
On the Effectiveness of Symmetry Breaking

Russell Miller1, Reed Solomon2, and Rebecca M. Steiner3

1 Queens College and the Graduate Center of the City University of New York
Flushing NY 11367

2 University of Connecticut
Storrs CT 06269

3 Vanderbilt University
Nashville TN 37240

r.m.steiner@vanderbilt.edu

Abstract. Symmetry breaking involves coloring the elements of a structure so that the
only automorphism which respects the coloring is the identity. We investigate how much
information we would need to be able to compute a 2-coloring of a computable finite-branching
tree under the predecessor function which eliminates all automorphisms except the trivial one;
we also generalize to n-colorings for fixed n and for variable n.

1 Introduction

Symmetry has always been a crucial concept in mathematics. We think of symmetry as a geometric
property, but in fact, symmetries appear in many other branches of math as well. The symmetries
of a mathematical structure are precisely its automorphisms – the bijections from the structure
onto itself which preserve the essential properties of the structure. Some structures have many
symmetries, and others have only one (the identity, or trivial automorphism).

Symmetry breaking involves coloring the elements of a structure in such a way that the only
automorphism which respects the coloring is the trivial one; “breaking” symmetries can be thought
of as “killing off” automorphisms.

Definition 11 An n-coloring of a structure is a function from the domain of the structure into
a set of size n. It is said to distinguish the structure if there are no nontrivial automorphisms of
the structure which respect the equivalence relation defined by the coloring. If a distinguishing
n-coloring exists, then the structure is said to be n-distinguishable.

Definition 12 The distinguishing number of a structure is the smallest n ∈ ω such that the
structure has a distinguishing n-coloring. If it exists, then the structure is finitely distinguishable.

m m m } } m } m m mj j j j j j jf f f f f f fc c c c c c c· · · · · ·

As an example, consider a graph that looks like the integers, as shown here. As a graph, it has
infinitely many automorphisms. But there is a way to color the elements of this graph with just two

colors so that the only automorphism which respects the coloring is the trivial one. A certain three
elements are given the “solid” color, as in the figure here, while the rest are given the “striped”
color, and the only symmetry of this graph which respects this coloring is the identity. So we would
say that this graph has distinguishing number 2.

Symmetry breaking has been studied extensively by combinatorists, with very recent results
detailed in [1], [5], and [6]. In fact, the work found in the next section on symmetry breaking from
a computability-theoretic perspective was inspired by a result from one of these articles:

Theorem 13 ([1], Theorem 3.1) The countable random graph has distinguishing number 2.

This is extremely surprising. The random graph has continuum-many automorphisms, and is
ultrahomogeneous: every finite partial automorphism extends to an automorphism of the entire
graph. (This says that, in a certain sense, its automorphisms are dense, within the finite partial
maps respecting its edge relation.) Moreover, while the result of Theorem 13 was not at all intended
to be an effectiveness result, the construction of the distinguishing coloring of the countable random
graph in [1] is indeed effective in the edge relation of the graph. In other words, a computable copy
of the random graph has a computable distinguishing 2-coloring.

Knowing that this holds for the random graph inspired us to investigate the same question for
other structures: what kinds of computable structures have computable distinguishing n-colorings?
It was this question which led to our study of effective symmetry breaking in computable finite-
branching predecessor trees, which form a natural first step in the subject, mainly because the
automorphisms of such structures are readily understood.

Definition 14 A tree is a partial order ≺ on a set T of nodes, with a least element r (the root)
under ≺, such that for every x ∈ T , the set {y ∈ T : y ≺ x} is well-ordered by ≺. If every chain
under ≺ has order type ≤ ω (that is, if the tree has height ≤ ω), then each x ∈ T has an immediate
predecessor under ≺. A predecessor tree is a tree of height ≤ ω in a language with equality and
one unary function P , the predecessor function, for which P (r) = r and P (x) is the immediate
predecessor of x whenever x 6= r. If T has domain ω and P is computable, we call T a computable
predecessor tree; such T correspond precisely to computable subtrees of the tree ω<ω of finite strings
from ω. (The underlying partial order on such a T is computable from P , although not definable
by finitary formulas using P .)

A predecessor tree is finite-branching if, for every y, there are only finitely many x ∈ T with
P (x) = y.

Trees which are computable as partial orders (but for which the predecessor function is not
necessarily computable) are considered in a different context in [3, 4], which may provide useful
background for readers interested in investigating these questions. In such a tree, it is not generally
possible to compute the level of a node, and this makes it substantially more difficult to determine
which nodes lie in the same orbit under automorphisms of the tree. It would be natural to attempt
to extend the results of this article to computable trees under ≺. Some previous effectiveness results
about predecessor trees appear in [7], while for more general effectiveness results about symmetries
as automorphisms, we refer the reader to [2].

2 The Effectiveness Results

The most natural question to address first is whether a computable finite-branching predecessor
tree with distinguishing number 2 must have a computable distinguishing 2-coloring.

Theorem 21 There is a computable finite-branching predecessor tree which is distinguished by a
2-coloring but not by any computable 2-coloring.

Proof. We will build our tree T in such a way that no (partial) computable function ϕe can be a
distinguishing 2-coloring of the tree. We start by describing the basic module – the strategy which
will guarantee that for some fixed e, ϕe is not a distinguishing 2-coloring of the tree. We build
a finite tree Te beginning with a root, five immediate successors of the root, and one immediate
successor each for four of those five immediate successors of the root, as shown here.

k

k k k k k

k k k k

aa
aa

aa
aa

aa
aa

l
l

l
l

l
l

,
,
,
,
,
,

!!
!!

!!
!!

!!
!!

We wait for ϕe to converge on each of these ten inputs. If ϕe doesn’t converge on all the inputs
or converges outside the set {0, 1}, then we do nothing further, because ϕe is not a 2-coloring of Te.
If ϕe converges on all ten nodes to values in {0, 1} in such a way that there is already a nontrivial
automorphism of Te which preserves the coloring, then we do nothing further, because ϕe is not a
distinguishing coloring of Te. So, without loss of generality, suppose ϕe converges on all ten nodes
to values in {0, 1} and colors them as shown.

{

{ { kheb kheb {

{ kheb { kheb

aa
aa

aa
aa

aa
aa

l
l

l
l

l
l

,
,
,
,
,
,

!!
!!

!!
!!

!!
!!

We do not want ϕe to be a distinguishing coloring of Te, so we respond by adding three more
nodes to Te, as seen below. (For convenience, nodes are now identified as in ω<ω.)

{

{ { kheb kheb {(0) (1) (2) (3) (4)

{ kheb { kheb k(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

aa
aa

aa
aa

aa
aa

l
l
l

l
l
l

,
,
,
,
,
,

!!
!!

!!
!!

!!
!!

k k(2, 0, 0) (3, 0, 0)

We have now made it impossible for ϕe to be a distinguishing 2-coloring of Te. ϕe must color the
new node (4, 0) at level 2, and whichever color it chooses, there will be a nontrivial automorphism of
Te which respects that coloring. However, there does exist another 2-coloring fe which distinguishes
Te: change (4) to a striped node, while keeping the other colors and coloring the remaining three
nodes with either color. Under this coloring the tree is rigid.

We put these basic modules together to build one big tree T as follows. Start with a spine: a
single path d0 < d1 < d2 < · · · of nodes, among which d0 will be the root of T . Above each d2e+1, in
addition to d2e+2, we place a node re. Then we build a copy of the tree Te with re as its root. Thus
no ϕe is a distinguishing 2-coloring of T , but T is distinguishable by combining the 2-colorings fe
for each Te into a single f and coloring every node on the spine striped. The spine is fixed by every
automorphism of T , as is each re, and this (noncomputable) f then ensures that no automorphism
except the identity can respect f . ut

In the tree constructed in Theorem 21, the branching function is not computable: it was not
decidable which of the (4, 0) nodes (in all the different finite subtrees Te) have successors and which
do not. So one naturally asks whether a computable finite-branching tree with distinguishing number
2 and with computable branching function would necessarily have a computable distinguishing 2-
coloring. However, the answer is still no: below, in Theorem 23, we construct such a tree with no
computable distinguishing 2-coloring.

We start by describing the balanced 2-coloring of the complete binary tree 2<ω. Two nodes in
this tree are called siblings if they are of the form σ 0̂ and σ 1̂, that is, if they have the same
immediate predecessor σ. Thus every node except the root has exactly one sibling. A 2-coloring is
balanced if it colors each node differently from its sibling: for instance, every node σ 0̂ is solid and
every node σ 1̂ is striped. This example is isomorphic to every other balanced 2-coloring of 2<ω,
except for the color of the root. We will therefore speak of the balanced 2-coloring with striped root
or the balanced 2-coloring with solid root. It is clear, by induction on the lengths of nodes, that each

balanced 2-coloring distinguishes 2<ω, i.e., no automorphism of 2<ω except the identity respects
this coloring. Likewise, we speak of balanced 2-colorings of finite binary trees 2n.

However, it is also possible for an unbalanced 2-coloring to distinguish 2<ω. As an example,
color the nodes so that every node 1n is striped, and also every node 1n0 is striped, with all other
nodes colored according to the balanced coloring with striped root. The two siblings 0 and 1 at
level 1 are both striped, but the two successors of 0 are two different colors, while those of 1 are
both striped. Therefore no automorphism respecting the coloring can interchange 0 with 1, and one
then uses this same argument to go upwards through all levels of the tree and see that each level is
fixed pointwise by every automorphism respecting the coloring.

There are in fact many of these unbalanced colorings. However, once an imbalance has been
introduced, it perpetuates itself.

Lemma 1. In a distinguishing 2-coloring of 2<ω, if some siblings σˆ0 and σˆ1 share a color, then
either some two siblings extending σˆ0 share a color as well, or else some two siblings extending
σˆ1 share a color.

Proof. If not, then the coloring would restrict to the balanced coloring on the tree above σ 0̂,
and also on the tree above σ 1̂, with the same colored root in both. Therefore, there would be an
automorphism interchanging σ 0̂ with σ 1̂ and respecting the coloring. ut

Corollary 22 For every finite binary tree 2<n, no unbalanced 2-coloring is distinguishing.

Proof. The reasoning is the same as in the lemma: any imbalance forces there to be another im-
balance above itself. However, now this yields a pair of siblings with the same color at the very
top level of the tree, and the automorphism which interchanges this pair and fixes all other nodes
respects the unbalanced coloring. ut

k

k k ka = (0) b = (1) c = (2)

k k kk k k

k k kk k kk k kk k k
...

...
...

...
...

...
...

...
...

...
...

...

aa
aa

aa
aa

aa
aa

!!
!!

!!
!!

!!
!!

A
A
A
A
A

A
A
A
A
A

A
A
A
A
A

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

B
B
B
BB

B
B
B
BB

B
B
B
BB

�
�
�
��

�
�
�
��

�
�
�
��

B
B
B
BB

B
B
B
BB

B
B
B
BB

�
�
�
��

�
�
�
��

�
�
�
��

B3

With these unbalanced colorings, we see that the tree B3 in the figure above is 2-distinguishable:

B3 =
{
σ ∈ ω<ω : σ(0) < 3 & σ(n) < 2 for 0 < |σ| ≤ n

}
.

Indeed, B3 has a computable distinguishing 2-coloring: just give the balanced coloring with solid
root on the binary tree above a, the balanced coloring with striped root on the binary tree above
b, and any unbalanced coloring (say with striped root) on the binary tree above c. We also have a
distinguishing 2-coloring of each tree B3,n:

B3,n = B3 − {σ ∈ B3 : σ(0) 6= 0 & |σ| ≥ n} .

This B3,n is the tree gotten by chopping off (at level n) two of the three binary trees in B3. To get
a distinguishing 2-coloring of B3,n, however, one is forced by the corollary above to use balanced
colorings, with roots of different colors, on each of the finite trees above b and c. The binary tree
above a is still complete, however: one can color it using the balanced 2-coloring with either color
for the root, or using any unbalanced distinguishing 2-coloring.

Theorem 23 There is a computable finite-branching predecessor tree with computable branching
function which is distinguished by a 2-coloring but not by any computable 2-coloring.

Proof. With the above observations, we can produce a tree Te with distinguishing number 2 for
which a given partial computable function ϕe is not a distinguishing 2-coloring. Moreover, Te will
have computable branching (uniformly in e). This will form the basic module of the construction
below. To build Te, start with three distinct immediate successors a, b, c of the root node r, and
begin building a copy of 2<ω above each, exactly as in the tree B3. When we add level s to these
binary trees, we check to see whether ϕe,s has converged yet on all three nodes at level 1. If it never
does so, or if it gives values /∈ {0, 1} for any of them, then we simply keep building a copy of B3.
However, if it does output values in {0, 1} for all three, then we change our strategy. Without loss
of generality, say that ϕe(b) = ϕe(c). Once we see this, we end the construction of the binary trees
above b and c: they are complete up to level s, but contain no nodes at all above level s. (Above a,
we continue to build the complete binary tree, although in fact putting a single node at level n+ 1
above a would suffice.)

The point is that, having committed to the same color for both b and c, ϕe is now trapped into
giving a non-distinguishing 2-coloring of Te. By the Corollary, the only way to give a distinguishing
2-coloring above b is to give the balanced 2-coloring, up to level n; and the same above c. However,
then there will be an automorphism of Te interchanging b with c and respecting this coloring, so ϕe

failed to distinguish Te by its coloring.

On the other hand, Te is 2-distinguishable, exactly as above: just color b and c different colors,
and then use the balanced coloring above each of them, while coloring the complete binary tree
above a with any distinguishing 2-coloring of 2<ω. (Clearly no automorphism of this Te can avoid
fixing a, so the choice between balanced and unbalanced above a is irrelevant.)

Finally, we wish to combine these basic modules to build a single computable tree T , with com-
putable finite branching, which has distinguishing number 2 but has no computable distinguishing
2-coloring. This is straightforward. Start with a spine d0 < d1 < d2 < · · ·, among which d0 will be
the root of T . Above each d2e+1, in addition to d2e+2, we place a node re. Then we build a copy
of the tree Te with re as its root, diagonalizing against the possible coloring ϕe exactly as above in
Theorem 21, using the three successors ae, be, and ce of re. No ϕe can be a distinguishing 2-coloring
of the entire tree T , because, assuming ϕe is total, there will be some nontrivial automorphism of
Te which respects the coloring ϕe, and this automorphism extends to an automorphism of all of T
just by fixing the rest of T pointwise. ut

The branching function of a computable finite-branching predecessor tree is always 0′-computable.
However, it turns out that even with a 0′-oracle, we could not necessarily compute a distinguishing
2-coloring of such a tree with distinguishing number 2.

Theorem 24 There is a computable finite-branching predecessor tree which is distinguished by a
2-coloring but not by any 0′-computable 2-coloring.

Proof. This proof uses a simple modification to the trees Te used to build T in Theorem 23. Now
that the branching is allowed to be noncomputable, we may temporarily stop building the tree
Te at levels > n above b and c (when ϕe has given the same color to b and c), and then resume
building the complete binary tree above b and c when/if ϕe “changes its mind” about its coloring of
b and c. This makes the branching (above these nodes at level n) noncomputable, since we do not
know whether we will ever add nodes at level n+ 1. However, it enables us to satisfy the following
requirement.

Re : lim
t
ϕe(x, t) is not a distinguishing 2-coloring of Te.

These requirements together will show that T has no 0′-computable distinguishing 2-coloring, where
T is built from the trees Te exactly as before.

The alteration to the construction of Te is simple. As before, wait for ϕe,s(a, 0), ϕe,s(b, 0),
and ϕe,s(c, 0) to halt with values in {0, 1}. Pick two of them which have the same value, and
stop building the binary trees above those two nodes (while continuing to build a binary tree
above the third node). Meanwhile, wait for ϕe,s(a, 1), ϕe,s(b, 1), and ϕe,s(c, 1) to halt with values
in {0, 1}. When and if this happens, these values supersede those from before: for example, if
previously we had halted construction above b and c (as in the original description of Te), but now
ϕe(a, 1) = ϕe(b, 1) = 0 6= ϕe(c, 1), then we build up the trees above b and c until all three have
the same height, then continue building the tree above c but stop building the ones above a and b.
On the other hand, if ϕe,s(a, 1) = ϕe(a, 0), ϕe,s(b, 1) = ϕe(b, 0), and ϕe,s(c, 1) = ϕe(c, 0), then ϕe

has not changed its mind, and we do not resume construction above the two nodes above which it
was stopped. We then continue on to consider ϕe(a, 2), etc., using the same program relative to the
values ϕe(a, 1), etc., and so on for all t.

If limt ϕe(x, t) exists for all three values x ∈ {a, b, c}, then we wind up in the same situation as
in the previous proof, showing that this limit cannot be a distinguishing 2-coloring of Te, so that
Re holds. On the other hand, if the limit fails to exist (but ϕe is total with range ⊆ {0, 1}), then we
simply built B3 above re, and B3 is indeed 2-distinguishable (although not by limt ϕe(x, t)). Finally,
if ϕe is not total or assumes values > 1, then Re will hold, and the Te we build is either a copy
of B3 or a copy of some B3,n, both of which are 2-distinguishable. (Technically, even if range(ϕe)
contains some values > 1, the limit could still have values 0 and 1 only. However, if this holds, then
some other ϕe′ would have the same limit and would have range ⊆ {0, 1}, so that Re′ would have
taken care of showing that limt ϕe was not a distinguishing 2-coloring.) ut

So how much information would we need to compute a distinguishing 2-coloring of a computable
finite-branching predecessor tree with distinguishing number 2? We answer this below in Theorem
25, but we begin by defining an extendible node of a tree to be a node which lies on an infinite path.

Lemma 2. If all nodes of a computable predecessor tree T are extendible, then T is 2-distinguishable.

Proof. This is true even if the tree is infinite-branching, so we prove it for this more general case.
Suppose we have a computable predecessor tree with every node extendible. Label the nodes at

level 1 of the tree x1, x2, . . . in order of their enumeration into the tree. Color x1 striped. Color x2
solid, and color every node at level 2 above x2 striped. Color x3 solid, color every node at level
2 above x3 solid, and color every node at level 3 above x3 striped, and so on for x4, x5, This
procedure distinguishes each node at level 1 from every other node at level 1.

Fix an n > 0, and consider the immediate (level-2) successors y1, y2, . . . of xn. These may have
already been colored by the previous instructions; in fact, their successors up to level n will already
be colored. Color the level-(n + 1) successors of y1 striped, the level-(n + 1) successors of y2 solid
and its level-(n+ 2) successors striped, then the same above y3 with solid-solid-striped, and so on.
When we do this for every n, each node at level 2 is distinguished from all its siblings at level 2.

We continue in this vein to distinguish each node at level k from every other node at level k,
for every k.

Here is the algorithm for determining the color of an arbitrary node on such a tree if we’ve used
the above coloring:

Choose a node on the tree. Call it n. Call the root r.
(?) Use the predecessor function to determine the level of n above r. Call this level l.
Label the immediate successors of r with x1, x2,
If n sits above xl, then n is red.
Else, if n sits above xi for some i > l, then n is blue.
Else, n sits above xi for some i < l. Let this xi be the new r, and go back to (?). ut

Theorem 25 If a computable finite-branching predecessor tree has distinguishing number 2, then
it has a 0′′-computable distinguishing 2-coloring.

Proof. Because the tree is finite-branching, with a 0′′-oracle we can determine, for each immediate
successor y of a given node x, whether y is extendible or not: König’s Lemma states that a non-
extendible node must have only finitely many nodes extending it. Above the extendible ones we
use the process illustrated above in Lemma 2. For each extendible x, consider the (finite) subtree
containing x, the non-extendible immediate successors of x and all of their successors. There must
be a way to distinguish this subtree with a 2-coloring, since the tree has a distinguishing 2-coloring.
Each non-extendible node has only finitely many nodes above it. With the 0′′-oracle we can find
them all, and we can try out all the possible colorings until we find one which admits no non-trivial
automorphism. Having done all of this, we know that every automorphism of the tree which respects
our coloring and which fixes x must also fix each immediate successor y (and all the nodes above
each non-extendible y). By induction on levels, this means that an automorphism which respects
the coloring must fix each single node, i.e. must be the identity. ut

Thus the existence of a distinguishing 2-coloring is equivalent to the existence of such a coloring
computable in 0′′. This significantly reduces the complexity of the property (for computable finite-
branching trees T under predecessor) of being 2-distinguishable. On its face, that property was Σ1

2 :
it said that there exists a function (the coloring) such that every automorphism of T either fixes
all nodes or disrespects the coloring. Of course, this complexity can quickly be reduced, since the
complexity of an orbit in a finite-branching computable predecessor tree is at most Π0

2 . Nevertheless,
2-distinguishability still could have been Σ1

1 -hard for these trees, up until we established Theorem
25, which showed that we need only quantify over 0′′-computable functions, not over all functions,
to define 2-distinguishability.

We now investigate how much further we can lower the complexity of the property of 2-
distinguishability, and whether the same complexity level holds for n-distinguishability. Theorem

26 answers these questions. Subsequently we will consider distinguishability by finite colorings, i.e.,
colorings with finitely many colors, but with no fixed bound on the number of colors.

Theorem 26 For each fixed n, the property of having a distinguishing n-coloring is Π0
2 -complete

within the class of finite-branching predecessor trees.

Proof. We will show that having a distinguishing 2-coloring is Π0
2 -complete, and we will explain

how the argument extends to an n-coloring for fixed n.
A finite-branching predecessor tree has no distinguishing 2-coloring if and only if

∃σ1, . . . , σk
[
σ1, . . . , σk are not extendible and have a common predecessor τ &

the tree {τ} ∪
⋃k

i=1 {δ : δ ⊇ σi} has no distinguishing 2-coloring

]
.

Non-extendibility is a Σ0
2 property, and the other two conjuncts inside the brackets are each com-

putable. So, not having a distinguishing 2-coloring is Σ0
2 . Thus, having a distinguishing 2-coloring

is Π0
2 . Notice that if “2-coloring” in the above argument were replaced with “n-coloring,” the result

would still hold; so, for fixed n, having a distinguishing n-coloring is Π0
2 .

To show completeness, we start by building a copy of the tree B3 as follows. Begin with the root
and the three nodes at level 1. Then, whenever a new element is enumerated into the e-th c.e. set
We, we add the whole next level of B3 to our tree. If We turns out to be finite, our copy of B3 will
only have finitely many levels, and thus will not be 2-distinguishable. If We turns out to be infinite,
then our B3 will likewise be infinite, and thus 2-distinguishable. So the tree has a distinguishing
2-coloring just if We is infinite.

If we define Bn+1 to be the tree whose root has exactly (n + 1) immediate successors and
every other node has exactly n immediate successors, then if we replace B3 with Bn+1 in the
immediately preceding paragraph, we show that having a distinguishing n-coloring for some fixed
n is Π0

2 -complete as well. ut

It remains to consider “having a distinguishing n-coloring for some (arbitrary) n.” This is the
property of being finitely distinguishable. Expressing this property takes an extra ∃ quantifier, so it
is plausible that having a finite distinguishing coloring is Σ0

3 -complete.

Theorem 27 The property of having a distinguishing finite coloring is Σ0
3 -complete within the class

of finite-branching predecessor trees.

Proof. Define S∞ to be the following tree: There is an infinite “spine,” and the node αn on the
spine at level n has exactly n additional immediate successors, all of which are terminal. We will
show, using the tree S∞, that being finitely distinguishable is Σ0

3 -complete by giving a 1-reduction
from the set of indices for finitely distinguishable trees to the set Cof.

We start by building the tree S∞. Let Ak be the subtree consisting of αk and all its non-
extendible immediate successors. We wait for elements to be enumerated into We. At stage s,
suppose m ∈ We,s −We,s−1. Then we make Am rigid by adding paths of distinct finite lengths
above the immediate successors of αm.

We claim that the resulting tree is finitely distinguishable if and only if We is cofinite. Suppose
We is finite and nonempty. (If We is empty, then the tree is rigid, i.e., 1-distinguishable.) Then
every tree Ak with k > max(We) is rigid. Thus the whole tree is max(We)-distinguishable. Now
suppose We is infinite. Then, given any n, there is Ak with k > n for which Ak is k-distinguishable
but not n-distinguishable. Thus, for each n, the whole tree is not n-distinguishable. So the tree has
a finite distinguishing coloring just if We is cofinite. ut

3 Further Questions

The most natural next question is:

Question 1. What are the analogous results for computable infinite-branching predecessor trees?

We have already begun answering this question, and results will be forthcoming in an expansion
of this abstract.

In [7], we showed that many computability-theoretic results which were true of finite-branching
predecessor trees were also true of finite-valence pointed graphs, and so we also ask:

Question 2. Do any of these results carry over to computable finite-valence pointed graphs?

This is our expected next step after considering the infinite-branching predecessor trees.

References

1. W. Imrich, S. Klavzar, & V. Trofimov; Distinguishing infinite graphs, Electronic Journal of Combina-
torics, 14 (2007), #R36.

2. V. Harizanov, R. Miller, & A. Morozov; Simple structures with complex symmetry, Algebra and Logic
49 (2010), 51-67.

3. S. Lempp, C. McCoy, R.G. Miller, & R. Solomon; Computable categoricity of trees of finite height,
Journal of Symbolic Logic 70 (2005), 151–215.

4. R.G. Miller; The computable dimension of trees of infinite height, Journal of Symbolic Logic 70 (2005),
111–141.

5. S. M. Smith & M. E. Watkins; Bounding the distinguishing number of infinite graphs, submitted for
publication.

6. S. M. Smith, T. W. Tucker, & M. E. Watkins; Distinguishability of infinite groups and graphs, Electronic
Journal of Combinatorics 19 (2012), #R27.

7. R. M. Steiner; Effective algebraicity, Archive for Mathematical Logic 52 (2013), 91-112.

