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ABSTRACT

In Chapter 1, we consider the spectrum of a linear order. Slaman and Wehner have

constructed structures which distinguish the computable Turing degree 0 from the

noncomputable degrees, in the sense that the spectrum of each structure consists

precisely of the noncomputable degrees. Downey has asked if this can be done for

an ordinary type of structure such as a linear order. We show that there exists a

linear order whose spectrum includes every noncomputable ∆0
2 degree, but not 0.

In Chapter 2, we define a property R(A0, A1) in the partial order E of com-

putably enumerable sets under inclusion, and prove that R implies that A0 is

noncomputable and incomplete. Moreover, the property is nonvacuous, and the

A0 and A1 which we build satisfying R form a Friedberg splitting of their union

A, with A1 prompt and A promptly simple. We conclude that A0 and A1 lie in

distinct orbits under automorphisms of E , yielding a strong answer to a question

previously explored by Downey, Stob, and Soare about whether halves of Friedberg

splittings must lie in the same orbit.

In Chapter 3, we prove that no computable tree of height ω is computably

categorical, and indeed that all such trees have computable dimension ω. The nec-

essary construction requires us to prove several new versions of Kruskal’s Lemma

on the embeddability of finite trees.

In Chapter 4, given an arbitrary low c.e. set A and an arbitrary noncomputable

c.e. set C, we use the New Extension Theorem of Soare to construct an automor-

phism of E mapping A to a set B such that C 6≤T B. Thus, the orbit in E of the

low set A cannot be contained in the upper cone above C. This complements a

result of Harrington, who showed that the orbit of a noncomputable c.e. set cannot

be contained in the lower cone below any incomplete c.e. set.
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Computability theory is the study of finite algorithms and the mathematical

problems which such algorithms can and cannot solve. This dissertation focuses on

two areas within the general field of computability theory. Chapters 1 and 3 give

solutions to two problems in the area of computable model theory, while Chapters

2 and 4 resolve two questions about automorphisms of the lattice of computably

enumerable sets.

The four main branches of mathematical logic are set theory, computability

theory, model theory, and proof theory. Computable model theory applies the

principles of the second branch to the third. To grasp the reasons for hybridizing

these two, it is necessary to understand the basic principles of each.

The Turing machine, the basic tool of computability theory, is essentially an

idealized computer. It has a two-way infinite memory tape, which is assumed to

be blank at the start of its operation except for a finite string of 1’s giving the

value of the input, and it executes a finitely-defined algorithm. If it ever reaches

the instruction “halt,” it ceases operating, and its output is considered to be the

number of 1’s written on the tape at this stage. Church’s Thesis, which is widely

accepted, is the claim that the tasks which can be performed by a Turing machine

are precisely the functions which can be computed by a human being using pencil

and (unlimited) paper. (Here all functions have subsets of ω for their domain and

range.)

A set S of natural numbers is said to be computable (or recursive) if there is

a Turing machine such that for any input n, the machine outputs 1 if n is in S

and 0 if not. A weaker condition is computable enumerability: S is computably

enumerable if there is a Turing machine which, given inputs 0, 1, 2, . . . outputs a

list of all the elements of S. It is easily seen that S is computable if and only if

both S and its complement S are computably enumerable.

More generally, a set A is computable in a set B, or Turing-computable in B,

written A ≤T B, if there is a relativized Turing machine which can compute, using

a B-oracle, whether or not any given input is in A. (A relativized Turing machine

has a read-only tape containing a countable binary sequence. We think of the
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information on the tape as coding a set, in this case B, and we refer to the read-

only tape as a B-oracle, since the machine can ask the tape at any time whether

or not any natural number n is in B.) This gives a partial ordering of all subsets of

the natural numbers, and we make it a strict partial ordering by declaring two sets

to be of the same Turing degree if each is computable in the other. The computable

sets are precisely those which are computable in the empty set, so deg(∅) is the

least element. We write 0 = deg(∅), since sets in this degree have no “information

content;” the information contained in a computable set is information that we

could compute for ourselves if we desired. In the same vein, if the Turing degree

A is computable in the degree B, we think of B as containing more information

than A. There are 2ω-many Turing degrees – that is, the same cardinality as that

of R – and the Turing-computability partial order on them is extremely complex

and remains a fertile source of questions in computability theory.

Turning to model theory, we take the linear order as a standard example of

an algebraic structure. A linear order L consists of a set S and a binary relation

< on S, satisfying the axioms for a linear order. L is computable (resp. B-

computable) if both S and < are computable (resp. B-computable). The degree

of the ordering is B if the ordering is computable in B but not in any degree below

B. A similar, more general definition applies to any model-theoretic structure.

The degree is always the supremum of the degree of the universe and the degrees

of the functions and relations used in the structure. For a group G, for instance,

one takes the supremum of the degree of the underlying set and the degrees of the

functions representing multiplication and inversion on this set.

A linear ordering may have one isomorphic copy which is B-computable and

another which is not. For instance, the standard ordering of ω is computable and

isomorphic to the standard ordering of any infinite subset S of ω, but the degree of

the latter is the degree of S. The spectrum of the linear order is the set of all those

Turing degrees B such that there exists an isomorphic copy of the order whose

degree is B.

The most general question that one asks about spectra is simply which ones

are possible, for a given type of structure. For instance, what are the possible
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spectra of countable linear orders? Julia Knight [28] has shown that the spectrum

of a linear order must be closed upwards under the Turing-computability relation,

and Linda Jean Richter [40] has shown that if such a spectrum has a least degree,

then that degree must be 0. Interest has focussed on the Separation Question,

which asks (in its general form) whether there exists a linear order whose spectrum

contains a given collection P of Turing degrees while excluding entirely another

such collection N. (From Knight’s result it is clear that no degree in P may be

computable in any degree in N.)

As a specific example, we ask whether there exists a linear order whose spectrum

is precisely the noncomputable Turing degrees – that is, every Turing degree except

the degree of the empty set. Such an order L would then allow one to characterize

computability in terms of L: a set A is computable if and only if it is impossible

to compute a copy of L from A. Thus, in terms of information content, L would

constitute information common to all noncomputable sets yet unknown to any

computable set.

It is known (see [45], [50]) that there are structures more complicated than

linear orders whose spectra are the noncomputable Turing degrees. On the other

hand, for Boolean algebras, it is impossible for the spectrum to contain certain

noncomputable Turing degrees without also containing the computable degree.

(See [9], [49], [29].) In Chapter 1, we prove that there is a linear order whose

spectrum contains every noncomputable ∆0
2 degree, yet excludes 0. (A set is ∆0

2

if there exists a computable approximation to it. This is a weaker condition than

computable enumerability, since any computable enumeration is also a computable

approximation.) This is significant in that it distinguishes the linear order, as a

model-theoretic structure, from both the set and the Boolean algebra. (The model-

theoretic structure of a set is given in a language with one constant c0, one unary

function s, and one unary relation C, with axioms stating that s is one-to-one and

that c0 is the only element not in the range of s. The set modelled is just the set

of those n ∈ ω for which C(sn(c0)) holds.)

These results suggest a possible approach for measuring the complexity of

model-theoretic structures. The set appears to be too simple a structure to sepa-
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rate the noncomputable sets from the computable ones; the possible spectra of sets

are mainly the so-called upper cones {D : C ≤T D} of degrees in which a given

set C is computable. Adding the structure of a linear order allows us at least to

separate the noncomputable ∆0
2 degrees from 0, but simultaneously removes the

posssibility of getting a nontrivial upper cone as a spectrum (by Richter’s result).

Two questions present themselves as we observe this trade-off. First, we ask

to what extent similar trade-offs hold for other common mathematical structures.

Can we use these trade-offs to rank such structures by their complexity? Second,

we ask if we can define more exotic structures which achieve the complexity of the

linear order without losing the simplicity of the set. Is there a model-theoretic

structure for which every collection of Turing degrees (or at least every upward-

closed collection) is a possible spectrum? Or is it the case that one cannot gain

complexity in a structure without sacrificing simplicity?



CHAPTER 1

THE ∆0
2-SPECTRUM OF A LINEAR ORDER

6
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1.1 Introduction

Definition 1.1.1 The spectrum Spec(A) of a structure A is the class of Turing

degrees of presentations of A,

Spec(A) = {deg(B) : B ∼= A}.

(Here the degree of a structure B is the supremum of the degree of its universe

and the degree of its open diagram. For our purposes, the universe will generally

be ω.)

Slaman [45] and Wehner [50] have recently each constructed a countable first-

order structure A such that Spec(A) = D−{0}, where D is the class of all Turing

degrees and 0 is the degree of the computable sets. This answers a question

in [7] from Lempp, who had asked whether it was possible to distinguish the

noncomputable degrees from the degree 0 in such a way. Slaman remarks that the

open diagram of each of these models contains information which is common to

all noncomputable real numbers, yet which is not itself computable. (In contrast,

a single subset of ω with no algebraic structure cannot contain such information;

the existence of a minimal pair of Turing degrees ensures that any set which is

computable in every noncomputable real must itself be computable.)

The structures constructed by Slaman and Wehner were built specifically for

this purpose and are not readily recognizable to most mathematicians. Downey [7]

has asked whether one could do the same for better-known types of mathematical

objects, particularly for linear orders. Indeed, he posed a series of questions:

Question 1.1.2 (Downey) Is there a linear order whose spectrum contains every

computably enumerable Turing degree except 0?

Question 1.1.3 (Downey) Is there a linear order whose spectrum contains every

∆0
2 degree except 0?

Question 1.1.4 (Downey) Is there a linear order whose spectrum contains every

degree except 0?
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We can rephrase these questions using the following terminology.

Definition 1.1.5 If C is a class of Turing degrees, the C-spectrum of A, written

SpecC(A), is the intersection of C with Spec(A).

We will consider Σ0
1 and ∆0

2 as classes of degrees, not classes of sets. Thus,

Question 1.1.2 asks whether the Σ0
1-spectrum of a linear order A can be precisely

the noncomputable Σ0
1 degrees, and Questions 1.1.3 and 1.1.4 are the corresponding

questions for Spec∆0
2(A) and Spec(A).

For certain common mathematical structures, the answers to such questions are

negative. For instance, Downey and Jockusch have shown in [9] that any Boolean

algebra B of low degree is isomorphic to a computable Boolean algebra,

Spec(B) ∩ L1 6= ∅ =⇒ 0 ∈ Spec(B).

Hence the Σ0
1-spectrum of a Boolean algebra cannot contain every noncomputable

computably enumerable (c.e.) degree without also containing 0. (This result was

extended to the low2 degrees by Thurber [49] and then as far as the low4 degrees

by Knight and Stob [29], who proved that any Boolean algebra of low4 degree is

isomorphic to a computable Boolean algebra.)

However, it is known that for every noncomputable Turing degree, there exists

a linear order of that degree which is not isomorphic to any computable linear

order. Jockusch and Soare [25] proved this statement for noncomputable c.e. de-

grees, by creating a linear order which could be “separated” into countably many

components, which are used to diagonalize against all possible computable linear

orders. Later, Downey and Seetapun (both unpublished) independently extended

this result to the noncomputable ∆0
2 degrees. Finally, Knight proved the result

for an arbitrary noncomputable Turing degree (see [7], p. 179), suggesting that a

positive answer to Downey’s most general question might be possible.

The argument by Jockusch and Soare is uniform in the given noncomputable

c.e. set C in whose degree we wish to build a linear order with no computable copy.

It does give different results, namely non-isomorphic linear orders, for different sets



9

C. The same is true of Downey and Seetapun’s results, which use the same basic

module. Therefore these results do not answer any of Downey’s questions.

In this chapter we modify the Jockusch-Soare basic module so that for any two

noncomputable c.e. sets C and D, it produces isomorphic copies of the same linear

order. Also, we modify and develop the method of ∆0
2-permitting so that the basic

module can handle any noncomputable ∆0
2 set C, while still producing isomorphic

linear orders regardless of the choice of C. We use this new basic module in Section

1.4 to prove:

Theorem 1.1.6 There exists a linear order A which has a copy in every noncom-

putable ∆0
2 degree, but no computable copy,

Spec∆0
2(A) = ∆0

2 − {0}.

Furthermore, this order may be taken to be of the form

A =
∑
i∈ω

(Si +Ai),

where each Si
∼= 1+ν+ i+ν+1 and each Ai is either ω or of the form ci +ω∗+ω

for some ci ∈ ω.

(Here ν represents the countable dense linear order with end points.)

This answers Downey’s Questions 1.1.2 and 1.1.3. Question 1.1.4 is still open,

and is discussed in the final section.

Although the method of ∆0
2-permitting has been occasionally used in com-

putability theory, the literature on it is far less complete than the literature on

Σ0
1-permitting. Perhaps the most useful reference for ∆0

2-permitting has been the

twenty-year-old paper of Posner [37]. Therefore, we devote Section 1.2 to a revision,

updating, and expansion of Posner’s presentation. This includes an explanation

of the intuition behind the method, with examples, and a general lemma, omitted

from Posner’s paper, explaining why one must receive permission infinitely often.
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The rest of the chapter serves the dual purpose of answering Downey’s question

and providing a full example of ∆0
2-permitting. In Section 1.3 we give the basic

module for the construction, with ∆0
2-permitting prominently used and explained,

and in Section 1.4 we present the complete construction.

We use the notation of Soare [47] regarding Turing degrees and computability,

and that of Rosenstein [43] for linear orders. (Thus ω∗ represents the reverse

order of ω, i.e. the order type of the negative integers.) When {Cs : s ∈ ω} is a

computable approximation for a set C, we will usually just write 〈Cs〉 to stand for

the entire approximation. Also, we use the symbol S��x to denote S� (x + 1), the

restriction of the subset S ⊆ ω (viewed as a function) to the elements 0, 1, . . . x.
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1.2 ∆0
2 Permitting

∆0
2 permitting is not as transparent as c.e. permitting. Posner [37] has succinctly

outlined the differences, as well as the tree approach we use to overcome them.

In the c.e. case, we can be sure at least that every element that has entered the

permitting set C will stay there; for a ∆0
2 set C, there is no such guarantee for any

element. Let {Cs}s∈ω be a computable approximation of the permitting set, and

suppose A is the C-computable set we wish to build. The permitting condition is

actually the same for both the c.e. case and the ∆0
2 case, and suffices to ensure

that A ≤T C:

Requirement 1.2.1 (Permitting Condition) If Cs � m = Ct � m and m ≤
min(s, t), then As�m = At�m.

However, for a c.e. permitting set C, we know that permission, once given,

will never be withdrawn. That is, if Cs�m 6= Cs+1�m, then we must also have

Cs�m 6= Ct�m for every t > s, and therefore we never again have to worry about

making At�m equal to As�m. In the ∆0
2 case, on the other hand, it is perfectly

possible to have Cs�m 6= Cs+1�m and Cs�m = Ct�m for some t > s + 1. If

so, we must undo everything we have done to A�m since stage s and ensure that

At�m = As�m.

The easiest way to visualize our solution to this difficulty is by use of a tree,

called the approximation-tree for C, which we define below after setting up some

machinery. For s > 0, let:

xs = max{x : (∃t < s)[x ≤ t & Cs�x = Ct�x]},

ts = min{t : xs ≤ t < s & Cs�xs = Ct�xs}.

Thus xs is the greatest length of agreement of Cs with any preceding stage, and ts

is that preceding stage (or the first such stage, if there is more than one). Notice

that we always have xs ≤ ts. (The requirement x ≤ t in the definition of xs
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averts the possibility of xs being infinite, if there should be a stage t < s such that

Ct = Cs.)

The approximation tree T ({Cs}) for C is a computable tree with an integer at

each node. The top node of this tree is 0, and each integer s is added to the tree

as an immediate successor of ts. The precise definition of the approximation tree

is as follows.

T ({Cs}) = {σ ∈ ω<ω : σ(0) = 0 & (∀n < (lh(σ)− 1)) [σ(n) = tσ(n+1)]}.

(Clearly this depends on the choice of approximation {Cs}, not just on C.)

For instance, one possible set of approximations is given up to stage 8 in Figure

1.2, along with the corresponding approximation tree restricted to those stages.

(It is convenient to write a dash in place of the 0 or 1 for each Cs(y) with y ≥ s,

since this makes it clear when the requirement xs ≤ ts comes into play. If desired,

we could easily ensure that Cs(y) = 0 for all y ≥ s and still have {Cs} be a

computable approximation of C.)

Lemma 1.2.2 If the node t precedes the node s on the approximation-tree, then

xt < xs and Ct�xt = Cs�xt.

Proof. We induct on the number of levels between s and t. If t immediately

precedes s, then t = ts, so Ct� xs = Cs� xs. Now we must have xt < xs, since

otherwise Cs would agree up to xs with a stage preceding t, contradicting the

definition of ts. Hence Ct�xt = Cs�xt.

For the inductive step, we simply note that Cs� xs = Cts � xs and apply the

inductive hypothesis to ts. (Once again we have xs > xts > xt.)

We now introduce the notion of a true stage for the approximation {Cs}. A true

stage for this approximation is a stage s such that the length of agreement of Cs

with C is greater than the corresponding length of agreement for every preceding

stage,

(∃x ≤ s) [Cs�x = C�x & (∀t) [x ≤ t < s ⇒ Ct�x 6= C�x ]] .
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Figure 1.1: Example of an Approximation Tree

s Cs(0) Cs(1) Cs(2) Cs(3) Cs(4) Cs(5) Cs(6) Cs(7) ts xs

0 − − − − − − − −
1 1 − − − − − − − 0 0
2 0 1 − − − − − − 0 0
3 0 1 1 − − − − − 2 2
4 1 1 1 0 − − − − 1 1
5 1 0 1 0 0 − − − 1 1
6 1 0 1 1 0 0 − − 5 3
7 1 0 1 1 1 0 0 − 6 4
8 0 0 1 1 1 0 0 0 2 1

Approximation Tree

(For our purposes, the “length of agreement” is bounded by the stage number.

Thus, we need not worry about stages t with t < x.)

For c.e. sets, the true stages are precisely the nondeficiency stages, as defined

by Dekker [6], namely those such that an element a enters the set at that stage

and no element less than a ever enters at any subsequent stage.

Clearly, if s is a true stage, then ts is precisely the previous true stage. The

true stages form an infinite path through the tree, indeed the only infinite path.

If this path were computable, then we could compute C. (Notice, however, that

the tree need not be computably bounded, so one cannot automatically compute
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the unique infinite path.)

Ultimately, we only need to know As for the true stages s. After all, there are

infinitely many true stages, and the Permitting Condition (and the convergence of

limsCs) forces limsAs to converge, so any infinite increasing subsequence {Asi :

i ∈ ω} of approximations must converge to A as well. Moreover, if s is a true

stage, we know that As�xs = A�xs.

The difficulty, of course, is that it is impossible to compute the sequence of true

stages, given that C is noncomputable. Our general strategy for ∆0
2-permitting is

to assume at each stage s that the node s lies on the unique infinite path through

the tree, i.e. that s is a true stage. We ensure that As � xs = Ats � xs, thereby

satisfying the Permitting Condition for s and all stages preceding it. If it turns

out that s is not a true stage, then at some subsequent true stage we will have the

opportunity to undo the injury done at stage s to the preceding true stages.

For a c.e. permitting set C, one characteristically uses the noncomputability of

C to prove that there will be infinitely many stages at which C “gives permission”

to make a change to A. The analogous result for a ∆0
2 set C is as follows.

Lemma 1.2.3 (∆0
2 Permission) Let s0 = 0, s1, s2, . . . be the true stages of a

computable approximation 〈Cs〉s∈ω of C, with si < si+1 for all i. Let 〈ns〉s∈ω be

a non-decreasing unbounded computable sequence. If {q : n(sq) > x(sq)} is finite,

then C is computable.

(Notice that we conclude that permission is given at infinitely many true stages,

not merely at infinitely many stages. Again, the true stages are the stages which

we care about for purposes of computing A from a C-oracle.)

Proof. Suppose that there were a number k′ such that for all true stages sq ≥ k′,

we have xsq ≥ nsq . Since lims ns = ∞, we can compute for each stage s the

least stage t such that nt > s. Define g(s) to be this stage t, so the function g is

computable and total and ng(s) > s for every s.

Let sq ≥ k′ be a true stage. Then sq = ts(q+1)
≥ xs(q+1)

≥ ns(q+1)
(since

sq+1 ≥ k′). But ng(sq) > sq by definition of g, so ng(sq) > ns(q+1)
. Since 〈ns〉 is a
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nondecreasing sequence, we see that g(sq) > sq+1. This holds as long as sq ≥ k′,

but in fact we could redefine g at the finitely many true stages below k′, to yield

the following:

Sublemma 1.2.4 Under the hypotheses of Lemma 1.2.3, there exists a computable

function g such that for every true stage sq we have sq+1 < g(sq).

We remark that this function g does not provide a computable bound on the

approximation-tree T ({Cs}). It is possible that there is a stage s with an immedi-

ate successor t such that t > g(s). Sublemma 1.2.4 simply asserts that in this case

t cannot be a true stage.

However, this information suffices for us to compute the path of true stages in

T ({Cs}). 0 is always a true stage, of course, and knowing the true stage sq, we

find all immediate successors of sq which are less than g(sq). Say that these are

t0, t1, . . . tp. One of these must be the next true stage sq+1, and all the others have

only finitely many nodes below them (by Konig’s Lemma). To determine which

one is the next true stage, we simultaneously find all successors of each tj which

are less than g(tj), and eliminate each tj which has no such immediate successors.

Then we find all immediate successors of those immediate successors, within the

bounds provided by g, and eliminate those which have no immediate successors

within the bounds. Continuing in this manner, we will eventually eliminate every

tj with only finitely many successors, and once we have only one remaining tj , we

will know that that tj is the next true stage sq+1.

(Equivalently, let

T ′ = {σ ∈ T : (∀n < (lh(σ)− 1)) [σ(n+ 1) < g(σ(n)) ] }.

Then T ′ is a computable subtree of T and contains the path of true stages. But

since T ′ is computably bounded by g, its unique infinite path must be computable.)

Thus the path of true stages is computable, and we use this to show that C is

computable. Notice that on the path of true stages, we always have xs(q+1)
> xsq ,

and thus xsq ≥ q. Also, for all p > q we have Csp� xsq = Csq � xsq . To compute
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whether c ∈ C, therefore, we need only compute the (c+1)-st true stage sc+1 and

evaluate Cs(c+1)
(c), since c < xs(c+1)

.
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1.3 Basic Module for the Construction

Choose an arbitrary noncomputable ∆0
2 set C with computable approximation

C = limsCs. We give the basic module for constructing a linear orderA = (A,<A)

of degree ≤T C which is not isomorphic to the linear order Bi (if any) computed

by the i-th partial computable function ϕi. To achieve this, we choose an element

b̂ of the universe of Bi and ensure that no element of A has the same number of

predecessors under <A that b̂ does in Bi. This is the same result achieved by the

Jockusch-Soare basic module in [25], except that the result of our construction is

independent of C.

Proposition 1.3.1 The basic module described below yields the following out-

comes, regardless of the choice of the noncomputable ∆0
2 set C or the computable

approximation to C.

1. If b̂ has exactly c predecessors in Bi (or more accurately, if there are exactly

c elements x such that ϕi(〈x, b̂〉) ↓= 1), then the basic module constructs a

linear order A of type c+ ω∗.

2. If b̂ has infinitely many predecessors in Bi, then the basic module constructs

a linear order A of type ω.

(Notice that each outcome ensures that A 6∼= Bi, since no element of c+ω∗ has

exactly c predecessors and no element of ω has infinitely many predecessors.)

The universe A of this order will be
⋃

sAs, with each As = {a0, a1, . . . as}. In

fact we could just take ai = i for all i, but this way is clearer, since we can more

readily identify the elements of A. On each set As we will define a linear order <s,

with the final linear order on A being the limit over s of the orders <s.

A0 is the set {a0}, and <0 is the trivial order on it. At stage s > 0 we define

cs = |{x < s : ϕi,s(〈x, b̂〉) ↓= 1}|.

Thus cs is the number of predecessors of b̂ that have appeared within s steps, and

the sequence 〈cs〉s∈ω is computable and non-decreasing. This is the sequence we
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will use to determine when C “gives permission” to make changes to A. Also,

we define xs as the greatest length of agreement of Cs with any preceding stage,

and ts as that preceding stage (or the first such stage, if there is more than one),

exactly as in Section 1.2:

xs = max{x : (∃t < s)[x ≤ t & Cs�x = Ct�x]},

ts = min{t : xs ≤ t < s & Cs�xs = Ct�xs}.

We let As = As−1∪{as} and define the order <s on As, considering two cases:

Case A: cs > xs. We start by ordering a0, a1, . . . a(xs−1) according to the

order <ts . (This is fully defined, since xs ≤ ts.) Preserving the order <ts on

these elements is necessary in order to obey the permitting condition. Since all

the remaining elements have subscripts ≥ xs, we have permission to move them

wherever we like. We place them above a0, . . . a(xs−1), in order by subscript,

a0, · · · a(xs−1)︸ ︷︷ ︸<s a(xs) <s a(xs+1) <s · · · <s as.

in <ts-order

The idea is that, if we find ourselves in Case A at infinitely many stages, we

will build a copy of ω. No new elements will ever be placed to the left of a(xs) at

any stage which lies below s on the approximation-tree, so if s is a true stage, then

each of a0, a1, . . . a(xs−1) will have only finitely many predecessors. We perform

this operation when cs appears to be getting bigger (namely cs > xs), since this

suggests that b̂ will have infinitely many predecessors, and thus cannot map to any

of a0, a1, . . . a(xs−1) under any isomorphism of linear orders.

Case B: cs ≤ xs. We preserve the <ts-order on its domain of definition, namely

{aj : j ≤ ts}, thereby satisfying the permitting condition. Then we insert all new

elements, in reverse order of subscript, between the cs-th and (cs + 1)-st elements

of <ts . (Notice that cs ≤ xs forces cs ≤ ts.) Thus, if we define the subscripts
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i0, . . . i(ts) so that the <ts-order is given on a0, a1, . . . ats by

ai0 <ts ai1 <ts · · · <ts ai(cs−1)
<ts ai(cs)

<ts · · · <ts ai(ts)
,

then the new elements are inserted between ai(cs−1)
and ai(cs)

,

ai0 <s · · · <s ai(cs−1)︸ ︷︷ ︸<s as <s as−1 <s · · · <s a(ts+1)︸ ︷︷ ︸ <s ai(cs)
<s · · · ai(ts)︸ ︷︷ ︸ .

first cs elements new elements final elements

from <ts from <ts

This is the case where it does not appear that b̂ has acquired any new prede-

cessors, so we proceed with the process of building a copy of cs + ω∗, by inserting

new elements immediately after the cs-th existing element. Each of the first cs

elements under <s has fewer than cs predecessors, and by building the ω∗-order

above them, we attempt to force every other element of A to have infinitely many

predecessors. Our guess at this stage is that b̂ has exactly cs predecessors, and if

this guess turns out to be correct, then once again, no isomorphism of linear orders

will be able to map b̂ to any element of A.

This completes the construction.

Lemma 1.3.2 (Permitting Condition) For all subscripts i < j and all stages

s < t, if j < m ≤ s and Cs�m = Ct�m, then

ai <s aj ⇐⇒ ai <t aj .

Proof. Assume t < s and induct on s. Since Cs � m = Ct � m, we know that

m ≤ xs. By our construction, ai <s aj if and only if ai <ts aj , and by induction,

ai <ts aj if and only if ai <t aj .

Lemma 1.3.3 The orders <s converge to a linear order <A= lims <s on the set

A =
⋃

sAs(= ω). Moreover, <A is Turing-computable in C.
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Proof. Given ai and aj , find (using a C-oracle) a stage s > max(i, j) such

that Cs��max(i, j) = C��max(i, j). (Recall that the symbol S �� x denotes

S � (x + 1).) Now there exists a stage t0 > s such that for all t ≥ t0,

Ct��max(i, j) = C��max(i, j). But then, by the Permitting Condition,

ai <s aj ⇐⇒ (∀t ≥ t0)[ai <t aj ] ⇐⇒ ai <A aj .

Since each <s is a linear order on As, <A must obey all the axioms for a linear

order on A. Moreover, the stage s was computable in C.

Notice that the stage s need not be a modulus of convergence (in contrast to the

case of c.e. degrees), since there may be a stage s′ > s such that Cs′��max(j, k) 6=
Cs��max(j, k). We simply know that <s gives a correct evaluation of the order of

aj and ak in A.

Proof of Proposition 1.3.1. We now turn our attention to the two statements as-

serted in Proposition 1.3.1. First, suppose that b̂ has exactly c predecessors in Bi.

Let {s0, s1, . . .} be a (noncomputable) enumeration of the true stages in ascending

order, and choose k so large that csk
= c and xsk

> c. We write s = sk to avoid

an overabundance of subscripts. Choose subscripts i0, i1, . . . is such that the order

<s is given by

ai0 <s ai1 <s · · · <s ais .

Now Case A will never again apply at any true stage of the approximation, so

this order will be preserved at all subsequent true stages. Therefore, at each true

stage sj with j > k, the elements as(j−1)+1, . . . asj are inserted in reverse order

of subscript immediately above ai(c−1)
, as dictated by Case B, with <s(j−1)

being

preserved on a0, a1, . . . as(j−1)
. Thus, if we look only at the true stages, we see the

order c + ω∗ being built. But there are infinitely many true stages, so the orders

<sj must converge to <A, and thus A ∼= c+ ω∗.

In the other case, when b̂ has infinitely many predecessors we claim that A ∼= ω:
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Claim 1.3.4 If b̂ has infinitely many predecessors in Bi, then every element ax of

A has only finitely many predecessors in A.

Proof of Claim. As before, let s0, s1, s2, . . . be the true stages in ascending order,

and fix x. Since C is not computable, Lemma 1.2.3 of Section 1.2 yields a k so large

that xsk
> x and csk

> xsk
. Once again, let s = sk. Let f be the permutation of

{0, 1, . . . xs − 1} such that

af(0) <s af(1) <s · · · <s af(xs−1).

Pick y such that f(y) = x, so ax has exactly y predecessors under <s.

We claim that for every j ≥ k, the predecessors of ax in Asj are pre-

cisely af(0), af(1), . . . af(y−1). For j = k we have the ordering <s as above on

a0, . . . axs−1. Since cs > xs, we are in Case A of the construction, and all re-

maining elements are placed above af(xs−1), so the only <s-predecessors of ax

are af(0), af(1), . . . af(y−1), as desired. Now assume inductively that these are the

only predecessors of ax under <s(j−1)
, for j > k. Then <s(j−1)

is preserved on

a0, a1, . . . a(xsj−1), so by induction, the <sj -predecessors of ax among these ele-

ments are precisely af(0), af(1), . . . af(y−1). If we are in Case A of the construction

at stage sj , then the remaining elements (those with subscripts ≥ xsj ) are placed

above these, yielding no new predecessors to ax. If we are in Case B, the remaining

elements are inserted after the first csj of these. But csj ≥ cs since j > k, and

cs > xs > y, so the new elements are all inserted above ax, proving the claim.

From Claim 1.3.4 it is clear that A ∼= ω, independent of the choice of C, as

stated in Part 2 of Proposition 1.3.1.

We remark that the Jockusch-Soare basic module in [25] also builds A ∼= ω

whenever b̂ has infinitely many predecessors. However, if b̂ has exactly c prede-

cessors, it builds A ∼= d + ω∗, for some d ≤ c, and d varies with the choice of

the permitting set C. We avoid that difficulty in Case B of our construction, by

placing the new elements between the cs-th and (cs + 1)-st elements of Ats . The
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Jockusch-Soare construction (in their terminology) would place them immediately

above the “attached” elements, and the location of the greatest attached element

depends on the last permission received, hence depends on C and {Cs}.
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1.4 Full Construction of the Linear Order

Having seen how this basic module works, we now run it simultaneously for each

computable linear ordering Bi. To accomplish this we use the method of separators

developed by Jockusch and Soare in [25].

Theorem 1.1.6: There exists a linear order A which has a copy in every

noncomputable ∆0
2 degree, but no computable copy. Furthermore, this order may

be taken to be of the form

A =
∑
i∈ω

(Si +Ai), (1.1)

where each Si
∼= 1 + ν + i + ν + 1 and the order type of each Ai is either ω or

ci + ω∗ + ω for some ci ∈ ω. (Again ν represents the countable dense linear order

with end points.)

We will construct A by stringing together linear orders Ai, for each i ∈ ω. The

order Ai is intended to refute the possibility of A being isomorphic to the linear

order Bi (if any) computed by the i-th computable partial function ϕi. To keep

the orders Ai separate, we insert the computable linear orders Si as separators

between them. For this we use the notation C(A0,A1, . . .),

A = C(A0,A1, . . .) = S0 +A0 + S1 +A1 + . . . . (1.2)

Since no Ai will have an interval isomorphic to ν, this will enable us to recognize

the beginnings and ends of the different Si’s, and thus to isolate each Ai.

However, the Si’s cannot be recognized by any computable process. To pick

out the first and last points of an Si, we follow [25] and define Π0
2 predicates

Ri(e, x1, . . . xi+6) each of which holds just if, in the linear order (if any) determined

by ϕe, the points in the separator Si = 1 + ν + i + ν + 1 which are not in the

interior of either copy of ν are x1, . . . xi+6. Then the predicate

Si(x1, . . . xi+6, y1, . . . yi+7) = Ri(i, x1, . . . xi+6) ∧Ri+1(i, y1, . . . yi+7)

is also Π0
2 and asserts that if ϕi defines a linear order of the form C(B0,B1, . . .), then
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x1, . . . xi+6 determine the separator Si and y1, . . . yi+7 determine the separator

Si+1. Since the set Inf is Π0
2-complete, there is a computable function ψi whose

range is the set ω2i+13, such that for each i and each α ∈ ω2i+13, Si(α) holds if

and only if there are infinitely many s ∈ ω such that α = ψi(s). Moreover, we may

choose these functions ψi uniformly in i. (In the terminology of [25], ψi assigns

chips to the (2i+13)-tuples α, and Si(α) holds just if α gets infinitely many chips

from ψi.)

It will be useful for us to assume that the range of ψi is all of ω2i+13. If this

does not hold for the original ψi, we can simply replace it by ψi⊕χi, where χi is a

computable bijection from ω to ω2i+13. The relevant property of ψi, namely that

Si(α) holds precisely for those α with ψ−1
i (α) infinite, is clearly preserved under

this substitution.

Let l(α) be the (i+6)-th element of the (2i+13)-tuple α, and u(α) its (i+7)-th

element. Then α predicts that, if Bi is of the form C(R0,R1, . . .), the elements of

Ri will be those x such that x lies between l(α) and u(α) in the ordering determined

by ϕi, i.e. such that ϕi(〈l(α), x〉) ↓= 1 = ϕi(〈x, u(α)〉) ↓.
In our construction we will define elements b̂sα in the interval (l(α), u(α)) of Bi

(where 2i+ 13 = lh(α)), which approximate the element b̂ from the basic module.

(Note that b̂sα may be undefined for certain s and α.) Also, if b̂sα is defined, we will

let

csα = |{x ≤ s : ϕi,s(〈l(α), x〉) ↓= 1 = ϕi,s(〈x, b̂sα〉) ↓}|.

Thus csα is the number of predecessors of b̂sα in the interval between l(α) and u(α),

under the order Bi, which have appeared by stage s.

For a given noncomputable ∆0
2 set C, we now fix i and construct the individual

order Ai as follows (uniformly in i). For each j let aj = 〈2i+ 1, j〉. (The row

ω[2i] is reserved to form the computable separator Si, built uniformly in i by

a straightforward construction.) The universe Ai of Ai will be ω[2i+1], namely

{aj : j ∈ ω}. Thus Ai is computable and infinite. Ai will be the union of sets

As
α, with α ranging over ω2i+13 and s ∈ ω, and we will write As

i for
⋃
{As

α : α ∈
ω2i+13}. Each As

α is a bin into which we place the elements which we manipulate
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(at stage s) to try to defeat any possible isomorphism between Ai and Bi, based

on the assumption that Si(α) holds. (Each element of Ai is used in only one such

strategy at stage s, so the different bins at stage s are disjoint: As
α ∩ As

β = ∅ for

α 6= β.)

We now fix i and order the elements α of ω2i+13 in order type ω. (Specifically,

pick a computable bijection fi : ω2i+13 → ω, uniformly in i, and define α ≺ β

if and only if fi(α) < fi(β).) An α-strategy can only be injured by a β-strategy

with β ≺ α, and then only at a stage s such that ψi(s) = β. The strategy which

succeeds will be the strategy for that α for which Si(α) holds, namely the least

α such that α = ψi(s) for infinitely many s. This strategy will be injured only

finitely often by the β-strategies for those β ≺ α, and will not be injured at all by

the γ-strategies with α ≺ γ.

The ordering <s which we define on the elements of As
i at stage s will respect

the ordering ≺, in that for aj ∈ As
β and ak ∈ As

α with β ≺ α, we will have

aj <s ak. Also, if ψi(s+1) = α, the elements from each bin As
γ with γ � α will be

taken out of this bin and dumped (all together) into the bin As+1
α at stage s+ 1.

This constitutes an injury to the γ-strategy, which must then start its work anew.

We write Aα for the set of elements which reach the α-th bin at some point and

stay there forever after,

Aα =
⋃
s

⋂
t≥s

At
α.

For all α ∈ ω2i+13, let A0
α be the empty set, and let b̂0α and c0α be undefined.

At each stage s > 0, we let α = ψi(s).

Step 1. We let

As
α =

 ⋃
γ�α

As−1
γ

 ∪ {as}.

Also, for each γ � α, set As
γ = ∅, and for each β ≺ α, set As

β = As−1
β .

Step 2. Let b̂sγ be undefined for every γ � α, and let b̂sβ = b̂s−1
β for every

β ≺ α. If b̂s−1
α is defined, let b̂sα = b̂s−1

α . Otherwise set n = |
⋃

β≺αA
s
β |, and check

whether there are (at least) n + 1 distinct elements above l(α) and below u(α)
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in the ordering given by ϕi,s. If so, take b̂sα to be the (n + 1)-st of these, in the

ordering given by ϕi,s, so that csα = n; if not, then b̂sα is undefined.

Step 3. We now define the ordering on As
i , by ordering each As

β with β � α

and respecting the order of the bins. As in Section 1.2, we let

xs = max{x : (∃t < s)[x ≤ t & Cs�x = Ct�x]},

ts = min{t : xs ≤ t < s & Cs�xs = Ct�xs}.

We will need to preserve the order <ts on {aj ∈ As
i : j < xs} in order to obey

the permitting condition. Therefore we prove, by induction, that <ts respects the

order of the bins As
β . In fact, <ts respects the order of the bins At

β for every t > ts.

The inductive step follows from Step 1, for all j, k, t, β, β′, γ, and γ′,

[aj ∈ At
β ∩ A

t+1
β′ & ak ∈ At

γ ∩ At+1
γ′ & β � γ] =⇒ β′ � γ′.

As in the basic module (see page 18), we now ask, for each β � α, whether

csβ > xs.

Case A. csβ > xs, or csβ is undefined.

In this case we preserve the order <ts on {aj ∈ As
β : j < xs}. (This will

satisfy the permitting condition given below.) Above these elements, but below

all elements of ∪γ�βA
s
γ , we then place all remaining elements of As

β , ordered in

increasing order of subscript.

Case B. csβ ≤ xs.

In this case we preserve the <ts order on its entire domain of definition, namely

{aj ∈ As
β : j ≤ ts}. Above these elements we place the elements of {aj ∈ As

β :

j > ts & ψi(j) � β}, in increasing order of subscript. We then put the elements

of {aj ∈ As
β : j > ts & ψi(j) = β} in reverse order of subscript and place them

consecutively so that the leftmost of them is the (csβ +1)-st element of
⋃

β′�β A
s
β′ .

(If there are fewer than csβ elements in ∪β′�βA
s
β′ already ordered by <s, then we

simply put these new elements at the right end of As
β , again in reverse order of

subscript.) This completes the construction.
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The ordering A which is the goal of this paper will be precisely

C(A0,A1, . . .) = S0 +A0 + S1 +A1 + . . . .

Notice that since the entire construction was uniform in i, we can string the Si’s

and Ai’s together computably. We show below that deg(Ai) ≤T C for each i, so

A will be Turing-reducible to C. (The orders Si are all computable, uniformly in

i.) Indeed, the Si and Ai were constructed so that the union of all their universes

is precisely ω. The ordering <A respects the rows of ω, and within each row ω[2i]

or ω[2i+1] it is given by the ordering on Si or Ai, respectively.

The proofs of the following two lemmas are identical to those of Lemmas 1.3.2

and 1.3.3 in the basic module.

Lemma 1.4.1 (Permitting Condition) If Cs�m = Ct�m and aj , ak ∈ Ai with

j, k < m ≤ min(s, t), then

aj <s ak if and only if aj <t ak.

Lemma 1.4.2 For each i, the orders <s converge to a linear order <Ai
on

Ai =
⋃

sA
s
i (= ω[2i+1]). Moreover, <Ai

is Turing-computable in C, uniformly

in i.

Lemma 1.4.3 For any two noncomputable ∆0
2 sets C and C ′, any computable

approximations {Cs} and {C ′s}, and any i, the linear orders Ai and A′i built by

the above construction are isomorphic.

Proof. We will show that each order Ai built by the construction is independent of

C. Notice that the only time C is used in the construction is in Step 3, and there

it rearranges the order of certain elements but never moves elements from one As
α

to another As
β . The movement of elements from one As

α to another As
β depends

only on the function ψi. Therefore, for each α and s, the set As
α is independent of
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C, although the ordering of the elements of the set may depend on C. Also, the

definitions of the elements b̂sα in Step 2 depend only on ϕi, ψi, and the sizes of the

sets As
α, all of which are independent of C.

Fix i, and let α ∈ ω2i+13 be minimal such that ψ−1
i (α) is infinite. (If ψ−1

i (α) is

finite for all α, then every Aα is finite, so Ai
∼= ω, independent of choice of C.) Let

s0, s1, . . . be the true stages in the approximation {Cs} of C, in increasing order.

We deal first with the case in which lims b̂
s
α diverges. Pick the least true stage

sq such that ψi(s) � α for all s ≥ sq. By Step 2 of the construction, we know

that if s ≥ sq and b̂sα is defined, then b̂s+1
α is defined and equals b̂sα. Therefore, b̂sα

must be undefined for every s ≥ sq. But then every corresponding csα is undefined,

so in Step 3 after stage sq, we always are in Case A, which instructs us simply

to place the elements with subscripts ≥ xs at the right end of As
α, in increasing

order of subscript. Finitely many elements lie in ∪β≺αAβ , and any other element

aj must wind up in Aα. (Initially aj may go into some At
γ with γ � α, but it

will be dumped into At′
α, at the next t′ with ψi(t

′) = α.) Eventually we will reach

a true stage sp with aj ∈ A
sp
α and j < xsp , and at all true stages thereafter, no

more elements will be placed below aj . Since the orders <s converge and the true

stages form an infinite subsequence, this means that aj can have only finitely many

predecessors in <Ai
. So the order Ai is isomorphic to ω, independent of choice of

C.

Now suppose that the elements b̂sα converge to some element b̂α of Bi. Then

the sequence {csα} is defined for cofinitely many s and either converges to some

cα ∈ ω (if b̂α has exactly cα predecessors in the interval (l(α), u(α)) of Bi) or goes

to infinity (if b̂α has infinitely many predecessors there).

In the case with only finitely many predecessors, we choose a true stage s = sq

so large that csα = cα and xs > cα and ψi(t) � α for all t ≥ s. Then for each true

stage sp with p > q, we have c
sp
α = cα < xs ≤ xsp so we are in Case B of Step 3

of the construction. Therefore, at each such sp, we preserve <s(p−1)
on its domain

of definition, A
s(p−1)
i . Define the numbers i0, i1, . . . is ∈ {0, 1, . . . s} so that

ai0 <s ai1 <s · · · <s ais .
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Since tsp = s(p−1), induction on p yields

ai0 <sp ai1 <sp · · · <sp ais .

Moreover, since we are in Case B at every such true stage, no element is ever

inserted to the left of the cα-th element ai(cα−1)
. Thus the order which we build

will have initial segment cα.

We claim that the rest of the order has type ω∗ + ω, so that the entire order

has type cα + ω∗ + ω. The ω∗-chain is built of those elements aj with j > s and

ψi(j) = α. There are infinitely many such elements still to be added to Ai, and

each of them, once added, will be inserted (possibly along with other elements)

immediately after ai(cα−1)
at the next true stage, building the ω∗-chain above

ai(cα−1)
.

The ω-chain is built of those elements aj with j > s and ψi(j) � α. (There are

infinitely many such, since the range of ψi is all of ω2i+13.) For such an element,

let t be the first stage such that aj ∈ At
α, and let sp be the first true stage ≥ t. If

there is no true stage between stage j and stage t, then aj will be placed (possibly

along with other elements) at the right end of A
sp
α , by Case B of Step 3. If there

was a true stage between j and t, then aj will be placed at the right end of A
sp
α

(possibly along with other elements) by the preservation of the order <s(p−1)
at

stage sp. In either case, ts(p+1)
= sp ≥ j, and since we are in Case B at every

true stage after s, the order <sp is preserved (on its domain of definition) at every

subsequent true stage. New elements ak will be added at subsequent true stages

only to the right of aj (if ψi(k) � α) or immediately after ai(cα−1)
(if ψi(k) = α).

Since the true stages form an infinite subsequence, this allows us to deduce the

type of the order Ai: it will be of the form cα + ω∗ + ω. Thus the order type of

Ai is independent of C in this case.

In the case where the interval (l(α), b̂α) of Bi is infinite, we claim that Ai
∼= ω.

Claim 1.4.4 If lims c
s
α = ∞, then each aj ∈ Aα has only finitely many predeces-

sors in Ai.
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Proof. Fix j. There will be a true stage s = sq for which xs > j and (∀t ≥
s)ψi(t) � α, and by Lemma 1.2.3, we may also assume that csα > xs. Therefore,

at stage s we will be in Case A of Step 3, so all elements ak of As
α with k ≥ xs

will be placed above the elements of {am ∈ As
i : m < xs}, and hence above aj .

Thus aj has fewer than xs predecessors under <s, and all of those predecessors

have subscripts < xs and therefore will precede aj at every subsequent true stage

sp.

We now induct on the true stages sp with p > q, to see that the predecessors

of aj under each <sp are precisely the predecessors of aj under <s(p−1)
. Let sp

be a true stage with p > q. If we are in Case B of Step 3 at stage sp, then the

ordering <s(p−1)
is not injured, and all new elements are placed either after the

c
sp
α -th element, hence to the right of aj (since c

sp
α ≥ csα > xs and by induction j has

fewer than xs predecessors under <s(p−1)
), or else at the right end of A

sp
α . Thus aj

receives no new predecessors at such a stage. If we are in Case A of Step 3 at stage

sp, then all elements with subscripts ≥ xsp are moved to the right end of A
sp
α , and

all other elements, including aj and all its predecessors, are left alone. Therefore,

for each p > q, the predecessors of aj under <sp are precisely the predecessors of

aj under <s. Since the true stages form an infinite subsequence of ω, we see that

indeed aj has only those (finitely many) predecessors under <Ai
, just as we had

claimed.

This holds for every aj ∈ Aα, while each Aβ (β ≺ α) is finite and each Aγ (γ � α)

is empty, so clearly Ai
∼= ω, independent of the choice of C. (Notice that we

did use the noncomputability of C in applying Lemma 1.2.3.) This completes the

proof of Lemma 1.4.3.

Corollary 1.4.5 For each i, the linear order A = C(A0,A1, . . .) has a unique

interval isomorphic to Si.

(Here C is the operator defined in (1.2), so A is precisely the order given in (1.1).)

Proof. From the proof of Lemma 1.4.3, we see that the only possible outcomes of

the construction of each Ai are ω and n+ ω∗ + ω, where n is finite. None of these
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has an interval isomorphic to ν, the countable dense linear order with end points,

but every one is infinite, so the only copy of 1 + ν + i+ ν + 1 in A is Si itself.

Corollary 1.4.6 A is not isomorphic to any of the computable linear orders Bi.

Proof. We note first, using the preceding corollary, that if A ∼= Bi for some i,

then Bi has unique intervals isomorphic to Si and Si+1. Hence there is a unique

α ∈ ω2i+13 for which Si(α) holds, so ψ−1
i (α) is infinite, but ψ−1

i (β) is finite for all

β 6= α. Since A ∼= Bi, Ai must be isomorphic to the interval (l(α), u(α)) of Bi.

If the sequence 〈b̂sα〉 diverges, then b̂sα is undefined for cofinitely many s, as noted

in the proof of Lemma 1.4.3. By Step 2 of the construction, this can only happen

if the interval (l(α), u(α)) contains at most |
⋃

β≺αAβ | elements, But Ai
∼= ω, so

Bi 6∼= A.

If b̂sα converges to an element b̂α with only cα-many elements between l(α) and

b̂α, then Ai
∼= cα + ω∗ + ω. Thus every element of Ai has either fewer than

cα predecessors or infinitely many in Ai, so no isomorphism could take b̂α to any

element of Ai.

Finally, if b̂sα converges to an element b̂α with infinitely many elements between

l(α) and b̂α, then Ai
∼= ω, so again there can be no isomorphism taking b̂α to any

element of Ai.

Thus A is a linear order with no computable copy. However, for every non-

computable ∆0
2 set C, we have seen (in Lemma 1.4.2) that there is a copy of A

computable in C. We discuss Julia Knight’s full theorem (from [28]) in the next

section, as Theorem 1.5.2, but an easy consequence of it, cited in [25] and [7],

implies that for each such C, there is a copy of A whose Turing degree is exactly

the degree of C. This is precisely the property we had promised would hold for A.
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1.5 Further Questions

The obvious generalization of Theorem 1.1.6 would be a positive answer to

Downey’s third question:

Question 1.1.4 (Downey) Is there a linear order whose spectrum contains every

degree except 0?

This question remains open, however. It is known that for every noncomputable

degree C there is a linear order whose spectrum includes C but not 0. However,

Knight’s proof of this result (see [7]) is highly nonuniform: one uses the Downey-

Seetapun result for ∆0
2 degrees, a coding construction for non-low2 degrees, and a

combination of these two techniques for the remaining degrees. Therefore, it would

be far harder to make Knight’s construction yield the same result independent of

the choice of C, as we managed to do for the Jockusch-Soare construction.

A more general question, also posed by Downey [7], is simply to ask what

spectra are possible for a linear order.

Question 1.5.1 (Downey) What can be said about Spec(L) for a given linear

order L?

There are two main results so far. One we have already used in proving Theorem

1.1.6, namely Knight’s result that the spectrum must be closed upwards under

Turing reducibility. This follows from a stronger theorem of Knight [28].

Theorem 1.5.2 (Knight) If A is any structure, then exactly one of the following

two statements holds:

(5.1) For all Turing degrees C ≤T D, if there is an isomorphic copy of A of degree

C, then there is an isomorphic copy of A of degree D;

(5.2) There exists a finite subset S in the universe A of A such that any permuta-

tion of A fixing S is an automorphism of A.



33

For any infinite linear order L, (5.2) clearly fails, so the upward-closure property

(5.1) holds. (If L is finite, then (5.2) holds, and indeed in this case every copy of

L is computable.)

The second main result about the spectrum of a linear order is due to Richter

[40]:

Theorem 1.5.3 (Richter) If the spectrum of a linear order has a least degree,

then that degree is 0.

The least degree of the spectrum of a structure is often simply called the degree

of the isomorphism type of that structure. Thus, Richter’s result says that 0 is

the only possible degree for the isomorphism type of a linear order; a linear order

with no computable copy cannot have any least degree in its spectrum. This can

be viewed as a result on the difficulty of coding sets into linear orders. If we wish

to code a noncomputable set S into a linear order, so that S would be computable

from every copy of the order, then that order cannot have a copy computable from

S. (Otherwise, deg(S) would be the least degree of the spectrum of the linear

order.)

These two results rule out many possible spectra for linear orders. On the other

hand, Theorem 1.1.6 is an example of a positive response to Question 1.5.1: the

spectrum can contain all ∆0
2 degrees except 0. We can also use Knight’s result

on noncomputable degrees to show that it is possible to separate any two degrees

C <T D via the spectrum of a linear order. That is:

Corollary 1.5.4 If C <T D, then there exists a linear order L such that D ∈
Spec(L) and C /∈ Spec(L).

Proof. Simply take Knight’s proof for the case C = 0 and relativize it to the degree

C.

We might ask if it is possible to separate any two Turing degrees in this way, even

if they are incomparable. Also, we can ask if it is possible to separate collections

of degrees:
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Question 1.5.5 If P and N are collections of Turing degrees such that no degree

in P is reducible to any degree in N, is there a linear order L whose spectrum

contains all of P but does not intersect N?

This question is intended to be asked for specific choices of P and N, particu-

larly classes of c.e. sets (or ∆0
2 sets) whose indices cannot be computably separated.

We have seen in the preceding sections that linear orders can contain more informa-

tion than subsets of integers. There is no set which is computable in every nonzero

∆0
2 degree but not in 0, whereas there is a linear order which is computable in

every ∆0
2 degree except 0. What else can linear orders do? For instance, could a

linear order contain enough information to separate the high ∆0
2 sets from the low

ones?

Clearly the answer to Question 1.5.5 is not always positive, for otherwise we

could contradict Richter’s result by taking P to be the upper cone above a noncom-

putable degree C, including C itself, and N to be the complement of P. Indeed,

this is an example in which a set (namely C) contains information which a lin-

ear order cannot contain (namely, how to compute C). Knight’s and Richter’s

results both clearly restrict the amount of information encoded in a linear order.

Perhaps there are other common mathematical structures which escape Richter’s

restriction, which would entail failing her “Recursive Enumerability Condition”

(see [40]). Knight’s restriction appears inevitable, since under (5.2) in Theorem

1.5.2, the information contained by the structure is essentially encoded in a single

finite set.
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2.1 Introduction

The computably enumerable sets form an upper semi-lattice under Turing re-

ducibility. Under set inclusion, they form a lattice E , as first noted by Myhill

in [35], and the properties of a c.e. set as an element of E often help determine

its properties under Turing reducibility. Even before Myhill, Post had suggested

that there should be a property of c.e. sets, definable using the inclusion relation,

which would imply that the Turing degree of such a set must lie strictly between

the computable degree 0 and the complete c.e. degree 0′.

Post’s own attempts to find such a property failed. The properties he defined

turned out to be extremely useful in computability theory, but each of them –

simplicity, hypersimplicity, and hyperhypersimplicity – actually does hold of some

complete set. The existence of a Turing degree between 0 and 0′ was first proven

by completely different means, namely the finite injury constructions of Friedberg

and Muchnik ([15], [34]).

Post’s Program, the search for an E-definable property implying incomplete-

ness, remained unfinished until 1991, when Harrington and Soare ([21]) found a

property Q(A) definable in E such that every A satisfying Q must be both non-

computable and Turing-incomplete. We give their definition of Q(A):

Q(A) : (∃C)A⊂mC(∀B ⊆ C)(∃D ⊆ C)(∀S)S<C(
B ∩ (S − A) = D ∩ (S − A) =⇒

(∃T )[C ⊂ T & A ∩ (S ∩ T ) = B ∩ (S ∩ T )]

)
.

Here S < C abbreviates (∃Ŝ)[S ∪ Ŝ = C & S ∩ Ŝ = ∅]. (All variables represent

elements of E , namely c.e. sets.) AtB denotes the union of two disjoint sets A and

B. Also, A ⊂m C abbreviates “A is a major subset of C,” meaning that A ⊂ C

with C −A infinite such that for every W , if C ⊂ W , then A−W is finite. Since

the property of being finite is E-definable, the statement A ⊂m C is E-definable as

well.

In this chapter we generalize the property Q(A) to an E-definable property
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R(A0, A1) of two c.e. sets. The statement of R is as follows:

R(A0, A1) : A0 ∩ A1 = ∅ &

(∃C)(∀B ⊆ C)(∃D ⊆ C)(∀S < C)(∃T )
[
A0 ∪ A1 ⊂m C &[

(B ∩ (S − A0)) ∪ A1 = (D ∩ (S − A0)) ∪ A1 =⇒

[C ⊂ T & (A0 ∩ S ∩ T ) ∪ A1 = (B ∩ S ∩ T ) ∪ A1]
]]
.

This property can be read to say that A0 satisfies the Q-property on A1. Indeed,

the statement R(A0, ∅) is equivalent to Q(A0). In Section 2.2 we prove that just

as with the Q-property, R(A0, A1) implies that A0 is not of prompt degree, and

hence not Turing complete in Σ0
1. (A set which is not of prompt degree is said to

be tardy, and since A0 satisfies an E-definable property implying tardiness, we say

that A0 is “definably tardy.” Since all tardy sets are incomplete, we also say that

A0 is “definably incomplete.”)

Alternatively, we can interpret R(A0, A1) in the lattice E/A, where A is the

principal ideal in E generated by A1. (See [42], p. 225.) In this lattice, C ⊆A D is

defined to mean C ⊆ D ∪ A1, and C ≈A D if C ⊆A D and D ⊆A C. Essentially,

R(A0, A1) says that Q(A0) holds in E/A, with containment and equality replaced

by ⊆A and ≈A. The only differences are that we cannot state the properties

A0 ∩ A1 = ∅ or A1 ⊆ C in E/A, and that we have left the quantifier (∀S < C)

in R(A0, A1) just as in the original Q-property, rather than restating it to hold

on A1. Choosing not to restate it makes the R-property slightly stronger, but the

stronger version can still be satisfied.

In Section 2.3 we construct c.e. sets A0 and A1 satisfying R, to show that the

R-property is non-vacuous. A0 and A1 will also be noncomputable. Thus, the

following E-definable formula is non-vacuous:

(∃A1)[A0 >T ∅ & R(A0, A1)]

This formula guarantees that A0 is noncomputable and incomplete, just as the

property Q(A) does for A. (Recall that computability is equivalent to the property
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of having a complement in E .)

We then consider Friedberg splittings. Two disjoint c.e. sets B0 and B1 form

a Friedberg splitting of B = B0 tB1 if for every c.e. W :

W −B is not c.e. =⇒ neither W −B0 nor W −B1 is c.e.

The sets B0 and B1 are each said to be half of this Friedberg splitting. The

sets A0 and A1 which we construct will have the additional property of forming a

Friedberg splitting of their union.

We use the R-property to show that A0 and A1 cannot lie in the same orbit

under automorphisms of E . (In the argot of this topic, we say that A0 and A1 are

not automorphic. Two sets are automorphic if they lie in the same orbit.) This will

follow because the A1 we construct will be of prompt degree, hence automorphic

to a complete set, by another result of Harrington and Soare in [21].

The orbits of halves of Friedberg splittings have been a subject of interest

for some time, at least since the discovery of the hemimaximal sets. A set is

hemimaximal if it is half of a nontrivial splitting of a maximal set. This is E-

definable, and Downey and Stob proved that the hemimaximal sets form an orbit

(see [11]).

Since the maximal sets themselves form an orbit, and since few orbits are known

in E , this led to the conjecture that if O is any orbit in E , then the collection of

“hemi-O” sets, i.e. halves of nontrivial splittings of sets in O, might also be an

orbit. Alternatively, it was conjectured that halves of Friedberg splittings of sets in

O might form an orbit. (For the orbit of maximal sets, these classes coincide, since

any nontrivial splitting of a maximal set is automatically a Friedberg splitting.)

Downey and Stob refuted both conjectures in [13], by producing two Friedberg

splittings B0 t B1 = C0 t C1 of the same set B, which were definably different

in E . Hence B0 and C0 satisfy different 1-types in the language of inclusion and

cannot be automorphic.

The present result goes a step further. Since A0 is definably tardy, every set

in its orbit must also be tardy, and hence A1 must lie in a different orbit. This is
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thus the first example of a single Friedberg splitting with the two halves known to

lie in different orbits in E . It is also the first application of Harrington and Soare’s

Q-property to derive results about Friedberg splittings.

Our notation mostly follows that of [47]. The finite sets form an ideal F ⊂ E ,

and we write E∗ for the lattice E/F . (Computability is definable in E as the

property of possessing a complement, and then finiteness is definable, since a set

is finite if and only if all its subsets are computable.) We write A ⊆∗ B if B − A

is finite, and A =∗ B if A ⊆∗ B and B ⊆∗ A.

We use the standard enumeration {We}e∈ω of the computably enumerable sets,

with finite approximations {We,s}s∈ω to each. For the c.e. sets which we construct

ourselves, we will also give finite approximations, usually writing A = ∪s∈ωA
s. If

A and B are both enumerated this way, we write A \B = {x : (∃s)[x ∈ As−Bs]},
and A ↘ B = {x ∈ A ∩ B : (∃s)[x ∈ As − Bs]}. Thus when an element not yet

in B enters A, we put it into A \ B, and if it later enters B, then we put it into

A↘ B as well.
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2.2 The R-Property

In order to guarantee that the set A0 is not automorphic to a complete set, we

will force it to satisfy the lattice-definable property R defined in Section 2.1, and

prove that this implies tardiness of A0. Tardiness itself does not guarantee that

a set cannot be automorphic to a complete set, of course, but satisfaction of R

does, since every other set automorphic to A0 must also satisfy R and therefore

must also be tardy, hence incomplete. (A tardy set must be half of a minimal pair

under ≤T , as shown in [47], and therefore must be incomplete.) We restate the

R-property here:

R(A0, A1) : A0 ∩ A1 = ∅ &

(∃C)(∀B ⊆ C)(∃D ⊆ C)(∀S < C)(∃T )
[
A0 ∪ A1 ⊂m C &[

(B ∩ (S − A0)) ∪ A1 = (D ∩ (S − A0)) ∪ A1 =⇒

[C ⊂ T & (A0 ∩ S ∩ T ) ∪ A1 = (B ∩ S ∩ T ) ∪ A1]
]]

Theorem 2.2.1 If A0 and A1 are two c.e. sets such that R(A0, A1) holds, then

A0 is not of prompt degree.

Proof. The proof is similar to the corresponding result for the Q-property in [21].

Given A0 and A1, we pick a set C as specified in R(A0, A1) and fix enumerations

{As
0}s∈ω of A0 and {Cs}s∈ω of C such that A0 ⊆ C ↘ A0.

To prove that a given ϕe is not a promptness function for A0, we need to find an

infinite c.e. set Wi with standard enumeration {Wi,s}s∈ω satisfying the tardiness

requirement Te:

[(∀s)ϕe(s)↓≥ s] =⇒ (∀x)(∀s)[x ∈ Wi,s −Wi,s−1 =⇒ As
0 � x = A

ϕe(s)
0 � x ].

We will prove independently for each e that Te holds. Having fixed e, we

will assume for the rest of this section that ϕe is total with ϕe(s) ≥ s for ev-

ery s, since otherwise Te is automatically fulfilled. We will build a strong array
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{V〈α,k〉,n}k,n∈ω;α∈ω×ω of c.e. sets with enumerations {V s
〈α,k〉,n}s∈ω. The Slow-

down Lemma then gives a computable function f such that for each 〈α, k〉 and

each n, Wf(〈α,k〉,n) = V〈α,k〉,n and V〈α,k〉,n ↘ Wf(〈α,k〉,n) = V〈α,k〉,n, so that no

element of V〈α,k〉,n enters Wf(〈α,k〉,n) until it has already entered V〈α,k〉,n. Period-

ically the strategy for a given 〈α, k〉 may be injured by a higher-priority strategy.

If this happens while we are enumerating V〈α,k〉,n, then we give up on V〈α,k〉,n
and start enumerating V〈α,k〉,n+1. There will exist an 〈α, k〉 which is only injured

n times (with n < ω), yet receives attention at infinitely many stages, and the

corresponding V〈α,k〉,n will be infinite and will be the set which proves satisfaction

of Te.

We define the function n(〈α, k〉, s) to keep track of which V〈α,k〉,n we are enu-

merating at stage s. In particular, if the 〈α, k〉-strategy receives attention at

stage s + 1, then we may add an element to V s+1
〈α,k〉,n(〈α,k〉,s+1). To avoid nota-

tional chaos, however, we will write V s+1
〈α,k〉,n in the construction and understand

V s+1
〈α,k〉,n(〈α,k〉,s+1) for it.

To ensure that one of these Wf(〈α,k〉,n) will satisfy Te, we build a c.e. set B to

which to apply the property R. When we want to preserve A0 � x from stage s

until stage ϕe(s) so as to satisfy Te, we do so by restraining all elements < x from

entering B until stage ϕe(s). The R-property then prohibits such elements from

entering A0, since if they did, we would then hold them out of B forever after,

thereby contradicting R(A0, A1).

To apply the R-property, we need to know which c.e. set Wi is the D specified

by the property. Of course, we do not have this information, but our strategy is

to use S to cover all the possibilities. Specifically, in the construction we will split

C into the disjoint union of c.e. sets:

C =
⊔
i∈ω

Si.

and apply the R-property to each Si, with Si in the role of S. (Clearly each

Si < C.) We use each Si to handle the possibility that D = Wi.
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Of course, the R-property states that the restraints we place on elements from

entering B only affect A0 on S∩T ∩A1. Since R(A0, A1) also states that A0∩A1 is

empty, we do not need to worry about elements of A1, for they can never enter A0.

We are allowed to choose the S, since the matrix of R applies for all S, and indeed

we have already done so above (namely S = Si, for each i in turn). However, we

can only guess at the set T .

To determine the index j such that T = Wj corresponds to the set S which we

choose, we use a Π0
2 guessing procedure, since the conclusion in the matrix of R is

a Π0
2 property. The j for which T = Wj will be the least j which receives infinitely

many guesses under this procedure. (We ensure that the hypothesis of the matrix

holds, by periodically putting all elements of Ds ∩ (Ss −As
0) into Bs.) Moreover,

in the construction, we will subdivide each Si into the disjoint union of c.e. sets

Si,j :

Si =
⊔
j∈ω

Si,j .

Si,j is used to handle the possibility that T = Wj , so we pay attention to Si,j each

time j is named by the guessing procedure. Thus the Si,j corresponding to the

correct T will receive attention infinitely often.

To simplify the notation, we let the variable α = 〈i, j〉 range over ω × ω, and

define:

Dα = Wi

Sα = Si,j

Tα = Wj .

We order the elements α of ω×ω by pulling back the usual order < on ω to ω×ω
via a standard pairing function. Thus each α has only finitely many predecessors

under <.

For each α, let F (α) be the conjunction of the hypothesis and conclusion in
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the matrix of the R-property:

F (α) : (B ∩ (Sα − A0)) ∪ A1 = (Dα ∩ (Sα − A0)) ∪ A1 & (2.1)

[C ⊂ Tα & (A0 ∩ Sα ∩ Tα) ∪ A1 = (B ∩ Sα ∩ Tα) ∪ A1] (2.2)

Then F (α) is a Π0
2 condition, uniformly in α, so there is a computable total

function g such that F (α) holds just if g1(α) is infinite. We enumerate the c.e. set

Zα = g1(α) by setting Zs
α = {t ≤ s : g(t) = α}.

Now we narrow down each Tα to a c.e. subset Uα, enumerated by:

Us
α = Us−1

α ∪ {x ∈ T s
α − Cs : x < |Zs

α|}

Thus, if Tα actually is the T corresponding to Si, then Uα will contain all of Tα

except certain elements of C. Hence F (α) will hold with Uα in place of Tα. On

the other hand, if F (α) fails, then Zα and Uα are both finite.

If F (α) holds, then C ⊆ Uα, so A0 ⊆∗ Uα∪A1, because A0 ∪ A1 ⊂m C. For the

least α such that F (α) holds, our construction of Ss+1
α will yield C−A0 ⊆∗ Sα∪A1,

with Sβ finite for all β < α. Hence there will exist a k such that

C − A0 ⊆ Sα ∪ A1 ∪ {0, 1, . . . k − 1} (2.3)

Line (2.3) is a Π0
2 statement, uniformly in k and α, since our definition of Sα will

be uniform in α. Therefore, there exists a total function hα such that (2.3) holds

if and only if h−1
α (k) is infinite. We define:

h(s) = hg(s)(n), where n = |{t < s : g(t) = g(s)}|.

We will enumerate sets V〈α,k〉,n for each α, k and n. For the least α with Zα

infinite and the least k with h−1
α (k) infinite, the set V〈α,k〉,n (for some n) will be

the Wi required by Te. Elements of each V〈α,k〉,n (the “witness elements” for the

requirement Te) will be denoted vs
〈α,k〉. Each vs

〈α,k〉 will enter V〈α,k〉,n for at most

one n.
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The Slowdown Lemma (see [47], p. 284) then yields a computable function f

such that, for every 〈α, k〉 and every n, V〈α,k〉,n = Wf(〈α,k〉,n), and at every stage

s,

(V s
〈α,k〉,n − V s−1

〈α,k〉,n) ∩Wf(〈α,k〉,n),s = ∅.

When a witness element vs
〈α,k〉 enters V〈α,k〉,n, we will find the stage ts〈α,k〉 > s at

which vs
〈α,k〉 enters Wf(〈α,k〉,n) and restrain (with priority 〈α, k〉) elements ≤ vs

〈α,k〉
from entering A0 until stage ϕe(t

s
〈α,k〉). (Recall that Te assumes ϕe to be total.)

Thus we will have A
ts〈α,k〉
0 �vs

〈α,k〉 = A
ϕe(ts〈α,k〉)
0 �vs

〈α,k〉. If we can achieve this for all

vs
〈α,k〉 in the (infinite) set V〈α,k〉,n for some n, then the set Wf(〈α,k〉,n) will be the

set required by Te to prove that ϕe is not a promptness function for A0.

At stage 0, for all 〈α, k〉, we set n(〈α, k〉, 0) = 0 and V 0
〈α,k〉,0 = ∅, with v0

〈α,k〉 ↑
and t0〈α,k〉 ↑. Also, let every S0

α = ∅ and let B0 = ∅.
At stage s + 1, we first define each Ss+1

α . For each x ∈ Cs+1 − Cs, find the

least α such that x ∈ Us
α and put x into Ss+1

α . If there is no such α, put x into

Ss+1
ω . (The c.e. set Sω simply collects elements which enter C without entering

any Sα. Thus C =
⊔

α≤ω Sα.)

Set α = g(s), and define:

Bs+1 = Bs ∪
{
x :

x ∈ Cs − As
0 & (∃β ≤ α)[x ∈ Ds+1

β ∩ Ss+1
β &

(∀δ ≤ β)(∀k < s)[ts〈δ,k〉 ↓ =⇒ x ≥ vs
〈δ,k〉]]

}

For each strategy which is injured at stage s+ 1, we begin enumerating a new

witness set. To this end, set n(〈γ, k〉, s + 1) = n(〈γ, k〉, s) + 1 and vs+1
〈γ,k〉 ↑ and

ts+1
〈γ,k〉 ↑ for each 〈γ, k〉 satisfying any of the following conditions:

• γ > α.

• γ = α and k > h(s).

• There exists x < k with x ∈ As+1
0 − As

0.

• There exists β < γ with Ss+1
β 6= Ss

β .
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• There exists β < γ such that Us+1
β contains an element ≥ m, where m =

min(Bs+1 −Bs).

For all other 〈γ, k〉, set n(〈γ, k〉, s+ 1) = n(〈γ, k〉, s).
We now define the witness sets at stage s + 1. For each 〈β, k〉 ≤ 〈α, h(s)〉 (in

the lexicographic order) which was not injured at stage s+ 1:

1. If vs
〈β,k〉 ↑ and 〈β, k〉 6= 〈α, h(s)〉, let vs+1

〈β,k〉 and ts+1
〈β,k〉 diverge also, with

V s+1
〈β,k〉,n = V s

〈β,k〉,n.

2. If vs
〈α,h(s)〉 ↑, let vs+1

〈α,h(s)〉 = s+1, with V s+1
〈α,h(s)〉,n = V s

〈α,h(s)〉,n and ts+1
〈α,h(s)〉 ↑.

3. If vs
〈β,k〉 ↓ but ts〈β,k〉 ↑, let vs+1

〈β,k〉 = vs
〈β,k〉, and ask whether the following

holds:

(∀y)
k≤y≤vs+1

〈β,k〉


y ∈ As+1

0 ∨ y ∈ As+1
1 ∨

y ∈ (Us+1
β − Cs+1) ∨

y ∈ (Cs+1 −Bs+1) ∩ Ss+1
β ∩ Us+1

β

 (2.4)

If (2.4) holds, let V s+1
〈β,k〉,n = V s

〈β,k〉,n ∪ {v
s+1
〈β,k〉} and

ts+1
〈β,k〉 = µt[vs+1

〈β,k〉 ∈ Wf(〈β,k〉,n),t].

(Such a t must exist, since Wf(〈β,k〉,n) = V〈β,k〉,n.) If (2.4) fails, then let

V s+1
〈β,k〉,n = V s

〈β,k〉,n and ts+1
〈β,k〉 ↑.

4. If vs
〈β,k〉 ↓ and ts〈β,k〉 ↓ and ϕe,s(t

s
〈β,k〉) ↓< s, then let vs+1

〈β,k〉 ↑ and ts+1
〈β,k〉 ↑,

with V s+1
〈β,k〉,n = V s

〈β,k〉,n.

5. If vs
〈β,k〉 ↓ and ts〈β,k〉 ↓ but either ϕe,s(t

s
〈β,k〉) ↓≥ s or ϕe,s(t

s
〈β,k〉) diverges,

then let V s+1
〈β,k〉,n = V s

〈β,k〉,n, vs+1
〈β,k〉 = vs

〈β,k〉, and ts+1
〈β,k〉 = ts〈β,k〉.

This completes the construction.

We now use the sets B and Sα to prove that requirement Te is satisfied.

Lemma 2.2.2 If Zβ is finite, then there exists a stage s1 such that ts〈β,k〉 ↑ for all

s ≥ s1 and all k.



46

Proof. Pick a stage s0 such that no s ≥ s0 satisfies g(s) = β, and let k′ =

max{h(s) : g(s) = β}. Then for all k > k′, vs
〈β,k〉 ↑ for all s, and hence ts〈β,k〉 ↑ for

all s. (The construction makes it clear that for any k and s, ts〈β,k〉 can converge

only if vs
〈β,k〉 converges.)

Now suppose k ≤ k′ and vs
〈β,k〉 ↓ for all s ≥ s0. This means that we never

execute Step (4) in the construction after stage s0, and that the 〈β, k〉 strategy

is never injured after stage s0. But if ts〈β,k〉 ever converges after stage s0, then

eventually we must reach Step (4), since we assumed ϕe to be total. Hence ts〈β,k〉
must diverge for all s ≥ s0.

Finally, suppose k ≤ k′ and v
s1,k
〈β,k〉 ↑ for some s1,k ≥ s0. Then vs

〈β,k〉 will diverge

for all subsequent s, since it can only be newly defined at a stage s with g(s) = β.

Thus ts〈β,k〉 will diverge for all subsequent s as well. Letting s1 = maxk≤k′ s1,k

completes the proof.

Lemma 2.2.3 F (α) holds for some α, and for the least such α, there exists a k

such that h−1
α (k) is infinite.

Proof. First we claim that some Zα must be infinite. Suppose not, so Zα is finite

for all α, and F (α) fails for all α. However, the R-property holds, so there must

be some α for which line (2.1) fails. Choose the least such α. Then

(B ∩ (Sα − A0)) ∪ A1 6= (Dα ∩ (Sα − A0)) ∪ A1.

Suppose x ∈ B ∩ (Sα − A0). Pick s such that x ∈ Bs+1 − Bs. Now to go

into Bs+1, x must have been in Ds+1
β ∩ Ss+1

β for some β. Since x ∈ Sα, we know

x /∈ Sβ for all β 6= α. Hence x ∈ Dα, and so

(B ∩ (Sα − A0)) ∪ A1 ⊆ (Dα ∩ (Sα − A0)) ∪ A1.

Therefore, there must be some element x ∈ A1 ∩B ∩Dα ∩ (Sα−A0). Assume

x is the least such element. Now for every β < α, line (2.1) must hold and line
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(2.2) must fail, since we chose α to be minimal satisfying the R-property. Hence

for all β < α,

(B ∩ (Sβ − A0)) ∪ A1 = (Dβ ∩ (Sβ − A0)) ∪ A1.

Now since every Zβ with β ≤ α is finite, there is a stage s0 such that for all s ≥ s0,

g(s) > α, and we may also assume that s0 is so large that x ∈ S
s0
α ∩Ds0

α ∩ Cs0 .

(Notice that x ∈ Sα forces x ∈ C.)

Now use Lemma 2.2.2 to find a stage s1 ≥ s0 such that:

(∀s ≥ s1)(∀β ≤ α)(∀k)[ts1
〈β,k〉 ↑].

Since ϕe is total, there must be a stage s ≥ s1 such that ts〈α,k〉 ↑, and once we reach

this stage s, x must go into Bs1+1, contradicting our assumption that x /∈ B.

Thus, there must be some α such that Zα is infinite. Let α be the least such.

Then every Uβ with β < α is finite. Since F (α) holds, we have C ⊆ Tα, so by our

construction, C ⊆ Uα, and by the major subset property, A0 ⊆∗ Uα ∪ A1.

For this α, we claim that C − A0 ⊆∗ Sα ∪ A1. Suppose x ∈ C − A0. All but

finitely many such x lie in Uα ∪ A1, as noted above. If x ∈ A1, we are done. For

each sufficiently large x ∈ C − A0 − A1, there exists s such that x ∈ Us
α − Us−1

α .

By definition of Us
α, we must have x /∈ Cs. But x ∈ C, so x ∈ Ct+1 − Ct for

some t ≥ s. Hence x ∈ St+1
α by definition of St+1

α , unless there exists β < α with

x ∈ Uβ . But all Uβ with β < α are finite, by our choice of α, so all but finitely

many of these x lie in Sα. Therefore, line (2.3) holds for some k, and h−1
α (k) is

infinite.

Use Lemma 2.2.3 to take the lexicographically least 〈α, k〉 such that F (α) holds

and h−1
α (k) is infinite. Then there are infinitely many stages s for which g(s) = α

and h(s) = k, but only finitely many for which 〈g(s), h(s)〉 precedes 〈α, k〉 in the

lexicographic ordering. Let s0 be the least stage with 〈g(s0), h(s0)〉 = 〈α, k〉 such

that:

• A
s0
0 �k = A0�k, and
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• Bs0�m = B�m, where m = max∪β<αUβ , and

• for all s ≥ s0, 〈g(s), h(s)〉 ≥ 〈α, k〉 lexicographically, and

• S
s0
β = Sβ for all β < α.

The final condition is possible since each Sβ ⊆ Uβ , which is finite for every β < α.

We also let s0 < s1 < s2 < · · · be all the stages s ≥ s0 with 〈g(s), h(s)〉 = 〈α, k〉.
Now the 〈α, k〉-strategy is never injured after stage s0, so for every s ≥ s0,

n(〈α, k〉, s0) = n(〈α, k〉, s), and we write n = n(〈α, k〉, s0). (Thus n is the num-

ber of times the 〈α, k〉-strategy was injured during the construction.) Moreover,

minimality of s0 implies that this strategy was injured at some stage s ≤ s0 such

that there is no s−1 with s ≤ s−1 < s0 and 〈g(s−1), h(s−1)〉 = 〈α, k〉. Therefore,

V s
〈α,k〉,n = V

s0
〈α,k〉,n is empty.

We claim that the subset V〈α,k〉,n satisfies requirement Te. For this we need:

Lemma 2.2.4 For this 〈α, k〉, and for each y ≥ k, there exists an s such that the

matrix of line (2.4) holds of y, 〈α, k〉, and s.

Proof. Let y ≥ k. If y ∈ A0 ∪ A1, we are done. If y ∈ C, then y ∈ Tα since F (α)

holds. But Zα is infinite, so Tα − C ⊆ Uα, and y is in Uα − C, hence in some

Us+1
α − Cs+1.

So suppose y ∈ C − A0 − A1. Now since h−1
α (k) is infinite and y ≥ k, we

know by line (2.3) that y ∈ Sα. But Sα ⊆ Uα ⊆ Tα by definition of Ss+1
α . Since

y /∈ (B ∩ Sα ∩ Tα) ∪ A1 by line (2.2), we know y /∈ B. Thus there is an s with

y ∈ (Cs+1 −Bs+1) ∩ Ss+1
α ∩ Us+1

α . This proves the Lemma.

Now V〈α,k〉,n = Wf(〈α,k〉,n), and if s′ is the stage at which vs′
〈α,k〉 enters

V〈α,k〉,n, then ts
′
〈α,k〉 ↓> s′ by our choice of f from the Slowdown Lemma. Let

s′′ = ϕe(t
s′
〈α,k〉). Then s′ < s′′, since we assumed ϕe to be increasing.

Lemma 2.2.5 V〈α,k〉,n is infinite. Moreover, for any element vs′
〈α,k〉 of V〈α,k〉,n,

with s′ and s′′ as above, we have:

Bs′�vs′
〈α,k〉 = Bs′′�vs′

〈α,k〉 and As′
0 �vs′

〈α,k〉 = As′′
0 �vs′

〈α,k〉.
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Proof. For each vs
〈α,k〉 with s ≥ s0, Lemma 2.2.4 guarantees that there will be a

stage at which Step (3) of the construction applies. The first such stage will be

s′, since at that stage vs
〈α,k〉 = vs′

〈α,k〉 will enter V〈α,k〉,n and ts
′
〈α,k〉 will be defined.

But since ϕe is total, we will eventually reach the stage s′′ > s′ at which Step

(4) applies, leaving vs′′+1
〈α,k〉 undefined. Then at the next sm > s′′, we will define

vsm+1
〈α,k〉 = sm + 1, which is not yet in V sm

〈α,k〉,n. Thus, V〈α,k〉,n must be infinite.

Now pick vs′
〈α,k〉 ∈ V〈α,k〉,n, with s′ and s′′ as above. Since V

s0
〈α,k〉,n is empty,

we know that s′ > s0. If s is any stage with s′ ≤ s < s′′, then we see from the

definition of Bs+1 that an element y can only enter Bs+1 on behalf of some γ such

that y ∈ Ss+1
γ . But then y ∈ Us+1

γ . Since we chose s0 to let Bs0�m = B�m, we

must have γ ≥ α. But ts〈α,k〉 ↓, so y ≥ vs
〈α,k〉 = vs′

〈α,k〉 by definition of Bs+1. Hence

Bs′�vs′
〈α,k〉 = Bs′′�vs′

〈α,k〉.

Having seen that no y < vs′
〈α,k〉 can enter B between stages s′ and s′′, we

prove that no such y can enter A0 at those stages either. First, we know that

A
s0
0 � k = A0 � k by choice of s0. So suppose k ≤ y < vs′

〈α,k〉. Now since vs′
〈α,k〉

entered V〈α,k〉,n at stage s′, we know by line (2.4) that

y ∈ As′
0 ∨ y ∈ A

s′
1 ∨ y ∈ (Us′

α − Cs′) ∨ y ∈ (Cs′ −Bs′) ∩ Ss′
α ∩ Us′

α .

If y ∈ As′
0 , then As′

0 (y) = As′′
0 (y), and if y ∈ A1, then y /∈ A0 at all. Therefore,

we will assume that y /∈ As′
0 ∪ A1 and prove that y /∈ As′′

0 .

If the final clause holds, then y ∈ (Cs′ − Bs′) ∩ Ss′
α ∩ Us′

α . Hence y /∈ Bs′′ , by

the first half of the lemma. If y ∈ As′′
0 , then y /∈ B, since no element that has

entered A0 can later enter B. But then

(A0 ∩ Sα ∩ Tα) ∪ A1 6= (B ∩ Sα ∩ Tα) ∪ A1

since y is on the left side and not on the right side. (Notice that y ∈ Uα implies

y ∈ Tα.) This contradicts line (2.2), which we knows holds because F (α) holds.

Therefore y /∈ As′′
0 .
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So suppose the third clause holds, i.e. y ∈ (Us′
α − Cs′). Then y /∈ Bs′ since

Bs′ ⊆ Cs′ , and so y /∈ Bs′′ . If y ∈ As′′
0 , then we must have y ∈ Cs′′−1 since we

chose enumerations such that A0 ⊆ C ↘ A0. Pick s such that y ∈ Cs − Cs−1;

then s′ < s < s′′ and y /∈ As
0. Now y ∈ Us′

α ⊆ T s′
α , and by definition of Ss

α we will

have y ∈ Ss
α. (Recall that s0 was chosen so large that S

s0
β = Sβ for all β < α.)

But now y /∈ As′′
0 , since otherwise

(A0 ∩ Sα ∩ Tα) ∪ A1 6= (B ∩ Sα ∩ Tα) ∪ A1

just as in the preceding paragraph.

Hence V〈α,k〉,n = Wf(〈α,k〉,n) is an infinite c.e. set which satisfies the tardiness

requirement Te. This completes the proof of Theorem 2.2.1.
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2.3 Satisfaction of R

We now prove that the R-property defined in Section 2.2 is nontrivial. The theorem

establishes several other properties of the sets A0 and A1 as well, in order to yield

the corollaries.

Theorem 2.3.1 There exists a c.e. set A with Friedberg splitting A = A0 t A1

such that all of the following hold:

1. A is promptly simple of high degree.

2. A1 has prompt degree.

3. R(A0, A1).

Corollary 2.3.2 The formula in one free variable A0:

(∃A1)[A0 >T ∅ & R(A0, A1)]

is definable in E and non-vacuous, and implies that A0 is a noncomputable incom-

plete set.

Proof of Corollary. The statement A0 >T ∅ is equivalent to the statement that

A0 has a complement in E , hence is E-definable. The A0 and A1 constructed in

Theorem 2.3.1 satisfy the matrix, since halves of a Friedberg splitting must be

noncomputable. Finally, Theorem 2.2.1 shows that A0 is tardy, hence incomplete.

Corollary 2.3.3 There exists a Friedberg splitting A = A0 tA1 such that A0 and

A1 are not automorphic in the lattice of c.e. sets.

Proof of Corollary. Take the splitting given by Theorem 2.3.1. A1 is prompt, hence

automorphic to a complete set (as shown in [21]). If A0 and A1 were automorphic,

then A0 would also be automorphic to that complete set, say via an automorphism

Φ. But then R(Φ(A0),Φ(A1)) holds, since R is E-definable, so by Theorem 2.2.1,

Φ(A0) is tardy, hence incomplete.
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Proof of Theorem. Let C be any promptly simple set, with computable enumer-

ation C = {Cs}s∈ω. Then C is also of prompt degree, so let v and w be the

prompt-simplicity and promptness functions for this enumeration of C, satisfying

for every i:

Wi infinite =⇒ (∃∞s)(∃x ∈ Wi,s −Wi,s−1)[x ∈ Cv(s)]

Wi infinite =⇒ (∃∞s)(∃x ∈ Wi,s −Wi,s−1)[C
w(s)�x 6= Cs�x]

We construct disjoint sets A0 and A1 and auxiliary sets Di and Ti,j , and set

A = A0 t A1. The approximations to A, A0, and A1 at stage s will be written

As, As
0, and As

1, and will be defined so that As = As
0 ∪ A

s
1 ⊆ Cs for all s. The

construction will satisfy the following requirements for all i and j:

N〈i,j〉 (matrix of R-property) :

[Wi ⊆ C & Wj ⊆ C & C −Wj c.e. &

(Wi ∩ (Wj − A0)) ∪ A1 = (Di ∩ (Wj − A0)) ∪ A1] =⇒
(∃T )[C ⊆ T & (A0 ∩Wj ∩ T ) ∪ A1 =∗ (Wi ∩Wj ∩ T ) ∪ A1]

Mi (major subset requirement) :

C ⊆ Wi =⇒ A ⊆∗ Wi

Pi (prompt simplicity of A) :

Wi infinite =⇒ (∃s)(∃x ∈ Wi,s −Wi,s−1)[x ∈ Av(s)]

Qi (promptness of A1) :

Wi infinite =⇒ (∃s)(∃x ∈ Wi,s −Wi,s−1)[A
w(s)
1 �x 6= As

1�x]

Fi (Friedberg requirement for A0) :

Wi ↘ A infinite =⇒ Wi ∩ A0 6= ∅
Gi (Friedberg requirement for A1) :

Wi ↘ A infinite =⇒ Wi ∩ A1 6= ∅

In the requirement N〈i,j〉, of course, Wi plays the role of B and Wj the role of

S in the matrix of the R-property. We will construct c.e. sets Ti,j for each i and j,

and then refine them to form the T demanded by each N〈i,j〉 Once again we order
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ω × ω in order type ω and write α = 〈i, j〉, this time with:

Bα = Wi

Dα = Di

Sα = Wj′

Ŝα = Wj′′

}
where j = 〈j′, j′′〉

Tα = Ti,j

Nα = Ni,j .

Thus Nα says:

[Bα ⊆ C & Sα t Ŝα = C &

(Bα ∩ (Sα − A0)) ∪ A1 = (Dα ∩ (Sα − A0)) ∪ A1]

=⇒ (∃T )[C ⊆ T & (A0 ∩ Sα ∩ T ) ∪ A1 =∗ (Bα ∩ Sα ∩ T ) ∪ A1].

Nα is a negative requirement, trying to keep elements from entering A0 until

they can do so without harming the R-property (if ever). All the other require-

ments are positive ones, trying to put elements into A0 or A1. There are no

negative restraints on elements of C entering A1, except that they cannot already

be in A0.

Each element which we try to put into A0 to satisfy some Fe or Me must

receive permission to enter A0 from each Nα with α ≤ e. The restraint function

q(x, s) will give the greatest α ≤ e which has not yet given this permission as of

stage s. The priority function p(x, s) keeps track of which requirement Fe or Me

wanted x to enter A0. This can change from stage to stage, for several reasons.

If a higher-priority requirement decides at stage s + 1 that it needs x to enter

A0, then p(x, s + 1) < p(x, s). Alternatively, an Fe could find itself satisfied by

another x′ ∈ As+1
0 and no longer need to put x into A0, although in this case

we leave p(x, s + 1) = p(x, s) so as not to disrupt the flow of elements into A0.

Finally, a higher-priority requirement could make x enter As+1
1 , in which case we

define p(x, s + 1) ↑, removing x from the flow of elements into A0 since we need

A0 ∩ A1 = ∅.
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We use the Recursion Theorem on our construction of A0, C, and Dα to define

the following Π0
2 statement F (α) for each α:

(Bα ∩ (Sα − A0)) ∪ A1 = (Dα ∩ (Sα − A0)) ∪ A1 & Bα ⊆ C & Sα t Ŝα = C.

Since F (α) is Π0
2, there is a computable function g : ω → ω × ω such that

F (α) holds if and only if the set Zα = g−1(α) is infinite. We let Zs
α = g−1(α) ∩

{0, 1, . . . s−1}. Monitoring |Zs
α| will help us determine for which α the hypothesis

in the matrix of the R-property is satisfied. For those α for which the hypothesis

fails, |Zα| is finite, and Nα will only restrain finitely many elements from entering

A0, since we need not satisfy the conclusion of the R-property for such an α.

At stage s = 0, we set A0
0 = A0

1 = ∅. Also, let all p(x, 0) and q(x, 0) diverge.

At stage s+ 1, we first define T s+1
α for each α:

T s+1
α = T s

α ∪ {x ∈ Cs+1 : x < |Zs+1
α |}.

Next we determine which elements of Cs+1 to add to As
0 to create As+1

0 . For

this, we need movable markers for elements currently in C − A. Write

Cs+1 − As = {ds+1
0 , ds+1

1 , . . . ds+1
ms+1

}

preserving the order of the markers from the preceding stage. (That is, if ds
i = ds+1

i′

and ds
j = ds+1

j′ , then i < j iff i′ < j′; and if ds+1
i ∈ Cs and ds+1

j /∈ Cs, then i < j.)

For the sake of Me, we define

V s+1
e = V s

e ∪ {x ∈ We,s+1 − Cs+1 : (∀y ≤ x)[y ∈ We,s+1 ∪ Cs+1]}.

(For each e, the sets V s
e enumerate a c.e. set Ve. If C 6⊆ We, then Ve will be finite,

but if C ⊆ We, then C ⊆ Ve ⊆ We.)

For each e ≤ s, define the e-state of each ds+1
k at stage s+ 1 to be:

σ(e, ds+1
k , s+ 1) = {i < e : ds+1

k ∈ V s+1
i }.
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We order the different possible e-states by viewing them as binary strings.

Find the least i ≤ s such that there exist e and j with e < i < j ≤ s and

σ(e, ds+1
i , s + 1) = σ(e, ds+1

j , s + 1) and ds+1
i /∈ V s+1

e and ds+1
j ∈ V s+1

e . For the

least such e and the least corresponding j, we say that Me wants to put into A0 all

the elements ds+1
i , ds+1

i+1 , . . . d
s+1
j−1, so as to give the marker di a higher (e+1)-state

at subsequent stages.

Now we consider the requirements Fe. For each e ≤ s with We,s ∩ As
0 = ∅ and

for each x such that

x ∈ (We,s ∩ Cs+1)− As − {ds+1
0 , ds+1

1 , . . . ds+1
e }

we say that Fe wants to put x into A0.

We set p(x, s + 1) ↑ for all x /∈ C − As. Otherwise x = ds+1
k for some k, and

p(x, s + 1) is the least e ≤ k (if any) such that either p(x, s) ↓= e or Me or Fe

wants to put x into A0. Thus, the function p(x, s+ 1) gives the priority currently

assigned to putting x into A0. If there is no such e, let p(x, s+ 1)↑.
We now follow the following steps for each x ≤ s:

1. If p(x, s+ 1)↑, then q(x, s+ 1)↑ also.

2. If p(x, s + 1) ↓ but q(x, s) ↑, we ask if every α ≤ p(x, s + 1) satisfies either

x ∈ Ss+1
α ∪ Ŝs+1

α or x /∈ T s+1
α . If so, set q(x, s+ 1) = p(x, s+ 1) + 1. If not,

then q(x, s+ 1)↑.

3. If p(x, s+1)↓ and q(x, s)↓> p(x, s+1), then set q(x, s+1) to be the greatest

α ≤ p(x, s+ 1) satisfying all four of the following conditions:

(a) Ss+1
α ∩ Ŝs+1

α = ∅.

(b) x /∈ Ŝs+1
α .

(c) x ∈ T s+1
α .

(d) ∀β < α, either β fails one of the three conditions (a)-(c), or β = 〈i′, j′〉
and α = 〈i, j〉 with i 6= i′.
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Also, enumerate x inDs+1
q(x,s+1). (For future reference, notice that if α satisfies

(a)-(c), then some β ≤ α with the same first coordinate as α must satisfy

(a)-(d).)

If there is no such α, set q(x, s+ 1) = −1.

4. If p(x, s + 1) ↓ and q(x, s) ↓ with 0 ≤ q(x, s) ≤ p(x, s + 1), we ask whether

x ∈ Bs+1
q(x,s). If so, or if q(x, s) no longer satisfies the conditions (a)-(d), set

q(x, s + 1) to be the greatest α < q(x, s) satisfying the conditions (a)-(d)

above, and let x ∈ Ds+1
q(x,s+1). (If there is no such α, let q(x, s + 1) = −1.)

Otherwise, let q(x, s+ 1) = q(x, s).

5. If p(x, s+ 1)↓ and q(x, s)↓= −1, enumerate x ∈ As+1
0 , and let q(x, s+ 1)↑.

This completes our enumeration of As+1
0 . Next we determine which elements

to add to As+1
1 :

1. Find the least e ≤ s (if any) such that Qe is not yet satisfied and there is

an element x ∈ We,t −We,t−1 for some t ≤ s such that w(t) > s, and there

exists y < x such that y ∈ Cs+1 − As+1
0 and y /∈ At

1 ∪ {d
s+1
0 , . . . ds+1

e } and

no Fi with i < e wants to put y into A0. Put the greatest such y into As+1
1 .

This forces As+1
1 �x 6= At

1�x, satisfying Qe permanently. (If there is no such

e, do nothing.)

2. Find the least e ≤ s (if any) such that Pe is not yet satisfied and there is

an element x ∈ Cs+1 ∩ (We,t −We,t−1) for some t ≤ s with v(t) > s, such

that x /∈ {ds+1
0 , . . . ds+1

e } and no Fi with i < e wants to put x into A0. If no

such x lies in As ∪ As+1
0 , then put the least such x into As+1

1 . This forces

x ∈ As+1, satisfying Pe permanently.

3. Find the least e ≤ s (if any) such that Ge is not yet satisfied and there is an

element x ∈ (We,s+1∩Cs+1)−As+1
0 with x /∈ {ds+1

0 , . . . ds+1
e }, such that no

Fi with i < e wants to put x into A0. Put this x into As+1
1 . This satisfies

Ge forever.
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Let As+1 = As+1
0 ∪ As+1

1 . This completes the construction.

Lemma 2.3.4 C − A is infinite.

Proof. We prove by induction on e that de = lims d
s
e exists. Assume that this

holds for all markers di with i < e, and let s0 ≥ e be a stage such that d
s0
i = di

for all i < e. Now each Fj , Gj , Pj , and Qj with j > e cannot put any of the

elements ds
0, . . . d

s
e into A1 at stage s+1, so none of these requirements ever moves

the marker ds
e. Also, each Gi, Pi, and Qi with i ≤ e puts at most one element into

A, hence moves the markers at most once. Let s1 ≥ s0 be a stage so large that no

Gi, Pi, or Qi with i ≤ e moves any markers at any stage s ≥ s1.

By the construction, ds
e can only be moved at stage s ≥ s1 by a requirement

Mi or Fi with i ≤ e. Furthermore, when Fi (i ≤ e) moves a marker, it puts an

element into A0, so it is satisfied at that point. Before then it may have tried to

put finitely many other elements into A0 as well, and any of them may go into A0

or A1 at a later stage, moving markers in the process. However, since there are

only finitely many such elements, de is moved only finitely many times on behalf

of Fi.

Now M0 moves de at most 2e+1 times after stage s1: once to put d0 into V0,

possibly twice to put d1 into V0, and so on. Once M0 has finished moving de,

M1 moves it at most 2e more times, to put markers into V1. Similarly, once each

Mi has moved de for the last time, Mi+1 may move it at most 2e−i more times.

Hence we eventually reach a stage s2 after which de never is moved again. Possibly

d
s2
e ↑, but since C is infinite and every di with i < e has already converged to its

limit, we know that dt
e will be defined at some stage t > s2. Since it never moves

again, this yields dt
e = lims d

s
e.

Lemma 2.3.5 For each e, the requirements Ne, Pe, Qe, Fe, and Ge are all sat-

isfied.

Proof. We proceed by induction on e. Assume the lemma holds for all i < e. We

write α for the pair coded by e, and prove first that Nα is satisfied. Suppose
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(Bα ∩ (Sα − A0)) ∪ A1 = (Dα ∩ (Sα − A0)) ∪ A1 and Bα ⊆ C and Sα t Ŝα = C.

Then F (α) holds and Zα is infinite. The construction of Tα then guarantees that

C ⊆ Tα. Let Gα be the intersection of all those Vi with i < α such that Vi is

infinite, and let T̂α = Tα∩Gα. Thus C ⊆ T̂α, since C ⊆ Vi whenever Vi is infinite.

Sublemma 2.3.6 For each α and each n < α, there are only finitely many x ∈ T̂α

such that Mn ever wants to put x into A0.

Proof. First, if Vn is finite, then Mn will only want to put finitely many elements

into A0. So we may assume that Vn is infinite, and hence that T̂α ⊆ Vn.

If Mn wants to put x into A0 at stage s, then x ∈ Cs − As, so x = ds
k for

some k. Moreover, there must be an i with n < i ≤ k and a j > k such that

σ(n, ds
i , s) = σ(n, ds

j , s) and ds
i /∈ V

s
n and ds

j ∈ V
s
n . Furthermore, di is the leftmost

marker which any M-requirement wants to put into A0 at stage s, and n and j

satisfy the minimality requirements of the construction.

Now if ds
k /∈ V s

n , then ds
k /∈ Vn, since C ↘ Vn = ∅, and hence ds

k /∈ T̂α.

Therefore we may assume ds
k ∈ V s

n . (This guarantees k 6= i). Then minimality of

n forces σ(n, ds
i , s) ≥ σ(n, ds

k, s), and minimality of j forces σ(n, ds
i , s) > σ(n, ds

k, s)

(since ds
k ∈ V s

n ). Hence there is some m < n such that σ(m, ds
i , s) = σ(m, ds

k, s)

and ds
i ∈ V

s
m and ds

k /∈ V s
m. This forces ds

i ∈ Vm and ds
k /∈ Vm (since ds

k ∈ C
s−V s

m).

If Vm is infinite, then ds
k /∈ T̂α. But if Vm is finite, then ds

i lies in the finite set

V =
⋃
{Vm : m < n & Vm finite}.

Hence we need only find a stage t so large that for every d ∈ V , either d ∈ At
0 or

Mn wants to put d into A0 at stage t or Mn never wants to put d into A0. Then

Mn will never want to put into A0 any x > max(Ct) with x ∈ T̂α.

We will show that the conclusion of Nα holds for T̂α:

(A0 ∩ Sα ∩ T̂α) ∪ A1 =∗ (Bα ∩ Sα ∩ T̂α) ∪ A1.
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Once we have established this for all α, clearly R(A0, A1) itself must hold, since

for each α we can choose another T̂α which excludes the (finite) difference set of

the two sides and still contains C.

Suppose first that x ∈ A0∩Sα∩T̂α and x /∈ A1, and assume that x is sufficiently

large that:

• x > |Zβ | for every β < α such that Zβ is finite, and

• No Fi with i < α ever tries to put x into A0, and

• No Mi with i < α ever tries to put x into A0.

The last condition is possible by Sublemma 2.3.6. Notice also that the first condi-

tion forces x /∈ Tβ for all β < α with |Zβ | finite.

Then for all s, either p(x, s) ≥ α or p(x, s)↑. But since x ∈ A0, we know that

some p(x, s) ↓. For the least such s we have x ∈ Cs, and hence x ∈ T s
α, since

C ∩ Tα ⊆ Tα ↘ C.

Now α satisfies conditions (a)-(c) in the construction at stage s, since F (α)

holds and x ∈ Sα. So there must exist β = 〈i, j′〉 ≤ α = 〈i, j〉 which satisfies

(a)-(d) at stage s.

We claim that this β satisfies conditions (a)-(d) at every stage after s as well.

Since x ∈ T s
β , we know that Zβ is infinite and F (β) holds, by choice of x. Hence

(a) and (c) hold at all subsequent stages. Let t be the first stage at which q(x, t)

converged. Then x ∈ Ct, and x ∈ T t
β since C ↘ Tβ = ∅. By the definition of q, we

must have had x ∈ St
β ∪ Ŝ

t
β . But x /∈ Ŝs

β since (b) holds at stage s, and because

s > t, this forces x ∈ St
β , so (b) always holds of β.

To show that (d) always holds of β, we choose an arbitrary γ < β witht he

same first coordinate as β. Since β satisfies (d) at stage s, γ must fail one of (a)-(c)

at stage s. If γ fails (a) or (b) at stage s, then clearly it fails that same consition

at every subsequent stage. Moreover, if γ fails (c) at stage s, then x /∈ T s
γ , and

since x ∈ Cs, this forces x /∈ Tγ . Thus β will always satisfy condition (d).

But since x ∈ A0, there must also be a stage s′ with q(x, s′) = −1. Since (a)-(d)

continue to hold of β, the only way for q(x, s′) < β to occur is for x to enter Bβ .
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(Recall that for all s, either p(x, s) ≥ α or p(x, s) ↑.) But Bβ = Wi = Bα since

β = 〈i, j′〉 and α = 〈i, j〉, so this forces x ∈ Bα. Hence

(A0 ∩ Sα ∩ T̂α) ∪ A1 ⊆∗ (Bα ∩ Sα ∩ T̂α) ∪ A1.

Now suppose that x ∈ Bα ∩Sα ∩ T̂α and x /∈ A1, and assume x is greater than

max(d0, . . . dα), and also greater than the greatest finite |Zβ | with β < α. (Thus

x /∈ Tβ for all such β.) Now x ∈ C since Sα ⊆ C, so at some stage s0, x will enter

C and be given a marker: say x = d
s0
k . So x ∈ Cs0 , and since x ∈ Tα, this forces

x ∈ T s0
α .

If x /∈ A0, then we must have x ∈ Dα, since (Bα ∩ (Sα − A0)) ∪ A1 = (Dα ∩
(Sα − A0)) ∪ A1 and x /∈ A1. (Notice that then x, being in C − A, eventually

receives some permanent marker dk′ , with k′ > α by choice of x.) For x to have

entered Dα, there must have been a stage s1 ≥ s0 with q(x, s1) = γ = 〈i, j′〉,
where α = 〈i, j〉. (Also, then p(x, s1)↓, and since x /∈ A1, p(x, s)↓ for all s ≥ s1.)

But α satisfies conditions (a)-(c) at all stages s ≥ s0, so by condition (d) on γ,

we must have γ ≤ α. The assumption x /∈ A0 ∪ A1 then means that there is

some s2 > s1 such that q(x, s) ↓= q(x, s2) for all s ≥ s2. Let β = q(x, s2) ≤ γ.

Then x ∈ Dβ −Bβ , and furthermore β satisfies the conditions (a)-(d) at all stages

s ≥ s2.

Now x ∈ Tβ , to satisfy condition (c), so x < |Zβ | and β ≤ γ ≤ α. If β = α,

then Zβ is infinite since F (α) holds, and if β < α, then Zβ must be infinite, by our

choice of x. Therefore F (β) holds, and in particular Sβ t Ŝβ = C. Now x /∈ Ŝβ

by condition (b), so x ∈ Sβ . However, with x ∈ Dβ − Bβ , this contradicts F (β).

Hence x ∈ A0, and

(A0 ∩ Sα ∩ T̂α) ∪ A1 ⊆∗ (Bα ∩ Sα ∩ T̂α) ∪ A1.

This completes our proof that Nα is satisfied.

Now we continue with the other requirements. Let s0 be a stage such that no

Pi, Qi, Fi, or Gi with i < e tries to put any element into A0 or A1 at any stage
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after s0. (Fi is different from the other requirements in that it may try to put

more than one element into A0. It only stops trying when one of those elements

succeeds in entering A0. We choose s0 so that every element which Fi wants to

put into A0 either is in As0 or never enters A.) Assume also that s0 is sufficiently

large that d
s0
i = di for every i ≤ e.

Now if We ↘ A is infinite, then there must be an x in some We,s − As with

s > s0 and {d0, . . . de}. No requirement of higher priority will need to put this x

anywhere, except possibly some Mi, and according to our construction, Ge does

not respect the priority of the requirements Mi, so x ∈ As+1
1 , and Ge is satisfied.

Similarly, if We is infinite, then there must be an x and an s > s0 such that

x ∈ We,s−We,s−1 and x ∈ Cv(s), by prompt simplicity of C. If this x is not already

in Av(s)−1, then the construction puts it into A
v(s)
1 , so Pe holds. Also, there must

be an x and an s > s0 with x ∈ We,s − We,s−1 such that Cs � x 6= Cw(s) � x,

by promptness of C. Thus there is a y < x which entered C at some stage t

with s < t ≤ w(s). We must have y /∈ At−1 since At−1 ⊆ Ct−1. But now

y /∈ {dt
0, . . . d

t
e}, since these markers had reached their limits by stage s0 and y

only entered C at stage t. Hence the construction will put this y into At
1, and

A
w(s)
1 �x 6= As

1�x, satisfying Qe.

Continuing with the induction, we need a sublemma to handle Fe.

Sublemma 2.3.7 For this e and for all sufficiently large x, if Fe wants to put x

into A0 at some stage, then x ∈ A0.

Proof. Choose x so large that it satisfies all of the following:

1. x > max{|Zβ | : β ≤ e & Zβ is finite}.

2. No Fi, Gi, Pi, or Qi with i < e ever wants to put x into A0 or A1.

3. x /∈ {d0, . . . de}.

Suppose Fe wants x to enter A0 at stage s0. Then x = d
s0
k for some k and

p(x, s0) ↓≤ e. Now no Gj , Pj , or Qj with j ≥ e ever manages to put x into A1,

since Fe takes priority over these. (Since x 6= de, the only way to have k ≤ e is
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for x eventually to enter A0. Hence we may assume k > e.) Also, for every β < e,

either x /∈ Tβ (if |Zβ | < x) or F (β) holds (if Zβ is infinite). Hence there is an

s1 ≥ s0 such that q(x, s1)↓ and q(x, s1 + 1)↓≤ e.

Now suppose q(x, s) = β for some s ≥ s1 (so β ≤ e). If F (β) failed, then Zβ

would have to be finite, so x /∈ Tβ (since |Zβ | < x) and q(x, s) would never equal

β. Therefore, F (β) must hold. Suppose x /∈ A0. If x /∈ Sβ , then x ∈ Ŝβ by F (β)

and so q(x, sβ) < β for some sβ ≥ s1. Otherwise x ∈ Dβ ∩ (Sβ − A0) ⊆ Bβ by

F (β), so x ∈ B
sβ
β for some sβ ≥ s1, and hence q(x, sβ) < β. Thus, by induction

on β < e, eventually we must have q(x, s) = −1, and so x ∈ As+1
0 , proving the

sublemma.

Now if We ↘ A is infinite, then Fe has infinitely many elements at its disposal

to try to put into A0. Hence once we find a sufficiently large x ∈ We ↘ A, we

know by the sublemma that this x will eventually enter A0, thus satisfying Fe.

This completes the induction of Lemma 2.3.5.

Lemma 2.3.8 The requirements Me are all satisfied by our construction.

Proof. Suppose that C ⊆ We. To prove that Me holds, we must show A ⊆∗ We.

By induction we assume that Mi holds for all i < e. Let

σ = {i < e : C ⊆ Wi}.

Now if i ∈ σ, then also C ⊆ Vi, so by inductive hypothesis A ⊆∗ Vi, whereas if

i /∈ σ (and i < e), then Vi is finite. Hence for all but finitely many k we have

σ(e, dk) = σ.

Now let Vσ = Ve ∩
( ⋂

{Vi : i ∈ σ}
)
. Then C ⊆ Vσ. But C, being promptly

simple, is noncomputable, so Vσ ↘ C must be infinite. Choose y so large that no

element ≥ y can be held out of A0 forever by any requirement Nα with α ≤ e, and

let s0 be a stage such that Cs0�y = C�y.

Suppose for a contradiction that Ve ∩ (C − A) is infinite. Then there exists p

such that dp /∈ Ve with p so large that dp /∈ Cs0 and with σ(e, dq) = σ. (Hence
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dp > y.) Let s1 be a stage with d
s1
p = dp and σ(e, dp, s1) = σ. Now since Vσ ↘ C

is infinite, there will be a stage s > s1 at which some element x ∈ V s−1
σ enters

C, and is assigned the marker ds
q (with q > p since d

s0
p = dp). Moreover, we may

assume that q is sufficiently large that not only is ds
q in Vσ, but that σ(e, ds

q, s) = σ,

since every Vi with i < e and i /∈ σ is finite. Since ds
q ∈ Vσ ⊆ Ve and dp /∈ Ve, Me

will want to put dp into A0 at stage s, and since dp > y, no negative requirement

will keep dp out of A0. Possibly dp will be diverted into A1 by some requirement

Gj , Pj , or Qj , since these do not respect the priority of Me. If so, then dp will

enter A1; if not, then dp will enter A0. Either way, dp enters A, contradicting our

assumption that the marker dp had reached its limit at stage s0.

Hence Ve ∩ (C − A) is finite, and A ⊆ (C − A) ∪ C ⊆∗ Ve ⊆ We. Thus Me is

satisfied, and the lemma is proven.

Knowing that the requirements are all satisfied, we can easily complete the

proof of the theorem. The construction ensured that A0 ∩ A1 = ∅, and the con-

junction of all the Fi and Gi implies that A0 t A1 is a Friedberg splitting of A.

(See pp. 181-182 of [47].) The requirements Pi together make A a promptly simple

set, by definition, and the Qi together allow A1 to satisfy the Promptly Simple

Degree Theorem (Thm. XIII.1.6 of [47]), so that A1 is of prompt degree. To prove

that R(A0, A1) holds, we note that the requirements Mi, along with Lemma 2.3.4,

show that A = A0 t A1 is a major subset of C. Moreover, given a B = Wi and a

pair (Sj′ , Ŝj′′) with Sj′ t Sj′′ = C, we have the Di and Tα (with α = 〈i, 〈j′, j′′〉〉)
constructed above. If

(Bi ∩ (Sj′ − A0)) ∪ A1 = (Di ∩ (Sj′ − A0)) ∪ A1,

then F (α) holds. Since Nα is satisfied, we know that there exists a T with C ⊆ T

such that

(A0 ∩ Sj′ ∩ T ) ∪ A1 =∗ (Bi ∩ Sj′ ∩ T ) ∪ A1.
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So we can pick a sufficiently large nα, and let

T ′ = {x ∈ T : x ≥ nα} ∪ {x ∈ C : x < nα}.

Then C ⊆ T ′ and also (A0∩Sj′∩T ′)∪A1 = (Bi∩Sj′∩T ′)∪A1, since Sj′∩C = ∅.
Thus R(A0, A1) holds. Finally, since A is a major subset of the set C, A must be

of high degree (see [24], page 214).
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3.1 Introduction

In a finite language, a countable structure A whose universe A is a subset of ω is

computable if A is a computable set and for all functions f and relations R in the

language, fA is a computable function and RA is a computable relation.

Any computable structure will be isomorphic to infinitely many other com-

putable structures. It may happen, however, that two computable structures are

isomorphic, yet that the only isomorphisms between them are noncomputable (as

maps from one domain to the other). If so, then these structures lie in distinct

computable isomorphism classes of the isomorphism type of the structure. On the

other hand, if there exists a computable function taking one structure isomorphi-

cally to the other, then the two structures lie in the same computable isomorphism

class.

The computable dimension of a computable structure is the number of com-

putable isomorphism classes of that structure. The most common computable

dimensions are 1 and ω, but for each n ∈ ω, there do exist structures with com-

putable dimension n, by a result of Goncharov ([19]). If the computable dimension

of A is 1, we say that A is computably categorical. This notion is somewhat

analogous to the concept of categoricity in ordinary model theory: a theory is cat-

egorical in a given power κ if all models of the theory of power κ are isomorphic.

Computable categoricity is a property of structures, not of theories: a computable

structure A is computably categorical if every other computable structure which

is isomorphic to A is computably isomorphic to A.

A standard example of a categorical theory is the theory of dense linear orders

without end points, which is categorical in power ω. One proves this by taking two

arbitrary countable dense linear orders and building an isomorphism between them

by a back-and-forth construction. The same contruction allows us to prove that the

structure Q is computably categorical. (More formally, let (ω,≺) be a computable

linear order isomorphic to (Q, <). Then (ω,≺) is computably categorical.)

Characterizations of computable categoricity have been found for certain types

of structures. Goncharov and Dzgoev ([20]) and Remmel ([39]) proved that a linear
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order is computably categorical precisely if it contains finitely many successivities

(that is, if only finitely many elements have an immediate successor in the linear

order). Remmel also proved that a Boolean algebra is computably categorical if

and only if it contains only finitely many atoms ([38]).

In this chapter we consider computable categoricity of trees, and prove that no

tree of height ω is computably categorical. The question of computable categoricity

of trees of finite height is the subject of joint work by Lempp, Solomon, and the

author, presently in progress.

To prove that a tree T is not computably categorical, we will construct a new

tree T ′ isomorphic to T , satisfying the following requirements Re:

Re : ϕe total =⇒ there exists x ∈ T ′ such that levelT ′(x) 6= levelT (ϕe(x)).

Clearly Re implies that ϕe is not an isomorphism from T ′ to T . If we can establish

Re for every e, then, we will have proven that T is not computably categorical.

Our notation is standard, but our definitions demand attention. A tree consists

of a universe T with a partial order ≺ on T such that for every x ∈ T , the set of

predecessors of x in T is well-ordered by ≺, and T contains a least element under

≺. (Hence the tree is computable if T is a computable set and ≺ a computable

relation.) Throughout this chapter, T will represent the computable tree which we

wish to prove not to be computably categorical.

If two nodes x and y in T are incomparable under ≺, then we write x ⊥ y. For

every node x ∈ T , the size of the set {y ∈ T : y ≺ x} will be the level of x in T ,

written levelT (x). (A more formal definition sets the level of the root to be 0 and

inductively defines levelT (x) = sup{levelT (y) + 1 : y ≺ x}, thereby also covering

the case of an element with infinitely many predecessors. In this chapter, however,

every element of every tree has only finitely many predecessors.)

We view our trees as growing upwards, with a single element r (the root, or

least element under ≺) at the base. Thus the level of the root is 0, its immediate

successors under≺ are at level 1, and so on. The level of a node of T is not generally

computable, but it is Σ1, since there exists a computable function f(x, s) = |{y <
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s : y ≺ x}| such that for all x ∈ T ,

levelT (x) = lims f(x, s).

The height of T is defined as follows:

ht(T ) = sup
x∈T

(levelT (x) + 1).

Thus, the height of T will be the least ordinal α such that no node of T has level

α. In this chapter we only consider trees of height ω.

The reader should note that different definitions of subtree and tree homomor-

phism have been used for different purposes in the literature. By the definition

which we use in this chapter, a homomorphism from one tree (T,≺) to another

tree (T ′,≺′) is a map f : T → T ′ which respects the partial orders:

x ≺ y ⇐⇒ f(x) ≺′ f(y).

In other papers, a tree is sometimes defined using the infimum function ∧, where

the infimum x ∧ y of x and y is the greatest z such that z ≺ x and z ≺ y. Any

tree under one definition is also a tree under the other definition, but when the

infimum function is used, all homomorphisms are required to respect the infimum

function. This is a strictly stronger requirement: all maps respecting ∧ respect ≺,

because

x � y ⇐⇒ x ∧ y = x,

but not conversely. Kruskal’s Lemma, which we use in section 3.2, proves the

existence of the stronger type of homomorphism.

If the infimum fuction is computable, then the relation ≺ is computable, since

it is definable in terms of ∧ without quantifiers. Therefore, if the computable trees

(T,≺) and (T ′,≺′) are isomorphic but not computably isomorphic, then the cor-

responding structures (T,∧) and (T ′,∧′) are also isomorphic, but not computably

isomorphic. (Notice, however, that (T,∧) and (T ′,∧′) need not be computable,
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since computability of ≺ does not guarantee that we can compute the infimum

function.) Thus, our theorem suffices to prove that even when tree is defined using

the infimum, no tree of height ω is computably categorical. The definitions of

tree and tree homomorphism using the infimum are probably more common in the

literature. We adopt the definitions using ≺ because for purposes of our proof,

they will be far more useful.

Our definition of subtree arises from our definition of homomorphism. Once

again, therefore, it diverges from much of the literature: for our purposes, a tree

(T ′,∧′) is a subtree of (T,∧) if T ′ ⊆ T and the inclusion map is a homomorphism.

Thus the infimum of two elements in T may not be the same as their infimum in

T ′. Also, the root of T may be distinct from the root of T ′, as in the case of the

subtrees T [x], which we will be considering frequently. If x is a node in T , then

the subtree T [x] is just the tree

T [x] = {y ∈ T : x � y}.

The partial order on T [x] is the restriction to T [x] of the partial order ≺ on T .

Therefore T [x] is a subtree of T with root x. We define the height of T above x by:

htx(T ) = ht(T [x]).

The reason for our use of ≺ rather than ∧ to define homomorphism and subtree

is twofold. First, ≺ is the basic relation we used to define the notion of a tree; ∧ was

derived from ≺. If ∧ were the basic function, then computability questions would

be very different. Second, during our proofs about a tree T we will be considering

many subsets of T which we will want to regard as subtrees. Under our definition,

they will be subtrees (as will any subset of T with a ≺-least element), but under

the ∧-definition they would not be subtrees.

A path γ through T is a maximal linearly ordered subset of T . It may be finite

or infinite. Any tree containing an infinite path must have height ω (since we are

not considering trees of height > ω). A node is extendible if it lies on an infinite
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path through T , and non-extendible otherwise. The extendible nodes of a tree T

(if any exist) form a subtree of T , which we denote by Text. Notice, however, that

since we allow T to be infinite-branching, the height of T above a node may be ω

even if the node is nonextendible.
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3.2 Kruskal’s Lemma

Although our results concern infinite trees, we will need the ability to manipulate

finite subtrees. For this purpose Kruskal’s Lemma is essential.

Theorem 3.2.1 (Kruskal’s Lemma) (See [30], [44].) Let {Ti : i ∈ ω} be an

infinite collection of finite trees. Then there exist i < j in ω such that Ti can be

embedded in Tj.

Every version of Kruskal’s Lemma which we will encounter has an analogue of

the following corollary:

Corollary 3.2.2 Let {Ti : i ∈ ω} be an infinite collection of finite trees. Then

there exists n ∈ ω such that for every i > n, Ti can be embedded in some Tj with

j > i, and some Tk with k < i can be embedded in Ti.

Proof. If the set

{i ∈ ω : (∀j > i) Ti does not embed in Tj}

were infinite, it would itself contradict Kruskal’s Lemma. The same is true of

{i ∈ ω : (∀k < i) Tk does not embed in Ti}.

We can extend Kruskal’s Lemma to a version dealing with infinite trees.

Corollary 3.2.3 Let {Ti : i ∈ ω} be an infinite collection of trees. (These trees

need not be finite, nor even finitely branching.) Then there exists an i ∈ ω such

that for every finite subtree T ⊆ Ti, there exists j > i for which T embeds in Tj.

Proof. Suppose {Ti : i ∈ ω} were a collection of trees contradicting the lemma.

Then for each i, we would have some finite subtree Si ⊆ Ti which did not embed

into any Tj with j > i. In particular, for each i < j, Si would not embed in Sj .

Thus the collection {Si : i ∈ ω} would contradict Kruskal’s Lemma.
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Corollary 3.2.4 Let {Ti : i ∈ ω} be as in Corollary 3.2.3. Then there is an n ∈ ω
such that for every i > n and every finite subtree T ⊆ Ti, there exists j > i such

that T embeds into Tj.

Proof. If not, then we could find an increasing sequence i0 < i1 < i2 < · · · such

that {Tik
: k ∈ ω} contradicted Corollary 3.2.3.

In this paper we will want to embed trees in such a way that nodes with p

predecessors are mapped to nodes with more than p predecessors. That is, the

level in the tree T of the node x should be less than the level in T ′ of its image

under the embedding of T into T ′. To map nodes to other nodes at greater levels,

we need the following stronger version of Kruskal’s Lemma, in which one is allowed

to “label” nodes of each tree. For our purposes, a labelling of a tree T is simply a

map from T to ω. Proofs of this result appear in [30] and [44].

Theorem 3.2.5 (Kruskal) Let {Ti : i ∈ ω} be an infinite collection of finite

trees, each with a labelling li. Then there exist i < j in ω and an embedding

f : Ti → Tj such that for every x ∈ Ti, li(x) ≤ lj(f(x)).

From Theorem 3.2.5 we derive the following result:

Corollary 3.2.6 Let {Ti : i ∈ ω} be an infinite collection of finite trees such that

supi ht(Ti) = ω. Then there is a number m ∈ ω such that for every index i and

every node x ∈ Ti with levelTi
(x) = m, there exists an embedding f of Ti into

some Tj with j > i, such that

levelTj
(f(x)) > levelTi

(x).

Proof. Suppose no m ∈ ω satisfied the theorem. Then for every m, we would have

an index im and a node xm ∈ T(im) with levelT(im)
(xm) = m such that:

∀ embeddings f : T(im) → Tj with j > im, levelTj
(f(xm)) = levelT(im)

(xm).

(3.1)
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Now the set {i0, i1, i2 . . .} will be infinite, since each Ti has finite height. Moreover,

the index im satisfies Equation 3.1 not only for xm but also for all predecessors of

xm. Therefore we can choose im+1 > im for all m.

For each m, define the labelling lm on the tree T(im) by

lm(x) =

{
0, if levelTim

(x) < m

1, otherwise

Thus lm(xm) = 1 for all m. However, for any embedding f : T(im) → T(ik)

with k > m, we have

levelTik
(f(xm)) = levelT(im)

(xm) = m < k.

This forces lk(f(xm)) = 0. Thus the sequence {Ti0 , Ti1 , Ti2 , . . .} contradicts The-

orem 3.2.5.

The same result holds for all y above the level m:

Corollary 3.2.7 Let {Ti : i ∈ ω} be as in Corollary 3.2.6. Then there is a number

m ∈ ω such that for every index i and every node y ∈ Ti with levelTi
(y) ≥ m,

there exists an embedding f of Ti into some Tj with j > i, such that

levelTj
(f(y)) > levelTi

(y).

Proof. The conclusion follows for every y ∈ Ti with levelTi
(y) ≥ m, simply by

finding that x � y in Ti with levelTi
(x) = m and applying the embedding given

by Corollary 3.2.6 for that x.

Finally, we combine the version for infinite trees with the version for embedding

nodes at greater levels.

Corollary 3.2.8 Let {Ti : i ∈ ω} be any collection of trees. Then there exist an

n and an m with the property that for all indices i > n, for every finite subtree
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S ⊆ Ti, and for any node x ∈ S with levelS(x) ≥ m, there is an embedding

g : S → Tj of S into some Tj with j > i, such that

levelTj
(g(x)) > levelS(x).

Proof. Suppose the statement were false. Now if g is an embedding of S into Tj ,

it is impossible to have levelTj
(g(x)) < levelS(x). Therefore, the negation of the

statement is as follows:

(∀n)(∀m)(∃i > n)(∃ finite S ⊆ Ti)(∃x ∈ S) levelS(x) ≥ m &

(∀j > i)(∀ embeddings g : S → Tj)[levelTj
(g(x)) = levelS(x)]


We apply this negation first with n = 0 andm = 0, yielding an index i0 > 0 and

a node x0 at level ≥ 0 in some finite subtree S0 of Ti0 . Inductively, we apply the

negation with n = ik and m = k+1 to get an index ik+1 > ik and a corresponding

node xk+1 at level ≥ k+ 1 of a finite subtree Sk+1 of Ti(k+1)
. From the negation,

we see that every embedding of any Sk into any Tj with j > ik fixes the level of

xk. In particular, the same holds for any embedding of Sk into any Sj with j > k.

However, we know that

ht(Sk) > levelSk
(xk) ≥ k,

so supk ht(Sk) = ω. Thus the set {Sk : k ∈ ω} contradicts Corollary 3.2.7.

Finally, for computability-theoretic purposes, we note that if S and T are finite

trees (and we have strong indices for each, i.e. we know the number of nodes of

each), then the statement

∃ an embedding g : S → T

is decidable, uniformly in S and T . From the decidability of this statement, we

conclude further that if S is finite with known strong index and T is any computable
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tree, then the question of embeddability of S into T is a Σ1 question: it asks

whether there exists a finite subtree of T into which S embeds. Therefore, if we

know that there exists an embedding of S into T , then we can effectively find such

an embedding, via an algorithm uniform in S and T .
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3.3 ω-Branching Nodes with htx(T ) = ω

We consider computable trees of infinite height. The general theorem, that no such

tree is computably categorical, will be proven in the next section. In this section,

to prepare for that proof, we prove that a significant subclass of such trees cannot

be computably categorical.

We define the limit-supremum of a sequence 〈ni〉i∈ω to be

lim supi(ni) = inf
j

sup
i>j

(ni)

T will be a given computable tree under the partial order ≺, with height ω,

which is ω-branching at a node x0. (That is, x0 has infinitely many immediate

successors x1, x2, . . ..) We assume further that lim supi ht(T [xi]) = ω. This can

occur two ways: either infinitely many xi’s are extendible, or there exist T [xi]’s of

arbitrarily large finite heights.

Since the universe of T is computable, we may take it to be ω, pulling back

via a 1-1 computable function if necessary to make this so. We will construct a

computable tree T ′ isomorphic to T , such that there is no computable isomorphism

between them.

The isomorphism f from T to T ′ will be a ∆0
2 function, the limit of a computable

sequence of finite partial 1-1 functions fs, such that the domains Ds = dom(fs) ⊂
T form a strong array of finite sets. We will ensure that Ds ⊆ Ds+1 for each s,

although fs+1 need not agree with fs on Ds. (If it did so for all s, then f would

be a computable isomorphism, which is precisely what we wish to avoid!) Also, we

will force range(f) = ω, so that the universe of T ′ will be ω. The ordering ≺′ on

T ′ will be given by lifting the ordering ≺ from T via f , thereby guaranteeing that

f is an isomorphism. To make ≺′ computable, we force the approximations fs to

satisfy the following condition:

Condition 3.3.1 For all a, b ∈ range(fs), we have a, b ∈ range(fs+1) and

f−1
s+1(a) ≺ f−1

s+1(b) ⇐⇒ f−1
s (a) ≺ f−1

s (b).



77

To ensure that T and T ′ are not computably isomorphic, we impose the re-

quirements Re.

Re : ϕe total =⇒ (∃x ∈ T ′) [levelT ′(x) 6= levelT (ϕe(x))].

This will suffice to prove the proposition.

Proposition 3.3.2 Let T be a computable tree containing an ω-branching node

x0 with immediate successors x1, x2, . . ., such that

lim supi ht(T [xi]) = ω.

Then T is not computably categorical.

Proof. As previously remarked, we may assume the universe of T to be ω. A

successor tree of x0 is a tree of the form T [xi] with i ≥ 1. ({x1, x2, . . .} are all the

immediate successors of x0, as stated above. This set may not be not computable.)

Corollary 3.2.8, applied to the successor trees, provides m and n in ω such that for

every finite subtree S ⊆ T [xi] with i > n and every node x ∈ S with levelS(x) ≥ m,

there is an embedding of S into some T [xj ] with j > i which maps x to a node

of greater level. We fix these values of m and n for the rest of the proof. (Notice

that therefore the proof is not uniform in T .)

Let Ts be the subtree of T with nodes {r, x0, x1, . . . xn} ∪ {0, 1, 2, . . . s}, under

≺, where r is the root of T .

For our purposes, the finite subtrees S will generally be of the form Ds[y],

where Ds ⊇ Ts is the domain of fs and y is an immediate successor of x0 in Ds

(although not necessarily in T ). We will call Ds[y] a successor tree at stage s.

Notice that it may happen that two successor trees which are distinct at stage

s acquire a common root at stage s + 1, e.g. if s + 1 = xi for some i, and thus

merge into a single successor tree at stage s + 1. A given successor tree at stage

s, however, can only be merged this way finitely often, since each of its nodes has

finite level in T .
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The following construction yields a computable tree T ′ which is isomorphic to

T but satisfies every requirementRe, proving that T is not computably categorical.

The witness nodes we will be nodes in T [x0], and will be approximated at stage

s by a node we,s. The successor tree at stage s containing we,s will be denoted

Se,s. This is the successor tree which we use in order to satisfy requirement Re.

The sequence 〈we,s〉s∈ω will converge to some we, and each successor tree in T will

contain at most one we. The isomorphism f from T to T ′ will be approximated

at stage s by a finite map fs with domain Ds. If ϕe,s(fs(we,s)) converges to a

node at the same level of Ts as the level of fs(we,s) in T ′s, then we redefine fs+1

and we,s+1 with fs+1(we,s+1) = fs(we,s) at a higher level in T ′s+1. (The level of

a node in T ′s is just the level of its preimage under fs in Ts.) Doing this requires

us to redefine fs+1 on the entire successor tree containing we,s, in order to satisfy

Condition 3.3.1, and we will appeal to Corollary 3.2.8 to ensure that the necessary

embedding exists. Thus f(we) will be the witness required by Re.

Figure 3.3 gives an example of our basic strategy. Se,s is the successor tree

which we use to satisfy Re. We suppose that we have found at stage s that

ϕe(fs(we,s)) = 6, which lies at level 2 in Ds. This is bad, because fs(we,s) lies

at level 2 in D′s, so it appears that ϕe might be an isomorphism from T ′ to T .

Se,s is the successor tree above the node 4 in Ds, and we use Corollary 3.2.8 to

find an embedding of Se,s upwards into the successor tree above the node 10 in

Ds+1. (The embedding is indicated by the arrow to D′s+1.) We use this em-

bedding to make levelD′
s+1

(fs+1(we,s+1)) > levelD′
s
(fs(we,s)), by defining fs+1

so that fs+1(9) = fs(4), fs+1(12) = fs(6), and fs+1(we,s+1) = fs(we,s). We

add new values to range(fs+1) for fs+1(4), fs+1(6), fs+1(8), and fs+1(10). Thus

levelDs(ϕe(fs+1(we,s+1))) 6= levelD′
s+1

(fs+1(we,s+1)).

Construction: f0 is the identity map with dom(f0) = T0. The witness nodes

we,0 and the successor trees Se,0 are undefined for all e. We let D0 = dom(f0).

(At each stage s, Ds and Ts will both be subtrees of T , with Ts ⊆ Ds.) We

immediately define the successor trees T0[xi] with 1 ≤ i ≤ n to be frozen.

At stage s+ 1, we consider the successor trees of x0 in Ds. For each successor

tree S (if any) of height ≥ m which is not frozen and does not contain Se,s for
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Figure 3.1: Example of an Upwards Embedding
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any e ≤ s, we choose the least e ≤ s such that Se,s is undefined, let Se,s+1 =

S and choose we,s+1 to be the <-least node at the highest level of S. Thus

levelSe,s+1
(we,s+1) ≥ m.

We then consider in turn each e for which Se,s was defined.

Step 1: If there is an i < e and a z ∈ Ts+1 such that x0 ≺ z ≺ wi,s and

z ≺ we,s, then we immediately make Sj,s+1 and wj,s+1 undefined for all j ≥ e,

and declare all Sj,s with j > e frozen.

(This step ensures that if two successor trees Si,s and Se,s have acquired a

common root above x0, thus becoming the same successor tree, then we use the

single new successor tree to play against requirement Ri only.)

Step 2: Otherwise, we consider fs(we,s), the potential witness for require-

ment Re. If ϕe,s(fs(we,s)) diverges, or converges to an element not in Ds, or if

levelDs(ϕe,s(fs(we,s))) 6= levelDs(we,s), then we define:

we,s+1 = we,s

fs+1 = fs on Se,s

Se,s+1 = {y ∈ Ds ∪ Ts+1 : (y ∧ we,s+1) � x0}.

(Here y∧we,s+1 represents the infimum in Ds∪Ts+1, which is a finite tree. Taking

the infimum over all of T would not be computable.)

(This Se,s+1 is just the same successor tree as Se,s, along with any new elements

that may have appeared in this successor tree at stage s.)

Step 3: If levelDs(ϕe,s(fs(we,s))) = levelDs(we,s), then find the least stage

t > s with Ds ⊆ Tt such that the following holds:

Condition 3.3.3 There exists a z ∈ Tt such that:

1. z is an immediate successor of x0 in Tt, and

2. Tt[z] ∩Ds = ∅, and
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3. There is an embedding g of Se,s into Tt[z] with

levelTt
(g(we,s)) > levelDs(we,s).

Let Se,s+1 = S, with we,s+1 = g(we,s). (By our choice of g, this forces

levelTt
(we,s+1) > levelDs(we,s). Also, levelSe,s+1

(we,s+1) > levelSe,s(we,s) ≥ m.)

For every x ∈ Se,s, define fs+1(g(x)) = fs(x), and define fs+1(x) to be the least

element which is not yet in range(fs+1) ∪ range(fs). Declare Se,s to be frozen,

so that at no subsequent stage s′ will any wi,s′ be defined in the successor tree

containing Se,s. Having executed Step 3 for e, we let wj,s+1 and Sj,s+1 diverge

and freeze Sj,s for all j > e, and do not execute Steps 1, 2, or 3 for any j > e.

(We execute Step 3 if Re is not satisfied by fs(we,s). By Corollary 3.2.8,

there must exist a successor tree T [xj ] into which the required embedding g exists,

because levelSe,s(we,s) ≥ m and Se,s ⊆ T [xi] for some i > n. The successor trees

T [x1], . . . T [xn] were all frozen right away at stage 0, so none of them contains Se,s.

Thus we have found a z such that fs is completely undefined on the successor tree

S ⊂ Tt containing z, and Se,s embeds into S via a map g. We use this embedding

to satisfy Re, as in the example of Figure 3.3. Freezing Se,s ensures that fs′ will

never again be redefined on Se,s, so that lims′ fs′ must exist.)

Having completed these three steps for each Se,s, we now define Ds+1 to be( ⋃
e Se,s+1

)
∪Ds∪Ts+1. For any y ∈ Ds such that fs+1(y) is not yet defined, take

fs+1(y) = fs(y). (This includes nodes on already-frozen successor trees, nodes on

successor trees of height ≤ m, and nodes not on T [x0].) For each y ∈ Ds+1,

if fs+1(y) is not yet defined, take fs+1(y) to be the least integer not already in

range(fs+1) Thus Ds+1 = dom(fs+1). This completes the construction.

We now prove that this construction really does yield a tree T ′ which is iso-

morphic to T but not computably isomorphic to it.

Lemma 3.3.4 For every e, the sequence we,s converges to a limit we.

Proof. Assume by induction that the Lemma holds for every i < e. Notice that

in our construction, once we,s and Se,s are defined, the only way they can become



82

undefined is in Step 1 (if a new node of T [x0] appears which is a predecessor of

wi,s for some i < e) or Step 3 (if wi,s 6= wi,s+1 for some i < e). Once we reach a

stage s0 such that wi,s = wi for every i < e and s ≥ s0 and every predecessor of

every wi (i < e) has appeared in Ts0 , we know that once we,s is defined for some

s ≥ s0, it will stay defined at all subsequent stages, although its value may change.

Also, we,s is only defined at stages s such that wi,s is also defined for all i < e.

By induction, for every i < e, 〈wi,s〉s∈ω converges to some wi. Pick a stage s0

such that wi,s = wi and levelTs(wi,s) = levelT (wi) for all i < e and s ≥ s0. Now if

s ≥ s0 and we,s is not defined, then no wj,s with j > e is defined either. But since

lim supi ht(T [xi]) = ω, there are infinitely many successor trees of height > m, so

a new one, S, with S ∩ Ds0 = ∅, must appear at some stage s > s0. It will not

be frozen, since wi,s = wi for all i < e, so it will be chosen as Se,s, and one of its

nodes of maximal height will be we,s. Then we,t is defined for every t > s, since

every predecessor of every wi with i < e is already in Ts. Thus, by induction, for

every e, we,s is defined for all sufficiently large s.

Once it is defined at a stage beyond s0, we,s will only be redefined at a subse-

quent stage t+1 if levelTt
(ϕe(ft(we,t))) = levelTt

(we,t) and Condition 3.3.3 holds.

Moreover, even when it is redefined, we will still have ft+1(we,t+1) = ft(we,t).

Since the tree T has height ω, we know that for all t,

levelTt
(ϕe(ft(we,t))) ≤ levelT (ϕe(ft(we,t))) < ω.

But 〈levelTt
(ϕe(ft(we,t)))〉t∈ω is a non-decreasing sequence, so it can only change

value finitely often. Thus, once defined, we,s will only be redefined finitely often,

so it must converge.

Lemma 3.3.5 For every x, lims fs(x) exists.

Proof. We know x ∈ Ts ⊆ Ds = dom(fs) for all s > x. Furthermore, once fs(x) is

defined, the only way we can have fs(x) 6= fs+1(x) is if x lies on a successor tree

Se,s for which we,s is redefined or undefined at stage s + 1. Once this happens,
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Se,s is declared frozen, and ft�Se,s = fs+1�Se,s for all t ≥ s + 1. Thus, not only

does 〈fs(x)〉s∈ω converge, but in fact it changes value at most once.

We define the function f = lims fs.

Lemma 3.3.6 The functions fs satisfy Condition 3.3.1. (Hence the relation ≺′

defined on T ′ = range(f) by

a ≺′ b ⇐⇒ (∀s)[a, b ∈ range(fs) =⇒ f−1
s (a) ≺ f−1

s (b)]

is computable and gives a tree structure on ω).

Proof. The construction makes it clear that range(fs) ⊆ range(fs+1) for all s.

Now fix a, b ∈ range(fs). If f−1
s (a) 6= f−1

s+1(a), then f−1
s (a) must lie on a successor

tree Se,s such that we,s 6= we,s+1. Hence fs+1(g(f
−1
s (a))) = fs(f

−1
s (a)) = a, and

f−1
s+1(a) = g(f−1

s (a)), where g is the upward embedding of Se,s into Se,s+1 used in

the construction. We consider four cases:

Case 1. Suppose f−1
s (b) ∈ Se,s as well. Then also f−1

s+1(b) = g(f−1
s (b)), and

since g is an embedding, we have

f−1
s+1(a) ≺ f−1

s+1(b) ⇐⇒ f−1
s (a) ≺ f−1

s (b).

Case 2. Suppose f−1
s (b) ∈ T [x0] − Se,s − {x0}. Then f−1

s (b) ⊥ f−1
s (a). By

Part 2 of Condition 3.3.3, we know f−1
s+1(b) ∈ T [x0] − Se,s+1 − {x0}, so also

f−1
s+1(b) ⊥ f−1

s+1(a).

Case 3. Suppose f−1
s (b) � x0. Then f−1

s (b) ≺ f−1
s (a), and f−1

s+1(b) = f−1
s (b) �

x0 ≺ f−1
s+1(a).

Case 4. If f−1
s (b) ⊥ x0, then f−1

s (b) ⊥ f−1
s (a), and also f−1

s+1(b) = f−1
s (b) ⊥

x0 ≺ f−1
s+1(a), so f−1

s+1(b) ⊥ f−1
s+1(a).

A similar analysis applies if f−1
s (a) = f−1

s+1(a) and f−1
s (b) 6= f−1

s+1(b).

Lemma 3.3.7 The tree (T ′,≺′) is a computable tree isomorphic to T .
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Proof. We defined every fs to be a 1-1 map, with range(fs) ⊆ range(fs+1). By

Lemma 3.3.5, then, f is also 1-1.

The range of f is ω since at each of the (infinitely many) stages at which we

needed a new element for the range of fs, we took the smallest one available. If

f−1
s+1(y) 6= f−1

s (y) for some s, then y = fs(x) for some x on some Se,s which was

redefined at stage s + 1, and f−1
s+1(y) ∈ Se,s+1. But Se,s can only be redefined

finitely often, since levelT (ϕe(f(we))) < ω, so eventually f−1
s (y) will stabilize,

forcing y ∈ range(f).

Moreover, dom(f) =
⋃

sDs = T , so f is a bijection from T to T ′. Since the

partial order ≺′ on T ′ is defined by lifting ≺ from T via f , we know that f is an

isomorphism. Computability of ≺′ follows from Lemma 3.3.6: given a, b ∈ T ′, find

a stage s such that a, b ∈ range(fs). Then a ≺′ b ⇐⇒ f−1
s (a) ≺ f−1

s (b).

Lemma 3.3.8 For every e, either ϕe(f(we)) diverges or

levelT ′(f(we)) 6= levelT (ϕe(f(we))).

Thus requirement Re is satisfied by the element f(we).

Proof. Let s0 be a stage such that for all s ≥ s0, we,s = we and fs(we,s) = f(we).

Since we,s is never redefined after stage s0, we know that either ϕe(f(we)) diverges,

or levelDs(ϕe(f(we))) 6= levelDs(we) for all s ≥ s0. But since
⋃

sDs = T , the

latter of these implies that levelT (ϕe(f(we))) 6= levelT (we). Now levelT (we) =

levelT ′(f(we)) since f is an isomorphism, so ϕe maps the element f(we) of T ′

to an element at a different level in T . Thus Re is satisfied, and ϕe is not an

isomorphism from T ′ to T .

This completes the proof of Proposition 3.3.2.
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3.4 Trees of Height ω

3.4.1 Main Theorem

We now arrive at the main result of this chapter.

Theorem 3.4.1 No tree of height ω is computably categorical.

The theorem will be proved in subsection 3.4.5, after the necessary propositions

have been established.

Corollary 3.4.2 The computable dimension of a computable tree of height ω is

always ω.

Proof of Corollary. If there are n isomorphic copies T0, T1, . . . Tn−1 of T such that

each is computable but no two are computably isomorphic, we construct another

one Tn satisfying for all i < n and all e ∈ ω the requirements

R〈e,i〉 : ϕe total =⇒ (∃x ∈ Tn) [levelTn(x) 6= levelTi
(ϕe(x))].

The constructions are the same as in the proofs of Propositions 3.3.2, 3.4.6,

and 3.4.14.

Alternatively, one can apply a theorem of Goncharov from [18] which states

that if A is a computable structure which has two computable copies that are

∆0
2-isomorphic but not computably isomorphic, then A has computable dimension

ω. (The isomorphisms which we construct in our proofs are all ∆0
2.)

We prove the theorem by proving five propositions, covering five different types

of tree. We use the notions of an extendible node and a side tree to define these

cases. Recall (from page 69) that a node x ∈ T is extendible if there exists an

infinite path through T containing x. The set of all extendible nodes of T , if

nonempty, forms a subtree of T , denoted by Text. Text need not be computable,

even though T is.



86

The side tree above a node x is denoted S[x], and is a subtree of T [x].

S[x] = {y ∈ T [x] : (∀z ∈ T )[x ≺ z � y =⇒ z /∈ Text]}

(x itself may or may not be extendible.) Equivalently, consider the extendible

immediate successors x1, x2, . . . of x. The side tree S[x] is precisely T [x]−
⋃

i T [xi].

Thus x itself is the only node of S[x] which can be extendible in T , and S[x] contains

no infinite paths, although it can have height ω if it is infinite-branching. S[x] is

not necessarily computable, but it will be so if the sets

{extendible immediate successors of x} and

{nonextendible immediate successors of x}

are computably separable.

3.4.2 Three Cases Using Proposition 3.3.2

Proposition 3.4.3 Suppose the computable tree T has height ω above a nonex-

tendible node y0. Then T is not computably categorical.

Proof. Let T and y0 be as in the proposition. We claim there exists an x0 ∈ T

with ω-many immediate successors, such that htx0(T ) = ω and T has finite height

above every x � x0. Indeed, consider the subtree

S = {x ∈ T : htx(T ) = ω & x is nonextendible & x 6⊥ y0}.

S contains a ≺-least element (either y0 or some predecessor of y0), so S is indeed a

subtree. However, S contains no infinite paths, so it must contain terminal nodes,

all of which will lie above y0. We take x0 to be one of these. (x0 is terminal in

S, that is; T will have height ω above x0.) Therefore, T has finite height above

every x � x0, and moreover, this x0 must be an ω-branch point, since otherwise

one of its immediate successors in T would also be in S. Let x1, x2, . . . be the
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immediate successors of x0 in T . Then supi ht(T [xi]) = ω, because htx0(T ) = ω.

But ht(T [xi]) < ω for all i ≥ 1, since otherwise xi would lie in S. Therefore we

must have lim supi ht(T [xi]) = ω, and so Proposition 3.3.2 applies to T and T is

not computably categorical.

Proposition 3.4.4 Suppose that the computable tree T contains an extendible

node x0 such that the side tree S[x0] has height ω. Then T is not computably

categorical.

Proof. If x0 has an immediate successor in S[x0] above which T has height ω, then

we apply Proposition 3.4.3 to this node. If all immediate successors of x0 in S[x0]

have finite height, then there must be infinitely many of them, say x1, x2, . . .. Then

lim supi≥1 ht(T [xi]) = ω, because supi≥1 ht(T [xi]) = ω. Moreover, any immediate

successor of x0 in T either lies in S[x0] or is extendible. Hence Proposition 3.3.2

applies to x0 itself.

Proposition 3.4.5 Suppose that in the computable tree T , there is a node x0 ∈
Text with infinitely many immediate successors in Text. Then T is not computably

categorical.

Proof. ht(T [y]) = ω for every immediate successor y of x0 in Text, so Proposition

3.3.2 applies to x0.

3.4.3 An Isolated Path

Proposition 3.4.6 Suppose there is a node x0 ∈ T which lies on exactly one

infinite path γ through T . If all side trees at nodes on γ above x0 have finite

height, then T is not computably categorical.

Proof. Let x0 be a node on T which lies on exactly one infinite path γ through T ,

such that all side trees at nodes on γ above x0 have finite height.

Let x0 ≺ x1 ≺ x2 ≺ . . . be all the nodes of γ above x0. We apply Corollary

3.2.4 to the set of side trees S[xi] above nodes of γ, yielding an n such that for
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every i ≥ n and every finite subtree S ⊆ S[xi], there is some j > i for which S

embeds into S[xj ]. Our diagonalization argument will take place entirely above

xn. (Notice that the sequence 〈xi〉i∈ω cannot necessarily be computed, and that

the choice of n from Corollary 3.2.4 is nonuniform.)

We define Ts = {r, x0, x1, . . . xn} ∪ {0, 1, . . . s}, a tree under ≺. (As before, r

represents the root of T .) We computably approximate the sequence 〈xi〉i∈ω. For

each s, let

{xn = xn,s ≺ xn+1,s ≺ · · · ≺ xls,s}

be the chain of maximal length in Ts[xn]. (If there is more than one such chain,

take the first such in the dictionary order derived from <.) Since all side trees

have finite height, clearly xi,s → xi for each i. Indeed, xi,s = xi for all s such that

{xn, . . . xm} ⊆ Ts, where m = maxj<i(j + ht(S[xj ])). (However, ht(S[xj ]) need

not be computable in j.)

The requirements Re are the same as in Proposition 3.3.2:

Re : ϕe total =⇒ (∃x ∈ T ′) [levelT ′(x) 6= levelT (ϕe(x))].

This time, however, we will say that Re is satisfied at stage s only if the witness

node we,s is defined and ϕe,s(fs(we,s)) converges and lies at a level of Ts different

from levelTs(we,s).

Instead of simply freezing nodes, as in the proof of Proposition 3.3.2, we must

freeze them with priority e. Thus, at each stage s, we define envelopes Ee,s for

each e, to provide negative restraints on redefining the isomorphism f on elements

of Ee,s. If x lies in the envelope Ee,s, then fs+1(x) 6= fs(x) only if necessary for

the sake of a requirement Ri with i ≤ e. Thus the envelopes will ensure that the

functions fs converge to a limit f with range ω.

Construction: f0 is the identity map on T0, and the witness nodes we,0 are

undefined for all e. We define Ee,0 = ∅ for all e.

At stage s+ 1, we search for the least e ≤ s+ 1 such that one of the following

holds:
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1. we,s is undefined.

2. For each i with n ≤ i ≤ ls+1, the following holds:

xi,s+1 � we,s =⇒ xi,s+1 � we−1,s.

3. we,s is defined and ϕe,s(fs(we,s))↓ and

levelDs(we,s) = levelDs(ϕe(fs(we,s))).

(Such an e must exist, because ws+1,s is undefined.) Let wi,s+1 = wi,s and

Ei,s+1 = {i ∈ Ds+1 : (∃z ∈ Ei,s)y � z}

for all i < e, and let wj,s+1 be undefined and Ej,s+1 = ∅ for all j > e,

If case (1) holds for e, we let we,s+1 to be the <-least node in Ds[xn] with

levelDs[xn](we,s+1) ≥ e which does not lie in any Ei,s with i < e and such that

(∃j)[xj,s � we,s+1 & xj,s 6� we−1,s+1].

We define Ee,s+1 = Ds+1 = Ds ∪ Ts+1. (If no such node exists, then we,s+1

remains undefined, with Ee,s+1 = ∅ and Ds+1 = Ds ∪ Ts+1.)

If case (2) holds, we let we,s+1 diverge with Ee,s+1 = ∅ and Ds+1 = Ds∪Ts+1.

(This is the case where we−1,s and we,s appear to lie in the same side tree along

γ, in which case we cannot embed one upwards without disturbing the other.)

Otherwise, case (3) holds. We search for the least t ≥ max(Ds) satisfying either

of the following two conditions. Let mt = max{k : xk,t � we,s} for each t.

Condition 3.4.7 There exists i < e such that xmt,t � wi,t.

Condition 3.4.8 There exists an embedding g of Ds[xmt,t] into Tt[xmt,t] with

levelTt
(g(we,s)) > levelDs(we,s).
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If Condition 3.4.7 holds for t, then we make we,s+1 undefined, and set Ee,s+1 =

∅ and Ds+1 = Ds ∪ Ts+1.

Otherwise, we use the embedding g given by Condition 3.4.8 to satisfy require-

ment Re. Let we,s+1 = g(we,s), and for all y ∈ Ds[xmt,t], define fs+1(g(y)) =

fs(y). For those y ∈ Ds[xmt,t]− range(g), take fs+1(y) to be the least element of

ω that is not yet in range(fs+1) nor in range(fs). Let Ds+1 = Ds∪Tt, and let the

envelope Ee,s+1 = Ds+1.

(For the sake of clarity, we note that if xmt,t does not lie in Ds, then

Ds[xmt,t] = {y ∈ Ds : xmt,t � y}.

We do have we,s ∈ Ds[xmt,t] by definition of mt. If Ds[xmt,t] does not have a

single root, then we consider each minimal element in it to have level 0.)

In all three cases, we then define fs+1(y) = fs(y) for those y ∈ Ds on which

fs+1 is not yet defined. Also, for each y ∈ Ds+1 − Ds on which fs+1 is not yet

defined, choose the least element of ω which is not yet in range(fs+1) to be fs+1(y).

This completes the construction.

(The idea of the construction is that each witness element we,s lies in the side

tree above some xi. When we need to satisfy Re, we do so by embedding the side

tree containing we,s into another side tree at a higher level. We define fs+1 so that

fs+1(we,s+1) = fs(we,s). Since levelT (ϕe(fs(we,s))) is finite, we will only have to

repeat this process finitely often before reaching a stage s such that fs(we,s) will

satisfy Re permanently.)

We first must prove that at each stage s at which we search for a t, we eventually

find one. This requires a lemma guaranteeing our ability to embed trees upwards

in T [xn].

Lemma 3.4.9 For every xi � xn and every t, there is an embedding g of the tree

Tt[xi] into T [xi+1].

Proof. By the choice of n and Corollary 3.2.4, we know that every finite subtree

of every S[xj ] with j ≥ n embeds into some S[xk] with k > j. By induction,
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then, every finite subtree of every such S[xj ] embeds into infinitely many S[xk]

with k > j. Since there are only finitely many side trees S[xj0 ], . . . S[xjn ] which

intersect the finite tree Tt, we can embed S[xj0 ]∩Tt into some S[xk0
], then embed

S[xj1 ]∩Tt into some S[xk1
] with k1 > k0, and so on. The union of these embeddings

is the desired embedding g.

Lemma 3.4.10 Fix any stage s, and take the corresponding e chosen in the con-

struction. Then there exists a t for which Condition 3.4.8 holds.

Proof. Since each sequence 〈xi,t〉t∈ω converges to xi, we know that mt converges

to a limit m as t → ∞. Thus we,s ∈ S[xm], and m ≥ n. Moreover, there exists t

such that Ds ⊆ Tt. By Lemma 3.4.9, there is an embedding g : Tt[xm] → T [xm+1],

and then

levelDs(we,s) ≤ levelTt
(we,s) < levelT (g(we,s))

since levelTt
(x) < levelT (g(x)) for every x ∈ Tt[xm].

Lemma 3.4.11 For every e in ω, the sequence 〈we,s〉s∈ω converges to a limit we,

the sequence 〈fs(we)〉s∈ω converges to a limit f(we), and either ϕe(f(we)) ↑ or

levelT (ϕe(f(we))) 6= levelT (we). (Since levelT (we) = levelT ′(f(we)), this satisfies

Re.)

Proof. Assume by induction that there exists a stage s0 such that for all s ≥ s0 and

all i < e, the hypotheses of the theorem hold: wi,s = wi, fs(wi) = f(wi), and either

ϕi(f(wi))↑ or Ri is satisfied by f(wi) at stage s. Moreover, assume xk,s = xk for

every k ≤ j+1 and every s ≥ s0, where j is maximal with xj � we−1, Then ms ≥
j+1 for every s ≥ s0, so xms,s 6� wi for all i < e and s ≥ s0. If we,s0 is undefined,

then at the first stage s after s0 at which ht(Ds) > ht(Ee−1,s) + levelT (xn), we,s

will be defined. Moreover, it will never again become undefined, since Condition

3.4.7 will never again be satisfied and case (2) will never apply.

Now if there is no stage s ≥ s0 such that ϕe,s(we,s)↓ and

levelDs(we,s) = levelDs(ϕe,s(fs(we,s))),
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then neither we,s nor fs(we,s) will ever be redefined after s0. Then Re will be

satisfied by we = limswe,s, because levelT (ϕe(fs(we,s))) is finite. Thus the lemma

will be satisfied for e.

If there are stages s ≥ s0 where ϕe,s(fs(we,s))↓ and

levelDs(we,s) = levelDs(ϕe,s(fs(we,s))),

then Condition 3.4.7 will not hold at those stages, so at each such s we will find

a t satisfying Condition 3.4.8 and follow the corresponding instructions for that t.

Thus, we,s+1 will be redefined, but with fs+1(we,s+1) = fs(we,s). Moreover, by

our choice of g, we will have

levelDs+1
(we,s+1) > levelDs(we,s).

Now levelDs(ϕe,s(fs(we,s))) may increase as s increases, but only finitely often,

since fs(we,s) is constant after s0 and levelT (ϕe(fs(we,s))) < ω. Therefore, we

eventually reach a stage s1 with

levelDs1
(ϕe(fs1(we,s1))) = levelT (ϕe(fs1(we,s1))),

and for all s > s1 + 1, Re will be satisfied by we,s. Therefore we,s will never again

be redefined, and Re will be satisfied by we = limswe,s.

Lemma 3.4.12 For every x ∈ T , the sequence 〈fs(x)〉s∈ω converges to a limit.

The limit function f = lims fs has range ω.

Proof. Fix x. The construction ensures that x ∈ Tx ⊆ Dx ⊆ Ds = dom(fs) for all

s ≥ x. If xn 6≺ x, then fs(x) = fs+1(x) for all s for which fs(x) is defined.

Assume, therefore, that xn ≺ x. Let k = max{i : xi � x}, so x ∈ S[xk]. Let s0

be a stage such that for all s ≥ s0 and for all i ≤ k + 1, we have xi,s = xi. Also,

let h = max{i+ht(S[xi]) : i ≤ k+1}. Then by Lemma 3.4.11, there exists a stage

s1 ≥ s0 such that for all s ≥ s1 and for all i ≤ h, we have wi,s = wi.
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Suppose s ≥ s1 is a stage such that fs 6⊆ fs+1, and take the corresponding

index e. Then Condition 3.4.8 is satisfied for some t > s, yielding an embedding

g : Ds[xmt,t] → Tt[xmt,t]. By the construction, we,s 6= we,s+1, so we must have

e > h. This forces levelDs(we,s) > h, since each wi+1,s is at a level > i, so

we,s /∈
⋃

i≤k S[xi] by choice of h. Hence xk+1 � we,s, and mt ≥ k+1 by definition

of mt (and since t ≥ s0). But then xk+1 = xk+1,t � xmt,t. Since x ∈ S[xk], we

have xk+1 6� x, so xmt,t 6� x. Hence x /∈ Ds[xmt,t], and so x /∈ dom(g). Therefore

fs+1(x) = fs(x) for all s ≥ s1. We define f = lims fs.

To see that range(f) = ω, let y ∈ ω. We assume inductively that {0, 1, . . . y −
1} ⊆ range(f). Therefore, if y /∈ range(f), there would exist a stage at which y

would be the least available fresh element, and so there must be a stage s0 and an

x ∈ T for which fs0(x) = y. Moreover, then y ∈ range(fs) for all s ≥ s0.

If there exists some stage s1 > s0 at which fs1−1(x) 6= fs1(x), say for the sake

of a requirement Re, then there must be an x′ such that fs1(x
′) = y. At each such

s1, we will have x′ ∈ Ee,s1 . Indeed, by taking s1 so large that all Ri with i ≤ e

are satisfied at all stages s ≥ s1, we may assume that x′ ∈ Ee,s for all s ≥ s1. But

then fs(x
′) = fs+1(x

′), so y = f(x′) ∈ range(f).

Thus f is a 1-1 ∆0
2 map from T to ω, hence an isomorphism from T to the tree

(T ′,≺′), where T ′ = ω and ≺′ is just the ordering ≺, induced on T ′ from T ′ by f .

Lemma 3.4.13 The maps fs satisfy Condition 3.3.1. Thus ≺′ is computable.

Proof. The construction ensures that Ds ⊆ Ds+1 for all s. For every x ∈ Ds −
Ds[xn], we have fs(x) = fs+1(x). Therefore, Condition 3.3.1 clearly holds if either

f−1
s (a) or f−1

s (b) is not in T [xn]. So take x, y ∈ Ds[xn], with a = fs(x), b = fs(y),

and let x′ = f−1
s+1(a) and y′ = f−1

s+1(b). We have four cases, depending on whether

or not x = x′ and y = y′.

The first case, where x = x′ and y = y′, is trivial. Also, if x 6= x′ and y 6= y′,

then x and y must both lie in Ds[xmt,t], for which we find an embedding g into

some Tt[xmt,t]. In this case,

x � y ⇐⇒ g(x) � g(y) ⇐⇒ x′ � y′
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since g(x) = x′ and g(y) = y′. Thus Condition 3.3.1 is satisfied in these two cases.

Suppose x 6= x′ and y = y′. Then x ∈ Ds[xmt,t]. If y ∈ Ds[xmt,t] also, then

x′ = g(x) ≺ g(y) = y′. If not, then either y ≺ xmt,t (in which case y ≺ x and

y ≺ g(x) = x′, since range(g) ⊂ T [xmt,t]) or y ⊥ xmt,t (in which case y ⊥ x and

y ⊥ g(x) = x′, again because range(g) ⊂ T [xmt,t]).

The preceding paragraph shows that in the third case, not only

x ≺ y ⇐⇒ x′ ≺ y′

but also

x ⊥ y ⇐⇒ x′ ⊥ y′.

Hence by symmetry, the fourth case, with x = x′ and y 6= y′, is also satisfied.

Thus (T ′,≺′) is a computable tree, isomorphic to T , which satisfies every re-

quirement Re. Hence T is not computably categorical, proving Proposition 3.4.6.

3.4.4 No Isolated Paths

Proposition 3.4.14 Let T be a computable tree such that Text is non-empty and

finite-branching and every x ∈ Text lies on infinitely many infinite paths through

T . If all side trees in T have finite height, then T is not computably categorical.

Proof. We use the same requirements Re as in Propositions 3.3.2 and 3.4.6. The

idea of this construction is that for each e, we devote an entire level le of T to

satisfying Re. By the assumptions of the Proposition, we know that there exists

at least one extendible node at level le, and at most finitely many of them. Also,

there may exist any number of nonextendible nodes at level le. Since we cannot

tell the extendible nodes from the nonextendible ones at any stage s, we consider

all the nodes at level le,s at that stage, and denote them by v0
e,s, v

1
e,s, . . . v

ne,s
e,s .

Now since the Proposition assumes that the side tree above each extendible

node has finite height, and since there exist only finitely many extendible nodes
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at levels ≤ le, there must exist a number de such that every node x at level le

with htx(Ts) ≥ de must be extendible. We do not know de, but at each stage

we focus on those nodes at level le,s in Ds ⊇ Ts above which Ds has maximal

height. Thus, we will eventually be considering only extendible nodes and their

successors. Above these nodes we look for upward embeddings to use to satisfy

Re. Since every extendible node x lies on infinitely many infinite paths, and since

Text is finite-branching, T [x] must contain a subtree of type 2<ω, and any finite

tree can be embedded into 2<ω at arbitrarily high levels. Thus we can find upward

embeddings of Ds[x] above x whenever needed, as long as x is extendible.

The notation is as in the previous proofs, except that there may be more than

one potential witness for a given requirement Re at a given stage s. We denote

these witnesses by w0
e,s, w

1
e,s, . . . w

ne,s
e,s . Also, we will keep track of the original

position of each of these witnesses. When wk
e,s is defined, we will set vk

e,s = wk
e,s,

but as wk
e,s is embedded further up in the tree, vk

e,s stays fixed. The only stages

at which vk
e,s will be redefined are those at which a requirement of higher priority

receives attention and those at which vk
e,s acquires a new predecessor. For a given

e and s, the elements vk
e,s will be at the same level for all k, and we will denote

this level by le,s.

Let r be the root of T . We define Ts = {r} ∪ {0, 1, . . . s}, a tree under ≺.

Again, we will define envelopes Ee,s, in order to ensure that range(f) = ω.

The requirements Re are as follows:

Re : ϕe total =⇒ (∃x ∈ T ′) [levelT ′(x) 6= levelT (ϕe(x))].

Re receives attention at stage s if some witness node wk
e,s is embedded upwards

at stage s, if w0
e,s is newly defined at stage s, or if the height of the envelope Ee,s

increases at stage s. When this happens, all actions previously taken for the sake

of requirements Rj with j > e are injured. However, this will only occur finitely

often for each e.

Construction: f0 is the identity map on T0, and the witness nodes wk
e,0 and

their original positions vk
e,0 are undefined for all e and k. Also undefined are ne,0
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and le,0 for all e, and all Ee,0 are empty.

At stage s + 1, we execute the following steps for each e ≤ s, starting with

e = 0. If a requirement Re receives attention, then we do not execute the steps

for any j > e.

1. If w0
e,s is undefined, and there exists an element x of Ds with

levelDs(x) > max
⋃
i<e

{levelDs(y) : y ∈ Ei,s},

then let le,s+1 be its level, and let w0
e,s+1, . . . w

ne,s+1
e,s+1 be all the elements of

Ds at level le,s+1. Let vk
e,s+1 = wk

e,s+1 for each k. Requirement Re has now

received attention. Let Ds+1 = Ds∪Ts+1, and set Ee,s+1 = Ds+1. For each

j > e we set

Ej,s+1 = {y ∈ Ds : (∃z ∈ Ej,s) y � z}.

2. If w0
e,s is undefined, and there does not exist any element x at a sufficiently

high level to satisfy condition (1), then let we,s+1 ↑ also, and set

Ee,s+1 = {y ∈ Ds : (∃z ∈ Ee,s) y � z}.

Then Re has not received attention at this stage.

3. Otherwise, w0
e,s, . . . w

ne,s
e,s are defined, as are the corresponding vk

e,s. Find the

least stage t ≥ max(Ds) such that one of the following holds:

(a) There exists m ≤ ne,s and an embedding g : Ds[v
m
e,s] → Tt[v

m
e,s] such

that

levelTt
(g(wm

e,s)) ≥ levelDs(w
m
e,s) + s.

(b) There exists x ∈ Tt with levelTt
(x) = le,s and htx(Tt) ≥ s, such that

either x /∈ Ds or levelDs(x) < le,s.

If (b) holds and (a) fails at stage t, let wk
e,s+1 = wk

e,s for all k ≤ ne,s, and let

le,s+1 = le,s. For each k, if levelDs(v
k
e,s) = le,s, let vk

e,s+1 = vk
e,s; otherwise
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let vk
e,s+1 be the predecessor of vk

e,s at level le,s in Ds. If there exist elements

x ∈ Ds with levelDs(x) = le,s such that x /∈ {v0
e,s+1, . . . v

ne,s
e,s+1}, then define

those x’s to be w
1+ne,s
e,s+1 , w

2+ne,s
e,s+1 , . . ., with vk

e,s+1 = wk
e,s+1 for each, and

define ne,s+1 to be the greatest superscript required. (If there are no such

x, then ne,s+1 = ne,s.) Define

Ee,s+1 = {y ∈ Ds : (∃z ∈ Ee,s) [y � z]}.

If le+1,s ↓ and ht(Ee,s+1) ≥ le+1,s, then we say thatRe has received attention

at stage s+ 1, and for each j > e we set

Ej,s+1 = {y ∈ Ds : (∃z ∈ Ej,s) [y � z]}.

Otherwise Re has not received attention.

If (a) holds at stage t, let m be the least index for which it holds, and let g

be the corresponding embedding. If ϕe,s(fs(w
m
e,s))↑, or if

levelDs(ϕe,s(fs(w
m
e,s))) 6= levelDs(w

m
e,s),

then we proceed exactly as in the preceding paragraph. Otherwise,

Re receives attention as follows. For every node y ∈ Ds[v
m
e,s], define

fs+1(g(y)) = fs(y) and define fs+1(y) vto be the least element of ω which

is not already in range(fs+1) ∪ range(fs). Let wm
e,s+1 = g(wm

e,s). We define

le,s+1 = le,s. For each k, let vk
e,s+1 be that predecessor of vk

e,s at level le,s in

Ds. (Quite possibly, this will be vk
e,s itself.) Also, if there are any x ∈ Ds

at level le,s which are not in {vk
e,s+1 : k ≤ ne,s}, then define those x’s to be

w
1+ne,s
e,s+1 , w

2+ne,s
e,s+1 , . . ., with vk

e,s+1 = wk
e,s+1 for each, and define ne,s+1 to be

the greatest superscript required. (If there are no such x, then ne,s+1 = ne,s.)

Finally, let Ds+1 = Ds ∪ range(g) ∪ Ts+1, and let Ee,s+1 = Ds+1, with

Ej,s+1 = ∅ for all j > e.

4. If Re has received attention at stage s+ 1, we make all nj,s+1, lj,s+1, v
k
j,s+1
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and wk
j,s+1 undefined for all j > e, and skip all steps for all those j. Otherwise

we increment e by 1 and return to Step 1.

Once we have either given attention to a requirement or completed the steps

with e = s, we define fs+1(y) = fs(y) for those y ∈ Ds on which fs+1 is not yet

defined. Also, for each y ∈ Ds+1−Ds on which fs+1 is not yet defined, choose the

least element of ω which is not yet in range(fs+1) to be fs+1(y). This completes

the construction.

Lemma 3.4.15 For each s and each e ≤ s, either 3(a) or 3(b) must hold for some

t.

Proof. Suppose there exists an extendible node y among {v0
e,s, . . . v

ne,s
e,s }. Then by

the assumption of the proposition, there is a copy of 2<ω embedded into T [y], and

any finite tree can be embedded into 2<ω with the root mapping to a node at an

arbitrarily large level of 2<ω. Thus 3(a) will eventually hold.

Otherwise, none of v0
e,s, . . . v

ne,s
e,s is extendible. Now some node x on level le,s

of T must be extendible. If x ∈ Ds, then we must have levelDs(x) < le,s, since no

node at level le,s in Ds is extendible. Otherwise x /∈ Ds, and either way we will

eventually reach a stage t at which 3(b) holds of x.

Lemma 3.4.16 For every e the following hold:

• lims ht(Ee,s) exists and is finite.

• The sequence 〈le,s〉s∈ω converges to some le ∈ ω.

• For every k ∈ ω, either 〈wk
e,s〉s∈ω and 〈vk

e,s〉s∈ω converge to elements wk
e and

vk
e in ω, or there exists a stage t such that wk

e,s ↑ and vk
e,s ↑ for all s > t.

• The requirement Re receives attention at only finitely many stages, and is

satisfied.
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Proof. We proceed by induction on e. Fix e, and assume s0 is a stage satisfying

all of the following conditions for every s ≥ s0 and every i < e:

1. Ri does not receive attention at stage s;

2. li,s = li;

3. Every v ∈ Text with levelT (v) = le satisfies levelTs(v) = le, and hence is of

the form vk
e,s for some k;

4. vk
i,s = vk

i and wk
i,s = wk

i for all k such that vk
i,s ∈ Text (Notice that each level

of Text is finite, since the proposition assumes that Text is finitely branching.

Hence only finitely many vk
i,s lie in Text.);

5. ht(Ts) > le−1.

Condition 3 simply says that we have waited until all predecessors of each

v ∈ Text at level le have appeared in Ts0 . This is possible because Text is finite-

branching. Notice that this condition implies the same condition for all i ≤ e.

Now le,s is never redefined in the construction, and it can only become unde-

fined at stages at which some Ri with i < e receives attention. Hence le,s = le,s0+1

for all s > s0, so le,s converges to a limit le = le,s0+1. Also, after stage s0 in the

construction, vk
e,s can only be redefined to be a predecessor of itself, and that only

when it has acquired a new predecessor. But by Condition 3, each vk
e,s acquires

no new predecessors in T after stage s0, so each sequence 〈vk
e,s〉s∈ω converges to a

limit vk
e = vk

e,s0
.

Similarly, wk
e,s is never undefined after stage s0, although it may be redefined

at certain stages at which Re receives attention. If vk
e,s /∈ Text, then ht

vk
e,s

(T )

is finite, and the corresponding wk
e,s can only be embedded finitely often by step

3(a), since each embedding (at a stage s + 1) moves it up by at least s levels in

Ds. Hence all those sequences 〈wk
e,s〉s∈ω converge.

For each of the finitely many k with vk
e,s ∈ Text, it is possible for 3(a) to hold for

k at infinitely many stages. However, we only actually apply the embedding g to

redefine wk
e,s at stages s+1 such that ϕe,s(fs(w

k
e,s))↓ and levelDs(ϕe,s(fs(w

k
e,s))) =
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levelDs(w
k
e,s). By the construction, we always have fs+1(w

k
e,s+1) = fs(w

k
e,s), even

if wk
e,s+1 6= wk

e,s. At each stage s+ 1 at which wk
e,s is redefined, we have

levelDs+1
(wk

e,s+1) ≥ levelDs(w
k
e,s) + s.

If this happens sufficiently often, then we will eventually reach a stage s1 at which

levelDs1
(wk

e,s1
) > levelT (ϕe,s1(fs1(we,s1))), since T has height ω, and after stage

s1, we will never redefine wk
e,s again, even if 3(a) does apply. Hence each of these

sequences 〈wk
e,s〉s∈ω does converge to a limit wk

e .

Now there must be an element of Text on level le, and this element will be

designated at some stage s as vk
e,s for some k. We note first that since all side trees

are finite and Text is finitely-branching, there is a d such that every nonextendible

node x at any level ≤ le satisfies htx(T ) < d. (Also, assume d is sufficiently large

that le,d = le.) Once we reach stages s ≥ d, therefore, 3(a) will never again hold

for any m with vm
e,s nonextendible, and 3(b) will not hold for any nonextendible

x. Thus only the finitely many extendible nodes vk
e,s will satisfy either 3(a) or

3(b) at any subsequent stage. But every extendible node v at level le in T already

satifies levelTs0
(v) = le, by inductive hypothesis, so 3(b) will never hold again. By

Lemma 3.4.15, there must exist an m, with vm
e extendible, which satisfies 3(a) at

infinitely many stages. (If there is more than one such, choose the least of them,

just as we did at each stage of the construction.)

If ϕe(fs(w
m
e,s)) ↑ for the corresponding wm

e , then wm
e,s is never redefined, and

fs+1(w
m
e ) = fs(w

m
e ) for all s, so ϕe(f(wm

e ))↑, where f = lims fs as defined below.

Hence Re is satisfied, since ϕe is not total. On the other hand, if ϕe(fs(w
m
e,s)) ↓,

then for every stage s at which

levelDs(ϕe,s(fs(w
m
e,s))) = levelDs(w

m
e,s),

either there will be a subsequent stage s′ at which 3(a) applies to vm
e,s′ and Re
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receives attention and wm
e,s′ is embedded at a greater level, or else

(∀s′ > s)[levelDs′
(wm

e,s′) < levelDs′
(ϕe,s′(fs′(w

m
e,s′)))].

In the latter case, wm
e,s′ will never again be redefined, leaving Re satisfied by the

witness f(wm
e ). In the former case, we again have

levelDs′+1
(ϕe(fs′+1(w

m
e,s′+1))) < levelDs′

(wm
e,s′).

But

levelDs(ϕe(f(wm
e ))) ≤ levelT (ϕe(f(wm

e ))) < ω,

so eventually we reach a stage s with levelT (ϕe(f(wm
e ))) < levelDs(w

m
e,s). After

this stage, wm
e,s is never redefined, leaving

levelT (ϕe(f(wm
e ))) < levelT (wm

e ) = levelT ′(f(wm
e )).

Thus requirement Re is satisfied.

We note that since each sequence 〈wk
e,s〉s∈ω converges to wk

e , none of them

changes value more than finitely often. Moreover, the stage d designated above

has the property that only finitely many elements wk
e,s are ever redefined after

stage d, namely those corresponding to extendible vk
e .

Moreover, since there are only finitely many stages s at which any of the ele-

ments wk
e,s is redefined, we eventually reach a stage s1 after which none of them

is ever redefined. Now Ee,s1 is finite. Let s2 be a stage such that

(∀y ∈ T )[(∃z ∈ Ee,s1)[y � z] =⇒ y ∈ Ts2 ].

That is, every predecessor of each of the (finitely many) elements x ∈ Ee,s1 appears

in Ts2 . Then for all s ≥ s2, we have Ee,s = Ee,s2 . Hence lims ht(Ee,s) = ht(Ee,s2).

Thus Re only receives attention finitely often.

This completes the induction.
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Lemma 3.4.17 For each x, the sequence 〈fs(x)〉s∈ω converges. The limit function

f = lims fs has range ω.

Proof. We need to show that both lims fs(x) and lims f
−1
s (y) exist for all x and y

in ω.

First of all, we have x ∈ Ts ⊆ Ds for every s ≥ x, so fs(x)↓ for all sufficiently

large s. Also, by the construction, we have range(fs) ⊆ range(fs+1) for every s.

Moreover, each time we need a new element for the range of fs+1, we take the

least available one, so clearly every y ∈ ω lies in range(fs) for all sufficiently large

s.

So suppose fs(x) 6= fs+1(x) for some s. The only way this can occur in

our construction is if 3(a) holds for some e and m, and we execute an upwards

embedding g of Ds[v
m
e,s] into T [vm

e,s] at stage s + 1 in order to satisfy Re. If

this happens, then Ee,s+1 = Ds+1 ⊇ range(g), so x ∈ Ee,s+1. Similarly, if

f−1
s (y) 6= f−1

s+1(y) for some s, then f−1
s+1(y) ∈ Ee,s+1.

The only way we could then have ft(x) 6= ft+1(x) or f−1
t (y) 6= f−1

t+1(y) for any

t > s is if some Ri with i ≤ e receives attention at stage t+ 1. This could happen

for the following reasons:

Case 1: Step 3(a) applies to Ri for some i ≤ e, and we execute the corre-

sponding upward embedding g. In this case, Ei,t+1 = Dt+1, so x ∈ Ei,t+1 and

f−1
s+1(y) = g(x) ∈ Ei,t+1.

Case 2: w0
i,t ↑ and w0

i,t+1 ↓, for some i ≤ e. However, although Ri does receive

attention in this case, the construction leaves Ee,t ⊆ Be,t+1. Hence x ∈ Ee,t+1,

and ft+1(x) = ft(x). Similarly, f−1
s+1(y) = f−1

s (y) ∈ Ee,t+1.

Case 3: ht(Ei,t+1) > li+1,t for some i < e. Again, the construction leaves

Ee,t ⊆ Ee,t+1, so x ∈ Ee,t+1 and ft+1(x) = ft(x) and f−1
s+1(y) = f−1

s (y) ∈ Ee,t+1.

Thus, for every t > s, we have both x and f−1
t (y) in Evi,t for some i ≤ e.

Therefore, ft+1(x) 6= ft(x) and f−1
t+1(y) 6= f−1

t (y) each can occur only for the sake

of an upwards embedding on behalf of some Ri with i ≤ e. By Lemma 3.4.16, this

can only occur finitely often. Hence the sequences 〈fs(x)〉s∈ω and 〈f−1
s (y)〉s∈ω

both converge, making f = lims fs a ∆0
2-bijection from ω to ω.
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As usual, we lift the partial order ≺ from T to an order ≺′ on T ′, making f an

isomorphism from T to T ′.

Lemma 3.4.18 The functions fs satisfy Condition 3.3.1. Hence ≺′ is computable.

Proof. We have already seen that range(fs) ⊆ range(fs+1). Take a, b ∈ range(fs).

The only way for f−1
s+1(b) 6= f−1

s (b) is if f−1
s (b) lies in some subtree Ds[v

m
e,s] which

is embedded upward via some g as part of Step 3(a) for some e at stage s + 1. If

f−1
s (a) is also embedded upward at stage s + 1, then since g is a homomorphism

of trees, we have:

f−1
s (a) ≺ f−1

s (b) ⇐⇒ g(f−1
s (a)) ≺ g(f−1

s (b)) ⇐⇒ f−1
s+1(a) ≺ f−1

s+1(b).

Otherwise, f−1
s (a) /∈ Ds[v

m
e,s]. In this case:

f−1
s (a) ≺ f−1

s (b) ⇐⇒ f−1
s (a) ≺ vm

e,s

⇐⇒ f−1
s+1(a) ≺ vm

e,s

⇐⇒ f−1
s+1(a) ≺ f−1

s+1(b).

The case f−1
s+1(b) = f−1

s (b) is simpler, since this implies f−1
s (b) /∈ Ds[v

m
e,s].

Thus, if f−1
s (a) ≺ f−1

s (b), we know that f−1
s (a) = f−1

s+1(a), so f−1
s+1(a) ≺ f−1

s+1(b)

and conversely as well.

Thus (T ′,≺′) is a computable tree, isomorphic to T via f , yet not computably

isomorphic to T , since every requirement Re is satisfied. Therefore, T is not

computably categorical. This completes the proof of Proposition 3.4.14.

3.4.5 Proof of the Theorem

Proof of Theorem 3.4.1. We need only confirm that the preceding propositions

cover all possible cases. First, if T contains no extendible nodes, then Proposition
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3.4.3 applies to the root of T , since ht(T ) = ω. If Text is nonempty and infinite-

branching, then Proposition 3.4.5 covers this case. If Text is nonempty and finite-

branching, then we ask whether there exist side trees of height ω. If so, then

Proposition 3.4.4 gives the result. Otherwise, every side tree has finite height. If

every extendible node lies on infinitely many infinite paths, we apply Proposition

3.4.14. If there exists a node x ∈ Text which lies on only finitely many infinite paths

through T , then by following those finitely many infinite paths upwards until they

all diverge, we find a node x0 ∈ Text which fits Proposition 3.4.6.)
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4.1 Introduction

We now return to the subject of the lattice E of computably enumerable sets un-

der inclusion. The relation between this lattice and the upper semi-lattice of the

same sets under Turing reducibility is such that often properties of a set in the

former allow us to infer properties of the same set in the latter, or vice versa. The

E-definable property of maximality, for instance, enabled Martin to characterize

the high c.e. degrees as those which contained a maximal set ([33]), and other

E-definable properties discovered by Harrington and Soare imply Turing complete-

ness, Turing incompleteness, and non-lowness (see [21] and [23]).

The study of E often focusses on automorphisms of the lattice and the orbits

of c.e. sets under those automorphisms. We say that two c.e. sets are automorphic

if they lie in the same orbit. Again, the Turing-degree properties of a set often

yield insight into the orbit of the set. Harrington and Soare have shown (in [22])

that the orbit of a noncomputable c.e. set must contain a set of high degree, and

the same paper proves Harrington’s theorem that the orbit of a noncomputable

c.e. set cannot be contained in the lower cone {B ∈ E : B ≤T A} below any c.e. set

A (unless A is Turing-complete, of course). On the other hand, Wald showed in

[51] that the orbit of a low c.e. set must intersect the lower cone below any given

promptly simple set C. (This result fails to hold for certain non-prompt sets C,

however, by a result of Downey and Harrington.)

In this chapter we use the Turing-definable property of lowness to avoid an

upper cone. Specifically, our main theorem is:

Theorem 4.1.1 For every low c.e. set A and every noncomputable c.e. set C,

there exists an automorphism of E mapping A to a set B such that C 6≤T B.

Thus, the orbit of A cannot be contained in the upper cone above C.

The main tool for proving this result is the New Extension Theorem of Soare, as

stated in [48]. The lowness of A allows us to predict with fair certainty (i.e. with

only finitely many incorrect guesses) which elements of any given c.e. set will

eventually enter A and which will stay in its complement A.
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Much of the machinery in this chapter is identical to that used in [22], [48],

and [51]. We have deliberately tried to keep our notation and intuitions the same

as in those papers whenever possible, in order that readers familiar with the con-

structions in those papers will find it easier to follow this one. One noticeable

distinction is the use of Kα, which was defined in [22] (equation (14), p. 625) to

mean precisely the opposite of its meaning in [48], [51], and the present chapter.

Caveat lector!

All sets mentioned in this chapter will be c.e. unless specifically stated other-

wise. (Complements, of course, need not be c.e.)
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4.2 Construction

4.2.1 Defining e-States on a Tree

To prove Theorem 4.1.1, we must construct an automorphism of E . By a result

of Soare (in [47], XV.2.6), it suffices to construct an automorphism of E∗, the

quotient of E by the ideal of finite sets. Thus we must map every c.e. set Ue to

some other c.e. set Ûe in such a way that unions and intersections are preserved

up to finitely many elements. Ordinarily we would employ an e-state construction

for this purpose, where by the e-state of an element x at stage s we simply mean

{i < e : x ∈ Ui,s}

and the general e-state of x is

{i < e : x ∈ Ui}.

(Thus, for instance, the 4-state 0101 indicates that an element lies in U1 and U3,

but not in U0 or U2.) The corresponding e-state for sets Ûe in the range of the

automorphism would be defined in exactly the same way. We have a copy of ω,

denoted by ω̂, containing the elements of sets in the range, and we write x̂ to stand

for such an element.

To ensure that the map be onto, we would use a second enumeration V0, V1, . . .

of all c.e. sets and make sure that for each e there is a c.e. set V̂e which maps

to Ve. This gives rise to an additional e-state, that with respect to the sets V̂e,

and the full e-state of x would be 〈σ, τ〉 where σ is the e-state relative to the sets

Ue and τ is the e-state relative to the sets V̂e. We would then need to create

our automorphism in such a way that for every full e-state (relative to sets in the

domain) which contained infinitely many elements x, the corresponding full e-state

(relative to the sets Ûe and Ve in the range) contained infinitely many elements x̂,

and conversely. (For details, see [47], XV.4.3.)

In the present theorem, however, we have additional negative requirements Qe
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to ensure that the image of A under the automorphism does not lie in the upper

cone above C. These requirements follow the Sacks preservation strategy for B,

the image of A, and are stated below, after we define the necessary machinery.

(A description of the Sacks preservation strategy in a simpler situation is given in

[47], VII.3.1.)

In order to construct the automorphism while respecting the negative require-

ments, we must make guesses about which e-states really do contain infinitely

many elements. Since elements can move from one e-state to another between

stages, the number of elements in a given e-state fluctuates. Some e-states accu-

mulate more and more elements, and wind up in the end with infinitely many;

we say that such e-states are well-resided. For other e-states, there are infinitely

many elements which enter that state at some stage but only finitely many which

remain there for good. These e-states are well-visited, but not well-resided. (The

well-resided states are also considered to be well-visited.) Finally, an e-state which

is not well-visited has only finitely many elements that ever enter that state. We

write K to represent the set of well-resided e-states, M to represent the set of

well-visited e-states, and N to represent the set of e-states which are well-visited

but not well-resided. Thus K = M−N .

Our guesses about these possibilities for each e-state lead us to employ a tree

construction. Each node α of the tree T at level e will represent a guess about

which e-states are well-visited and which of those are well-resided. Indeed, the

c.e. sets we build will depend on our guesses: for each α ∈ T with |α| ≡ 1 (mod 5),

we will have a set Uα. Therefore, we will not speak of e-states, but rather of

α-states, which are just e-states relative to the sets Uα�1, Uα�6, Uα�11, . . . Uα. The

true path f through T will correspond to the correct guesses, and the collection

{Uα : α ⊂ f & |α| ≡ 1 (mod 5)} will include every c.e. set We (up to finite

difference).

We will use Mα to denote the set of α-states which α believes to be well-

visited. The set containing those states which α believes to be well-visited but not

well-resided will be partitioned into two subsets BαtRα, according to the method

which α believes is used to remove elements from those states. Also, for each α we
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write

eα = max{k ∈ ω : 5k < |α|}.

Therefore, if β = α− is the immediate predecessor of α in T , then the set Uα is

defined if and only if eα > eβ . We also have the sets Vα on the ω̂-side which ensure

that the automorphism is onto. Then êα is defined by

êα = max{k ∈ ω : 5k + 1 < |α|},

and the set Vα is defined if and only if êα > êβ . (For the purposes of this paper,

we could use a modulus smaller than 5, but we will adhere to the usage in previous

papers.)

T will contain a unique node ρ of length 1, and we will ensure that Uρ = A.

The set Ûρ which we build will be the image of A under the automorphism, so this

is the set B for which we must worry about the negative restraints. We will often

speak of A-states and B-states. These terms refer to full α-states which exclude

Uρ and Ûρ, respectively. If x is in an A-state at stage s, then x /∈ As, and if x̂ is

in a B-state at stage s, then x̂ /∈ Bs.

We think of the sets Uα as being “red” sets, containing elements x ∈ ω, by

which we mean that the elements x are enumerated in these sets by a player called

“RED.” The other player in the game, “BLUE,” tries to match the moves of RED

by moving his own elements x̂ (from the other copy ω̂ of ω) among the sets Ûα,

so that the map taking Uα to Ûα will be an automorphism. Again, to ensure

surjectivity of this map, RED will also play sets Vα containing the elements x̂ ∈ ω̂,

so that every computably enumerable set is represented (up to finite difference)

by at least one Vα along the true path, and it will be up to BLUE to build

corresponding sets V̂α of the elements x ∈ ω. Ultimately BLUE’s goal is that each

full α-state on the ω-side should contain infinitely many elements x if and only if

the corresponding full α-state on the ω̂-side contains infinitely many elements x̂.

In light of this RED/BLUE dichotomy, the class Nα of α-states which are well-

visited but not well-resided will be partitioned into disjoint subclasses Rα and

Bα. The latter contains every state which is emptied out by BLUE, i.e. such that
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cofinitely many of the elements which enter that state eventually leave the state

because they are enumerated into some other blue set. (Here we include B as a

blue set.) Rα contains every state which is emptied out by RED. Of course, an

α-state ν can be emptied out by both players, since there could be infinitely many

elements enumerated into a red set and infinitely many others enumerated into a

blue set. Such states are assigned to either Rα or Bα (but not both!) according

to which player empties out the corresponding γ-state, where γ ⊆ α is the least

predecessor of α such that the γ-state corresponding to ν is not well-resided.

4.2.2 Definitions

To the extent possible, we take our definitions straight from [22] and [51]. One

change is the use of the superscript 0, so that (for instance) M0
α and M̂0

α will

replace MA
α and M̂B

α .

To define the tree T , we need the formal definition of an α-state.

Definition 4.2.1 An α-state is a triple 〈α, σ, τ〉 where σ ⊆ {0, . . . , eα} and τ ⊆
{0, . . . , êα}. The only λ-state is ν−1 = 〈λ, ∅, ∅〉. If 0 /∈ σ, then we call the state an

A-state or a B-state.

As in [51], we define our tree T with a specific node ρ at level 1, since the

corresponding c.e. sets U0 and Û0 are A and B. Also, here we specify the sets Ui

and Vi. Pick some e such that Wi = A, and define:

U0,s = Wi,s

Ue,s = We,s for all e > 0

Ve,s = We,s for all e.

Definition 4.2.2 We define the tree T as follows:
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Let the empty node λ be the root of T and ρ the unique node at level 1, defined

as follows:

M0
λ = M̂0

λ = ∅ M0
ρ = M̂0

ρ = {〈ρ, ∅, ∅〉, 〈ρ, {0}, ∅〉}
R0

λ = B0
λ = ∅ R0

ρ = B0
ρ = ∅

kλ = −1 kρ = −1

eλ = −1 eρ = 0

êλ = −1 êρ = −1

For every β ∈ T with β 6= λ, we put α = β̂〈M0
α,R0

α,B0
α, kα〉 in T (and write

β = α−) providing the following conditions hold:

(i) β is consistent (as defined in Definition 4.2.5 below),

(ii) M0
α is a set of A-α-states, R0

α ∪ B0
α ⊆M0

α, and R0
α ∩ B0

α = ∅,
(iii) M0

α�β ⊆M0
β ,

(iv) [eα = eβ & êα = êβ ] =⇒ M0
α = M0

β ,

(v) R<α
α =dfn {ν ∈M0

α : ν�β ∈ R0
β} ⊆ R0

α,

(vi) B<α
α =dfn {ν ∈M0

α : ν�β ∈ B0
β} ⊆ B0

α,

(vii) Rα
α =dfn R0

α −R<α
α 6= ∅ =⇒ |α| ≡ 3 mod 5,

(viii) Bα
α =dfn B0

α − B<α
α 6= ∅ =⇒ |α| ≡ 4 mod 5.

In addition, each α ∈ T has associated dual sets M̂0
α, R̂0

α, and B̂0
α which are

determined from M0
α, B0

α and R0
α by

M̂0
α = {ν̂ : ν ∈M0

α} (4.1)

Bα
α =dfn {ν : ν̂ ∈ R̂α

α} (4.2)

B̂α
α =dfn {ν̂ : ν ∈ Rα

α} (4.3)

Also, α has associated integers eα and êα (depending only on |α|) defined by

eα = max{k ∈ ω : 5k < |α|} êα = max{k ∈ ω : 5k + 1 < |α|}.

We identify the finite object 〈M0
α,R0

α,B0
α, kα〉 with an integer under some
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effective coding, so that we may regard T as a subtree of ω<ω. Therefore the

partial order on T will be denoted by ⊆. We write α <L γ to denote that α is to

the left of γ on the tree, i.e. that there exists δ ∈ T and m < n in ω with δ̂m ⊆ α

and δ̂n ⊆ γ.

The consistency required by part (i) above is defined as follows.

Definition 4.2.3 A node α ∈ T is R0-consistent if

(∀ν0 ∈ R0
α)(∃ν1)[ν0 <R ν1 & ν1 ∈M0

α], (4.4)

The node α is R̂0-consistent if

(∀ν̂0 ∈ R̂0
α)(∃ν̂1)[ν̂0 <R ν̂1 & ν1 ∈ M̂0

α], (4.5)

If α is both R0-consistent and R̂0-consistent, then we say that α is R-consistent ;

otherwise α is R-inconsistent

Definition 4.2.4 A node α ∈ T , with β = α−, is M-consistent if

eα > eβ =⇒ (∀ν0 ∈M0
α)(∀ α-states ν1)[ν1�β ∈M0

β =⇒ ν1 ∈M0
α].

Definition 4.2.5 The node α is consistent if it is both R-consistent and M-

consistent.

Notice that we can compute uniformly for any α whether it is consistent or not,

since there are only finitely many α-states.

The superscript “0” in M0
α, etc. is intended to make clear that we are only

concerned with A-states (and B-states, in the dual). After all, U0 = A, so any

A-state ν = 〈α, σ, τ〉 will have σ(0) = 0 (as defined below). Similarly, σ̂(0) = 0 for

B-states ν̂.

In Subsection 4.2.4 we will approximate the true path f through T by a uni-

formly computable sequence of nodes {fs}s∈ω. A node α will lie on f if and only

if α is the leftmost node at level |α| in T such that α ⊆ fs for infinitely many s.
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The nodes of the true path are the only nodes for which we ultimately need the

construction to work, but since all we have is an approximation to the true path,

we must follow the dictates of that approximation at each stage. Each element x

(x̂) will be assigned to a given node α(x, s) (α(x̂, s)) at each stage. α(x, s) may

be redefined at stage s + 1 to equal an immediate successor of α(x, s). Moreover,

if the true path moves to the left of α(x, s), then α(x, s) may be redefined so that

α(x, s + 1) <L α(x, s) or so that α(x, s + 1) is a predecessor of α(x, s). However,

α(x, s + 1) will never move back to the right of α(x, s). The construction will

ensure that α(x) = lims α(x, s) exists and that cofinitely many x wind up being

assigned to nodes on f , with the finitely many remaining ones all being assigned

to nodes to the left of f .

We use the elements assigned to node α and its successors vat stage s to help

build Uα, writing:

Sα,s = {x ∈ ω : α(x, s) = α}

Ŝα,s = {x̂ ∈ ω̂ : α(x̂, s) = α}

Rα,s = {x ∈ ω : α ⊆ α(x, s)}

Yα,s = ∪ t≤sRα,t.

The duals R̂α,s and Ŷα,s are defined similarly. Each of these sets is computable.

However, in the limits, only Yα is even c.e.:

Sα = {x ∈ ω : α(x) = α}

Rα = {x ∈ ω : α ⊆ α(x)}

Yα = ∪ tRα,t.

We now give the formal definition of the α-state of an element x ∈ ω or x̂ ∈
ω̂. In general we will only be interested in ν(α, x, s) when α ⊆ α(x, s), but the

definition applies for any α ∈ T .
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Definition 4.2.6 (i) The α-state of x at stage s, ν(α, x, s), is the triple

〈α, σ(α, x, s), τ(α, x, s)〉 where

σ(α, x, s) = {eβ : β ⊆ α & eβ > eβ− & x ∈ Uβ,s},

τ(α, x, s) = {êβ : β ⊆ α & êβ > êβ− & x ∈ V̂β,s}.

(ii) The final α-state of x is ν(α, x) = 〈α, σ(α, x), τ(α, x)〉 where σ(α, x) =

lims σ(α, x, s) and τ(α, x) = lims τ(α, x, s).

The α-state of an element x̂ ∈ ω̂ is defined similarly, with Ûβ,s in place of Uβ,s

and Vβ,s in place of V̂β,s.

For each α ∈ T we define the following classes of A-α-states

E0
α = {ν : (∃∞x)(∃s)[x ∈ As ∩ (Sα,s −

⋃
{Sα,t) : t < s} & ν(α, x, s) = ν]}

and F0
α = {ν : (∃∞x)(∃s)[x ∈ Rα,s & ν(α, x, s) = ν & x /∈ As]}.

Thus E0
α consists of states well visited by elements x when they first enter Rα and

F0
α of those states well-visited by elements at some stage while they remain in Rα,

so E0
α ⊆ F0

α. For each α ∈ T , M0
α represents α’s “guess” at the true F0

α such that

if α ⊂ f then M0
α = F0

α. For α ⊂ f we shall achieve M0
α = F0

α by ensuring the

following properties of M0
α,

E0
α ⊆M0

α, (4.6)

(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈M0
α, (4.7)

and RED causes enumeration of x so that

ν1 = ν(α, x, s+ 1) then ν1 ∈M0
α],

(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈M0
α (4.8)

and BLUE causes enumeration of x so that

ν1 = ν(α, x, s+ 1) then ν1 ∈M0
α].
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(Here (a.e. x) denotes “for almost every x”.) Two main constraints on BLUE’s

moves will be (4.6) and (4.8). Clearly, (4.6), (4.7), and (4.8) guarantee

F0
α ⊆M0

α. (4.9)

During Step 1 of the construction in Subsection 4.2.4 we shall move elements

x ∈ Rα−,s into Sα,s+1 whenever possible in order to ensure

M0
α ⊆ E0

α. (4.10)

Hence, by (4.9), (4.10), and E0
α ⊆ F0

α we will have, for α ⊂ f ,

M0
α = F0

α = E0
α. (4.11)

On the ω̂-side we have dual definitions for the above items by replacing

ω, x, Uα, V̂α by ω̂, x̂, Ûα, Vα respectively. These dual items will be denoted by

ν̂(α, x̂, s), Ŝα, R̂α, Ŷα, Ê0
α, F̂0

α, and M̂0
α. We write hats over the α-states, e.g.

ν̂1 = ν̂(α, x̂, s), to indicate α-states for elements x̂ ∈ ω̂. (In fact, though, an

α-state on either side consists only of the node α, a subset of {e0, . . . eα}, and a

subset of {ê0, . . . êα}, so it is acceptable to write ν1 = ν̂(α, x̂, s), or ν̂ ∈ Mα, as

we shall need to do in certain situations.) We shall ensure

M̂0
α = {ν̂ : ν ∈M0

α}, (4.12)

which implies by (4.11) that the well visited α-states on both sides coincide.

Having said that every α ∈ T should have an associated set M0
α such that

M0
α = F0

α if α ⊂ f , we note that although this is the property we want M0
α to

have, we cannot simply define M0
α to be α’s guess at F0

α because that definition

would be circular. (The definition of F0
α depends on Uα, and the construction of

Uα in Section 4.2.4 will depend on M0
α.) Rather we must define here a certain

set F0+
β which depends only on β, and then let M0

α be α’s guess at F0+
β so that

M0
α = F0+

β (= F0
α) for α ⊂ f .
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Fix α ∈ T such that eα > eβ for β = α−. Define the r.e. set Zeα =
⋃

s Zeα,s

where

Zeα,s+1 =dfn {x : x ∈ Ueα,s+1 & x ∈ Yβ,s}. (4.13)

Define the α-state function ν+(α, x, s) exactly as for ν(α, x, s) in Definition 4.2.6

but with Zeα,s in place of Uα,s.

Define

F0+
β = {ν : (∃∞x)(∃s)[x ∈ Yβ,s & ν+(α, x, s) = ν & x /∈ As]}, (4.14)

k+
β = min{y : (∀x > y)(∀s) (4.15)

[[x ∈ Yβ,s & ν+(α, x, s) = ν1] =⇒ ν1 ∈ F0+
β ]}.

If eα > eβ we also define F̂0+
β = {ν̂ : ν ∈ F0+

β }. (Note that Zeα and hence

F0+
β and k+

β depend only upon β not α and thus α can make guesses M0
α and kα

for F0+
β and k+

β .)

If êα > êβ we first define F̂0+
β and k+

β using the duals of (4.14) and (4.15)

(with Ŷβ,s, Vêα , Ẑêα , and ν+(α, x̂, s) in place of Yβ,s, Ueα , Zeα , and ν+(α, x, s),

respectively), and then we define F0+
β = {ν : ν̂ ∈ F0+

β }. (Note that there is no

k̂+
β only k+

β .)

Every α ∈ T will have associated items M0
α and kα such that M0

α = F0+
β and

kα = k+
β for α ⊂ f . We allow x to enter Yα only if x > kα. If eα = eβ and êα = êβ

we define F0+
β = F0

β , F̂0+
β = F̂0

β , and k+
β = kβ . If

(∃x)(∃s)[x ∈ Yα,s & ν(α, x, s) /∈M0
α] (4.16)

then we say that α is provably incorrect at all stages t ≥ s and we ensure that

α 6⊂ f .

Definition 4.2.7 Given α-states ν0 = 〈α, σ0, τ0〉 and ν1 = 〈α, σ1, τ1〉.
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(i) ν0 ≤R ν1 if σ0 ⊆ σ1 and τ0 = τ1.

(ii) ν0 ≤B ν1 if τ0 ⊆ τ1 and σ0 = σ1.

(iii) ν̂0 ≤R ν̂1 if σ̂0 = σ̂1 and τ̂0 ⊆ τ̂1.

(iv) ν̂0 ≤B ν̂1 if σ̂0 ⊆ σ̂1 and τ̂0 = τ̂1.

(v) ν0 <R ν1 (ν0 <B ν1) if ν0 ≤R ν1 (ν0 ≤B ν1) and ν0 6= ν1, and

similarly for ν̂0 <R ν̂1 and ν̂0 <B ν̂1.

The intuition is that if x is in α-state ν0 = ν(α, x, s) and ν0 <R ν1 (ν0 <B ν1)

then RED (BLUE) can enumerate x in the necessary U sets (V̂ sets) causing

ν1 = ν(α, x, s + 1). For ν̂0 and ν̂1 the role of σ and τ is reversed because on the

ω̂-side BLUE (RED) plays the Û sets (V sets), and hence

[ν0 <R ν1 ⇐⇒ ν̂0 <B ν̂1] & [ν0 <B ν1 ⇐⇒ ν̂0 <R ν̂1]. (4.17)

To construct an automorphism we must show for α ⊂ f that

K̂0
α = {ν̂ : ν ∈ K0

α}. (4.18)

To achieve (4.18) note that unlike E0
α and F0

α, K0
α is Π0

3 not Π0
2 so α cannot guess

at K0
α directly but only at a certain Σ0

2 approximation N 0
α to M0

α−K0
α. We divide

N 0
α into the disjoint union of sets R0

α and B0
α which correspond to those ν ∈ N 0

α

which α believes are being emptied by RED and BLUE respectively.

To define R0
α and B0

α fix α ∈ T , let β = α−, and assume that R0
γ , B0

γ and their

duals R̂0
γ , B̂0

γ have been defined for all γ ⊂ α. We decompose R0
α into the disjoint

union,

R0
α = Rα

α tR<α
α , where (4.19)

R<α
α =dfn {ν ∈M0

α : ν�β ∈ R0
β}, and (4.20)

Rα
α =dfn R0

α −R<α
α . (4.21)

Note that R<α
α is determined by R0

β , β ⊂ α, but Rα
α may contain new elements

and for α ⊂ f it has the meaning described below in (4.23). Likewise, let B0
α =

Bα
α t B<α

α , where B<α
α is defined as in (4.20) but with B0

β in place of R0
β .
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If |α| 6≡ 3 mod 5 define Rα
α = B̂α

α = ∅. If |α| ≡ 3 mod 5 we let M0
α = M0

β

(since α-states are β-states because eα = eβ and êα = êβ), we define the Π0
2

predicate,

F (β, ν) ≡ (∀x)[[x > |β| & x ∈ Yβ ] =⇒ ν(α, x) 6= ν], (4.22)

and we allow Rα
α 6= ∅ with the intention that for α ⊂ f ,

Rα
α = {ν : ν ∈M0

α − (R<α
α ∪ B<α

α ) & F (β, ν)}. (4.23)

In 4.3 we defined

B̂α
α = {ν̂ : ν ∈ Rα

α}. (4.24)

Similarly, if |α| 6≡ 4 mod 5 define R̂α
α = Bα

α = ∅. If α ≡ 4 mod 5 we allow R̂α
α 6= ∅

(using the duals of (4.19)–(4.23) where e.g. in the dual of (4.22) we use Ŷβ in place

of Yβ), and we recall from (4.2) the definition

Bα
α = {ν : ν̂ ∈ R̂α

α}. (4.25)

At most one of Rα
α and R̂α

α is nonempty so by (4.2), (4.3), and (4.23),

Rα
α ∩ Bα

α = ∅ & ((Rα
α ∪ Bα

α) ∩ (R<α
α ∪ B<α

α ) = ∅), (4.26)

and hence

R0
α ∩ B0

α = ∅. (4.27)

If α ⊂ f then ν ∈ R0
α implies F (α−, ν) and hence

(∀ν ∈ R0
α)(∀x ∈ Yα)(∀s)[ν(α, x, s) = ν =⇒ (∃t > s)[ν(α, x, t) 6= ν]]. (4.28)

It will be BLUE’s responsibility to change the α-state of x if ν(α, x, s) ∈ B0
α and

x ∈ Rα. However, B0
α ∩ R0

α = ∅ so if ν(α, x, s) = ν ∈ R0
α then BLUE can wait

for RED to change the α-state of each x to meet (4.28), by restraining x from
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entering any blue set until we reach a stage t > s such that ν(α, x, s) <R ν(α, x, t).

Definition 4.2.8 Given β ⊆ α ∈ T and an α-state ν0 = 〈α, σ0, τ0〉 or a set Cα of

α-states,

(i) ν0 � β = 〈β, σ1, τ1〉 where we define σ1 = σ0 ∩ {0, . . . , eβ} and we define

τ1 = τ0 ∩ {0, . . . , êβ},
(ii) ν1 � ν0 (read “ ν0 extends ν1”) if ν0�β = ν1,

(iii) Cα�β = {ν�β : ν ∈ Cα}.
(iv) Given a finite set of α-states {〈α, σi, τi〉 : i ∈ I}, we define ∪{〈α, σi, τi〉 :

i ∈ I} =dfn 〈α, σ, τ〉, where σ = ∪{σi : i ∈ I}, and where we define τ = ∪{τi :

i ∈ I}.

4.2.3 The New Extension Theorem

Soare developed his New Extension Theorem to simplify the process of constructing

automorphisms. Using the NET, one can divide the construction into three distinct

parts and concentrate on each separately, rather than having to satisfy all three

simultaneously. The idea is that in building an automorphism which maps A to

B, at each stage s+ 1 we can consider three classes of elements: those elements x

which are still in As+1; those x which enter A at stage s + 1; and those x which

were already in As. (On the ω̂ side, we have the same three classes: x̂ ∈ Bs+1,

x̂ ∈ Bs+1 − Bs, and x̂ ∈ Bs.) Indeed, the NET constructs the automorphism on

the third class itself, leaving only two types of element for us to worry about.

In the construction of the tree T in the preceding section, we defined the sets

M0
α, M̂0

α, etc. for each α ∈ T . In [22], a similar construction required the inclusion

of A-states as well as A-states inMα. With the New Extension Theorem, however,

we need only consider A- and B-states. The NET requires that for each α on the

true path, M0
α = M̂0

α and N 0
α = N̂ 0

α. Together, these will guarantee that

K0
α = M0

α −N 0
α = M̂0

α − N̂ 0
α = K̂0

α
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so that the well-resided A-α-states correspond precisely to the well-resided B-α-

states.

The second class of elements contains those x which enter A at stage s + 1,

and those x̂ entering Bs+1. The New Extension Theorem requires us to record the

α-state of each such x at stage s, as a sort of snapshot of its status at the moment

it enters A, and similarly for each x̂ that enters B. We define for each α:

GA
α = {ν ∈M0

α : (∃∞x)(∃s)[x ∈ As+1 − As & ν(α, x, s) = ν]}

ĜB
α = {ν̂ ∈ M̂0

α : (∃∞x̂)(∃s)[x̂ ∈ Bs+1 −Bs & ν̂(α, x̂, s) = ν̂]}.

Thus GA
α contains those A-α-states such that infinitely many elements x are in that

state at the moment of entering A, and similarly for ĜB
α . The NET then requires

that for each α on the true path, the α-states in GA
α must correspond precisely to

those in ĜB
α .

If we can accomplish these two conditions, then the New Extension Theorem

guarantees that the third part of the automorphism construction can be carried

out as well, and therefore that there exists an automorphism mapping each Uα

(α ⊂ f) to the corresponding Ûα.

Theorem 4.2.9 (New Extension Theorem, Soare [48]) Given a computable

priority tree T as defined above with infinite true path f , suppose that each of the

collections {Uα}α⊂f and {Vα}α⊂f contains every computably enumerable set, up

to finite difference. If for each α ⊂ f we have:

(T1) K0
α = K̂0

α, and

(T2) GA
α = ĜB

α ,

then there exists an automorphism of E mapping Uα to Ûα for each α ⊂ f .

It is left to us to satisfy our own requirements for Uρ and Ûρ, namely that

Uρ = A (which we have already ensured, simply by arranging our enumeration of

the c.e. sets to begin with A) and that Ûρ does not lie in the upper cone above C

(which is the hard part).
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Definition 4.2.10 The true path f ∈ [T ] is defined by induction on n. Let β = f�

n be consistent. Then f�(n+1) is the <L-least α ∈ T , α ⊃ β, of length m = n+1

such that:

(i) m ≡ 1 mod 5 =⇒ M0
α = F0+

β & kα = k+
β ,

(ii) m ≡ 2 mod 5 =⇒ M̂0
α = F̂0+

β & kα = k+
β ,

(iii)

m ≡ 3 mod 5 =⇒

[Rα
α = {ν : ν ∈M0

α − (R<α
α ∩ B<α

α ) & F (β, ν)}

& B̂α
α = {ν̂ : ν ∈ Rα

α}],

(iv)

m ≡ 4 mod 5 =⇒

[R̂α
α = {ν̂ : ν̂ ∈ M̂0

α − (R̂<α
α ∪ B̂<α

α ) & F̂ (β, ν)}

& Bα
α = {ν : ν̂ ∈ R̂α

α}],

(v) unless otherwise specified in (i)–(iv), M0
α, R0

α, B0
α, kα, and their duals take

the values M0
β , R0

β , B0
β , kβ , and their duals, respectively.

(If β were inconsistent, it would be a terminal node and the true path would

end at β. We will show in Lemmas 4.3.9 and 4.3.11, however, that this cannot be

the case.)

For a consistent β = f�n, F0+
β is just a finite set of states and k+

β is an integer,

so clearly α exists. Note that each of the conditions in Definition 4.2.10 is Π0
2.

Hence, there is a computable collection of c.e. sets {Dα}α∈T such that α ⊂ f iff

|Dα| = ∞. Fix a simultaneous computable enumeration {Dα,s}α∈T,s∈ω.

We impose the following positive requirements, for all α ∈ T , all α-states ν,

and all i ∈ ω, to ensure that GA = ĜB :

P〈α,ν,i〉 : ν ∈ GA
α =⇒ |{x̂ : (∃s)[x̂ ∈ Bat s+1 ∩ Ŷα,s & ν̂(α, x̂, s) = ν]}| ≥ i
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Clearly each P〈α,ν,i〉 will only put finitely many elements into B. Indeed, since

P〈α,ν,i−1〉 has higher priority than P〈α,ν,i〉, each P〈α,ν,i〉 will only require that a

single element enter B.

The negative requirements Qe are the standard ones for the Sacks strategy for

avoiding an upper cone:

Qe : C 6= {e}B .

To satisfy these, we define the length functions l(e, s) and restraint functions r(e, s)

(as in [47] VII.3.1):

l(e, s) = max{x : (∀y < x)[{e}Bs
s (y)↓= Cs(y)]}

r(e, s) = max{u(Bs; e, x, s) : x ≤ l(e, s)}.

In the construction, we will restrain (with priority e) all elements < r(e, s) from

entering B at stage s. Thus we will preserve the computation {e}B(y) for every y ≤
l(e, s), including y = l(e, s) itself. If lims l(e, s) = ∞, then C would be computable,

contrary to hypothesis. Moreover, for each e, l(e, s) will be nondecreasing as a

function of s, except at the finitely many stages s at which Ne is injured, i.e. at

which Bs+1 � (r(e, s) + 1) 6= Bs � (r(e, s) + 1). Therefore, there exists a finite

limit l(e) = lims l(e, s). Then the computation {e}B(l(e)) must either diverge or

converge to a value distinct from C(l(e)). Hence Qe will be satisfied.

If A were an arbitrary set, then it would be extremely difficult, perhaps im-

possible, to satisfy the requirements Qe. The difficulty would be that if all the

elements x in some A-α-state ν enter A, then we have to put all the elements x̂

from the corresponding B-α-state ν̂ into B, probably violating some requirement

Qe in the process. Each time this happened, we could allow finitely many elements

x̂ to remain in ν̂ rather than entering B, but if it happened infinitely often, then

ν̂ would be a well-resided state and ν would not be.

The assumption that A is low allows us to avoid this difficulty. We use a

variation of Robinson’s Trick (see [41]), as expressed in Soare’s Lowness Lemma

in [48], to predict which elements x in the A-α-state ν will eventually enter A.
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Our prediction may be wrong, but if all elements in ν eventually enter A, then the

prediction will only be wrong on finitely many of those elements. A corresponding

finite number of elements x̂ may have to stay in ν̂ rather than entering B, but

that is acceptable, since then ν̂ will lie in N̂ 0
α, just as ν lies in N 0

α. Essentially

Robinson’s Trick gives us believable evidence that certain elements x will never

enter A, and we use this knowledge to ensure that the requirements Qe will not

prevent us from matching up A-states and B-states.

Recall Definition 4.2.3, which stated that a node α ∈ T is R-consistent if it

satisfies both of the following:

(∀ν0 ∈ R0
α)(∃ν1)[ν0 <R ν1 & ν1 ∈M0

α]; (4.29)

(∀ν̂0 ∈ R̂0
α)(∃ν̂1)[ν̂0 <R ν̂1 & ν̂1 ∈ M̂0

α]. (4.30)

Lowness of A allows us to ensure that every α on the true path is R-consistent.

Without lowness, the equation for R0 would be impossible, since states could be

emptied out into A with no advance warning to us.

BLUE will ensure that α is R-consistent for α ⊂ f by waiting to enumerate x

in any blue sets until RED has enumerated x in some red set. Now (4.3), (4.17),

and (4.29) imply for α ⊂ f that

(∀ν̂0 ∈ B̂0
α)(∃ν̂1)[ν̂0 <B ν̂1 & ν̂1 ∈ M̂0

α]. (4.31)

By repeatedly applying (4.31) BLUE can achieve ν̂1 ∈ M̂0
α − B̂0

α, namely

(∃ function ĥα)[ĥα : B̂0
α → (M̂0

α − B̂0
α) & (∀ν̂ ∈ B̂0

α)[ν̂ <B ĥα(ν̂)]]. (4.32)

(The function ĥ is called the target function.)

It will be BLUE’s responsibility to move any element x̂ ∈ R̂α for which

ν̂(α, x̂, s) = ν̂0 ∈ B̂0
α to the target state ν̂1 = ĥα(ν̂0) so that BLUE can achieve,

(∀x̂ ∈ R̂α)(∀s)[ν̂(α, x̂, s) ∈ B̂0
α =⇒ (∃t > s)[ν̂(α, x̂, t) ∈ M̂0

α − B̂0
α]], (4.33)
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and hence BLUE will cause every state ν̂0 ∈ B̂0
α to be emptied. To achieve (4.33)

on R̂α it suffices to achieve the following on Ŝγ for each γ ⊇ α,

(∀x̂ ∈ Ŝγ)(∀s)[ν(γ, x̂, s) ∈ B̂0
γ =⇒ (∃t > s)[ν(γ, x̂, t) ∈ M̂0

γ − B̂0
γ ]]. (4.34)

(For BLUE to achieve (4.34) from the hypothesis of (4.33) there is a subtle but

crucial point. Suppose ν0 ∈ R0
α, so ν̂0 ∈ B̂0

α. Hence ν̂′0 ∈ B̂
0
γ for all γ ⊃ α such that

ν̂′0�α = ν̂0. Now for every x̂ in region R̂α such that ν̂(α, x̂, s) = ν̂0 ∈ B̂0
α, BLUE

is required by (4.33) to enumerate x̂ in blue sets to achieve ν̂(α, x̂, t) = ν̂1 >B ν̂0

for some t > s. However, if x̂ ∈ Ŝγ,s for some γ ⊃ α then BLUE can only make

γ-legal moves, i.e. BLUE must ensure that ν̂(γ, x̂, s) ∈ M̂0
γ . Hence, on the γ-level

if ν̂′0 = ν̂(γ, x̂, s) and ν̂′0 � α = ν̂0 ∈ B̂0
α then ν0 ∈ R0

α so ν′0 ∈ R0
γ and BLUE

needs a γ-target ν̂′1 >B ν̂′0 for x̂, not merely an α-target ν̂1 >B ν̂0. To obtain this

γ-target ν̂′1, BLUE can hold some y ∈ Sγ in γ-state ν′0 until RED is forced to

cause ν(α, y, t) = ν1 >R ν0, for some t > s, and hence ν(γ, y, t) = ν′1 >R ν′0, thus

ensuring that γ is R-consistent and giving a target γ-state ν̂′1 for x̂. This action

may have to be repeated for each of the infinitely many γ ⊇ α even for those

γ <L f . Hence, (4.33) constitutes a very strong BLUE constraint on the entire

downward cone R̂α. This procedure for producing an appropriate target j-state ν̂′1
for j > e when an e-state ν̂0 is emptied is taken from the effective automorphism

machinery in [47, Chapter XV], and [46], where it also plays a central role.)

We often refer to the dual of (4.32) which asserts

(∃ function hα)[hα : B0
α → (M0

α − B0
α) & (∀ν ∈ B0

α)[ν <B hα(ν)]], (4.35)

and which enables us to achieve the dual of (4.34), namely

(∀x ∈ Sγ)(∀s)[ν(γ, x, s) ∈ B0
γ =⇒ (∃t > s)[ν(γ, x, t) ∈M0

γ − B0
γ ]]. (4.36)
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Finally, we have ensured

(∀γ ⊂ f)(∀ν0 ∈M0
γ)[(∃<∞x)[x ∈ Yγ & ν(γ, x) = ν0] (4.37)

=⇒ (∃α)γ⊂α⊂f [{ν1 ∈M0
α : ν1�γ = ν0} ⊆ R0

α ∪ B0
α]].

To check (4.37) fix γ ⊂ f and ν0 ∈ M0
γ . Now Yγ =∗ ω since γ ⊂ f , so if the

hypothesis of (4.37) holds then we can choose b such that

(∀x ∈ ω)[x > b =⇒ ν(γ, x) 6= ν0].

Choose α ⊂ f such that α ⊃ γ, |α| > b and |α| ≡ 3 mod 5. Consider any ν1 ∈M0
α

such that ν1� γ = ν0. If ν1 /∈ R<α
α ∪ B<α

α then F (α−, ν1) holds so ν1 ∈ Rα
α by

(4.23), and hence ν1 ∈ R0
α by (4.19).

4.2.4 Construction

To parallel the construction in [22], the steps presented in this section will be

denoted as Steps 0–5 and 0̂–5̂ for the construction, with final Steps 10, 1̂0, and 11

at which we define fs+1 and other necessary items. (In the construction in [22],

Steps 10 and 1̂0 were substeps of Step 11. We have separated the two because the

actions in our Step 11 must be performed at every stage, whereas the action in our

Steps 10 and 1̂0 must not be performed unless the preceding steps do not apply.)

Steps 1̂–5̂ and 1̂0 are the obvious duals to Steps 1–5, and will not be stated. There

is no dual of Step 11.

Our construction is as follows:

Stage s = 0. For all α ∈ T define Uα,0 = Vα,0 = Ûα,0 = V̂α,0 = ∅, and define

m(α, 0) = 0. Define Yλ,0 = Ŷλ,0 = ∅, and f0 = ρ. Define every Qα
ν,i,0 = ∅ and

every marker Γα
ν,i,0 to be unassigned. Define A0 = B0 = ∅. Let l(e, 0) = r(e, 0) = 0

for every e.

Stage s+ 1. Find the least n < 11 such that Step n applies to some x ∈ Yα,s and

perform the intended action. If there is no such n, then find the least n < 11 such
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that Step n̂ applies to some x̂ ∈ Ŷα,s, and perform the indicated action. Having

completed that, apply Step 11, and go to stage s+ 2.

(In Steps 0–5 and 0̂–5̂ we let α ∈ T , α 6= λ, be arbitrary, let β = α−, and let

x ∈ Yλ,s (x̂ ∈ Ŷλ,s) be arbitrary.)

The sets {Ãs}s∈ω represent a given computable enumeration of A, from which

we will derive our own enumeration {As}s∈ω to satisfy the New Extension Theo-

rem.

Step 0 (Moving elements into A).

Substep 0.1 (Enumerated elements.) If x ∈ (Yλ,s ∩ Ãs+1)− (Yλ,s−1 ∩ Ãs),

(0.1.1) Where ν(α(x, s), x, s) = ν, add to LG a new pair 〈β, ν̂ � β〉 for

every β ⊆ α(x, s),

(0.1.2) Enumerate x into As+1, and

(0.1.3) Designate every Γ-marker attached to x as unassigned.

Substep 0.2 (Assigning a Γ-marker to an x believed not to go into A.) In the

following, to challenge x with regard to marker type j (= 1, 2, 3) and α-node ν

means to do the following:

(i) Where i is the least number such that the marker Γ
j,α
ν,i is currently unassigned,

enumerate x into Q
j,α
ν,i .

(ii) Find the least t such that either

(a) h(q
j,α
ν,i , t)↓= 1 or

(b) x ∈ Ãt.

In case (a), assign marker Γ
j,α
ν,i to x. In case (b),

(iii) If j = 1 or 2, add to LG a pair 〈β, ν̂ � β〉 for every β ⊆ α(x, s); if j = 3, add

a pair 〈β, ν̂ � β〉 for every β ( α(x, s);

(iv) Enumerate x into As+1 immediately; and
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(v) Designate every Γ-marker attached to x as unassigned.

Then Substep (0.2) consists of repeating the following three instructions:

(0.2.1) If some element x is to be moved into some Yα in A-state ν by

Step 1 or 2, then challenge x with regard to marker type 1 and

α-state ν.

(0.2.2) If some element x is to be put into A-state ν by one of Steps

1–5 or 11C, then challenge x with regard to marker type 2 and

α-state ν.

(0.2.3) If there is some element x such that, as a result of x being

enumerated into Ueα and/or the action of Steps 1–5 or 11C,

ν+(x, α) will become equal to A-state ν, then challenge x with

regard to marker type 3 and α-state ν.

We repeat these instructions until none of these three challenges described

enters case (b) (that is, none of them causes an element to enter As+1).

Step 0̂. (Moving elements into B.)

Find the first unmarked pair 〈α, ν̂0〉 in LG satisfying all of the following:

(0̂.1) For some k, P〈α,ν0,k〉 is not satisfied;

(0̂.2) α is consistent;

(0̂.3) there exist elements ŷ0 < ŷ1 < ŷ2 < · · · < ŷ2k such that for each i ≤ 2k,

both of the following hold:

(∃t ≤ s)[ŷi ∈ Rα,t & ν̂(α, ŷi, t) = ν̂0], and

ŷi /∈ Bs or (∃t < s)[ŷi ∈ Bat t+1 & ν̂(α, ŷi, t) 6= ν̂0];

(0̂.4) ŷ2k > 2 · 〈α, ν0, k〉;
(0̂.5) ŷ2k > r(e, s) for every e ≤ 〈α, ν0, k〉;
(0̂.6) ν̂(α, ŷ2k, s) = ν̂0.
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Action. Enumerate ŷ2k into Bs+1. (Notice that by (0̂.6), ŷ2k /∈ Bs.) Also, mark

the first unmarked copy of 〈α, ν̂0〉 on LG .

Step 1. (Prompt pulling of x from Rβ to Sα to ensure M0
α ⊆ E0

α.) Suppose

〈α, ν1〉 is the first unmarked entry on the list Ls such that the following conditions

hold for some x, where ν1 = 〈α, σ1, τ1〉,
(1.1) x ∈ Rβ,s − Yα,s, and α is R-consistent;

(1.2) x > kα and x > |α|;
(1.3) x is α-eligible (i.e., ¬(∃t)[x ≤ t ≤ s & ft < α]);

(1.4) ¬[α(x, s) <L α];

(1.5) x > m(α, s);

(1.6) ν(β, x, s) = ν1�β;

(1.7) eα > eβ =⇒ ν+(α, x, s) = ν1.

Action. Choose the least x corresponding to 〈α, ν1〉, and do the following.

(1.8) Mark the α-entry 〈α, ν1〉 on Ls.

(1.9) Move x to Sα.

(1.10) If eα > eβ and eα ∈ σ1 then enumerate x in Uα,s+1.

(1.11) If êα > êβ and êα ∈ τ1 then enumerate x in V̂α,s+1. (Hence, ν(α, x, s+

1) = ν1. Also ν1 ∈M0
α because 〈α, ν1〉 ∈ L implies ν1 ∈M0

α.)

Step 2. (Move x from Sβ to Sα so Yα =∗ ω.) Suppose there is an x such that

(2.1) x ∈ Sβ,s,

(2.2) x > |α| and x > kα.

(2.3) x is α-eligible,

(2.4) x < m(α, s),

(2.5) α is the <L-least γ ∈ T with γ− = β satisfying (2.1)–(2.4).

Action. Choose the least pair 〈α, x〉 and

(2.6) move x from Sβ to Sα.

(In Step 2 we need (2.4) so Yα will not grow while α is waiting for another prompt

pulling under Step 1.)
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Step 3. (For α M-inconsistent to ensure α 6⊂ f .) Suppose for α ∈ T there exists

x > kα such that,

(3.1) eα > eβ ,

(3.2) x ∈ Sα,s,

(3.3) ν(α, x, s) = ν0 ∈M0
α,

(3.4) (∃ν1)[ν0 <B ν1 & ν1�β ∈M0
β & ν1 /∈M0

α].

Action. Choose the least such pair 〈α, x〉 and,

(3.5) enumerate x in V̂δ,s+1 for all δ ⊂ α such that eδ ∈ τ1. (This action causes

ν(α, x, s+1) = ν1. Hence, α is provably incorrect at all stages t ≥ s+1 so α 6⊂ f .)

Step 4. (Delayed RED enumeration into Uα.) Suppose x ∈ Rα,s and

(4.1) eα > eβ ,

(4.2) x /∈ Uα,s,

(4.3) x ∈ Zeα,s =dfn Ueα,s ∩ Yβ,s−1.

Action. Choose the least such pair 〈α, x〉 and,

(4.4) enumerate x in Uα,s+1.

Step 5. (BLUE emptying of state ν0 ∈ B0
α.) Suppose for α ∈ T there exists x

such that either Case 1 or Case 2 holds.

Case 1. Suppose

(5.1) ν(α, x, s) = ν0 ∈ B0
α, say ν0 = 〈α, σ0, τ0〉,

(5.2) x ∈ Sα,s,

(5.3) α is a consistent node.

Action. Choose the least such pair 〈α, x〉. Let ν1 = hα(ν0) >B ν0, where hα is a

target function satisfying (4.35). Let ν1 = 〈α, σ1, τ1〉.
(5.4) Enumerate x into V̂δ for all δ ⊆ α such that êδ > êδ− and also eδ ∈ τ1 − τ0.

(Hence, ν(α, x, s+ 1) = ν1.)

Case 2. Suppose that (5.1) holds and

(5.5) x ∈ Sγ,s where γ− = α, and

(5.6) γ is not a consistent node.
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Action. Perform the same action as in Case 1 to achieve ν(α, x, s+ 1) = ν1.

(In (5.6) note that γ ∈ T implies (5.3) for α = γ− since inconsistent nodes are

terminal, so hα exists in Case 2. Note in Step 5 Case 2 that the enumeration may

not be γ-legal, i.e., perhaps ν(γ, x, s+ 1) /∈M0
γ , but this will not matter because

we shall prove that γ 6⊂ f if γ is inconsistent. Hence, it only matters that the

enumeration is α-legal, i.e., ν(α, x, s) ∈M0
α.)

Step 10. (Filling Yλ.) Choose the least x < s such that x /∈ Yλ,s Put x in Sλ.

Step 11. (Defining fs+1, m(α, s+ 1), Ls+1, Yλ,s+1, and Bs+1.)

Substep 11A. (Defining fs+1.) First we define δt by induction on t for t ≤ s+ 1.

Let δ0 = ρ (as given in Definition 4.2.2, the definition of T ). Given δt, let v ≤ s be

maximal such that δt ⊆ fv if v exists, or let v = 0 otherwise. (Let {Dγ,v}γ∈T,v∈ω

be the simultaneous recursive enumeration specified on page 122.) Choose the ≤L-

least α ∈ T such that α− = δt and Dα,s+1 6= Dα,v if α exists and define δt+1 = α.

If α does not exist define δt+1 = δt. Finally, define fs+1 = δs+1.

Substep 11B. (Defining m(α, s+ 1), Ls+1, and their duals.) For each α ⊆ fs+1,

if every α-entry 〈α, ν〉 on Ls and every α-entry 〈α, ν̂〉 on L̂s is marked we say that

the lists are α-marked and we

(11.1) define m(α, s+ 1) = m(α, s) + 1, and

(11.2) add to the bottom of list Ls (L̂s) a new (unmarked) α-entry 〈α, ν〉
(〈α, ν̂〉) for every such α and every ν ∈M0

α. Let the resulting list be Ls+1(L̂s+1).

If the lists are not both α-marked then let m(α, s + 1) = m(α, s), Ls+1 = Ls,

and L̂s+1 = L̂s.

Substep 11C. (Emptying Rα to the right of fs+1.) For every α such that fs+1 <L

α, initialize α, by removing every x ∈ Sα,s (x̂ ∈ Ŝα,s), and putting x in Sβ (x̂ in

Ŝβ) for β = α ∩ fs+1 (where α ∩ δ denotes the longest γ such that γ ⊆ α and

γ ⊆ δ).

For each x ∈ Yλ,s+1 (x̂ ∈ Ŷλ,s+1) such that x /∈ As+1 (x̂ /∈ Bs+1), let α(x, s+1)

(α(x̂, s+1)) denote the unique γ such that x ∈ Sγ,s+1. If x ∈ As+1, then α(x, s+1)

diverges, and similarly for x̂ ∈ Bs+1.
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Define the length function l(e, s + 1) and the restraint function r(e, s + 1) for

stage s+ 1 as follows:

l(e, s) = max{x : (∀y < x)[{e}Bs+1
s+1 (y)↓= Cs+1(y)]}

r(e, s) = max{u(Bs+1, e, x, s+ 1) : x ≤ l(e, s+ 1)}.

(Here u represents the standard use function for relative Turing machines.)

This completes stage s+ 1 and the construction.

Remark 4.2.11 Notice that the only step which can put elements into B = Ûρ

is Step 0̂. All of Steps 1-5 and their duals are dedicated toward the A/B part of

the game. Steps 1̂, 3̂, and 5̂ may put elements x̂ into certain sets Ûα in order to

change ν̂(α, x̂, s + 1). In Steps 1̂ and 5̂, however, this can only happen when the

desired ν̂(α, x̂, s + 1) is a B-state, so we are not required to put x̂ into B. Also,

Step 3̂ never applies with β = λ because ρ, the unique node at level 1 of T , is

M-consistent by definition 4.2.4. Thus these steps never require any x̂ to enter B.
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4.3 Proof of the Theorem

We now prove that the preceding construction satisfies Theorem 4.1.1:

1. In §4.3.1, we verify the restrictions of certain tree properties to A and B.

2. In §4.3.2, we use these tree properties to verify the correctness of M0, M0,

N 0, and N 0.

3. In §4.3.3, we use the above verification to check that GA = ĜB .

4.3.1 Tree Properties

The construction of [22] is designed to ensure that certain properties of the tree T

(the tree properties) hold automatically for every α = β+ on the true path:

1. Mα = F+
β ,

2. M̂α = F̂+
β and

3. kα is a correct guess.

Since our construction employs the New Extension Theorem, we need only

verify the correctness of the restrictions of these properties to A- and B-states.

The New Extension Theorem takes care of the A/B aspect of the game, and we

handle the GA/ĜB aspect in Steps 0 and 0̂, which we have added to the original

construction of [22].

To help handle the GA/ĜB game, however, our construction defined the first

level of the tree artificially, so that it contains only the node ρ. Therefore we must

give special proofs of the tree properties (restricted to A and B) for ρ.

(We will assume that A is infinite and coinfinite, for otherwise A would be

computable and would itself witness that the orbit of A is not contained in the

upper cone above the noncomputable set C.)

Property 4.3.1 Mρ = F+
λ .
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Proof. By Step 10, every element x of ω eventually enters Yλ. (Lemma 4.3.6 below

implies that Step 10 acts infinitely often. The proofs of the lemmas of subsection

4.3.2 do not rely on the properties of this subsection at all.) Every element of the

infinite set A eventually enters some As by Step 0, and no element of the infinite

set A ever does. Thus, there are infinitely many x such that for some s, x ∈ Yλ,s

and x ∈ As, and there are infinitely many x such that for some s, x ∈ Yλ,s and

x /∈ As, so F+
λ = {〈ρ, ∅, ∅〉, 〈ρ, {0}, ∅〉} = Mρ.

(In particular, then, M0
ρ = F0+

λ .)

Property 4.3.2 M̂0
ρ = F̂0+

λ .

Proof. M̂0
ρ contains 〈ρ, ∅, ∅〉, which is the only possible B-ρ-state. By Step 10,

every element x̂ of ω̂ eventually enters Yλ. As noted in Remark 4.2.11, only Step

0̂ ever puts any elements into Û0, and it waits to do so until such elements are

already in Yλ. Thus, 〈ρ, ∅, ∅〉 ∈ F̂0+
λ , so F̂0+

λ = M̂0
ρ.

Property 4.3.3 No element of A or B remains permanently in a non-well-resided

ρ-state. (Thus, the guess kρ = −1 is correct.)

Proof. If x ∈ A (x̂ ∈ B ), then x (x̂) is permanently in the ρ-state ν = 〈ρ, ∅, ∅〉,
which we have just seen is well-visited. To see that this state is well-resided, we

must note that A and B are infinite. We assumed this for A. For B, we note that

by Remark 4.2.11, Step 0̂ is the only step to put any elements into B, and for each

〈α, ν, i〉, it puts at most one element ŷ into B, with ŷ > 2 · 〈α, ν, i〉. Hence B must

be infinite.

This completes the verification of the restricted versions of the tree properties

for ρ. It remains to see that Properties 4.3.2 and 4.3.3 hold for all states, not just

B-states. This will be the very last line in the verification of Theorem 4.1.1, once

we have proven that B is infinite. Since all Dα, |α| > 1, are defined as in [22],

these properties hold automatically for all α ⊇ ρ with α on the true path f :

1. Mα = F0+
α ,
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2. Mα = F0+
α , and

3. kα is the upper bound for the set of all x ∈ A and x̂ ∈ B that remain

permanently in a non-well-visited α-state.

4.3.2 Verification that M0 = M̂0, and N 0 = N̂ 0

For purposes of parallelism, we arrange our Lemmas 4.3.1–4.3.12 to match Lem-

mas 5.1 through 5.12 of [22] and [51]. All twelve of these lemmas have duals,

which we will not state or prove except when the proof of the dual requires a dis-

tinct technique, principally in Lemma 4.3.11, which yields a nice insight into the

construction and the reasons why Theorem 4.1.1 actually holds.

Of course, our lemmas hold for the A/B game, whereas in [22] they held for

the entire universe of elements. Also, our first Lemma matches Lemma 5.0 of [51].

Lemma 4.3.0 (i) If the A-state ν lies in E0
α, then there exists an infinite set

{xi}i∈ω ⊆ A such that

(∀i)[lims Γ
1,α
ν,i,s = xi & (∃s)[xi ∈ Sα,s − Yα,s−1 & ν(α, xi, s) = ν]].

(ii) If the A-state ν lies in F0
α, then there exists an infinite set {xi}i∈ω ⊆ A such

that

(∀i)[lims Γ
2,α
ν,i,s = xi & (∃s)[xi ∈ Rα,s & ν(α, xi, s) = ν]].

(iii) If the A-state ν lies in F0+
α , then there exists an infinite set {xi}i∈ω ⊆ A

such that

(∀i)[lims Γ
3,α
ν,i,s = xi & (∃s)[x ∈ Rα,s & ν+(α, xi, s) = ν]].

Proof. All of these proofs are similar; we therefore give just the proof for (i), which

serves with appropriate modifications for the other two:

Assume by induction that we have found distinct elements x0, x1, . . . xi−1 as

required in (i), and let t be a stage by which
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(a) lims Γ
1,α
ν,i′,s = Γ

1,α
ν,i′,t′ for all t′ ≥ t and i′ < i; and

(b) lims h(q
1,α
ν,i , s) = h(q

1,α
ν,i , t

′) for all t′ ≥ t.

If h(q
1,α
ν,i , t) = 0, then at every stage t′ > t, every x which enters Sα,t′+1 in α-

state ν enters At′+1 immediately, by Substep 0.2. This contradicts ν ∈ E0
α. Hence

h(q
1,α
ν,i , t) = 1, and Q

1,α
ν,i ∩ A 6= ∅, so some y ∈ A eventually goes into Q

1,α
ν,i . When

this y enters Q
1,α
ν,i , it has Γ

1,α
ν,i assigned to it (since y does not go into A), and since

y never enters A this marker is permanently assigned to y.

Since only finitely many Γ
1,α
ν markers may be attached to a given y, the set

{xi}i∈ω, where xi is the y to which marker Γ
1,α
ν,i is permanently assigned, must be

infinite.

The construction makes the following lemma clear. (When, e.g., Step 1 of the

construction applies to a node α and an element x, we will say, “Step 1α applies

to x.”)

Lemma 4.3.1 At stage s+ 1,

(i) if x enters Rα, α 6= λ, then Step 1 or Step 2 applies to α and x;

(ii) if x moves from Sα to Sδ then one of the following steps must apply to x:

Step 1δ for δ <L α or δ− = α; Step 2δ for δ such that δ− = α; or Substep 11Cα,

so fs+1 <L α;

(iii) if x ∈ Sα,s is enumerated in a red set Uα at stage s + 1 then Step 1 or

Step 4 must apply to x;

(iv) if x ∈ Sα,s is enumerated in a blue set V̂α then Step 1, Step 3, or Step 5

must apply to x.

Lemma 4.3.2 (True Path Lemma) The true path f = lim infs fs.

Proof. This is clear from the definition of fs in Step 11A and from the choice of

the sets Dα.
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Lemma 4.3.3 For all α ∈ T ,

(i) f <L α =⇒ Rα,∞ = ∅,
(ii) α <L f =⇒ Yα =∗ ∅,
(iii) α ⊂ f =⇒ Y<α =dfn

⋃
{Yδ : δ <L α} =∗ ∅.

Proof. Part (i) holds because whenever fs+1 <L α, Step 11C sets Sα,s+1 = ∅. For

part (ii), if α <L f , pick an s such that α <L ft for all t ≥ s. Then Yα = Yα,s =∗ ∅.
Finally, for part (iii), if α ⊂ f , then Y<α ⊆ {0, 1, . . . s}, where s is a stage such

that ft ≮L α for all t ≥ s.

In Lemma 4.3.4, since it is now possible for an element x to disappear from

the game by being enumerated into A (or B, in the dual lemma), we must slightly

modify the statement of (iv) from [22] by restricting x to elements of A (and x̂ to

B, in the dual), as shown:

Lemma 4.3.4 For every α ∈ T such that α 6= λ, if β = α−, then

(i) Yα \ Yβ = ∅ and Yα ⊆ Yβ,

(ii) (∀x)(∃≤1s)[x ∈ Rα,s+1 −Rα,s],

(iii) Uα \ Yα = V̂α \ Yα = ∅, and

(iv) If α ⊂ f , then

(∃vα)(∀x ∈ A)(∀s ≥ vα)[x ∈ Rα,s =⇒ (∀t ≥ s)[x ∈ Rα,t]]

(and correspondingly with B in the dual).

Proof. Part (i) follows from Lemma 4.3.1(i).

For (ii), we note from Lemma 4.3.1(ii) that if x ∈ Rα,t−Rα,t+1, then x ∈ Sδ,t+1

for some δ, and either δ <L α, or α was initialized at stage t + 1. In the former

case, x can never re-enter Rα (by 4.3.1(ii), again). If α was initialized, then

δ = ft+1 ⊂ α, and x could only return to Rα by applications of Step 1 or Step 2.

However, we know that x < t by Step 10 (since x ∈ Rα,t), so the restrictions (1.3)

and (2.3) in Steps 1 and 2 rule out the return of x to Rα.
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For (iii), any of Steps 1, 3, 4 and 5 can put an x into some Uα,s+1 or V̂α,s+1,

but each of them either requires x ∈ Yα,s or puts x ∈ Yα,s+1.

Finally, (iv) assumes α ⊂ f , so by Lemma 4.3.3(iii), Y<α is finite. Let vα be

a stage so large that fs <L α only if s < vα, and also that every y ∈ Y<α never

again either enters or leaves Rα. (By Part (ii) of this lemma, each of the finitely

many y ∈ Y<α enters Rα at most once.) Lemma 4.3.1(ii) makes it clear that the

only way for any x ∈ A to leave Rα at any stage is for it to enter Y<α or for

fs+1 <L α. Neither of these can occur at any stage s > vα, by our choice of vα.

Lemma 4.3.5 For all x ∈ A
(i) α(x) =dfn lims α(x, s) exists, and

(ii) x is enumerated in at most finitely many r.e. sets Uγ, V̂γ, and hence for

α = α(x),

ν(α, x) =dfn lims ν(α, x, s) exists.

(And similarly with B in the dual.)

Proof. Lemma 4.3.1(ii) gives the conditions under which α(x, s+ 1) 6= α(x, s) can

occur. Let γ = f � x be the initial segment of the true path with length x, and

choose s > vγ with fs�x = γ. Step 11C forces either α(x, s) <L γ or α(x, s) ⊆ γ.

(It is impossible for γ ( α(x, s) since |γ| = x.) Moreover, Step 11C will never

apply to x after stage s.

Now Steps 1 and 2 can only move x into Sα if x > |α|. Also, each α has

only finitely many predecessors in T , and x cannot be moved back and forth

among these predecessors infinitely often because of Lemma 4.3.4(ii). Therefore,

if α(x, s + 1) 6= α(x, s) occurs infinitely often, then there must be infinitely many

stages at which either α(x, s+1) <L α(x, s). However, there is no infinite sequence

{δ1 <L δ2 <L δ3 <L . . .} in T with every |δi| < x. This proves part (i).

Part (ii) follows from (i) because α(x, s) eventually converges to some α(x), and

there are only finitely many possible α(x)-states. Once x leaves some α(x)-state,

it can never return to that state, because the sets Uγ and V̂γ which we enumerate

are c.e. Moreover, x will never be enumerated in any Uγ or V̂γ unless γ ⊆ α(x).
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Lemma 4.3.6 If the hypotheses of some Step 0–5, or 0̂–5̂ remain satisfied, then

that step eventually applies. Also, Step 10 applies infinitely often.

Proof. If Steps 10 and 1̂0 never applied after some stage s0, then there would only

be finitely many elements x and x̂ in Yλ and Ŷλ, to which the steps preceding Step

10 would apply at every stage after s0. Each of these steps performs some action

when applied, either moving an x or an x̂ into a new Sα or enumerating it into

some Uα, Vα, Ûα, or V̂α. However, such actions can only occur finitely often for

any given x or x̂, by Lemma 4.3.5, so eventually Step 10 or Step 1̂0 must apply,

providing a new element x or x̂. In order for Step 10 or 1̂0 to apply, the hypotheses

of all the other steps must be unsatisfied. This proves the lemma.

Lemma 4.3.7 If α ⊂ f , ρ ( α, and β = α− then

(i) (∀γ <L f)[m(γ) =dfn limsm(γ, s) <∞],

(ii) m(α) =dfn limsm(α, s) = ∞,

(iii) E0
α ⊇M0

α = F0+
β ,

(iv) Ê0
α ⊇ M̂0

α = F̂0+
β , and

Proof. For part (i), we note that for each γ <L f , Substep 11B can only apply

finitely often. Hence limsm(γ, s) must be finite.

Turning to (ii), we let α and β be as given in the lemma. The definition of the

true path (Definition 4.2.10) yields M0
α = F0+

β and M̂0
α = F̂0+

β . By Substep 11B,

m(α, s) is nondecreasing as a function of s; we claim that it increases infinitely

often. Otherwise there would exist a stage s0 with m(α, s) = m(α, s0) for all

s ≥ s0.

Claim: Every α-entry 〈α, ν1〉 on L (〈α, ν̂1〉 on L̂) is eventually marked.

As in [51], we modify the proof of this claim in the non-dual case, since it is

now possible for elements to leave the game before they can enter Sα. We will

use Lemma 4.3.0(iii) to guarantee a supply of elements ({xi}i∈ω) that remain in

A because their Γ3-tags are never removed.

If some entry 〈α, ν1〉 on L were never marked, then no more α-entries would

ever be added to L after 〈α, ν1〉. Choose a stage s1 large enough that neither any
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α-entries on L nor any entry on L preceding 〈α, ν1〉 is ever marked after stage s1,

that Y<α,s1 = Y<α (using Lemma 4.3.3), and that Yα,s1�m(α, s0) = Yα�m(α, s0).

Now requirement (2.4) prevents Step 2 from enumerating any x > m(α, s0) into

Rα after stage s1, and Step 1 will never again put any x into Rα because by (1.8),

that would involve marking an unmarked α-entry on L.

Now ν1 ∈M0
α since 〈α, ν1〉 ∈ L. Also M0

α = F0+
β , since α ⊂ f . Hence Lemma

4.3.0(iii) applied to β provides an infinite collection of elements {xi}i∈ω ⊂ A. By

the choice of s1 all but finitely many xi satisfy (1.1)–(1.7). (Satisfying (1.5) uses

the assumption that limsm(α, s) is finite.) Thus, some such xi is moved to Sα

under Step 1 at some stage s + 1 > s1, and the entry 〈α, ν1〉 is then marked,

contrary to hypothesis. This establishes the claim for L.

With the claim, we see that Substep 11B will apply to α at some stage s > s1,

forcing m(α, s) > m(α, s− 1).

(The proof of (ii) in the dual case is simpler, because we never enumerate any

element of Ŝβ,s into B.)

(iii) now follows (and (iv) similarly) because for any ν1 ∈ M0
α, (ii) forces

infinitely many entries 〈α, ν1〉 to be added to L, and for each to enter, all previous

such entries must have been marked. The only way for an entry to be marked is for

an x in α-state ν1 to enter Sα, and if this happens infinitely often, then ν1 ∈ E0
α.

Lemma 4.3.8 α ⊂ f =⇒

(i) Rα,∞ =∗ Yα ∩ A =∗ Yλ ∩ A = A; and

(ii) Yα is infinite. (And similarly for the dual lemma, with B for A.)

Proof. By Lemma 4.3.6(i) Step 10 must eventually put every element x ∈ ω into

Yλ. By induction we may assume that Rβ,∞ =∗ Yβ ∩ A =∗ A and Yβ is infinite,

for β = α−. By Lemma 4.3.7 m(α) = ∞, and m(γ) < ∞ for all γ <L α with

γ− = β.

Now by Lemma 4.3.3, Y<α =∗ ∅. Also, cofinitely many of the elements x ∈
(Yβ − Yα) ∩ A will eventually enter Sβ . Therefore, cofinitely many such x will
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satisfy (2.1)–(2.5) at some stage, and will be moved to Sα by Step 2. Once there,

cofinitely many of them will remain in Rβ forever, by Lemma 4.3.4(iv).

Part (ii) follows immediately from part (i), since A is infinite (as is B, in the

dual case).

The proof of the dual case is nearly the same, except that we make the indi-

cated changes in the second paragraph, and the last paragraph is replaced by the

following:

To see that Ŷα is infinite, observe that since Ŷβ is infinite, infinitely many

elements must enter Ŝβ via Step 1̂ or Step 2̂. By the above reasoning, almost all

of these must eventually enter Ŝα.

Lemma 4.3.9 α ⊂ f =⇒ α is M-consistent.

Proof. Let α ⊂ f and β = α−. Assume for a contradiction that α is not

M-consistent. Then eα > eβ and there exist ν0 ∈ M0
α, ν1 /∈ M0

α, ν0 <B ν1

and ν1�β ∈ M0
β . By Definition 4.2.2, α is a terminal node on T , so Sα,s = Rα,s

for all s. Thus, by Lemma 4.3.4(iv), for some vα, no x ∈ Sα,s ∩A later leaves Sα.

By Lemma 4.3.7, ν0 ∈ E0
α. Thus, by Lemma 4.3.0(i), we have an infinite set

{xi}i∈ω ⊆ A such that

(∀i)(∃s)[xi ∈ Sα,s+1 − Sα,s & ν(α, xi, s+ 1) = ν0].

Let x be any such xi with x > kα and the corresponding s > vα.

Now Step 0 can never change the α-state of x, since x ∈ A, and Steps 1 and 2

cannot move x at any stage t > s, since they could only act to move x to a different

region Sγ . Thus, Step 3α must eventually apply to x at some stage t+ 1 > s+ 1,

moving x from ν0 either to ν1, or to some other state ν′1 such that ν0 <B ν′1 and

ν′1 � β ∈ M0
β and ν′1 /∈ M0

α. Then α is provably incorrect at all stages v ≥ t + 1,

so α 6⊂ f .

In the dual, there is no need to appeal to an analogue of Lemma 4.3.0(i), since

we do not need x̂ ∈ B. We simply note that since α ⊂ f , we have ν̂0 ∈ M̂0
α = Ê0

α,

so there will be infinitely many x̂ > kα and s > v̂α available to us with x̂ ∈
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Ŝα,s+1 − Ŝα,s and ν̂(α, x̂, s + 1) = ν̂0. As with x above, Step 3̂ must eventually

move each such x̂ into some blue set. Since α is inconsistent, x̂ cannot enter B at

any stage t > v̂α so it enters a state ν̂1 /∈ M̂0
α. Again, this forces α 6⊂ f .

Lemma 4.3.10 If α ⊂ f then

(i) M̂0
α = {ν̂ : ν ∈M0

α},
(ii) M0

α = F0
α = E0

α, and

(iii) M̂0
α = F̂0

α = Ê0
α.

Proof. Fix α ⊂ f , and let β = α−. Now (i) holds by the definition of M̂0
α. By

induction we may assume (ii) and (iii) for β. We know E0
α ⊆ F0

α by their definitions,

and M0
α ⊆ E0

α by Lemma 4.3.7. Thus, to prove (ii) (and (iii)) it suffices to prove

F0
α ⊆M0

α, (and F̂0
α ⊆ M̂0

α).

Case 1. eα = eβ and êα = êβ .

Then M0
α = M0

β . Also F0
α ⊆ F0

β since Yα ⊆ Yβ . Finally, M0
β = F0

β by the

inductive hypothesis (ii) for β. Hence,

F0
α ⊆ F0

β = M0
β = M0

α,

so (ii) holds for α. Likewise, F̂0
α ⊆ M̂0

α, so (iii) holds for α.

Before considering Case 2 we need a technical sublemma.

Sublemma. If eα > eβ , ν2 = 〈α, σ2, τ2) ∈ F0+
β , and ν1 = 〈α, σ1, τ2〉, where

σ1 = σ2 − {eα}, then ν1 ∈ F0+
β also.

Proof. Suppose ν2 ∈ F0+
β . Then ν3 = ν2�β ∈ F0

β , and F0
β = E0

β by the inductive

hypothesis (ii) for β. Hence, by the definition of E0
β ,

(∃∞x)(∃s)[x ∈ Yβ,s − Yβ,s−1 & ν(β, x, s) = ν3].

However, for each such x and s, we have x /∈ Zeα,s (by the definition of Zeα,s) so

ν+(α, x, s) = ν1. Hence, ν1 ∈ F0+
β by the definition of F0+

β in (4.14). This proves

the Sublemma.
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Case 2. eα > eβ .

We prove F0
α ⊆M0

α and its dual F̂0
α ⊆ M̂0

α in the next five claims. (The proof

of Case 3, êα > êβ , is entirely dual and will be omitted.)

Claim 1. F0
α ⊆M0

α.

Proof. Suppose ν1 ∈ F0
α. Let ν1 = 〈α, σ1, τ1〉. Then

(∃∞x)(∃s)[x ∈ Yα,s & ν(α, x, s) = ν1]. (4.38)

Note that Yα,s ⊆ Yβ,s and ν(α, x, s) ≤R ν+(α, x, s) because Uα,s ⊆ Zeα,s. First

suppose

(∃∞x)(∃s)[x ∈ Yα,s & ν+(α, x, s) = ν1]. (4.39)

Then ν1 ∈ F0+
β by definition of F0+

β because Yα,s ⊆ Yβ,s, and F0+
β = M0

α since

α ⊂ f .

If (4.39) fails, then for almost every x in (4.38), ν+(α, x, s) = ν2 >R ν1,

so ν2 = 〈α, σ2, τ1〉 where eα /∈ σ1 and σ2 = σ1 ∪ {eα}. Now ν2 ∈ F0+
β since

Yα,s ⊆ Yβ,s, so ν1 ∈ F0+
β = M0

α by the Sublemma.

Claim 2. F̂0
α ⊆ M̂0

α.

Proof. We establish Claim 2 by the next three claims which are the duals of (4.6),

(4.7), and (4.8).

Claim 3. Ê0
α ⊆ M̂0

α.

Proof. Assume ν̂1 ∈ Ê0
α. Hence,

(∃∞x̂)(∃s)[x̂ ∈ Ŝα,s+1 − Ŷα,s & ν̂(α, x̂, s+ 1) = ν̂1].

For every such x̂ and s, x̂ must have entered Ŝα,s+1 under Step 1̂ or Step 2̂.

If Step 1̂ applied then we marked an entry 〈α, ν̂1〉 on L̂s so ν̂1 ∈ M̂0
α by the

definition of L̂ in Step 11. If Step 2̂ applied then x̂ /∈ Ûα,s+1 because x̂ /∈ Ûα,s
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by Lemma 4.3.4(iii) and no enumeration takes place at stage s + 1 under Step 2̂.

Hence, eα /∈ σ1, where ν1 = 〈α, σ1, τ1〉.
Let ν3 = ν1 � β. Now ν̂3 ∈ F̂0

β = M̂0
β so ν3 ∈ M0

β = F0
β and thus either

ν1 ∈ F0+
β or ν2 ∈ F0+

β where ν2 = 〈α, σ1 ∪ {eα}, τ1〉. But if ν2 ∈ F0+
β then

ν1 ∈ F0+
β by the Sublemma. In either case ν1 ∈ F0+

β = M0
α, so ν̂1 ∈ M̂0

α.

Claim 4. If x̂ ∈ Ŷα,s, ν̂1 = ν(α, x̂, s) ∈ M̂0
α, s > vα of Lemma 4.3.4(iv), and

RED causes enumeration of x̂ so that ν̂2 = ν̂(α, x̂, s+ 1) then ν̂2 ∈ M̂0
α.

Proof. Suppose this enumeration occurs. Then ν̂1 <R ν̂2 so ν1 <B ν2 by (4.17).

Now ν1 ∈ M0
α since ν̂1 ∈ M̂0

α. But α is M-consistent by Lemma 4.3.9, so

ν2 ∈M0
α, and hence ν̂2 ∈ M̂0

α.

Claim 5. If x̂ ∈ Ŷα,s, ν̂1 = ν̂(α, x̂, s) ∈ M̂0
α, s > vα of Lemma 4.3.4(iv), and

BLUE causes enumeration of x̂ so that ν̂2 = ν̂(α, x̂, s + 1) then either ν̂2 ∈ M̂0
α

or ν̂2 is a B-state.

Proof. Suppose x̂ ∈ Ŷα,s and BLUE causes this enumeration at stage s + 1, so

ν̂1 <B ν̂2. Since s > vα, x̂ ∈ R̂α,s ∩ R̂α,s+1. Hence, either Step 1̂, Step 3̂, Step 5̂,

or Step 0̂ applies to x̂ at stage s + 1 for some γ ⊇ α. Assume that ν̂2 is not a

B-state. (Thus Step 0̂ cannot have applied.) If Step 1̂γ or Step 5̂γ applies then

ν̂3 = ν̂(γ, x̂, s+1) ∈ M̂0
γ so ν̂2 = ν̂3�α ∈ M̂0

α. (Here Step 5̂γ means Step 5̂ Case 1

for x̂ ∈ Ŷγ,s or Step 5̂ Case 2 for x̂ ∈ Ŷδ,s where γ = δ−.) If Step 3̂γ applies, then

γ ) α (since α is M-consistent and γ is not) and ν̂3 = ν̂(γ−, x̂, s+ 1) ∈ M̂0
γ− by

(3.4) so ν̂2 = ν̂3�α ∈ M̂0
α. This completes the proof of Claim 5.

Claim 2 now follows, since for any ν̂ ∈ F̂0
α − Ê0

α,

(∃∞x̂)(∃s)x̂ ∈ R̂α,s & ν̂(α, x̂, s) = ν̂ & ν̂(α, x̂, s− 1) 6= ν̂.

(Notice that F̂0
α contains only B-states, by definition.)

This completes the proof of Case 2, and that of Lemma 4.3.10.

Lemma 4.3.11 α ⊂ f =⇒ α is R-consistent.
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Proof. To prove R0-consistency of α, assume for a contradiction that α ⊂ f and

α is not R0-consistent. Choose ν1 ∈ R0
α such that for all ν2 ∈ M0

α, ν1 ≮R ν2.

Being inconsistent, α is a terminal node on T , so Sα,s = Rα,s for all s. Thus, by

Lemma 4.3.4(v), there exists a stage vα such that Sα,s ∩A ⊆ Sα,t for every s and

t with t ≥ s ≥ vα.

Now ν̂1 ∈ R̂0
α ⊆ M̂0

α = Ê0
α by Lemma 4.3.10. Therefore Lemma 4.3.0(i), yields

an infinite set {xi}i∈ω ⊆ A such that

(∀i)(∃s)[xi ∈ Sα,s+1 − Yα,s & ν(α, xi, s+ 1) = ν1].

Let x be any such xi with the corresponding s > vα. Now Step 0 will not

apply to x at any stage t > s + 1 because x ∈ A. Steps 1 and 2 would both

remove x from Sα, which is impossible at any stage t > vα. By Lemma 4.3.9, α

must be M-consistent, so Step 3 will never apply. Also, Step 5 does not apply to

R0-inconsistent nodes such as α. Therefore, if x is to be removed from state ν1 as

required by F (β, ν1), then Step 4 must act, enumerating x into some red set Uγ

with γ ⊆ α. Since this happens for infinitely many elements x, and there are only

finitely many α-states ν with ν1 <R ν, one of those states ν must lie in F0
α, hence

in M0
α, by Lemma 4.3.10(iii). This contradicts R0-inconsistency.

To prove R̂0-consistency of α, assume for a contradiction that α ⊂ f and α is

not R̂0-consistent. Choose ν̂1 ∈ R̂0
α such that for all ν̂2 ∈ M0

α, ν̂1 ≮R ν̂2. Being

inconsistent, α is a terminal node on T , so Ŝα,s = R̂α,s for all s. Thus, by the dual

of Lemma 4.3.4(v), there exists a stage vα such that Ŝα,s ∩ B ⊆ Ŝα,t for every s

and t with t ≥ s ≥ vα.

Now ν̂1 ∈ R̂0
α ⊆ M̂0

α = Ê0
α by the dual of Lemma 4.3.10. Therefore there exist

infinitely many elements x̂ such that

(∃s)[x̂ ∈ Sα,s+1 − (Bs ∪ Yα,s) & ν̂(α, x̂, s+ 1) = ν̂1].

Take any such x̂ > kα for which the corresponding s > vα. Step 0 does not

apply to the ω̂-side, and Steps 1̂ and 2̂ would both remove x̂ from Ŝα, which
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is impossible at any stage t > vα. By the dual of Lemma 4.3.9, α must be M-

consistent, so Step 3̂ will never apply. Steps 5̂ and 0̂ do not apply to R̂0-inconsistent

nodes such as α. Therefore, if x̂ is to be removed from state ν̂1 as required by

F̂ (β, ν̂1), then Step 4̂ must act, enumerating x̂ into some red set Vγ with γ ⊆ α.

Since this happens for infinitely many elements x̂, and there are only finitely many

α-states ν̂ with ν̂1 <R ν̂, one of those states ν̂ must lie in F̂0
α, hence in M̂0

α, by

the dual of Lemma 4.3.10(iii). This contradicts R̂0-inconsistency.

We remark that while the two halves of the preceding proof appear quite similar,

the similarity is deceptive. In fact, the proof of R0-consistency, depends on the

lowness of A, which guided the proof of Lemma 4.3.0. On the other hand, in the

proof of the dual R̂0-consistency, we used instead the fact that inconsistent nodes

do not require any elements to be enumerated into any blue sets, including B

itself. This works in the present situation because the only external requirements

for the construction of B are negative requirements, namely the Qe of the Sacks

preservation strategy. (The positive requirements stem from the automorphism

construction itself, not from any properties which we demand of B.) Herein lies

the connection between lowness of A and the ability of A to avoid an upper cone.

Lemma 4.3.12 If α ⊂ f and ν1 ∈ B0
α, then

{x : x ∈ Yα & ν(α, x) = ν1} =∗ ∅.

Proof. Fix α ⊂ f and ν1 ∈ B0
α. Let vα be as in Lemma 4.3.4(iv). Assume for a

contradiction that x ∈ Rα,s for some s > vα and that for all t ≥ s, γ = α(x, t),

and ν1 = ν(α, x, t). Now γ ⊇ α and α ∈ T , so by the Definition 4.2.2 (vi) of T we

have ν′1 ∈ B
0
γ for all ν′1 ∈M

0
γ such that ν′1�α = ν1.

Case 1. If γ is R-consistent, then by Lemma 4.3.6, Step 5 Case 1 will apply to x

and γ at some stage t+ 1 > s, so ν′1 = ν(γ, x, t), ν′2 = ν(γ, x, t+ 1), ν′1 <B ν′2, and

ν′2 ∈M
0
γ − B0

γ . Hence, ν2 = ν′2�α ∈M
0
α − B0

α, and ν(α, x, t+ 1) = ν2 >B ν1.
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Case 2. Otherwise there will be a stage t+ 1 > s at which Step 5 Case 2 applies

to x and δ = γ− ⊇ α. Hence ν(α, x, t+ 1) = ν2 >B ν1 as in Case 1 but with δ in

place of γ.

In the dual case, we note that the state ν̂′2 might possibly be a B-state. If so,

then ν̂2 would not lie in M̂0
α. However, in that case ν̂2 would also be a B-state,

so ν̂2 6= ν̂1.

Lemma 4.3.13 For every α ⊂ f , M0
α = M̂0

α and N 0
α = N̂ 0

α.

Proof. Lemma 4.3.10(i) gives the result for M. Moreover, since α ⊂ f , we know

thatR0
α = B̂0

α and B0
α = R̂0

α (see Definition 4.2.10). To prove N 0
α = N̂ 0

α, therefore,

we need only show that for each A-α-state ν in M0
α,

ν ∈ B0
α ∪R0

α ⇐⇒ {x ∈ ω : ν(α, x) = ν} is finite,

and similarly for ν̂ ∈ B̂0
α ∪ R̂0

α.

Suppose ν ∈ R0
α. Then F (β, ν) must hold, where β = α−. Therefore, by

(4.22), only finitely many x ∈ Yβ remain permanently in the α-state ν. Since

β ⊂ α ⊂ f , we know that Yβ =∗ ω, so ν ∈ N 0
α. The proof for ν̂ ∈ R̂0

α is analogous.

Now let ν ∈ B0
α and suppose ν(α, x) = ν. Now there exists a node γ and a

stage s0 such that x ∈ Sγ,s for all s ≥ s0. Since α ⊂ f , Rα,∞ is cofinite, so we

may assume that γ ⊇ α. Let ν1 = ν(γ, x) be the permanent γ-state of x, and

suppose that s1 ≥ s0 is such that ν(γ, x, s) = ν1 for all s ≥ s1. Then ν1�α = ν,

and ν1 is an A-state. By part (vi) of Definition 4.2.2, ν1 ∈ B0
γ . If γ is a consistent

node, then by Lemma 4.3.6, there will eventually be a stage s ≥ s1 at which Case

1 of Step 5 applies, so x will be moved into some other γ-state ν2 >B ν1 at stage

s1. If γ is inconsistent, then again x will change γ-states at some stage s ≥ s1

at which Case 2 of Step 5 applies. In either case, this contradicts our assumption

that ν(γ, x) = ν1. Thus there are only finitely many x which reside permanently

in the α-state ν, forcing ν ∈ N 0
α.
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For ν̂ ∈ B̂0
α, the dual proof holds for all x̂ ∈ B. If x̂ ∈ B, then clearly ν̂ is

not the final α-state of x̂, since every state in B̂0
α is a B-state. Therefore again

ν̂ ∈ N̂ 0
α.

Now suppose ν ∈ N 0
α, i.e. ν is a well-visited but non-well-resided α-state. In

the construction, the only steps at which an element x may be moved out of ν are

Steps 0, 1, 4, and 5. (Step 3 never applies to α, by Lemmas 4.3.9 and 4.3.11.) If

Step 5γ applies (for some γ ⊇ α), then ν ∈ B0
α, by part (vi) of Definition 4.2.2.

Since α ⊂ f , Step 1 can only move elements in Rα to regions Sγ , where α ⊂ γ

(except for finitely many elements), and when it does so, it enumerates them only

into Uγ or V̂γ , leaving the α-state unchanged. Step 0 could move infinitely many

elements into A, but by Lemma 4.3.0, there must also be infinitely many elements

from A in the state ν, since ν ∈M0
α = E0

α.

Therefore, suppose Step 4 changes the α-state of cofinitely many of the elements

in state ν. By definition of kα = k+
β , the finitely many elements not moved can

never enter Yβ . Hence F (β, ν) holds. Since ν ∈ M0
α and α ⊂ f , part (iii) of

Definition 4.2.2 forces ν ∈ R0
α ∪ B0

α.

Finally, for the dual case ν̂ ∈ N̂ 0
α, the same argument holds, except that Step

0̂ could move an element out of ν̂. If cofinitely many of the elements which enter

state ν̂ are so moved, then according to Step 0, cofinitely many elements in the

corresponding state ν on the ω-side must have entered A. This contradicts Lemma

4.3.0. so there must be infinitely many elements in ν̂ which are not moved into B

by Step 0̂.

Lemma 4.3.14 {Uα : α ⊂ f} and {Vα : α ⊂ f} each forms a skeleton for the

collection of all c.e. sets. (That is, for every e there exist γ ⊂ f and δ ⊂ f such

that We =∗ Uγ =∗ Vδ.)

Proof. Steps 4 and 4̂ accomplish this, since Rα =∗ ω and R̂α =∗ ω̂ for all α ⊂ f .

The only exception is the set A = U0, which is covered by Substep (0.1).
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4.3.3 Verification that GA = ĜB.

Our proof that GA = ĜB follows the same ideas as in [51], section 1.3.3. First,

however, we need to show that all requirements are satisfied.

Lemma 4.3.15 Every requirement Qe is satisfied. (Hence C 6≤T B.)

Proof. Each positive requirement P〈α′,ν′,j〉 puts at most one element into B, so

(by induction) there exists a stage s0 so large that no P〈α′,ν′,j〉 with 〈α′, ν′, j〉 ≤ e

puts any elements into B at any stage ≥ s0. Notice also, by the remark at the end

of the construction, that only Step 0̂ ever puts any elements into B, and that it

respects all higher-priority negative requirements Qi when doing so.

Now suppose that Qe fails, i.e. C = {e}B . Then lims l(e, s) = ∞, and we can

use this fact to compute C. Given x, find a stage s ≥ s0 such that l(e, s) > x. As

in [47], Theorem VII.3.1, we must then have

{e}Bs
s (x) = {e}B(x) = C(x),

since by our choice of s0, the initial segment of Bs used in this computation will

never again be changed.

This contradicts the noncomputability of C. Hence Qe must be satisfied.

Lemma 4.3.16 For every e, lims r(e, s) exists and is finite.

Proof. The proof follows the proof of Lemma 2 in [47] VII.3.1 exactly. Lemma

4.3.15 yields an x such that C(x) 6= {e}B(x). Taking the least such x, we choose

a stage s0 so large that:

• The functions {e}Bs
s and Cs converge to their correct values on every argu-

ment < x, for every s ≥ s0;

• Cs0(x) = C(x); and

• No higher-priority requirement P〈α,ν,i〉 puts any element into B at any stage

s ≥ s0.
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If {e}Bt
t (x) ↓ for some t ≥ s0, then the same computation converges to the same

value at all stages s > t, so r(e, t) = r(e, s) for all s > t. Otherwise {e}Bt
t (x)↑ for

all t ≥ s0, leaving r(e, s) = r(e, s0) for all s ≥ s0.

To show that GA = ĜB , we will prove the following two lemmas:

Lemma 4.3.17 For any node α and α-state ν1, LG contains infinitely many pairs

〈α, ν̂〉 if and only if ν ∈ GA
α .

Proof. Such a pair is added to LG exactly when Step 0 enumerates some x ∈ ν1

into A. Moreover, no step except Step 0 ever puts any elements into A. Thus,

LG contains infinitely many such pairs if and only if infinitely many x ∈ ν1 are

enumerated into A; that is, if and only if ν ∈ GA.

Lemma 4.3.18 For any node α ⊂ f and α-state ν1, LG contains infinitely many

pairs 〈α, ν̂1〉 if and only if ν̂1 ∈ ĜB.

Proof. To show the “if” part of this statement, we observe that

1. We do not move any element x̂ in α-state ν̂1 into B except when required to

do so in Step 0̂ by some pair 〈γ, ν̂′1〉 in LG with α ⊆ γ and ν̂1 = ν̂′1 � α, and

that

2. If there are infinitely many such pairs in LG then there are infinitely many

pairs 〈α, ν̂1〉 in LG , since whenever we add one of the former we also add one

of the latter.

To show the “only if” part, suppose that for a given α and ν, LG contains

infinitely many pairs 〈α, ν̂〉. We claim that for every i, the requirement P〈α,ν,i〉 is

satisfied.

To see this, assume by induction that P〈α,ν,i−1〉 is satisfied, and notice that

we can find a stage s0 so large that LG contains at least i pairs 〈α, ν̂〉 at stage s0

and that for all s ≥ s0 and all e ≤ 〈α, ν, i〉, r(e, s) = r(e, s0). By Lemma 4.3.17,

ν ∈ GA
α . Therefore ν ∈M0

α, and by Lemmas 4.3.13 and 4.3.10(iii), ν̂ ∈ M̂0
α = F̂0

α.
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If P〈α,ν,i−1〉 remained unsatisfied forever, then the definition of F̂0
α would guarantee

that there must exist distinct elements ŷ0, ŷ1, ŷ2, · · · ŷ2k and a stage s > s0 at which

these elements satisfy conditions (0̂.4)–(0̂.6). Now α is consistent by Lemmas 4.3.9

and 4.3.11, and P〈α,ν,i〉 would not be satisfied at stage s, so by Step 0̂ of the

construction, the element ŷ2k would have to enter B from state ν̂ at stage s+ 1.

Since ν ∈ GA
α , we know that the hypothesis of P〈α,ν,i〉 is satisfied for every i.

Since the requirements themselves are all satisfied, we conclude that ν̂ ∈ ĜB
α .

With this result we can finally extend Properties 4.3.2 and 4.3.3 to B-states.

Since A is infinite, GA
α is non-empty for each α ⊂ f , so ĜB

α is also non-empty, forcing

B to be infinite. Therefore the ρ-state 〈ρ, {0}, ∅〉 is well-resided, so F̂+
λ = M̂ρ.

Also, since every well-visited ρ-state is well-resided, the guess kρ = −1 is correct.

Lemmas 4.3.17 and 4.3.18 together show that GA = ĜB . Lemma 4.3.15 shows

that C 6≤T B. Along with Lemmas 4.3.13 and 4.3.14 and Theorem 4.2.9, this

completes the proof of Theorem 4.1.1.
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