types, with the �nite set Ws asparameters. On
e again, there are only �nitely many su
h types. We ignorethose types realized by an n-tuple of parameters; all others are realized byin�nitely many n-tuples from H. Sin
e R is not intrinsi
ally 
omputable, we
an �nd one of these types whi
h is realized both by an element of R and byan element of R. This allows us to do the 
oding, and the rest of the proofpro
eeds exa
tly as for unary relations.For the re
ord, we add the following lemma.Lemma 3.8 Let R be a relation on the random graph G. The following areequivalent:(1) R is intrinsi
ally 
omputable.(2) There are only �nitely many strings � 2 2<! su
h that both Z� \ R andZ� \R are in�nite. 24



(3) R is de�nable with parameters in G.(4) R is de�nable by a quanti�er-free formula with parameters in G.The equivalen
e of (1) and (4) for Boolean algebras was proven by Downey,Gon
harov, and Hirs
hfeldt in [4℄, and the same result for linear orders wasproven by Moses in [18℄.Proof. (1) implies (2) be
ause, if there were in�nitely many su
h strings, thenthe proof of Proposition 3.6 would go through, pre
luding intrinsi
 
omputabil-ity. Next, assume (2), and pi
k an n su
h that no � of length � n has in�niteinterse
tion with both R and R. Then, ex
ept for �nitely many nodes in G,membership of x in R is determined by whi
h set Z� (with � 2 2n) 
ontains x.Thus R is de�nable (by a quanti�er-free formula) with parameters for the nodes0; : : : ; n�1 and the �nitely many ex
eptions, so (2) implies (4). (3) is equivalentto (4) be
ause G has quanti�er elimination, and (4) immediately implies (1).Proposition 3.9 Let R be any �nitary relation on any 
omputable 
opy ~G of therandom graph. Then there is a stru
ture (and indeed a graph) whose spe
trumis pre
isely DgSp ~G(R).Proof. If R is intrinsi
ally 
omputable, then any �nite graph 
an serve as therequired stru
ture. Otherwise DgSp ~G(R) is upward-
losed, by Proposition 3.6,and Sublemma 2.14 yields the desired stru
ture S. This S is a stru
ture in thelanguage of graphs with an additional relation symbol, but by Theorem 3.4,there exists a graph with the same spe
trum as S. This proves the proposition.Theorem 3.10 Let D be any 
olle
tion of Turing degrees. The following areequivalent:(1) D is the spe
trum of some 
ountable stru
ture in some �nite language.(2) D is the spe
trum of some 
ountable graph.(3) D is the degree spe
trum of some unary relation R on the random graphG.(4) For every n � 1, D is the degree spe
trum of some n-ary relation on therandom graph G.(5) For some n � 1, D is the degree spe
trum of some n-ary relation on therandom graph G.Proof. (1) implies (2) by Theorem 3.4, (2) implies (3) by Corollary 3.3, (3)implies (4) by taking the n-ary relation to be R�!n�1, (4) implies (5) trivially,and (5) implies (1) by Proposition 3.9.For in�nite languages, almost the same statement is possible; we need onlyworry about singleton spe
tra, whi
h 
orrespond to trivial stru
tures, by The-orem 1.4. Apart from these, the proof is identi
al to that of Theorem 3.10.25



Theorem 3.11 Let D be any 
olle
tion of Turing degrees. The following areequivalent:(1) D is the spe
trum of some nontrivial 
ountable stru
ture in some 
om-putable language.(2) D is the spe
trum of some nontrivial 
ountable graph.(3) D is the degree spe
trum of some unary relation R on the random graphG, su
h that R is not intrinsi
ally 
omputable. (Re
all that Lemma 3.8
hara
terizes intrinsi
 
omputability for su
h R.)(4) For every n � 1, D is the degree spe
trum of some n-ary relation on therandom graph G whi
h is not intrinsi
ally 
omputable.(5) For some n � 1, D is the degree spe
trum of some n-ary relation on therandom graph G whi
h is not intrinsi
ally 
omputable.4 Further QuestionsIt is natural to ask whether there are spe
trally universal stru
tures for theoriesbesides the theory of linear orders and the theory of graphs. The most obvious
andidate is the theory of Boolean algebras, for whi
h the 
omputable atomlessBoolean algebra B would presumably be the spe
trally universal stru
ture, if oneexists. This stru
ture is the subje
t of 
urrent work by Csima, Harizanov, Miller,and Montalb�an in [3℄, who 
onje
ture that it is indeed spe
trally universal.The random graph and the 
ountable dense linear order are both Fra��ss�elimits for the theories in question. Both of these theories are 8-axiomatizable,and both exist in relational languages. By de�nition, the Fra��ss�e limit of the
lass C of all �nite models of su
h a theory T is a 
ountable or �nite stru
tureS su
h that every model in C is isomorphi
 to a �nite substru
ture of S, andsu
h that every isomorphism between �nite substru
tures of S extends to anautomorphism of S. (S is sometimes also 
alled the universal homogeneousstru
ture for C.) S is unique up to isomorphism; its existen
e requires thatthe 
lass C satisfy 
ertain properties. The de�nition 
an be extended to non-relational languages as well; see [12℄ for details.Building on Se
tions 2 and 3, we ask whether in other theories T , the Fra��ss�elimit of the 
lass of �nite models of T might also be spe
trally universal (with thepossibly-ne
essary additional assumption that the Fra��ss�e limit be 
omputablypresentable). Su
h Fra��ss�e limits seem like a natural topi
 for 
omputable modeltheory in and of themselves, sin
e they lend themselves to �nite approximationvery easily, yet we are not aware of 
onsideration of 
omputability and Fra��ss�elimits anywhere in the literature up until the 
urrent work [3℄.Boolean algebras di�er from graphs and linear orders in that the latter twoexist in purely relational languages and are 8-axiomatizable. Hen
e any subset ofa graph is itself a graph, under the restri
tion of the edge relation, and similarlyfor linear orders. For Boolean algebras this is false, and making the language26



relational would require the use of 89-axioms. However, Boolean algebras areuniformly lo
ally �nite, meaning that every subset of size n generates a Booleansubalgebra of size 
omputably bounded in n, spe
i�
ally of size � 22n . Thismeans that B really is the Fra��ss�e limit of the 
lass of �nite Boolean algebras,and makes B the natural next subje
t in the study of spe
tral universality.Lemma 1.2 states an obvious 
orollary of spe
tral universality of a stru
tureS for a theory T : that all spe
tra of models of T 
an be realized as spe
tra ofunary relations on S. We remind the reader that for distin
t theories T , theset of spe
tra of models of T may well be di�erent. For example, the upper
one above any non
omputable degree is the spe
trum of some graph, but notof any linear order, nor of any Boolean algebra, by results of Ri
hter in [19℄.Moreover, Downey and Jo
kus
h showed in [5℄ that every low Boolean algebrais isomorphi
 to a 
omputable one, whereas a low linear order need not have a
omputable 
opy, by results of Jo
kus
h and Soare ([13℄) and Miller ([17℄). Thusthe sets of possible spe
tra are distin
t for these two theories as well. Othermore trivial di�eren
es for distin
t theories are easily found: for instan
e, thetheory of in�nite linear orders ex
ludes the spe
trum f0g, by Theorem 1.4.For the random graph, Se
tion 3 answers the 
onverse as well: all unaryrelations on the random graph have spe
tra whi
h are realized as the spe
trumof some 
ountable graph. For the 
omputable dense linear order L, however,this question remains open: must the degree spe
trum of a unary relation on Lbe realizable as the spe
trum of a linear order? Corollary 2.13 shows that some
ountable stru
ture S (indeed in a �nite language) realizes the spe
trum of anygiven unary relation on L, and Theorem 2.10 and Proposition 2.16 rule out theobvious approa
hes for trying to build a relation whose degree spe
trum is notthe spe
trum of any linear order.We do note, using our results from Se
tion 2, that the 
onverse of Lemma1.2 fails for B. The proof uses the following lemma.Lemma 4.1 For every 
ountable linear order A, there exists a unary relationR on the Boolean algebra B su
h that DgSpB(R) = Spe
(A).Proof. Theorem 2.1 yields a subset M � Q whose spe
trum (as a relation on(Q; <)) is pre
isely Spe
(A). We view B as the Boolean algebra of �nite unionsof left-
losed, right-open intervals of rational numbers. De�neR = fx 2 B : x is of the form (�1; a) with a 2Mg:Clearly R �T M . Moreover, if (Q; <;N ) �= (Q; <;M), then the analogous setS will satisfy (B; S) �= (B; R) and S �T N . Thus Spe
(A) � DgSpB(R).On the other hand, for any set S with (B; S) �= (B; R), we have (S;�) �=(R;�) �= A, where � is the standard proper 
ontainment relation on B, hen
e
omputable: x � y () x 6= (x _ y) = y:Then Spe
(A) must 
ontain deg(S), exa
tly as argued in the proof of Theorem2.1, so DgSpB(R) � Spe
(A). (Here we have again used Lemma 1.6.)27



Corollary 4.2 There exists a unary relation R on the Boolean algebra B su
hthat DgSpB(R) is not the spe
trum of any Boolean algebra.Proof. Pi
k a linear order A whose spe
trum 
ontains a low degree but doesnot 
ontain 0. (By a result of Jo
kus
h and Soare in [13℄, su
h orderings exist.)Apply Lemma 4.1 to A to yield a relation R on B. Then DgSpB(R) 
ontainsa low degree but not 0. However, in [5℄ Downey and Jo
kus
h showed that noBoolean algebra 
an have su
h a spe
trum. This proves the 
orollary.The relation built in Corollary 4.2 is not a Boolean subalgebra of B, andAntonio Montalb�an has asked whether there exists a Boolean subalgebra of Bwhose spe
trum (as a relation on B) is not that of any Boolean algebra.Referen
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