
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9947(XX)0000-0

COMPUTABLE CATEGORICITY FOR ALGEBRAIC FIELDS

WITH SPLITTING ALGORITHMS

RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

Abstract. A computably presented algebraic field F has a splitting algorithm

if it is decidable which polynomials in F [X] are irreducible there. We prove
that such a field is computably categorical iff it is decidable which pairs of

elements of F belong to the same orbit under automorphisms. We also show

that this criterion is equivalent to the relative computable categoricity of F .

1. Introduction

Computable categoricity is a basic concept in computable model theory. It holds
of those computable structures A for which the classical concept of being isomorphic
to A is equivalent to its analogue in the context of computable structures and
computable isomorphisms. Thus it fits squarely into the program of computable
model theory, which studies how difficult it is to give effective versions of classical
model-theoretic concepts and constructions. (A summary of relevant definitions
and standard results appears in Sections 2 and 3.)

Assorted versions of this concept have been proposed. The strongest, computable
stability, holds of a computable structure A iff every classical isomorphism from A
onto any other computable structure is itself computable. This holds, for instance,
for computable presentations of the structure (Z, S), the integers under the succes-
sor function. The most common version, computable categoricity, which will be the
focus of this paper, is not as stringent: a structure A is computably categorical iff,
whenever there exists a classical isomorphism f from A onto a computable structure
B, there also exists a computable isomorphism g from A onto B, although f itself
may fail to be computable. This version has been generalized to relative computable
categoricity, which requires that for every structure B which has domain ω and is
isomorphic to the computable structure A, there must exist an isomorphism from
A onto B which is computable in the Turing degree of the (not necessarily com-
putable) structure B. Finally, there are weaker versions such as ∆0

n+1-categoricity,
and relativizations of these: A is ∆0

n+1-categorical iff every computable structure

B isomorphic to A has an isomorphism onto A which is 0(n)-computable. Such

2010 Mathematics Subject Classification. Primary 03D45, Secondary 03C57, 12E05, 12L99.
The first author was partially supported by Grant # DMS–1001306 from the National Sci-

ence Foundation, by Grant # 13397 from the Templeton Foundation, by the Centre de Recerca

Matemática and the European Science Foundation, and by several grants from The City University
of New York PSC-CUNY Research Award Program.

The second author was partially supported by Grants # DMS–0650927 and DMS–1161456
from the National Science Foundation, by Grant # 13419 from the Templeton Foundation, and
by an ECU Faculty Senate Summer 2011 Grant.

c©XXXX American Mathematical Society

1

2 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

versions essentially study how much information about the structures is needed to
compute isomorphisms.

Among these, computable categoricity remains the most widely studied concept.
It is often equivalent to relative computable categoricity, but exceptions are known
to exist; see [15] for an exception, and [9] for conditions implying equivalence.
Traditionally, the main question has been to determine, for a particular class of
structures, some structural criterion which is equivalent to computable categoric-
ity. In early examples, from around 1980, Dzgoev, Goncharov, and Remmel showed
(independently; see [10, 24]) that a linear order is computably categorical iff it has
only finitely many pairs of adjacent elements, and Remmel also showed in [25] that
a Boolean algebra is computably categorical iff it has only finitely many atoms.
In both cases, the structural criterion identifies the obstacle to computing isomor-
phisms, in the class of structures under consideration. On the other hand, the
criteria equivalent to computable categoricity for trees (viewed either as partial or-
ders, or under the meet relation, and also with distinguished subtrees), established
in [16] and [18] by Lempp, McCoy, Miller, and Solomon and in [13] by Kogabaev,
Kudinov, and Miller, are not easy to describe in any known way, even though they
are “structural,” in any reasonable sense of the word. In terms of computational
complexity, they are Σ0

3, as defined in Section 2, just like the conditions for linear
orders and Boolean algebras. Indeed, for all of these structures, computable cate-
goricity is equivalent to relative computable categoricity, and it is known from work
by Ash, Knight, Manasse, and Slaman in [1], and independently by Chisholm in
[2], that the computational complexity of relative computable categoricity is always
Σ0

3.
Our intention in this paper is to give a criterion for computable categoricity

for algebraic fields with splitting algorithms. This should be viewed as a first
step towards a criterion for computable fields in general, for which the question of
computable categoricity has long been studied and has proven highly intractable.
The basic definitions regarding computable fields appear in Section 3. Apart from
algebraically closed fields, we believe that ours is the first result to characterize com-
putable categoricity for any natural class of fields. (An algebraically closed field is
computably categorical iff it has finite transcendence degree over its prime subfield.
The forwards direction was established by Ershov in [4]; while the converse follows
from the very first known consideration of computable categoricity in the literature,
which forms part of the paper [7] by Frohlich and Shepherdson.) It is known that
finite transcendence degree does not characterize computable categoricity for fields
in general: in [4] Ershov gave a field which is algebraic over its prime subfield, yet is
not computably categorical, and more recently Miller and Schoutens disproved the
converse in [22], by building a computably categorical field of infinite transcendence
degree over Q.

A computable field F is algebraic with a splitting algorithm if F is an algebraic
extension of its own prime subfield (Q or Fp) such that the set of reducible polyno-
mials in F [X] is decidable. Our criterion for computable categoricity, which holds
on all such computable fields F , is that the orbit relation on the field must be
decidable. In a certain sense, this criterion is not quite as structural as previous
ones for other classes of structures; earlier criteria often used attributes, such as
finiteness, which are not expressible in first-order model theory, but we are not
aware of other classes for which it is necessary to use the notion of decidability

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 3

to characterize computable categoricity. Of course, we do not prove here that it
is actually necessary to do so for algebraic fields with splitting algorithms either,
but the simplicity of the statement of our result, combined with the lack of any
other criteria after much study by many researchers, leads us to believe empirically
that ours is as “good” a criterion as one is likely to find. In complexity terms, the
statement of our criterion is Σ0

3, just like those for many other classes, and it is
equivalent to relative computable categoricity, which would force it to be Σ0

3 in any
case. Indeed, computable categoricity is readily seen to be Σ0

3-hard for such fields,
and so our criterion has the lowest possible computational complexity.

Recent work by Miller also studied categoricity for computable algebraic fields,
but using the weaker notion of d-computable categoricity. A computable struc-
ture A is d-computably categorical if every computable structure isomorphic to it
is isomorphic via some d-computable isomorphism. This says that the degree d
contains sufficiently much information to compute an isomorphism whenever one
exists. Normally, for structures which are not computably categorical, one finds
that they are 0′-computably categorical, or 0(m)-computably categorical for some
m, or possibly 0(α)-computably categorical for some ordinal α, and it is common
that, for the least such m, 0(m) gives a sharp lower bound for such degrees d, es-
pecially if we quantify over all structures in a class. The surprising result in [20]
was that, although not all computable algebraic fields are 0′-categorical, there is a
degree d with d′ = 0′′ such that all such fields are d-computably categorical. The
unusual degree involved here suggests that the question of computable categoricity
for fields, even just for algebraic fields, is somehow not as straightforward as for
many other structures.

On the other hand, the current work [11], by Hirschfeldt, Kramer, and the present
authors, shows that relative computable categoricity does have a fairly reasonable
structural characterization for computable algebraic fields. Their criterion does in-
volve computability, just as does ours in this paper, but it can be expressed in a
generally understandable way. However, they also show that not all computably
categorical algebraic fields are relatively computably categorical, and that the cri-
terion from this paper, for algebraic fields with splitting algorithms, fails to extend
(at least in the obvious ways) to computable algebraic fields without splitting algo-
rithms. Rather than producing a structural criterion, they show that the definition
of computable categoricity for algebraic fields is Π0

4, and that for such fields, the
property of being computably categorical is Π0

4-complete. Thus they establish that
no structural criterion can express computable categoricity in any simpler way than
the basic definition. Of course, it is still possible that some structural criterion of
complexity Π0

4 (or higher) might characterize computable categoricity in a more
transparent way than the definition itself does; but in terms of computational com-
plexity, one cannot simplify the definition at all.

The next two sections of the paper contains definitions and background on com-
putability theory and on computable fields, along with a number of classical results
about fields which will be useful later on. This much is sufficient for us to introduce
the problem, in Section 4, with some basic cases of algebraic fields and computable
categoricity. Sections 5 and 6 describe further concepts necessary for the main the-
orem: the isomorphism tree, and the orbit relation. Finally, in Section 7, we prove
the full result for computable algebraic fields with splitting algorithms.

4 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

2. Background in Computability

We recall here the concepts from computability theory which will be essential to
our work on fields. Computable functions are defined in [28], and indeed, several
very different definitions give rise to the same class of functions. Functions on the
set ω of nonnegative integers are usually identified with their graphs in ω2, and we
then code ω2 into ω, so that the graph corresponds to a subset of ω; conversely,
for our purposes, a subset of ω may be identified with its characteristic function.
The partial computable functions (those for which the computation procedure halts
on certain inputs from ω, but not necessarily on all of them) can be enumerated
effectively, and are usually denoted as ϕ0, ϕ1, . . ., with the index e coding the pro-
gram for computing ϕe(x) on x ∈ ω. The domains of these functions constitute
the computably enumerable sets, and we write We for the domain of ϕe. These are
precisely the sets which are definable by Σ0

1 formulas, i.e. sets of the form

{x ∈ ω : ∃y1 · · · ∃ym R(x, y1, . . . , ym)},

where m ∈ ω is arbitrary and R may be any computable subset of ωm+1. We
usually write “ϕe(x)↓= y” to indicate that the computation of ϕe on input x halts
and outputs y, and so ϕe(x) ↓ iff x ∈ We; otherwise we write ϕe(x) ↑. Also, if the
computation halts within s steps, we write ϕe,s(x)↓. The set We,s is the domain of
ϕe,s, so We = ∪sWe,s. Every set We,s is computable (although the union We may
not be), and we take it as a convention of our computations that only numbers ≤ s
lie in We,s.

More generally, we define the Σ0
n formulas by induction on n. The Σ0

0 formulas
are those formulas with free variables x1, . . . , xm which define computable subsets
of ωm. A Π0

n formula is the negation of a Σ0
n formula (so a Π0

1 formula is universal,
in the same sense that a Σ0

1 formula is existential), and a Σ0
n+1 formula in the

variable x of the form

∃y1 · · · ∃ym R(x, y1, . . . , ym),

where R is a Π0
n formula. Thus the subscript counts the number of quantifier alter-

nations. (The superscript, often omitted here, refers to the fact that we quantify
only over natural numbers, not over sets of naturals, or sets of sets of them, etc.)
Consecutive like quantifiers can be collapsed to a single quantifier, by the use of
computable pairing functions: for each n, there is a computable bijection ωn → ω,
denoted by letting 〈y1, . . . , yn〉 ∈ ω be the image of the tuple (y1 . . . , yn) ∈ ωn. Thus
the Σ0

n+1 formula above could be expressed as ∃yR′(x, y), where R′(x, 〈y1, . . . , yn〉)
holds iff R(x, y1, . . . , yn) holds. Details can be found in [19], where a more general
computable bijection onto ω from the set ω<ω of all finite tuples of natural numbers
is also given. This latter bijection allows us to use a single quantifier to quantify
over all polynomials in F [X], for instance, for any computable field F (as defined
below).

Turing reducibility and 1-reducibility are ways of comparing the complexity of
subsets A,B ⊆ ω, both defined in [28]. We write A ≤T B and A ≤1 B, respectively,
to denote that A is no more complex than B under these relations. It is well known
that, for every n ∈ ω, there exists a set S which is Σ0

n+1-complete: S itself is
Σ0
n+1, and every Σ0

n+1 set T has T ≤1 S. Likewise, the complement of S is Π0
n+1-

complete. This is regarded as an exact assessment of the complexity of S; among
other things, it ensures that S is not Π0

n+1, nor Σ0
n. It should be noted that the

class of Σ0
0 sets and the class of Π0

0 sets coincide: these are the computable sets,

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 5

and no set is Σ0
0-complete. A set which is both Σ0

n and Π0
n is said to be ∆0

n. Every
∆0

1 set is ∆0
0, but for greater n these classes no longer coincide. The ∆0

n+1 sets
are exactly those which are Turing-reducible to a Σ0

n-complete oracle set. As a
canonical Σ0

n-complete set, we usually use ∅(n), the n-th jump of the empty set, as
defined in [28].

Turing reducibility ≤T is a partial pre-order on the power set P(ω). We define
A ≡T B, saying that A and B are Turing-equivalent, if A ≤T B and B ≤T A. The
equivalence classes under this relation form the Turing degrees, and are partially
ordered by ≤T . In fact, they form an upper semi-lattice under ≤T , with least
element 0, the degree of the computable sets, but no greatest element. One often
speaks of a set A as being computable in a Turing degree d, meaning that for some
(equivalently, for every) B ∈ d we have A ≤T B.

3. Useful Results on Fields

Computable fields fit the general definition of computable structures, which is
the basis of computable model theory.

Definition 3.1. A structure S in a finite language is computable if its domain is
an initial segment of ω, the set of natural numbers, and all functions and relations
in S are computable when viewed as functions and relations on ω.

A structure M is computably presentable if it is isomorphic to a computable
structure S, in which case we call S a computable presentation of M.

A computable field F therefore has domain ω, or else {0, 1, . . . , pk − 1}, with
computable field operations. Since the symbols 0 and 1 have their own meaning in
field theory, we often write the domain of F as {x0, x1, . . .} for clarity. If the i-th
partial computable function ϕi computes addition on F (so xm + xn = xϕi(m,n))
and ϕj computes multiplication on F , then 〈i, j〉 is an index for F . These defini-
tions are standard in computable model theory, and we will maintain them here, but
they complicate the discussion of computable fields. Herewith our conventions. The
standard symbols +, −, ·, xn, and x

y , from field theory all refer to the (computable)

operations in F , with “−” denoting both subtraction and negation as usual. Like-
wise, 0 and 1 denote the identity elements of F , rather than naming the first two
elements of the domain. These will be far more useful for us than the constants
and operations on ω would be. On the other hand, we use the symbol < to denote
the usual relation on ω, not on the field F . Of course, an arbitrary computable
field may or may not be orderable at all, let alone computably orderable, so field
orders (i.e. linear orders compatible with the field operations) will not enter into
our discussion. We will often want to search through the domain ω until we find
an element with a certain property, and such a search will simply go through the
elements 0, 1, 2, . . . (or x0, x1, x2, . . .), using the < relation on ω. Similarly, phrases
such as “the least element satisfying...” will mean the least under < on ω.

At a basic level, [19] and [21] are both useful for definitions about computable
fields. They both avoid the notational issue by writing {a0, a1, . . .} in place of
{0, 1, . . .} as the domain of a field. For serious research on computable fields through
the twentieth century, all of [30], [7], [23], [4], [17], and [29] are familiar references.

A field is algebraic iff it is an algebraic extension of its prime subfield. (The
prime subfield is just the smallest subfield; it is a copy of either the rationals Q or
the p-element field Fp, depending on characteristic.) In this paper, we will restrict

6 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

ourselves entirely to algebraic fields, although in characteristic 0, our results carry
over to the case of fields of finite transcendence degree over Q, just by fixing a
transcendence basis B and treating Q(B) as the prime subfield, over which the rest
of the field is algebraic.

We restrict ourselves further to the case of algebraic fields with splitting algo-
rithms. A computable field F has a splitting algorithm if its splitting set

SF = {p ∈ F [X] : p is reducible in F [X]}

is computable. (To clarify: p is reducible if it can be expressed as a product of
nonconstant polynomials in F [X]; it need not split into linear factors, but it must
split into at least two proper factors.) The polynomial ring F [X] may be presented
effectively (i.e. as a computable ring) by use of the computable bijection from ω<ω

onto ω described in Section 2. The next result relates SF to other properties of the
field F . This is a direct consequence of Rabin’s Theorem, first published in [23]
in 1960, and is discussed in more detail in [20], where it appears as Corollaries 2.7
and 2.8.

Lemma 3.2. Let F be any computable field. Then the following are all Turing-
equivalent: the splitting set of F

SF = {p(X) ∈ F [X] : p(X) has a proper factorization in F [X]},

the root set of F

RF = {p(X) ∈ F [X] : (∃r ∈ F)p(r) = 0},

the root function gF of F

gF (p) = |{r ∈ F : p(r) = 0}|, with dom(gF) = F [X],

and the root multiplicity function of F (which is the same as gF , except that roots
are counted by multiplicity). Moreover, the Turing reductions are uniform in (an
index for) F .

Moreover, any two isomorphic computable algebraic fields F and F̃ must have
Turing-equivalent splitting sets, and the Turing reductions are uniform in F and
F̃ . Hence, for computable algebraic fields, the Turing degree of each item above is
an invariant of the isomorphism type. �

Notice that an algebraic field need not be finitely generated (equivalently, need
not have finite degree) over the prime subfield. Indeed, finitely generated com-
putable fields are relatively straightforward objects: for one thing, they always
have splitting algorithms, as do all prime fields. This was shown in 1882 by Kro-
necker, in [14]; a discussion in modern terms appears in [20, §2], where it is also
explained how we can determine splitting algorithms, uniformly in the generators,
for all finitely generated subfields E of any computable algebraic field F , and how
we can use these to determine the Galois group of any finitely generated subfield
E ⊆ F over any subfield of E, uniformly in the generators of E and the subfield.
We view the Galois group as a permutation group on the generators and their con-
jugates over the ground field; this is a useful way to consider automorphisms of E
as finitary objects rather than as functions.

We add a new notion, the conjugacy function, which is related but not always
Turing-equivalent to the sets and functions from Lemma 3.2.

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 7

Definition 3.3. Let F be a computable field, with prime subfield Q. The conjugacy
function for F is the function h : F → ω defined by:

h(x) =

{
↑, if x is transcendental over Q
|{y ∈ F : x and y are conjugate over Q}|, else.

In general, the conjugacy function is a partial function. Normally its initial step
is to find the minimal polynomial of x over Q, and if x is transcendental, then this
search will never converge. In practice we are usually concerned with the case of
an algebraic extension F over Q, in which case h is total.

The conjugacy function is always computable from the splitting set, or from any
of the other Turing-equivalent sets in Lemma 3.2. The splitting set allows us to
find the minimal polynomial q(X) of any x algebraic over Q, and then we use the
root function to determine h(x). However, the conjugacy function may have strictly
smaller Turing degree than those sets. For example, in any normal extension of Q,
the conjugacy function is computable, being given by the degree of the minimal
polynomial; yet the computable normal algebraic field Q[

√
pn | n ∈ K], generated

by the square roots of the primes pn with n in the halting set K, has splitting set
of degree 0′.

The analogue of Rabin’s Theorem for the conjugacy function is the following.

Proposition 3.4. Let F be any computable algebraic field with prime subfield Q,
and g any computable field embedding of F into a computable presentation Q of the
algebraic closure of Q. Then the conjugacy function h of F is computable iff the
image g(F) is a computable subfield of its normal closure within Q, i.e. iff there
exists a partial computable function ψ whose domain is the normal closure of g(F)
within Q, such that ψ is the characteristic function of g(F) on that domain. More
generally, this ψ is Turing-equivalent to h.

Notice that the normal closure of g(F) within Q is independent of the choice of
the computable embedding g.

Proof. Suppose first that we have an h-oracle. Given any x ∈ Q, ψ waits until
some y appears in F such that g(y) and x have the same minimal polynomial over
the prime subfield Q of Q. If this never happens, then x does not lie in the normal
closure of g(F), so ψ(x) need not converge. If y appears, then we compute h(y),
using the oracle, and find all conjugates y = y1, y2, . . . , yh(y) of y over Q in F . Then
x ∈ g(F) iff (∃i ≤ h(y)) g(yi) = x.

Conversely, with an oracle for ψ, the program for h accepts any y ∈ F as input,
computes the minimal polynomial q(X) of g(y) over Q, and finds all roots x1 =
g(y), x2, . . . , xdeg(q) of g(y) in Q. Then ψ(xi) ↓ for all i ≤ deg(q), and h(y) is the
number of these i for which ψ(xi) = 1. �

Of course, often one wants to know about conjugates over ground fields other
than the prime subfield. If this ground field is algebraic, then the conjugacy function
computes this information.

Lemma 3.5. Let F be a computable field, with prime subfield Q and conjugacy
function h. Then for any subfield E ⊆ F algebraic over Q, the function

hE(x) =

{
↑, if x is transcendental over E
|{y ∈ F : x and y are conjugate over E}|, else

8 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

is computable uniformly in oracles for h and the splitting set of E. In particular, if
E is generated by a finite set z1, . . . , zn over Q, then we can compute hE uniformly
in h and the tuple ~z.

Proof. For any x ∈ F , the splitting set for E allows us to find the minimal poly-
nomial p(X) of x over E. We also determine the minimal polynomial q(X) of x
over Q, and search until we have found all roots x = x1, x2, . . . , xh(x) of q(X) in F .
Now p(X) must divide q(X) in the ring E[X], so hE(x) is just the number of these
roots xi satisfying p(xi) = 0.

Here F is not assumed to be algebraic over Q, but E is algebraic. So, if x ∈ F
is transcendental over Q, then x is also transcendental over E, and therefore the
computation of hE(x) described above never halts, which is exactly the prescribed
outcome. �

Next we introduce several standard facts about fields which do not involve com-
putability. The following result appears as Lemma 2.10 in [20].

Lemma 3.6. For an algebraic field F , every endomorphism (i.e. every injective
homomorphism from F into itself) is an automorphism. �

Corollary 3.7. If F ∼= F̃ are isomorphic algebraic fields, and f : F → F̃ is a field
embedding with f(1) 6= 0, then the image of f is all of F̃ . That is, such an f must
be an isomorphism. �

Before continuing to Proposition 3.8, we explain the intuition behind the embed-
ding tree, which will be stated formally in Definition 5.1, but is used here as well.
To construct a field embedding from E into F effectively, one usually begins with
the prime subfield Q of E (which is always computably enumerable within E, and
can be mapped effectively onto the prime subfield of F , provided the fields have the
same characteristic). Then one extends this partial embedding f0 to the least ele-
ment x0 in the domain {x0, x1, . . .} of E (which might already lie in Q, of course),
then the second-least, and so on. The options for the image of xs+1 depend on the
choices we made for the images of x0, . . . , xs, naturally. At each stage, the number
of ways to extend the embedding fs : Q(x0, . . . , xs−1) ↪→ F to xs is bounded by the
degree of the minimal polynomial of xs over Q(x0, . . . , xs−1), and there might be
no way at all to do so, even assuming that E embeds into F , because we may have
made bad choices at previous stages. Our choices thus naturally give rise to the
embedding tree, with a root node representing the partial embedding f0 (to which
every embedding of E into F restricts), and with each node σ of length |σ| = s
having one immediate successor for each of the finitely many possible images in F
of xs, given our previous choices. Hence one may view σ as a node in the tree F<ω

of finite sequences of elements of F : the sequence 〈y0, . . . , ys−1〉 describes the map
with xi 7→ yi for all i < s, and this sequence lies in the isomorphism tree iff that
map extends to an embedding of Q(x0, . . . , xs) into F . The infinite paths through
this tree correspond precisely to the embeddings of E into F . Moreover, the tree
itself is computable, in the sense that we can decide exactly which sequences in
F<ω lie in the tree. Nevertheless, some or all of the paths through the tree may be
noncomputable.

Proposition 3.8. Let E and F be algebraic field extensions of a common subfield
Q. Then E embeds into F over Q iff every finitely generated subfield of E containing
Q embeds into F over Q.

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 9

Proof. The key to the nontrivial direction is König’s Lemma, applied to the em-
bedding tree TE,F ;Q for E and F over Q, as we now explain. Write the domain
of E as E = {x0, x1, . . .}, with ω as the domain of F . For each s, pick any
qs ∈ Q[X0, . . . , Xs] such that qs(x0, . . . , xs−1, X) is the minimal polynomial of xs
over Q[x0, . . . , xs−1]. We consider the set TE,F ;Q of finite sequences σ of natural
numbers:

TE,F ;Q = {σ : (∀s < |σ|) qs(σ(0), . . . , σ(s)) = 0}.
Notice that if σ = (a1, . . . , an) ∈ TE,F ;Q, then so is τ = (a1, . . . , am) for each
m = |τ | ≤ n = |σ|. That is, TE,F ;Q is closed under initial segments, so we view it
as a tree.

Sequences σ ∈ TE,F ;Q correspond to embeddings of Q[x0, . . . , x|σ|−1] into F ,
since for each s less than the length |σ| of the sequence, σ(s) satisfies the same min-
imal polynomial overQ(σ(0), . . . , σ(s−1)) in F that xs satisfies overQ(x0, . . . , xs−1)
in E. Clearly TE,F ;Q is finite-branching: the number of successors of σ is at most
the degree of the variable X|σ| in q|σ|. (A more general formal description appears
as Definition 5.1 below.)

König’s Lemma states that every finite-branching tree with infinitely many nodes
must contain an infinite path. By assumption, every subfield Q[x0, . . . , xn] embeds
into F , so TE,F ;Q contains a node of each length n ∈ ω. Therefore, TE,F ;Q contains
an infinite path, which defines an embedding of F into E. �

A less slick but intuitively clearer proof of this result (with Q as the prime
subfield) appears within the proof of [8, Appendix A, Thm. 2]. Sometimes we will
write just T (E,F), in which case Q is to be understood as the prime subfield of
both. The concept of the embedding tree foreshadows the isomorphism trees in
Definition 5.1 below.

Corollary 3.9. Two algebraic fields E and F are isomorphic over a common sub-
field Q iff every finitely generated subfield (containing Q) of each one embeds over
Q into the other.

Proof. By Proposition 3.8, the latter condition is equivalent to E and F both em-
bedding into each other over Q. But then the composition of these two embeddings
is an automorphism, by Lemma 3.6. �

The upshot of this corollary is that often, to build a computable field F isomorphic
to a given computable field E, we can simply construct E as a union of nested,
uniformly computable fields Es ⊆ Es+1 with each Es isomorphic to the subfield
Fs ⊆ F generated by the first s elements of F . There is no need for the isomorphisms
fs : Fs → Es to have a limit; Corollary 3.9 does all the work for us.

For this paper we have two new definitions, arising out of the standard concept
of conjugacy. Examples appear in Section 4.

Definition 3.10. Let E ⊆ F be any field extension. Two elements a, b ∈ F are
conjugate over E if they have the same minimal polynomial in E[X]. It is well
known that then the subfields E[a] and E[b] are isomorphic, via a map fixing E
pointwise with a 7→ b. We say that a and b are true conjugates in F over E if there
exists an automorphism ψ of F with ψ(a) = b and ψ�E being the identity map.
If a and b are conjugate over E but are not true conjugates in F over E, we call
them false conjugates in F over E.

Finally, we give the computability-theoretic version of the classical Theorem of
the Primitive Element.

10 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

Theorem 3.11 (Effective Theorem of the Primitive Element). Let E and F be
computable fields, with E ⊆ F a separable algebraic extension and with E c.e. as
a subfield of F . Then for any elements x1, . . . , xn ∈ F , we can effectively find
a primitive generator y ∈ F for these elements. That is, we can find a y ∈ F
such that E[y] = E[x1, . . . , xn]. The procedure for finding y is uniform in n, the
generators 〈x1 . . . , xn〉, the enumeration of E within F , and the field operations in
F .

Proof. The existence of such an element y is the classical theorem see e.g. [30, p.
139], and is made effective by a direct search for y. An arbitrary y ∈ F generates
E[x1, . . . , xn] iff

(∃p ∈ E[X1, . . . , Xn])(∃q1, . . . , qn ∈ E[Y])[y = p(x1, . . . , xn) & all xi = qi(y)],

and so we can find y, with the uniformities described above. For a proof giving an
actual formula for the generator y, see [6]. �

4. A First Example

We start with an example, to introduce the concepts that will be used later in
our analysis of computable categoricity for algebraic fields. Let F0 be a computable
presentation of the normal algebraic extension of the rationals by the square roots
of all rational primes: F0 = Q[

√
p0,
√
p1, . . .]. The domain of F0 is ω, and we use√

pi to refer to the lesser of the two square roots of pi in F0, under the ordering <
on the domain ω. Now, for any W ⊆ ω, let FW be the extension of F0 in which
we adjoin a square root of

√
pi iff i ∈ W . Notice that no −√pi acquires a square

root of its own during this process, whether or not i ∈ W . (To see this, embed
FW into the field R.) So FW is not normal over Q (unless W = ∅), although it is
normal over F0, which in turn is normal over Q. FW is computably presentable iff
W is computably enumerable, in which case we take FW to denote a computable
presentation built over our original presentation of F0. The domain of F0 can be the
set of even elements of ω, for instance, with the odd elements added as numbers
i appear in W and dictate the adjoinment of square roots of

√
pi and the new

elements they generate.
Notice that for all i ∈ W ,

√
pi and −√pi are false conjugates in FW over Q, as

in Definition 3.10: they both have minimal polynomial X2−pi ∈ Q[X], but neither
can be mapped to the other by any automorphism of FW over Q, since

√
pi has a

square root of its own and −√pi does not. On the other hand, for i /∈ W , ±√pi
are true conjugates in FW over Q, since there is an automorphism of FW mapping
one to the other.

Before stating the main result for these fields FW , we recall the concept of
computable inseparability.

Definition 4.1. Two sets P and N are computably inseparable if there is no com-
putable set C with P ⊆ C and N ⊆ C.

A standard example (see [28, I.4.22]) has P = {n ∈ ω : ϕn(n) ↓= 0} and
N = {n ∈ ω : ϕn(n) ↓= 1}. (Recall that “ϕe(x) ↓= 0” means that the e-th
partial computable function, when run with the input x, halts and outputs 0.)
The following result was first proven by Yates, who saw that it followed from a
construction of Friedberg; but the proof was only published by Cleave [3] in 1970,
some years later.

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 11

Theorem 4.2 (Friedberg & Yates [3]). Every noncomputable c.e. set is the union
of two disjoint, computably inseparable c.e. subsets. �

Conversely, if W is computable, then for every partition of W into c.e. sets A
and B, both A and B are computable, since the complement A of the c.e. set A is
the set (W ∪B), which is also c.e.

Proposition 4.3. For any c.e. W , the computable field FW is computably categor-
ical iff W cannot be partitioned into computably inseparable c.e. subsets.

Corollary 4.4. FW is computably categorical iff W is computable. �

The corollary is immediate, using Theorem 4.2. The point of Proposition 4.3
is its proof (below), rather than the result itself, since the proof illustrates the
usefulness of the concept of computable inseparability (see Definition 4.1).

Proof. First suppose that there is no partition of W into computably inseparable
c.e. sets, and let F̃ be a computable field isomorphic to FW . Define

P = {i ∈ ω : ∃x, y, z ∈ F̃ [x < y & x2 = y2 = p̃i & z2 = x]}

N = {i ∈ ω : ∃x, y, z ∈ F̃ [y < x & x2 = y2 = p̃i & z2 = x]}.

(Here < refers to the standard order on the domain ω of F̃ , but p̃i is the i-th rational

prime in F̃ , and squares refer to the field multiplication in F̃ .) The computability of

F̃ shows that P and N are both c.e., and since F̃ ∼= FW , we know that P ∪N = W
and P ∩N = ∅. By assumption, therefore, there exists a computable C with P ⊆ C
and N ⊆ C. We define our computable isomorphism f : FW → F̃ beginning with
the computable subfield F0 ⊆ FW . f is uniquely determined on Q within F0. If
i ∈ C, then we map

√
pi (from FW) to the lesser square root of p̃i in F̃ , with −√pi

therefore mapped to the greater one. In this situation we know that either i /∈ W
(in which case

√
pi can be mapped to either square root of p̃i) or i ∈ P (in which

case we made the correct choice by mapping
√
pi to the lesser square root of p̃i).

If i /∈ C, we do the opposite, mapping
√
pi to the greater square root of p̃i in F̃ .

With i /∈ C, we know that either i /∈W or i ∈ N , and so again the choice we made
was a correct choice. This much is readily computable, since C is computable.

Moreover, as elements x outside of F0 appear in FW , we can compute the
(unique) extension of f to those elements: if a square root zi of

√
pi ever ap-

pears in FW , then i ∈W = P ∪N , and our choice of f(
√
pi) using C ensures that

f(
√
pi) has a square root of its own in F̃ , to which we map zi. Since x must have

been generated by finitely many of these zi, this will eventually allow us to extend
f to x. Clearly, then, f is a computable embedding of FW into F̃ , and by Corollary
3.7, f must be an isomorphism. Thus FW is computably categorical.

Now suppose there exist disjoint, computably inseparable sets P and N whose
union equals W . We define a computable field F isomorphic to FW by starting
with F0 and enumerating P and N . Whenever any i appears in P , we adjoin a
square root of

√
pi to F , while when an i enters N , we adjoin a square root of −√pi

to F . Since P and N form a partition of W , this F must be isomorphic to FW .
However, if g : FW → F is any isomorphism, then C = {i ∈ ω : g(

√
pi) < g(−√pi)}

is computable in g and must contain P while not intersecting N . (Here again < is
the standard order on the domain ω of F .) Therefore no such g can be computable,
and F is a computable field isomorphic to FW but not computably isomorphic to
it. �

12 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

Relativizing this proof yields an immediate corollary.

Corollary 4.5. For c.e. sets W , the above field FW is d-computably categorical
iff the degree d computes separations of every partition of W into two c.e. subsets.
That is, the degrees with this property form the categoricity spectrum of FW , as
defined in [5]. �

We note that the splitting set of this field FW is Turing-equivalent to W , hence is
in general noncomputable. There is a similar procedure which builds a computable
field KW with computable splitting set, and with the same categoricity spectrum:
the basic strategy is that, if n enters W at stage s, one should adjoin a root of a
polynomial qn(

√
pn, Y) in such a way that qn(−√pn, Y) has no root. By ensuring

that these polynomials all have distinct prime degrees, we can make certain that
qn(−√pn, Y) never acquires a root at any other stage, and by making that prime
degree d be > s, we can keep the splitting set of F computable. Unfortunately,
qn(
√
pn, Y) cannot simply say Y d =

√
pn, because then the negative of this root

would be a d-th root of −√pn. For the existence of the requisite polynomials qn,
see [20, Prop. 2.15], and for the full construction see Theorem 3.4 there. With this
note, we have informally established the following corollary.

Corollary 4.6. Computable categoricity for computable algebraic fields with split-
ting algorithms is Σ0

3-hard.

Proof. This means that there is a 1-reduction f from some Σ0
3-complete set S: for

all e ∈ S, f(e) is the index of an algebraic field with a splitting algorithm, which is
computably categorical iff e ∈ S. We choose the set Rec = {e : We ≤T ∅} to serve
as S, and f(e) is the field index produced by the above construction on We. For
details, see [28, §IV.3]. �

It was also shown in [20] that a field such as KW (with W >T ∅), with a splitting
algorithm but not computably categorical, cannot have any least Turing degree in
its categoricity spectrum. By Corollary 4.5, this shows that for noncomputable c.e.
sets W , there is no least degree which computes a separation of every partition of
W into two c.e. subsets. Of course, this result can be shown directly, without the
excursus into computable model theory! The key to the direct proof, and also to
the result in [20], is the Low Basis Theorem of Jockusch and Soare, from [12].

With the preceding results, we have answered a question which Hirschfeldt posed
upon encountering categoricity spectra for algebraic structures.

Corollary 4.7. There exists a computable algebraic field whose categoricity spec-
trum contains precisely the PA-degrees, i.e., those Turing degrees which compute a
complete extension of Peano arithmetic.

Proof. Let A and B be two effectively inseparable disjoint c.e. sets, such as {n :
ϕn(n) ↓= 0} and {n : ϕn(n) ↓= 1}, and set W = A ∪ B. If the field KW is d-
computably categorical, then d must compute a separation of A and B, by Corollary
4.5. It then follows by known results of Scott and Solovay (see [26], or [27, Thm. 6.6])
that this d must be a PA-degree. Conversely, since KW has a splitting algorithm,
the embedding tree TKW ,E,Q has computable branching whenever E is a computable
field isomorphic to KW , and therefore every PA-degree d can compute a path
through this tree, i.e. an isomorphism from KW onto E. Thus KW is d-computably
categorical for precisely the PA-degrees d. �

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 13

Effective inseparability of A and B is a stronger property than computable in-
separability, and not every c.e. set W >T ∅ can be partitioned into effectively
inseparable c.e. subsets. Indeed, one can produce a computable algebraic field with
a splitting algorithm, for which the categoricity spectrum contains certain non-PA
degrees as well, yet does not contain the degree 0.

5. Isomorphism Trees for Fields

Computable separability arises frequently in discussions of computable trees and
paths through them. In light of the connection seen in the preceding section be-
tween computable separability and computably categorical fields, it is not surprising
that, in discussing isomorphisms between fields, we will make great use of the iso-
morphism tree. This concept was introduced in [20, §5] and used in Proposition 3.8
above; it may be useful for the reader to refer back now to the discussion there.
Here we give a full definition, generalizing the work in [20] to the case where the
two fields are not necessarily isomorphic. F<ω denotes the set of finite sequences
σ of elements of F (or, formally, functions σ : {0, 1, . . . , |σ| − 1} → F , where |σ| is
the length of σ).

Definition 5.1. Let E and F be computable algebraic fields of the same char-
acteristic, and let 〈x0, x1, . . .〉i∈J be a computable sequence (finite or infinite) of
elements of E which together generate E over its prime subfield Q. Let 〈qi〉i∈J be
polynomials such that every qi ∈ Q[X0, . . . , Xi] and for each i, qi(x0, . . . , xi−1, X)
is the minimal polynomial of xi over Q(x0, . . . , xi−1). The embedding tree IEF is
the computable tree

IEF = {σ ∈ F<ω : (∀i < |σ|)q̃i(σ(0), . . . , σ(i)) = 0},

where q̃i is the image of qi under the unique embedding of Q into F . The height
of IEF is |J | + 1 for finite generating sets J , or ω if |J | = ω, and IEF must be
finite-branching: for each σ ∈ IEF of any length n, there are only finitely many
τ ∈ IEF such that σ ⊆ τ and |τ | = n+1, because there are only finitely many roots
of qn+1(σ(0), . . . , σ(n− 1), X) in F .

When E and F are known to be isomorphic, the term isomorphism tree is often
used (with Corollary 3.7 as justification). If E = F and I = 〈x0, x1, . . .〉 simply
lists the domain of F in order (as elements of ω), then we write IF for IFF and call
this the automorphism tree of F . (We sometimes abuse this terminology by writing
IF even when a different generating sequence is being used, as long as it is clear
which sequence it is.) The identity path in the automorphism tree IF contains all
nodes of the form 〈x0, x1, . . . , xi〉; clearly this is a path through IF , corresponding
to the identity automorphism, since the map it defines sends each xi to xi itself.
The level function for F is the function giving (for each n) the number of nodes at
level n in IF .

In Definition 5.1 in [20], the sequence 〈xi〉i∈I was assumed simply to be the
domain of F . For the purposes of this paper, we generalized to arbitrary computable
generating sequences, but this does not change the central point about isomorphism
trees, which is the following.

Lemma 5.2. If F ∼= F̃ , then there is a bijection ψ 7→ hψ from the set of field

isomorphisms ψ : F → F̃ onto the set of paths through IFF̃ , with ψ ≡T hψ for all

14 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

such isomorphisms ψ. (For each path h ∈ F̃ω through IFF̃ , we write ψh for the
unique field isomorphism such that h = hψh

, namely ψh(xi) = h(i).)

Proof. For each ψ, the path hψ is the set of all nodes σ ∈ IFF̃ of the form
〈ψ(x0), ψ(x1), . . . , ψ(x|σ|−1)〉. Since ψ is an isomorphism, this is clearly a path in
IFF̃ , and conversely, for any path h, setting ψ(xi) = σ(i) for the unique σ ∈
h∩ F̃ (i+1) defines a field embedding ψ, which must be an isomorphism by Corollary
3.7, with h = hψ. The Turing equivalence is immediate from these definitions.

Also, when F̃ = F , the image hid of the identity automorphism is the identity path
through IF . �

We note that Lemma 5.2 holds independently of the choice of generating se-
quence of F . The isomorphism trees for two different generating sequences may
not be isomorphic to each other as trees, but nevertheless the set of paths through
each one still corresponds to the set of isomorphisms from F onto F̃ . The polyno-
mials qi are not uniquely determined by the generating sequence; one can use any
qi, satisfying the condition that qi(x0, . . . , xi−1, X) be the minimal polynomial of
xi over Q(x0, . . . , xi−1), and IFF̃ will come out exactly the same. Finally, replac-

ing F̃ by a different field isomorphic to F would not change anything about the
isomorphism tree except the names of the nodes.

Lemma 5.3. For computable algebraic fields F ∼= F̃ , and for a fixed generating
sequence for F , we always have an isomorphism of trees:

IFF̃
∼= IF .

Indeed, there is a canonical 1-1 map from field isomorphisms ψ : F → F̃ to tree
isomorphisms Hψ : IF → IFF̃ , i.e. to bijective maps H which preserve the successor
relation on the trees. Hence there is also a canonical 1-1 map from paths through
IFF̃ to such tree isomorphisms, with Hψ ≡T ψ uniformly in ψ.

Proof. Fix any field isomorphism ψ, and, for σ ∈ IF with |σ| = n, define Hψ on IF
by

Hψ(σ) = 〈ψ(σ(0)), . . . , ψ(σ(n− 1))〉 ∈ IFF̃ .
Clearly Hψ is a tree isomorphism: Hψ(σ) ∈ IFF̃ because

qn(ψ(σ(0)), . . . , ψ(σ(n− 1))) = ψ(qn(σ(0), . . . , σ(n− 1))) = ψ(0) = 0,

using the definition of IF to see that qn(σ(0), . . . , σ(n − 1)) = 0, and bijectivity
and preservation of the successor relations on the trees follow from ψ being a field
isomorphism.

The definition of Hψ shows it to be computable from ψ. Conversely, if we know
Hψ, we can apply it to nodes 〈x0, . . . , xs〉 on the identity path in IF , yielding
〈ψ(x0), . . . , ψ(xs)〉, thus computing ψ on the generating sequence 〈xs〉s∈I for the
field F . �

The canonical extension of the pairing need not be the only possible extension
to an isomorphism from IF onto IFF̃ , and so the 1-1 map in Lemma 5.3 need not
be onto. Any tree isomorphism H : IF → IFF̃ must map the identity path to some
path h through IFF̃ , and thus gives rise to a field isomorphism ψh, although Hψh

may not equal H. For example, if F has generating sequence x0, x1, x2, where x0 ∈
R and x2 /∈ R are cube roots of 2 and x1 is a root of p(x0, Y) for some p ∈ Q[X,Y]
such that the resulting field F contains no roots of p(x2, Y) or p(x2, Y), then the
only nontrivial automorphism of F is complex conjugation, with x2 7→ x2, yet the

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 15

tree IF for this generating sequence has four automorphisms. The automorphism
tree IF contains two terminal nodes 〈x2〉 and 〈x2〉 at level 1, which represent what
happens when one maps x0 to x2 (or to x2) and then finds that there is no element
of F to which to map x1. There is an automorphism θ of IF which fixes each path
through IF , but interchanges these two terminal nodes. This θ is not equal to Hψ,
no matter which of the two automorphisms of F we try: Hid fixes IF pointwise, and
when ψ is complex conjugation, Hψ interchanges the two paths through IF . So the
tree isomorphism θ is not the image of any field isomorphism under the canonical
1-1 map from Lemma 5.3.

The Turing degree of the branching of an automorphism tree IF is of interest,
especially in light of its use in [20]. Recall that the level function for F gives the
number of nodes at each level n in IF .

Lemma 5.4. For any algebraic field F , the level function l for F is Turing-
computable in the conjugacy function h for F .

Proof. The number l(σ) of immediate successors of a node σ ∈ IF is exactly the
number of conjugates of x|σ| in F over the subfield Q[x0, . . . , x|σ|−1]. We then
appeal to Lemma 3.5. �

The interesting part, however, is that l need not be Turing-equivalent to h, and
indeed the Turing degree of l need not even be invariant under distinct presentations
of the field F . Thus, Lemma 3.2 applies to the root set, the splitting set, the root
function, and the conjugacy function, but not to the level function! To see this,
consider the following micro-example. Suppose that F has domain {z0, z1, . . .}, and
that z20 = z25 = 2, z21 = z22 = z0, z23 = z24 = z1, and that if a certain m appears
in the halting set K, then z5 later acquires two square roots of its own in F . If
m /∈ K, then z5 has no square roots in F , and in no case does z5 have any fourth
roots in F .

Now if we build the automorphism tree IF using the presentation F = {x0 =
z0, x1 = z1, . . .} exactly as above, then the level function lF is not computable: IF
contains the nodes 〈x0, x1〉 and 〈x0, x2〉, and also contains 〈x5〉, but it is impossible
to decide whether 〈x5〉 has no immediate successors or two, since this depends on
whether m ∈ K. (One would repeat this strategy, adding other field elements to
F as roots of primes other than 2, to code whether each other m′ ∈ ω lies in K or
not.)

On the other hand, now consider the distinct presentation E = {y0 = z3, y1 =
z0, y2 = z1, y3 = z2, y4 = z4, . . . , yi = zi, . . .} of the same field F . Using this
presentation, we get a different sequence of minimal polynomials: y0 has minimal
polynomial Y 8

0 − 2, so q0(Y0) = Y 8
0 − 2. Then y1 has minimal polynomial Y1 − y40

over Q[y0], since y1 = y40 is in this field. That is, q1(Y0, Y1) = Y1 − Y 4
0 . Next,

q2(Y0, Y1, Y2) = Y2−Y 2
0 , since y2 = z1 = z23 = y20 , and q3 = Y3+Y2, and q4 = Y4+Y0,

and thereafter each qi is the same as in the previous presentation, except with the
roles of Y0 and Y3 reversed. This seemingly trivial difference between E and F
changes the structure of the corresponding automorphism tree IE : now the only
nodes at level 1 are 〈y0〉 and 〈y4〉, each with exactly one successor at level 2, exactly
one at level 3, at level 4, at level 5, and still exactly one at level 6 (these being
〈y0, y1, y2, y3, y4, y5〉 and 〈y4, y1, y2, y3, y0, y5〉), and so on. So in this case the level
function for IE is computable! Since the eighth roots of 2 appeared first, the
question of how many fourth roots of 2 lie in E is obviated. It is possible, of course,
that two more fourth roots of 2 (specifically, square roots of z5) may appear in E,

16 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

as zi and zj for some large i < j, but if so, then we will simply have qi = X2
i −X5

and qj = Xj +Xi for the presentation F , and likewise for the presentation E, and
we will be able to compute the number of nodes at those levels in each presentation.
In E, the appearance of z3 before z0 and z5 allows the level function lE to evade
the noncomputable question of whether z5 has square roots.

Of course, this micro-example is really the basic module for the construction of
two computable presentations E and F of a single field, with the property that IE
has computable level function but IF does not. In the basic module above, one
would adjoin two square roots of z5 when and if 0 enters K. Likewise, for every m,
start with a full complement of pm-th roots of 2, exactly one of which has pm-th
roots and also (p2m)-th roots of its own. If m enters K, then adjoin all remaining
(p2m)-th roots of 2 to the field. The presentations differ exactly as in the basic
module, with the (p2m)-th roots of 2 appearing before the (p3m)-th roots of 2 in the
field F , but after them in the field E. One can compute (for arbitrary m) the
number of (p3m)-th roots of 2 in this field, but not the number of (p2m)-th roots.

6. Orbit Relations on Fields

In this section we wish to consider the action on a field F of the automorphism
group Aut(F) of F . We continue to assume that F is computable and algebraic.
Of course, the automorphism group may have cardinality as high as 2ω, making it
difficult to present in an effective fashion. However, since the field F may be viewed
as the union of an effectively presented chain of finitely generated subfields, we will
be able to make substantial use of the following definition.

Definition 6.1. Let F be any computable field, and let G be any subgroup of the
automorphism group of F . The full action of G on F is the set

{〈a0, . . . , an−1, b0, . . . , bn−1〉 : (∃σ ∈ G)(∀i < n)σ(ai) = bi},

where ~a and ~b are tuples of elements of F , with every n allowed as their common
length. When F is algebraic, we will be able to restrict our attention to the action
of G on F , which by definition is the set

{〈a, b〉 : a, b ∈ F & (∃σ ∈ G)σ(a) = b}.
If this set is computable, we say that G acts computably on F .

If G = Aut(F), we also call these the full orbit relation and the orbit relation of
F , respectively.

It is quite possible for an uncountable G to act computably on F : for example,
the entire automorphism group G of (a computable presentation of) the algebraic
closure Q has size 2ω, and contains elements of every Turing degree, yet its full
action on Q is computable. This will follow from Lemma 6.2 and Corollary 6.5
below.

Since we restrict our attention in this paper to algebraic fields, we will only
consider the action of a G on an F , not the full action. The following lemma
justifies this.

Lemma 6.2. Let F be a computable algebraic field of characteristic 0, and G a
subgroup of Aut(F). Set B to be the action of G on F , and A the full action. Then
B ≡1 A. In particular, each is computable iff the other is, and each is c.e. iff the
other is.

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 17

In characteristic p, the proof below ensures that B ≡m A. 1-equivalence would
be false in a finite field F .

Proof. B ≤1 A is immediate, so we build a function g to show A ≤1 B. Let
(a0, . . . , an; b0, . . . , bn) ∈ F 2n+2. First we check whether the map ai 7→ bi ex-

tends to an isomorphism from Q(~a) onto Q(~b), where Q is the prime subfield of
F . This is computable, since we need only find the minimal polynomial of each ai
over Q(a0, . . . , ai−1) and check that bi satisfies the corresponding polynomial over
Q(b0, . . . , bi−1), with each aj (j < i) mapped to bj to determine the coefficients in
this corresponding polynomial. If ai 7→ bi does not extend to an isomorphism, then

clearly 〈~a,~b〉 does not lie in the full action of G on F , and we define g(〈~a,~b〉) to lie

outside B. (To ensure injectivity, let it be the 〈~a,~b〉-th element of some infinite c.e.
subset of B.) If it does extend to an isomorphism, we use Theorem 3.11 to find a
single element a ∈ Q(~a) and polynomials p ∈ Q[X0, . . . , Xn] and qi ∈ Q[X] such
that a = p(~a) and ai = pi(a) for each i ≤ n. (Since there are infinitely many such
a, we may choose ours to preserve injectivity of g.) By the isomorphism above,

each bi = pi(p(~b)) as well. So 〈~a,~b〉 lies in A iff g(〈~a,~b〉) = 〈a, p(~b)〉 lies in B. �

On its face, membership in BF is a Σ1
1 property: it demands the existence of

a function from ω to ω satisfying certain arithmetic properties. In fact, though,
the algebraicity of the field F makes BF (and its computable isomorph AF) vastly
simpler than this. The proof demonstrates the usefulness of the isomorphism trees
defined in Section 5.

Proposition 6.3. Let F be a computable algebraic field. Then an arbitrary pair
〈a; b〉 of elements of F lies in the field’s orbit relation BF iff:

• b is conjugate to a over the prime subfield Q; and
• (∀p ∈ Q[X,Y])[p(a, Y) has a root in F =⇒ p(b, Y) has a root in F].

It follows that the orbit relation BF of F is Π0
2. More specifically, BF is ΠS

1 ,
where S is the splitting set of F , and so if F has a splitting algorithm, then its orbit
relation is co-c.e.

By Lemma 6.2, these results also apply to AF , of course. The surprise is that
the second condition is not symmetric in a and b; this is essentially a consequence
of Corollary 3.7, which can be used to show that the second condition is equivalent
to the same statement with a and b interchanged.

Proof. If 〈a, b〉 ∈ BF , then the two conditions given are immediate. For the back-
wards direction, let {y0, y1, . . .} be the domain of F . (Of course, this domain is
really ω; we write yn instead of n to avoid confusion with the language of fields.)
Given 〈a, b〉 ∈ F × F , define x0 = a and xs+1 = ys for all n. So 〈xs〉s∈ω is a
computable generating sequence for F , and we may construct the automorphism
tree IF relative to this sequence, along with the sequence 〈qs〉s∈ω of minimal poly-
nomials, as in Definition 5.1. Thus q0(X) is the minimal polynomial of a over the
prime subfield Q. Of course, some n > 0 has xn = a, but this only means that
qn(X0, . . . , Xn) = Xn −X0.

The first condition in the proposition is that q0(b) = 0. Since we are assuming
that both conditions hold, 〈b〉 is a node at level 1 in IF , and we claim that 〈b〉
lies on a path through IF . To see this, fix any n ∈ ω and consider a primitive
generator u ∈ F of the subfield Q(a, x1, x2, . . . , xn). Choose p ∈ Q[X,Y] so that
p(a, Y) is the minimal polynomial of u over Q(a). Since F satisfies the second

18 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

condition in the proposition, p(b, Y) must also have a root v in F , and so there
is an isomorphism h : Q(a, u) → Q(b, v) with h(a) = b and h(u) = v. But then
〈b, h(x1), h(x2), . . . , h(xn)〉 ∈ IF , by the definition of IF . Since this holds for all n,
the node 〈b〉 has arbitrarily long successors in IF , and so, applying König’s Lemma
to the finite-branching tree IF , 〈b〉 lies on a path through IF . This path defines an
automorphism of F mapping a to b, so 〈a, b〉 ∈ BF as required. �

Indeed, the preceding proof showed more than Proposition 6.3 stated. We could
have used any generating set for F in place of the domain {y0, y1, . . .}, and con-
structed the automorphism tree IF relative to this sequence (with a attached as
the first element of the sequence). The proof really showed that 〈a, b〉 ∈ BF iff the
node 〈b〉 had successors at arbitrary high levels in IF .

Corollary 6.4. Let {z0, z1, . . .} be a computable sequence of elements of a com-
putable algebraic field F with prime subfield Q, such that

Q ⊆ Q(z0) ⊆ Q(z1) ⊆ · · · and ∪s Q(zs) = F.

A pair 〈a, b〉 of elements of F lies in the field’s orbit relation BF iff a and b are
conjugate over Q and, for every s and every ps ∈ Q[X,Y] such that ps(a, Y) is the
minimal polynomial of zs over Q(a), it holds that ps(b, Y) has a root in F .

Proof. For each s, choose ys so that ps(b, ys) = 0. We apply Corollary 3.9 to F
and the subfield of F generated by {b, y0, y1, . . .}, with the common subfield being
Q(a) (within F) and Q(b) (within Q(b, y0, y1, . . .)), identified via the isomorphism
mapping a to b. Thus these two fields are isomorphic over the common subfield, so
we have a field embedding of F into itself mapping a to b. By Corollary 3.7, this
embedding is an automorphism of F . �

If F is a normal algebraic extension of Q, then for any a, b ∈ F which are
conjugate over Q, both conditions in Proposition 6.3 hold. We state the obvious
corollary.

Corollary 6.5. All normal computable algebraic fields have computable orbit rela-
tion. �

7. Fields with Splitting Algorithms

Theorem 7.1. Let F be a computable algebraic field with a splitting algorithm.
Then F is computably categorical iff the orbit relation of F (or equivalently, the full
orbit relation of F) is computable.

Proof. We prove the forwards direction as Proposition 7.2 below. For the converse
(which is the easier direction), we work under the weaker assumption that F has a
computable presentation with computable full orbit relation and with computable
level function, as in Definition 5.1. Of course, all computable algebraic fields with
splitting algorithms have computable level functions, so this will suffice. Since
computable categoricity is a property of the isomorphism type, we may assume F
itself to be the computable presentation which has a computable level function lF .
We take the domain of F to be ω.

Suppose the full orbit relation A of F is computable, and let F̃ ∼= F be a
computable copy of F . We build a computable embedding f : F → F̃ as follows.
The prime subfield F0 = Q is a computable subfield of F (since F is algebraic) and

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 19

has a unique embedding f0 into F̃ , which is computable and extends to the given
isomorphism θ0 (not necessarily computable) from F onto F̃ .

We now proceed by recursion on s. Given the embedding fs : Fs ↪→ F̃ which we
have already built, consider the least element z of (F − Fs), and let Fs+1 = Fs[z],
on which we will define fs+1 to extend fs. By induction, Fs must then be generated
by the finite set {0, 1, . . . , z − 1}, and we also know inductively that fs extends to

some isomorphism θs from F onto F̃ . The splitting algorithm for Fs lets us find
the minimal polynomial q(Z) ∈ Fs[Z] of z. Now the roots z′ ∈ F with q(z′) = 0
correspond precisely to the nodes σ ∈ IF of the form 〈0, 1, . . . , z − 1, z′〉, so let
d = lF (〈0, 1, . . . , z − 1〉) be the number of such roots. Then we can find all roots
of q(Z) in F : let them be z = z1 < z2 < · · · < zd. From the computable set A,
we can determine exactly which tuples ~xi = 〈0, 1, . . . , (z− 1), z, 0, 1, . . . , (z− 1), zi〉
lie in A; these zi are the true conjugates of z in F over Fs. For each i ≤ d with
~xi /∈ A, we know that the node σi = 〈0, 1, . . . , z − 1, zi〉 is nonextendible in IF ,
and so we use the function lF to find a level which contains no successors of σi.
(König’s Lemma shows that such a level must exist.) Thus we compute a single
level n such that no σi with ~xi /∈ A has any successor at level n in IF . Then we turn
to the isomorphism tree IFF̃ . θs shows that the node τ = 〈fs(0), . . . , fs(z − 1)〉 is
extendible in IFF̃ ; indeed it is the image of 〈0, . . . , z−1〉 under the isomorphism Hθs

from Lemma 5.3. Moreover, from Hθs and our knowledge of IF , we know that any
immediate successor of this τ which extends to level n must be extendible. So we
enumerate IFF̃ until we find in it some node ρ at level n extending τ , and we define
fs+1(z) = ρ(z). Now Fs+1 = Fs[z], so fs+1 is uniquely defined on Fs+1. Thus Fs+1

is generated by {0, . . . , z}, and moreover fs+1 extends to some isomorphism θs+1

from F onto F̃ , namely the (not necessarily unique) path through ρ�(z+1) in IFF̃ .
These were all the inductive facts we needed in order to continue to the next stage.

This process computes fs+1, uniformly in s, so f = ∪sfs is a computable em-

bedding of F into F̃ . By Corollary 3.9, it must be an isomorphism. Thus F is
computably categorical. �

To help the reader, we give a quick translation of the preceding construction into
the language of fields, without using isomorphism trees. To find an image fs+1 for

z in F̃ , we find all conjugates of z over Fs in F , and use the computable set AF
to determine which are true conjugates. For each false conjugate zi, we search for
a polynomial pi ∈ Fs[Z, Y] which shows zi to be false, namely, a polynomial such
that pi(z, Y) has a root in F but pi(zi, Y) does not. Proposition 6.3 shows that we
will eventually find such a polynomial. (Of course, we are using the computability
of SF here to determine that pi(zi, Y) has no root in F .) Using fs, we then find

the corresponding polynomials p̃i ∈ (fs(Fs))[Z, Y], and search for any z̃ ∈ F̃ which
satisfies the (image in (fs(Fs))[X] of the) minimal polynomial of z over Fs and such

that every p̃i(z̃, Y) has a root in F̃ . We eventually must find such a z̃ (since θs(z)
is such an element), and when we do, we know that it must be a true conjugate of
θs(z), since a false conjugate z̃′ would be the image of some false conjugate zi of z

over Fs in F , and therefore p̃i(z̃
′, Y) would not have had a root in F̃ . So it is safe for

us to define fs+1(z) = z̃, and θs+1 is the composition of θs with an automorphism

of F̃ sending θs(z) to its true conjugate z̃ over the image fs(Fs).

Proposition 7.2. If an algebraic computable field F with a splitting algorithm is
computably categorical, then the orbit relation BF of F is computable.

20 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

Proof. We will construct a computable field F̃ , isomorphic to F , in such a way that
the existence of any computable isomorphism from F onto F̃ will allow us to com-
pute BF . This is sufficient to prove the proposition. (It is also the contrapositive
of the usual argument for this sort of theorem. In other contexts, mathematicians
have often taken the given property – in this case, the noncomputability of BF
– and used it to build the second structure F̃ by a construction which diagonal-
izes against all possible computable isomorphisms. We believe that this would be
feasible in the present case, and that the construction would not be substantially
different from ours, but we see our argument as more direct.)

We start by enumerating a generating set for the given field F . Set F0 to be the
prime subfield of F , either Q or Fp, with z0 as the multiplicative identity element
of F . Given Fs, choose the least number y ∈ F − Fs, and let Fs+1 be the normal
closure of Fs ∪{y} within F . Since F has a splitting algorithm, this is computable:
we can determine the minimal polynomial p(X) ∈ F0[X] of y over F0 and then find
all of its roots in F , and Fs+1 is generated by these roots over Fs. Being finitely
generated over Fs (and hence over F0, by induction), Fs+1 has a splitting algorithm,
uniformly in its generators and hence uniformly in s, and thus is a decidable subset
of the algebraic field F . We set zs+1 to be the least primitive generator of Fs+1

over F0, and list out all of its conjugates over F0 in F , each of which is another
primitive generator of Fs+1:

zs+1 = z0s+1 < z1s+1 < · · · < z
ds+1

s+1 .

(The superscripts here are not exponents, of course, but merely indices.) Again, all
of this is computable uniformly in s. Notice that

ds+1 + 1 = [Fs+1 : F0]

is precisely the size of the automorphism group of Fs+1; this is at most the degree
of the minimal polynomial ps+1(X) ∈ F0[X] of zs+1 over F0, and in general is not
equal to that degree, since Fs+1 may fail to be normal over F0. However, every
automorphism σ of Fs+1 must fix setwise (although not necessarily pointwise) every
Ft with t ≤ s, since each Ft is normal within F , hence normal within Fs+1. (In
particular, σ(zt) must equal some F0-conjugate of zt, which is to say, some primitive
generator zit of Ft.)

The requirements for our construction are simply stated:

Re : ϕe is not an isomorphism from F onto F̃ .

If all these requirements (for all e) were true of the field F̃ , then there would be no

computable isomorphism from F onto F̃ . Our construction of F̃ addresses these re-
quirements individually, for each e, and attempts to satisfy each one. Requirements
such as these are used throughout computability theory; the reader unfamiliar with
them should consult [28]. Normally, to prove computable non-categoricity of F , one

would build a computable field F̃ isomorphic to F for which every Re holds. As we
are proving the contrapositive, our F is assumed to be computably categorical, and
so we will not succeed in satisfying all of these requirements, but our construction
will attempt to do so nevertheless, using the indices e to assign priorities to each
requirement, with a lower index denoting a higher priority. The least e for which
we fail to satisfy Re will be the key to our decision procedure for BF .

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 21

Now we construct F̃ , in stages, with each F̃s isomorphic to Fs. Of course F̃0 = F0

is just a computable copy of the prime subfield, and we fix

f0 : F0 → F̃0

to be the (unique) isomorphism between them. All requirements Re are unsatisfied

at stage 0. At the end of each stage s, we will have a field F̃s and an isomorphism
fs onto it from Fs, all computable uniformly in s. Moreover, for each t ≤ s, we also
know zt and all zit, for i ≤ dt. We proceed as follows to build F̃s+1.

For each t ≤ s and i ≤ dt, we consider the automorphism σit of Ft defined by
σit(zt) = zit; these are precisely the automorphisms of Ft (over F0, which is rigid).
We do the same for the automorphisms σks+1 of Fs+1, defined by σks+1(zs+1) = zks+1,
for k ≤ ds+1. Since all this is computable, we may decide, for each t and i, whether
σti extends to an automorphism of Fs and/or to an automorphism of Fs+1. Certainly
σ0
t , the identity, extends to σ0

s+1, but other σit may or may not extend to Fs, and
those which do may or may not extend to Fs+1. However, by normality of Fs
within Fs+1, σit can only extend to an automorphism of Fs+1 if it extends to an
automorphism of Fs.

We search for the least e ≤ s, if any, for which Re is not yet satisfied and there
exists some t ≤ s and j ≤ dt for which ϕe,s(z

i
t) ↓ for all i ≤ dt and σjt extends to

an automorphism σ of Fs but does not extend to any automorphism of Fs+1. (Our
conventions about ϕe,s(z

i
t) and We,s were described in Section 2.) If there is no

such e, then we define fs+1�Fs = fs and let F̃s+1 contain all of F̃s, along with fresh
elements to be the images of the elements of (Fs+1 − Fs) under fs+1.

If such an e does exist, then we act to satisfy Re, using the value j and the
automorphism σ of Fs found above. First, though, for all of the (finitely many)
elements x ∈ We,s ∩ Ft, we find a polynomial q(Z) ∈ F0[Z] with q(zt) = x and
check whether q(ϕe(zt)) = ϕe(x). If this fails for any x, then ϕe cannot be an
isomorphism, so we act just as we did (above) when e did not exist, and declare

Re satisfied. Otherwise, we know that ϕe,s maps the set {z0t , . . . , z
dt
t } bijectively

onto the set {fs(z0t), . . . , fs(z
dt
t)}. Fix the m such that fs(z

m
t) = ϕe(z

0
t). If no

automorphism of Fs maps z0t to zmt , then (f−1s ◦ϕe) cannot be an automorphism, so

ϕe cannot be an isomorphism, and once again we just extend fs to fs+1, fill in F̃s+1

with fresh elements, and declare Re satisfied. Otherwise, there is an automorphism
τ of Fs with τ(z0t) = zmt , and we let fs+1� Fs = fs ◦ τ ◦ σ−1, and form F̃s+1 by

adding fresh elements to F̃s to be the images of the elements of Fs+1 under fs+1.
Lemma 7.3 below will show that in this case, ϕe cannot be an isomorphism from
F onto F̃ . So we declare Re satisfied, and end the stage.

This builds a computable field F̃ , which we claim is isomorphic to F . Of course,
we made no attempt during the construction to ensure that lims fs(x) must exist
for x ∈ F . However, every finitely generated subfield of F embeds into some Fs
and hence (via fs) into F̃s, whence into F̃ . A symmetric argument with F̃ and F

interchanged also holds, leaving Corollary 3.9 to prove that F ∼= F̃ over F0. Of
course, the isomorphism need not be computable.

Lemma 7.3. If Re is ever declared satisfied during this construction, then ϕe is
not an isomorphism from F onto F̃ .

Proof. Let s + 1 be the stage at which Re is declared satisfied. If ϕe were an
isomorphism from F onto F̃ , then it would have to restrict to an isomorphism from

22 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

Fs+1 onto F̃s+1, because Fs+1 is normal within F and F̃s+1 is the image of Fs+1

under the isomorphism f . Similarly, ϕe�Fs would have to be an isomorphism. To
prove the lemma, therefore, we will show that ϕe�Fs and ϕe�Fs+1 cannot both be
isomorphisms.

First, if any ϕe,s(x) converged to a value other than a root of q(ϕe(zt)) (where
q(Z) is the minimal polynomial of x over F0, as in the construction), then clearly
ϕe�Fs is not an isomorphism. Also, we chose m to satisfy ϕe(z

0
t) = fs(z

m
t), so if no

automorphism of Fs maps z0t to zmt , then (f−1s ◦ϕe)�Fs cannot be an automorphism,
and ϕe�Fe cannot be an isomorphism

In the remaining case, σjs is known to extend to an automorphism σ of Fs, but
not to any automorphism of Fs+1, and we have an automorphism τ of Fs with
τ(z0t) = zmt . In this case

fs+1(zjt) = (fs ◦ τ ◦ (σ−1))(zjt) = fs(z
m
t) = ϕe(z

0
t).

With the new elements added to form F̃s+1, this means that ϕe cannot restrict to

an isomorphism from Fs+1 onto F̃s+1, because if it were, then (f−1s+1 ◦ ϕe) would

be an automorphism of Fs+1 mapping z0t to zjt , which would necessarily extend σjs,
and we chose j precisely so that no such extension of σjs exists. �

For the sake of readers who saw “Re” and expected an injury construction,
we note that no conflict exists between the different requirements here: Lemma
7.3 shows that there was no need to preserve the satisfaction of Re once it was
established. The normality of each Fs+1 within F took care of that. Moreover,
the above argument did not require that lims fs itself exist, let alone that it be
an isomorphism, and so, when satisfying a requirement, the construction makes no
effort to have fs+1 agree with fs at all. Therefore, there are no injuries in this
construction. The only need for priority arose in choosing which Re to satisfy, at a
stage at which more than one requirement might have been satisfiable, and the only
reason for taking the least e in those situations was that this is the simplest way to
ensure that each requirement which can be satisfied at infinitely many stages does
indeed eventually become satisfied.

Of course, it remains to show that this field F̃ really does prove the desired
result. We have seen that F̃ ∼= F , and by the computable categoricity of F , this
means that there exists a computable isomorphism ϕe from F onto F̃ . We fix the
least such index e and the largest stage s0 at which a requirement Ri with i < e
was satisfied. By Lemma 7.3, Re was never satisfied, so at all stages s > s0, it did
not fulfill the conditions which the construction posed in order to be satisfied.

We now describe an algorithm for deciding whether a pair 〈zt, znt 〉, with t and
n ≤ dt arbitrary, lies in the orbit relation BF of F . We may assume that t > s0,
since the answers for all t ≤ s0 and n ≤ dt constitute finitely much information.
Find the least s1 such that ϕe,s1(zit)↓ for all i ≤ dt. Now z0t ≥ t−1 (since z0t /∈ Ft−1
and, by construction, each subfield Fs contains the elements 0, . . . , s−1), and hence
ϕe(zt) requires at least t− 1 steps to converge, forcing s1 ≥ t− 1 ≥ s0. As above,
we may compute all automorphisms of Fs1 and check whether any of them maps
zt to znt . If not, then clearly 〈zt, znt 〉 /∈ BF , since any automorphism mapping zt to
znt would restrict to an automorphism of the subfield Fs1 , it being normal within
F . We claim that if some automorphism ρ of Fs1 does have ρ(zt) = znt , then
〈zt, znt 〉 ∈ BF .

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 23

To see this, we induct on stages s ≥ s1, claiming that σnt extends to an auto-
morphism of Fs for all such s. For s1 this already holds, since

ρ(zt) = znt = σnt (zt)

and zt generates the domain Fs of σnt . So we consider an arbitrary s + 1 > s1.
Now since Re does not become satisfied at stage s+ 1 (and no e′ < e ever becomes
satisfied after stage s0), e must not fulfill the conditions in the construction for
choosing the requirement to be satisfied at stage s+ 1. But with s ≥ s1, ϕe,s(z

i
t)↓

for all i ≤ dt, and σnt extends (by inductive hypothesis) to an automorphism of Fs.
If σnt failed to extend to an automorphism of Fs+1, then the construction would
have chosen e and acted to satisfy Re at this stage, destroying the isomorphism
ϕe. This did not happen, so σnt must extend to an automorphism of Fs+1. This
completes the induction.

The extension of σnt to an automorphism τ of the whole field F is now accom-
plished by application to Corollary 3.9. We let Q = Ft, as a subfield of F , and have
E = F . The subfield Q of E is in fact Ft as well, but we identify the two copies of
Ft via σnt , rather than via the identity. Corollary 3.9 then yields an isomorphism
between F and E over the common subfield, i.e. an automorphism of F extending
σnt , as desired.

Finally, for an arbitrary pair 〈a, b〉 of elements of F , we find an s with a, b ∈ Fs
and determine all automorphisms (if any) of Fs mapping a to b. Each of these
automorphisms is equal to σis for some i ≤ ds, and so for each such i, we check
whether 〈zs, zis〉 ∈ BF . If this holds for any i ≤ ds, then also 〈a, b〉 ∈ BF , as wit-
nessed by the automorphism(s) of F extending σis. Conversely, any automorphism
of F mapping a to b would restrict to an automorphism of Fs, which would then
equal σis for one of these i. Thus BF is computable. �

8. Relativizing the Results

For simplicity, we proved Theorem 7.1 above in a non-relativized form. How-
ever, the argument in one direction relativizes easily to any degree d, producing
the following result. Recall that a computable structure A is d-computably categor-
ical if every computable structure B classically isomorphic to A is d-computably
isomoprhic to A.

Proposition 8.1. Let F be a computable algebraic field with a splitting algorithm,
and fix any Turing degree d. If the orbit relation of F (or equivalently, the full orbit
relation of F) is d-computable, then F is d-computably categorical. �

The proof of Proposition 7.2, however, relativizes to the statement that, for each
computable algebraic field F with a splitting algorithm, there exists a d-computable
field F̃ ∼= F such that any d-computable isomorphism from F onto F̃ would allow
one to compute BF . This is not sufficient to prove the converse of Proposition 8.1,
and in fact the converse turns out to be false, by the following argument.

By [20], there exists a computable algebraic field F , with a splitting algorithm,
such that there is no least Turing degree d for which F is d-computably categorical.
Indeed, it is proven there that there exist Turing degrees c and d whose infimum is
0, such that F is both c-computably categorical and d-computably categorical. If
the orbit relation BF for this field were both c-computable and d-computable, then
it would be computable, and F would have been computably categorical. Conse-
quently, one of these degrees (say d) has the property that deg(BF) 6≤T d, even

24 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

though F is d-computably categorical. So the converse of Proposition 8.1 fails.
It would be of interest to determine whether perhaps there exists a computable
field E isomorphic to this F , for which d does compute BE (in which case neces-
sarily c would not compute BE , by the argument above). If so, then the Turing
degree of the orbit relation would not be invariant under isomorphisms between
computable algebraic fields with splitting algorithms, even though (by Theorem
7.1) the decidability of the orbit relation is invariant.

9. Further Notes

The article [11] is complementary to this one in a number of respects. It considers
relative computable categoricity for computable algebraic fields, and also examines
the possible computable dimensions of such fields. Its most relevant results for us,
however, are negative ones: it is shown in [11, Theorem 4.5] that there exists a
computable algebraic field with computable orbit relation which is not computably
categorical, and it is shown in [11, Theorem 5.1] that there exists a computably
categorical algebraic field F such that BF is not even Σ0

2, let alone computable.
One might have hoped for Proposition 7.2 to generalize to all computable algebraic
fields; alternatively, one might have rephrased Theorem 7.1 to say that computable
categoricity is equivalent to computable enumerability of BF (which is exactly
the content of the proof, BF being Π0

1 for any computable field with a splitting
algorithm). The results in [11] dash these hopes, establishing that both directions
of the desired equivalence are false.

It is noted in [11] that the definition of computable categoricity, which is nor-
mally of complexity Π1

1, drops to complexity Π0
4 when one restricts the discussion

to computable algebraic fields. Essentially this follows from Corollary 3.9 above
(with Q as the prime subfield), which reduces the complexity of the isomorphism
relation on such fields dramatically. Moreover, [11, Theorem 6.4] proves that for
algebraic fields, computable categoricity is Π0

4-complete, and thus is quantifiably
more difficult than computable categoricity for algebraic fields with splitting algo-
rithms. This re-establishes the negative results from the preceding paragraph. Also,
the proof in [11] that computable categoricity does not imply relative computable
categoricity is already of interest, since to our knowledge, all previous results giv-
ing structural criteria for computable categoricity in commonplace mathematical
classes also implied relative computable categoricity. So there is concrete evidence
that fields, and even just algebraic fields, constitute a more challenging class of
structures for this question than did the previous classes studied.

References

1. C.J. Ash, J.F. Knight, M.S. Manasse, & T.A. Slaman; Generic copies of countable structures,

Annals of Pure and Applied Logic 42 (1989), 195–205.
2. J. Chisholm; On intrisically 1-computable trees, unpublished MS.

3. J.P. Cleave; Some properties of recursively inseparable sets, Zeits. Math. Logik Grund. Math.

16 (1970) 2, 187–200.
4. Yu.L. Ershov; Theorie der Numerierungen, Zeits. Math. Logik Grund. Math. 23 (1977), 289–

371.

5. E. Fokina, I. Kalimullin, & R.G. Miller; Degrees of categoricity of computable structures,
Archive for Mathematical Logic 49 (2010) 1, 51–67.

6. M.D. Fried & M. Jarden, Field Arithmetic (Berlin: Springer-Verlag, 2005).

7. A. Frohlich & J.C. Shepherdson; Effective procedures in field theory, Phil. Trans. Royal Soc.
London, Series A 248 (1956) 950, 407–432.

ALGEBRAIC FIELDS WITH SPLITTING ALGORITHMS 25

8. A. Frolov, I. Kalimullin, & R.G. Miller; Spectra of algebraic fields and subfields, Mathe-

matical Theory and Computational Practice: Fifth Conference on Computability in Eu-

rope, CiE 2009, eds. K. Ambos-Spies, B. Löwe, & W. Merkle, Lecture Notes in Com-
puter Science 5635 (Berlin: Springer-Verlag, 2009), 232–241. (For Appendix A, see

qcpages.qc.cuny.edu/∼rmiller/research.html.)

9. S.S. Goncharov; Autostability and computable families of constructivizations, Algebra and
Logic 14 (1975), 647–680 (Russian), 392–409 (English translation).

10. S.S. Goncharov & V.D. Dzgoev; Autostability of models, Algebra and Logic 19 (1980), 45–58

(Russian), 28–37 (English translation).
11. D.R. Hirschfeldt, K. Kramer, R.G. Miller, & A. Shlapentokh; Categoricity properties for

computable algebraic fields, to appear in the Transactions of the American Mathematical

Society.
12. C.G. Jockusch & R.I. Soare; Π0

1-classes and degrees of theories, Transactions of the American

Mathematical Society 173 (1972), 33–56.
13. N. Kogabaev, O. Kudinov, & R.G. Miller; The computable dimension of I-trees of infinite

height, Algebra and Logic 43 (2004) 6, 393–407.

14. L. Kronecker; Grundzüge einer arithmetischen Theorie der algebraischen Größen, J. f. Math.
92 (1882), 1–122.

15. O.V. Kudinov; An autostable 1-decidable model without a computable Scott family of ∃
formulas, Algebra and Logic 35 (1996), 255–260 (English translation).

16. S. Lempp, C. McCoy, R.G. Miller, & R. Solomon; Computable categoricity of trees of finite

height, Journal of Symbolic Logic 70 (2005), 151–215.

17. G. Metakides & A. Nerode; Effective content of field theory, Annals of Mathematical Logic
17 (1979), 289–320.

18. R.G. Miller; The computable dimension of trees of infinite height, Journal of Symbolic Logic

70 (2005), 111–141.
19. R.G. Miller, Computable fields and Galois theory, Notices of the American Mathematical

Society 55 (August 2008) 7, 798–807.
20. R.G. Miller; d-Computable categoricity for algebraic fields, The Journal of Symbolic Logic

74 (2009) 4, 1325–1351.

21. R.G. Miller, Computability and differential fields: a tutorial, to appear in Differen-
tial Algebra and Related Topics: Proceedings of the Second International Workshop, eds.

L. Guo & W. Sit (World Scientific, 2011), ISBN 978-981-283-371-6. Also available at

qcpages.qc.cuny.edu/˜rmiller/research.html.
22. R.G. Miller & H. Schoutens; Computably categorical fields via Fermat’s Last Theorem, to

appear in Computability.

23. M. Rabin; Computable algebra, general theory, and theory of computable fields, Transactions
of the American Mathematical Society 95 (1960), 341–360.

24. J.B. Remmel; Recursively categorical linear orderings, Proceedings of the American Mathe-

matical Society 83 (1981), 387–391.
25. J.B. Remmel; Recursive isomorphism types of recursive Boolean algebras, Journal of Symbolic

Logic 46 (1981), 572–594.
26. D. Scott; Algebras of sets binumerable in complete extensions of arithmetic, in Recursive Func-

tion Theory, vol. 5 of Proceedings of Symposia in Pure Mathematics (Providence: American

Mathematical Society, 1962), 117–121.
27. S. Simpson; Degrees of unsolvability: a survey of results, in Handbook of Mathematical Logic,

ed. J. Barwise (Amsterdam: North-Holland, 1977), 631–652.
28. R.I. Soare; Recursively Enumerable Sets and Degrees (New York: Springer-Verlag, 1987).
29. V. Stoltenberg-Hansen & J.V. Tucker; Computable rings and fields, in Handbook of Com-

putability Theory, ed. E.R. Griffor (Amsterdam: Elsevier, 1999), 363–447.

30. B.L. van der Waerden; Algebra, volume I, trans. F. Blum & J.R. Schulenberger (New York:
Springer-Verlag, 1970 hardcover, 2003 softcover).

26 RUSSELL MILLER AND ALEXANDRA SHLAPENTOKH

Department of Mathematics, Queens College – C.U.N.Y., 65-30 Kissena Blvd., Flush-

ing, New York 11367 U.S.A.; Ph.D. Programs in Mathematics and Computer Science,

C.U.N.Y. Graduate Center, 365 Fifth Avenue, New York, NY 10016 U.S.A.
E-mail address: Russell.Miller@qc.cuny.edu

East Carolina University, Department of Mathematics, Greenville, NC 27858 U.S.A.
E-mail address: shlapentokha@ecu.edu

