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Abstract

Inspired by recent work of Csima and Harrison-Trainor and of
Montalbdn in relativizing the notion of degrees of categoricity, we
return to uniform computable categoricity, as described in work of
Downey, Hirschfeldt and Khoussainov. Our attempt to integrate these
notions together leads to certain new questions about relativizing the
concept of the jump of a structure, as well as to an idea of the struc-
tural information content of a countable structure, i.e., that informa-
tion which can be recovered uniformly from copies of the structure.

1 Rod

For certain mathematicians, a sixtieth-birthday conference is mainly an op-
portunity to reflect on the body of their work and to start to view it as a
whole. This is particularly true if one believes them to have mostly completed
that work. Rod Downey, on the other hand, shows no signs whatsoever of
slowing down, and one can hardly think of his oeuvre as completed when he
keeps on churning out one paper after another. For Rod’s sixtieth birthday,
therefore, it seems more appropriate to try to create a present to give him.
Once again, this is no easy task. However, the recent work of Csima and
Harrison-Trainor on degrees of categoricity “on a cone” suggested connec-
tions to work by Rod, joint with Denis Hirschfeldt and Bakh Khoussainov
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in 2003, on uniform versions of computable categoricity. This paper is an
attempt to integrate those two concepts together: the goal is not necessarily
to produce a fully formed result, but rather to inspire questions which can
serve as a birthday present, giving Rod and others something to play with.
As with any birthday present, the author felt the need to play with it a bit
himself first — just to test it out, of course — and so some theorems will be
stated, along with examples, but even these serve mainly to illustrate the
important points and to raise further questions, rather than to resolve them.
Happy birthday, Rod!

2 Introduction

The notion of computable categoricity has become absolutely standard in
computable model theory. A computable structure A is computably cate-
gorical if every computable structure B isomorphic to A is computably iso-
morphic to A. This does not mean that all isomorphisms between A and B
need be computable, of course; but it implies that, to determine whether or
not A is isomorphic to an arbitrary computable structure C, one need look no
further than the computable functions to determine whether an isomorphism
exists.

Computable model theorists have modified this definition in a number
of ways. Uniform computable categoricity was promulgated, in two differ-
ent versions, by Downey, Hirschfeldt, and Khoussainov in [5], and earlier by
Kudinov [9, 10] and Ventsov [18]. For this property, we require not only that
the computable isomorphism between the computable isomorphic structures
A and B must exist, but that there must be an effective method of find-
ing it. The main version demands a Turing functional I" which, given the
(computable) atomic diagrams of A and B as an oracle, always computes an
isomorphism from A onto B; this version is equivalent (and very similar) to
our Definition 3.1 below. A weaker version, in [5] and [9, 10], demands a
computable function f which, given any ¢ and j such that ¢; and ¢; com-
pute the atomic diagrams of A and B, outputs the index e of a computable
isomorphism ¢, from A onto B. One of the surprises of [5] was that these
notions turned out to be distinct: the first one always implies the second, of
course, but not vice versa.

Relative computable categoricity of A broadens the original definition in a
different way, by extending it to all structures B on the domain w, whether or



not they are computable. Of course, requiring a computable isomorphism to
map the computable structure A onto a noncomputable B would be unten-
able. Rather, we say that A is relatively computably categorical if, for every
B with domain w which is isomorphic to A, there exists a B-computable iso-
morphism from A onto B. (It follows that, for every B and C isomorphic to
A, there is a (B & C)-computable isomorphism from B onto C.) This version
has been shown, in [1] and independently in [2], to be equivalent to a syntac-
tic characterization using computable infinitary formulas, the Scott family,
which we describe below. Moreover, relative computable categoricity of A is
equivalent to the existence of a finite tuple of elements @ from A such that
(A, @) is uniformly computably categorical. However, it was soon shown, for
instance in [9], that a computable structure can be computably categorical
without being relatively computably categorical.

Finally, for computable structures which fail these criteria, we can ask
how close they come to satisfying them. For example, for a computable or-
dinal «, a computable structure A is said to be relatively Aq,-categorical
if, for every B isomorphic to A with domain w, there exists an isomorphism
from A onto B which is computable from the a-th jump of the degree of
B. (The irritating use of (1 + «) is necessary to make this definition work
for both finite and infinite ordinals «.) This too has a very pleasing syn-
tactic characterization, by computable enumerability of a Scott family of
3¢, -formulas. Plain Ay ,-computable categoricity is defined by analogy,
restricting the relative definition to computable structures B only, and under
this restriction to computable structures, a further generalization is explored
in [7]: d-computable categoricity, in which all computable copies B of A are
required to have isomorphisms from A which are computable from the Tur-
ing degree d. When d = 0(%), this is just A ,-computable categoricity, but
the generalization to the relative version does not work smoothly when d is
not of the form 0®.

The work [7] explored the possibility of a computable structure having
a specific degree of categoricity, i.e., having a least degree d such that A
is d-computably categorical. Degrees of categoricity were shown there to
include all c.e. and d.c.e. degrees, as well as degrees of the form 0®) with
a < w. The results there were nicely extended in [3], to all a < W, but
the papers which largely inspired our approach here were [4] and [14]. In the
first of these, Csima and Harrison-Trainor showed that every computable
structure has a specific level of categoricity: relative to some fixed degree d,
its degree of categoricity is precisely some jump d'® of d. (In their language,
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a structure will have degree of categoricity 0(*) on the cone above d, i.e.,
with all definitions relativized to d.) The results here through Section 3, and
some of those beyond that section, are mostly implicit in their work and [14],
if not explicitly stated there. Our goal, in addition to calling attention to
their work, is to show how it can be integrated together with the notions of
uniform computable categoricity.

With such a glut of definitions on hand, the newcomer to the subject
may feel somewhat dazed. Nevertheless, each of these definitions arises out
of reasonable questions. Here, to justify extending one of these definitions
even further (below), we offer an example of a shortcoming in the foregoing
catalogue, using two computable fields £ and F.

Our FE is well-known: it is simply the algebraic closure of the purely
transcendental extension Q(to,?1,...) of the rational numbers. Thus, E is
the unique countable algebraically closed field of characteristic 0 with infinite
transcendence degree over its prime field, and this field is well-known to
be computably presentable. Ershov was the first to show that E is not
computably categorical (see [6]). Indeed, there are computable presentations
in which the algebraic dependence set

{(xg,...,2,) € E¥ : (xg,...,2,) is algebraically dependent over Q}

can have arbitrary computably enumerable Turing degree, whereas a com-
putable isomorphism between computable copies of ' must preserve the Tur-
ing degree of this set. E is relatively As-categorical, however, since, for an
arbitrary copy K of E, one can use a (deg(K))-oracle to pick out a tran-
scendence basis in K and another in F (since 0’ < (deg(K))’), and every
bijection between these bases extends effectively to an isomorphism from K
onto F.

Our F requires a little more description, and uses the computably enu-
merable set (', the Halting Problem. Let pg < p; < - -+ enumerate the prime
numbers 2 < 3 < ---. F contains two square roots (arbitrarily named +.,/p,)
of each prime p,. We now give a simplified version of the process for one
number n. First, F" also contains a square root of +,/p,. If n € (', then we
adjoin a fourth root of —,/p,; in this case, both of +,/p, have square roots,
of course, but +,/p, has no fourth root in F. If n ¢ (', then no such fourth
root is ever adjoined, so +,/p, has a square root of its own, whereas —,/p,
does not. So in both cases, the elements &, /p, are in distinct orbits under
automorphisms of F', but the reason for the distinction depends on whether
n € () or not.



Unfortunately, this exact procedure cannot be used for every n: once a
square root of —,/p,, has been adjoined for one m, F' will contain a square
root of —1, and therefore any subsequent square root of any other +,/p,
would generate a square root of —,/p, as well. However, one can follow the
same plan used in [11], to give a process which accomplishes the same purpose
for each single prime p, without any interference between them. Start by
adjoining +,/p, to F for every n, and use the polynomials given in [11, Prop.
2.15] to “tag” them, as follows. First, picking one polynomial h, (of a new
prime degree) from that proposition, adjoin one root of hy(+./pn,Y) to F.
Then, if ever m enters (, adjoin a root of h,(—/p,,Y) to F; moreover,
pick a new polynomial g, (just like A, but of a new prime degree) from the
proposition, and adjoin one root of g,(—+/pn,Y’) to F. As long as all these
gn and h,, are chosen with distinct prime degrees, no extraneous roots of any
of them will ever appear, as shown in Proposition 2.15 of [11], and so the
procedure here will succeed. The root of h,(+/pn,Y) is called the “initial
tag” of +./p,. If later n enters (', the root of hy,(—/pn,Y’) is the “balancing
tag,” and then the root of g,(—/pn,Y’) is the “secondary tag” of —,/p.

Since (/' is computably enumerable, one can give a computable presen-
tation of F'in exactly this manner. However, there is another computable
presentation F' = F (in which we name the primes p,, for clarity). Here
again ++/p, always has two square roots of its own, but if n € (', we adjoin
both the initial tag and the secondary tag to ++/p,, with —y/p, having only
a balancing tag in F. Therefore, the two fields are isomorphic, but each
isomorphism f from F onto F' must satisfy

v = D

It follows that every such isomorphism f computes 0.

On the other hand, this field F' is relatively As-categorical. Given any
field K isomorphic to F', we can use a (deg(K))"-oracle to compute (. Then,
for each n € (', we wait until a secondary tag of one of +,/p, appears in K.
When we find it, we map it to the secondary tag of —,/p, in F. For each
n ¢ (', no secondary tags of &,/p,, will ever appear, and we simply find an
initial tag of one of &,/p, in K and map it to the initial tag of +,/p, in F.
Since these elements generate all of K, we can now extend our isomorphism
effectively to all of K, proving relative As-categoricity.

None of the flavors of categoricity we have mentioned so far distinguishes
E from F. Nevertheless, the proofs given here should feel different from



each other: for E, the proof of relative Ay-categoricity made real use of the
(deg(K))"-oracle, whereas the proof for F' only used this oracle to compute
(/. To address this difference, in the next section, we will define yet another
version of categoricity, which will distinguish these two situations. In essence
it is the same definition used in [5], only allowing noncomputable structures as
well as computable ones, as well as generalizing to consider Ay ,-categoricity
for @« > 0. We believe it will strike the reader as a natural uniform version
of the concept of effective categoricity.

3 Uniformly Computable Categoricity

The rationale behind the original definition of computable categoricity is
standard in computable model theory, and has been used to define effective
versions of many completely separate concepts as well. Roughly speaking the
situation is this: we would like to investigate how difficult it is to compute
isomorphisms among copies of the structure A. Of course, the answer may
be arbitrarily difficult, since (by a result of Knight in [8]) the copies of A
themselves may be extremely difficult to compute, assuming that A satis-
fies a simple condition called automorphic non-triviality. In order to make
the question about complexity of isomorphisms manageable, therefore, we
restrict it: under the assumption that the copy B (and A itself) are com-
putable structures, we ask how difficult it is to compute an isomorphism
between them. This allows us to leave the structural complexity of B out of
the question, and to focus on the difficulty of computing the isomorphisms
themselves. (Requiring B to have domain w is a similar restriction: it stops
us from using the domain itself to encode complexity into B. In this paper
we will be able to continue to require all structures to have domain w.)

A great deal of intriguing mathematics has arisen out of this original
definition of computable categoricity, and it is certainly not our intention to
disparage it. However, by reframing the question, we will be able to address
the shortcoming exemplified by the example above with the fields £ and F'.
In the definition below, we do not attempt to exclude any complexity from
B; instead, we assume that we have access to the entire atomic diagram of B,
no matter how complex it may be. The basic version of this definition was
given in [5] and is shown there to be equivalent to their notion of uniform
computable categoricity, and also (modulo use of parameters) to relative
computable categoricity. Here we generalize first by adding an oracle X, and



then (in Definition 3.3 below) by considering A,-categoricity.

Definition 3.1 In a computable language £ with equality, a countable infi-
nite L-structure A is uniformly computably categorical if there exists a Turing
functional ® such that, for every pair of structures B and C both isomorphic
to A (and with domains C w), the function

PPy s w

defines an isomorphism from B onto C. More generally, for a subset X C w, A
is deg( X )-uniformly categorical if there is some ® such that, in the situation
above,

PXOBAC .,

always defines an isomorphism from B onto C. (Clearly this same property
then holds of all sets Y >1 X.)

Finally, if there exists an X C w for which the preceding holds, then
we will call A continuously categorical, since the categoricity is witnessed by
isomorphisms given continuously in the copies of A.

Here the oracles B and C stand for the atomic diagrams of the structures, un-
der some coding into w of all atomic formulas in the language LU{cq, c1, ...}
with a new constant ¢, for each n € w. We have momentarily allowed B and C
to have domains C w, but this is immediately rectified: we have n € dom(B)
if and only if the formula ¢, = ¢, lies in the atomic diagram of B, and so we
can decide the domain from the B-oracle, and likewise for C. With A being
countably infinite, therefore, we will hereafter assume all structures to have
domain w.

Notice that this notion immediately distinguishes the fields £ and F. F
is (-uniformly categorical, since the method given in the previous sections
for computing an isomorphism onto F' from an arbitrary copy B requires only
(/- and B as oracles. On the other hand, E, the algebraically closed field of
infinite transcendence degree over Q, cannot be continuously categorical, no
matter what oracle set X is used. It is not difficult to use Ershov’s method,
relativized to any X, to produce two X-computable copies B and C of F, one
with an X-computable algebraic dependence set and the other without, and
clearly no ®X¥5%C could compute an isomorphism between them. Indeed, one
can make the second copy have algebraic dependence set Turing equivalent
to X', so X’ is the degree of categoricity for X-computable copies.



One’s intuition that categoricity of the field E requires precisely one jump
— equivalently, one quantifier — over the atomic diagram is justified by its
relative Ag-categoricity (along with the comments above). Indeed, relative
As-categoricity without parameters will be exactly equivalent to the natural
extension we now give of Definition 3.1. Recall first the definition of the
gump of a structure A, which was established by general agreement after
initial work by Montalbén [12] and by Soskov and Soskova [17]. (From now
on, in our notation, ¢ denotes the set of computable infinitary formulas of
complexity 3,.)

Definition 3.2 For a countable structure A in a language £, the jump of
A is another structure A’ with the same domain, functions, relations, and
constants as A, but in an expanded language £’. This £’ contains an addi-
tional n-ary predicate R, for each infinitary 3{-formula ¢ in the free variables
U1, ..., 0, (for all n), and

Ea Ry(ar, ... a,) <= EFapla,... a,).

This jump operation iterates through the computable ordinals. At a limit
ordinal o, the result is a structure A with reduct A in £, but with pred-
icates for all infinitary X¢ L-formulas (i.e., all infinitary Y% L-formulas for
all 8 < ).

With this definition, it is now natural to extend continuous categoricity as
follows. We use the ordinal 1 + « here in order to accommodate the exist-
ing system of nomenclature: As-categorical means that the first jump A™M
is computably categorical, whereas A -categorical means that A“) is com-
putably categorical.

Definition 3.3 A countable structure A is X -uniformly Ay .-categorical if
its a-th jump A©@ is X-uniformly categorical. If an X C w exists for which
this holds, then A is continuously Ai-categorical.

It is quickly seen that the field F is uniformly (i.e., )-uniformly) Ay-categorical,
using the same argument as for relative Ag-categoricity. Of course, F is also
uniformly As-categorical; the distinction between F and F' occurs with the
stronger notion of (Y-uniform categoricity, as seen earlier.

One naturally asks, given a structure A, for the smallest ordinal o such
that A is continuously A,-categorical. This question — and also the question
of the existence of such an « — is readily addressed, using the existing notion
of the Scott rank of a structure.



Definition 3.4 The computable Scott rank of a countable L-structure A is
the least ordinal o > 0 such that, for every finite tuple (ai,...,a,) from A,
there exists a computable infinitary 3¢ L-formula ¢(vq,...,v,) for which,
for all tuples b € A",

-,

Eapb) <= (3f € Aut(A) (Vi <n)f(a;) = b;.

(That is, ¢ defines an orbit of n-tuples under the action of Aut(A).) A set §
of Xg-formulas all satisfying this condition, such that every tuple from A<
realizes at least one formula in §, is called a Scott family (of rank B) for A.

The absolute Scott rank of A is defined the same way, but with 3¢ replaced
by 4. That is, absolute Scott rank allows any L, formula to be used,
whether or not it is computable.

We use the term computable Scott rank to emphasize that we only allow
computable infinitary formulas. In Section 5, we will present some examples
and questions regarding the use of arbitrary L,,, formulas. It should be
noted that several distinct definitions of Scott rank exist, and they do not
all define the same ordinal for a single A. Computable Scott rank is based
on our needs here: it requires the individual formulas to be computable, but
the family § need not be given effectively. There is a connection: if A has
an X-computably enumerable Scott family of rank «, and X <; 0¥, then
A has a computably enumerable Scott family whose rank is max(a, 8 + 1),
built by folding the definition of X into the new Scott family.

Proposition 3.5 Suppose that a computable structure A has computable
Scott rank o + 1, and that some Scott family of 3¢, formulas for A is
X -computably enumerable. Then A is X -uniformly A1 -categorical.

It is both important and difficult to get the indices correct here. First, for
a = n € w, uniform A,-categoricity corresponds to a Scott family of ¢
formulas (since A, means that we are given the (n — 1)-st jump A®Y).
However, in the case a = w, uniform A,-categoricity means that we can
compute an isomorphism from A onto B, given the atomic diagrams of A
and B®, i.e., given the X.¢-diagrams of A and B uniformly for all n. Now a
3¢ -formula ¢(z) is an effective disjunction over k of formulas 3 vy (z, 7)),
with each vy in II,. This means that, uniformly in & and (a,d), we can
decide whether =4 ¥y(a,d), and so, given a € A, we can find a formula

¢ with =4 ¢(a) in the X-c.e. Scott family of 3¢, formulas. This sets up
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the usual argument for Scott families and categoricity, and so uniform A,-
categoricity corresponds to a Scott family of Xf | formulas, just as stated
in the Proposition with @ = w. This correspondence continues from o = w
on up through the hyperarithmetical hierarchy: with the atomic diagram
of A“*V one can enumerate the ¥¢, ,-statements true in A, and thus use
a Scott family of X ,-formulas to build an isomorphism, and so on. The
Proposition states this for all « in one fell swoop, since 1 +a = a for a > w
and l+a=a+1 for a <w.

Proof. This is the standard use of Scott families to demonstrate categoricity.
The Turing functional ®, with oracle X @ B @ C® uses X to enumerate
a Scott family for A until it finds a formula ¢(v;) and atomic facts about
B (that is, A ,-facts about B) showing that ¢(0) holds in B. Then it
searches in C(® to find a gy and a tuple witnessing that ¢(yo) holds in C.
With A = B = C, the definition of Scott family shows that this search will
eventually succeed, and when it does, ® defines ®X®5 e () = ;. Next it
goes backwards, finding a formula in the Scott family which holds in C of the
tuple (yo,0), and then finding an xy € B such that the same formula holds of
(0,20). (If yo = 0, then 2o = 0, of course.) Setting GXEBEC (1) = 0, it
then proceeds to the tuple (0, xg, 1) from B, and so on, by a back-and-forth
procedure which ensures that PXIBOEC i) he bijective and will be an
isomorphism. m

For a = 0, the converse also holds.

Proposition 3.6 Suppose that a computable structure A is X -uniformly cat-
egorical. Then A has an X -computably enumerable Scott family of 39 for-
mulas.

Proof. This follows from the methods used in [5], relativized to the degree
of X. Notice that the proof there requires o = 0: it does not consider A,-
categoricity or higher. Also, we can take the formulas in the Scott family
to be finitary, so there is no need to worry that an individual formula might
require an X-oracle to list out its disjuncts. [ ]

One might expect this converse also to hold when o > 0. It does, but we will
first consider the example and the notions in Section 4. Before continuing
there, we note that, in light of Propositions 3.5 and 3.6, it is more reasonable
to define X-uniform categoricity for enumeration degrees, rather than for
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Turing degrees. All we need is an enumeration of the Scott family, and so, if
we can enumerate a Scott family from an enumeration of X, then we can do
the same for every set in the enumeration degree of X. A natural question
now arises.

Question 3.7 Suppose a computable structure A has computable Scott rank
a, as defined above: it has a Scott family of X¢-formulas, and « is least
with this property. Is there a least enumeration degree ¢ such that A is
c-continuously A,-categorical? The e-degree of the Scott family itself is the
obvious candidate for c; the question really asks whether A could have another
Scott family of 3¢ -formulas whose e-degree is incomparable (under <.) with
this c.

An analogous question could be asked in the next section for structures
A which are countable but not computably presentable.

4 Continuity for Spectra of Structures

To see how the questions and definitions above lead into questions about
spectra of structures, we now introduce another countable field L. Notice first
that Definition 3.1 applies to all countable structures, not just computable
ones, and indeed our L will have no computable presentation. It is simplest
to view L as a sort of reverse of F', with the roles of (' and its complement
(" interchanged. Like F', L contains two square roots £,/p, of each prime
number p,, and also contains an initial tag of +,/p, for every n. For those
n ¢ (', we adjoin to L a balancing tag of —,/p,, and also a secondary tag of
—+/Dn- It follows that, with an oracle for an arbitrary presentation of L, we
could enumerate (', simply by enumerating those n for which either of +\/Pn
has a secondary tag, and thus could compute (. Indeed, the Turing degree
spectrum of L is precisely the upper cone above (and including) 0’

The reason why L upsets our ideas about continuous categoricity is that,
whereas F' was only (Y-uniformly categorical, L is uniformly computably
categorical. To see this, suppose that L is an arbitrary copy of L with
domain w. For each n, we wait until either n enters (' or a secondary tag of
+/pn appears in L. If n € (', we find an initial tag of one of +£v/p, in L
and map it to the corresponding initial tag in L (and map this +/p, itself
to 4+,/p» in L). On the other hand, if we find a secondary tag & of +/p,
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in Z, then we wait for a secondary tag of —,/p, to appear in L, and map &

to that secondary tag. In this case, the initial tag of £/p, in L will have
be balanced by a tag of Fv/p,, so we can find the balancing tag and map it
to the balancing tag of +,/p, in L. All of this can be determined from our
oracles (the atomic diagrams of L and Z), and the map thus defined extends
uniquely to an isomorphism from L onto L, since we have defined it on a
generating set for L. This proves the uniform computable categoricity of L.

This result does not contradict any previous statements, but it explains
why the hypothesis of computable presentability of A was included in Propo-
sitions 3.5 and 3.6. Indeed, while L itself is not computably presentable, it
does have a c.e. Scott family of ¥; formulas. For the elements +,/p,, this
family includes all formulas saying that /p, has a secondary tag; it also
includes, for those n € (', the formula saying that ,/p, has an initial tag. If
n € (', then the formula saying that ,/p, has a secondary tag is never realized
in L, and hence could have been eliminated from the Scott family, but in this
case the family would no longer be c.e. On the other hand, even with these
formulas included, the Scott family still allows computation of isomorphisms;
unrealizable formulas clutter up the process but do not disrupt it.

We note, without going into details here, that the same process could be
used with other sets in place of (. For instance, let A and B be Turing-
incomparable c.e. sets. If a field J has initial tags of +,/p, for every n €
A® B, and has balancing tags and secondary tags for every n € A® B, then
the degree spectrum of J is the upper cone above deg(A), and J has a B-c.e.
Scott family of ¥{ formulas.

Finally, we combine two of our examples. Let A be the cardinal sum of
the fields L (above) and F' (from Section 2). That is, A is the disjoint union
of these two structures, in the language of fields with one additional unary
predicate R which holds of all elements of L but of no elements of F'. So
Spec(A) = Spec(F) NSpec(L), which is the upper cone above 0’; and we get
a Scott family § of X formulas for A essentially just by taking the union of
the Scott families for F' and L, with obvious adjustments involving R. This
Fis c.e. in (' but not in any smaller or incomparable degree; indeed, § =, (V'
However, A is uniformly computably categorical! The process for computing
isomorphisms between arbitrary copies of A is to use the L-side of one of the
copies to enumerate W, and then to use that enumeration to enumerate §.
Ultimately, therefore, the uniform computable categoricity of this A follows
from the e-reduction § <. Thy, (A).
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Nevertheless, Proposition 4.1 and Theorem 4.3 below do not require an
e-reduction such as § <. Thy, (A); they actually show that our A has a
c.e. Scott family of ¥;-formulas. This family is not the § described above;
instead, it integrates the e-reduction § <. Thy, (A) into its formulas. For
each n, the new Scott family has one formula saying

if n € (', then use the appropriate 3-formula on F,
and another one saying

if there exists a configuration in L showing that n ¢

then use the other kind of 3-formula on F.

So, somewhat surprisingly, we may extend Propositions 3.5 and 3.6 to
all countable structures, and give the promised converse for the case a > 0,
without any use of Thye (A).

Proposition 4.1 Fiz any oracle set X C w and any nonzero a < wiK. A
countable structure A is X -uniformly Ay, -categorical if and only if A has
an X-c.e. Scott famuly of 3, | formulas.

A more precise statement is possible if we integrate e-reducibility into the
notion of uniform A,-categoricity. Proposition 4.1 follows from this version,
which we now state as Theorem 4.3 and prove.

Definition 4.2 An enumeration of a set S C w is a set T' C w such that S
is the projection of T

S =proj(T) ={m € w: (3In)(m,n) € T}.
So a set S is d-c.e. if and only if it has a d-computable enumeration.

Theorem 4.3 Fiz any oracle set X C w and any nonzero a < w{K. A

countable structure A has a Scott family of 3¢, .| formulas which is e-reducible
to X if and only if A satisfies:

There exists a Turing functional ® such that, for all copies B =
C = A with domain w and all enumerations Y of X, the function
PYOBDBC o 4 isomorphism from B onto C.
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Proof. Suppose first that A has such a Scott family §, and fix any Y as
described and any B = A. (It is sufficient to show the second statement
with C = A.) With its enumeration of X, ® applies the given e-reduction
to produce an enumeration of the Scott family §. From here it is standard
to compute an isomorphism from B onto A, going back and forth using the
Scott family and the X¢-diagrams of the two structures.

Now assume @ is a functional satisfying the second statement. We run
¢ simultaneously on input 0 with each binary string (o & 8 & ) € 2<¥
as oracle; moreover, whenever ®®°97(0) converges, we then run ®°®F®7(1)
until it converges (if ever), then ®7®7®7(2), and so on. Thus we produce an
enumeration of those tuples (¢ & 6@ v,¥) € 2<“ x w<¥ such that, for all
i < [, 27®2(i) = .

Each (0 @ 5 @ 7, ) in this enumeration defines a set

Xo = {a: (3) o((a,b)) = 1},

and yields a strong index for this finite set Xy. It also includes finite initial
segments (8 and 7 of the atomic diagrams of the structures B and C®.
The convergence of ® using this oracle means that, whenever X, C proj(Y’)
and the diagram of B realizes

A elrl A\ ).

B(p)=1 B(p)=0

and likewise for C and -y, then the map sending each i < |7] to y; extends
to an isomorphism from B onto C. If m is the largest domain element of B
mentioned in the conjunction above, and n the largest domain element of C,
then we enumerate into our e-reduction an axiom saying that if X, C X,
then the following formula (with zo, ..., 251 free) is in the Scott family:

HI‘M cee 3xm+n+1 /\ QO(ZL‘(), e ,(L‘m) A /\ _l(p(l'o’ .. ’xm)

Blp)=1 B(p)=0

AMCA AL A e
~y(¥)=1 ~(10)=0

AMON wA A( A xi#ma‘)
|71<i<j<n m<i<j<m+1l+n
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Here, if ¢ is a sentence mentioning the domain elements 0,...,n of C, ¥* is
the same sentence, but with each domain element y; replaced by the variable
x;, and with each domain element j ¢ ¥ replaced by the variable x,,14;.
For ¢, the replacements were simpler: each domain element ¢ was replaced
by the variable x;. Thus, the formula defined here is ¥,,; and says that
(wo, ..., z5-1) satisfies all the existential conditions given by 8 on B and all
those given by v on C. (It is likely but not assumed that these conditions
repeat each other; there is no danger in including conditions from S even if
they are not in +, or vice versa, but there would be a danger in excluding any
of them, since these are the conditions which ® actually checks before defining
its isomorphism.) It is now clear from this definition and the conditions of the
theorem that, given any enumeration of X, our e-reduction will enumerate a
Scott family of X¢,_ ,-formulas for A. u

In a certain sense, the reason why the field L can be uniformly computably
categorical is that ()’ is computable in every copy of L, and moreover, that
this computation of (/' is uniform across all copies of L. This property wa
studied in [8], and we give it a name here, which will only be used until
we can demonstrate (in Proposition 4.5 below) its equivalence to a known
condition. The reader may wish to try to identify this known condition right
now, without skipping ahead to the proposition to peek.

Definition 4.4 A set S C w is uniformly intrinsically computable from a
countable infinite structure A if there exists a Turing functional I" such that,
for every B = A with domain w, I'® computes the characteristic function of
S.

Likewise, S is uniformly intrinsically computably enumerable in A if there
exists a Turing functional © such that, for every B = A with domain w, the
function ©F has domain S.

Clearly S is uniformly intrinsically computable from A if and only if both
S and S are uniformly intrinsically c.e. in A. The latter of these two proper-
ties will in fact be more natural and relevant; it is the property well-known
to the Bulgarian school of computable model theory, where the collection
of sets uniformly intrinsically c.e. in A is called the co-spectrum of A. The
following result was proven by Knight in [8].
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Proposition 4.5 A set S C w is uniformly intrinsically c.e. in a countable
structure A if and only if S is e-reducible to the existential theory Ths, (A)
of A.

Consequently, S is uniformly intrinsically computable in A if and only if

both S and S are e-reducible to Thy, (A).

Proof. The backwards direction is immediate. With an oracle for any copy
of A, we can (uniformly) enumerate Thy, (A), and therefore can enumerate
S, uniformly, using its e-reduction to Thy, (A).

For the forwards direction, in order to show that S <. Thy, (A), we
enumerate a set ¥ of axioms (n,37/3(Z)) for an e-reduction. Such an axiom
represents the instruction “if =4 3ZF(Z), then enumerate n.” The nature
of the (finitary) Y;-theory is such that each axiom need contain only one
formula, although e-reductions in general allow us to use a finite conjunction.
(One can call our ¥ an e-reduction of norm 1.)

Recall the basics. We have a Godel coding v — "~ of atomic sentences
in the language £’, which is the language of £ extended by new constants
Co, C1, - - . representing elements of the domain w. A B-oracle is simply the
subset {"B(c¢iy, ..., ¢,) " (B Blio, - .., in)} of w, and we know that whenever
B~ A, dom(®F) = S.

To build ¥, we simply run ®7(n) for all n,s € w and all 0 € 2<%, If
this computation halts within the allotted s steps, we enumerate into ¥ the
axiom

(n,328) = | n, 37 A Elal N\ e :

o(Ty)=1 o(Ty)=0

where 7S has x; substituted for each ¢; in «. This is less complicated than it
appears: [ is simply the configuration described by o, where o is seen as a
(partial) characteristic function deeming certain atomic facts to be true and
certain others to be false.

Now if (n,3Z0) € U, say with & = (o, ..., zn), and if =4 375, then we
can easily build a structure B = A whose elements 0, ..., m realize 3: let B
be the image of A under an isomorphism which permutes a finite subset of w
to make this happen. It follows that n € S, since now n € dom(®?) for this
B, and so our e-reduction W only ever enumerates elements of S when we
run it using an arbitrary enumeration of Thy, (A). Of course, it may happen
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that (n, 375) € U yet =4 3ZF; but in this case the instruction (n, 3¥F) € ¥
will have no effect when we use W14 to enumerate S.

On the other hand, if n € S, then ®4(n) itself halts, after examining
only a finite initial segment o of its oracle A, i.e., of the atomic diagram
of the structure A. Our construction of ¥ will have found this ¢ and will
have enumerated a corresponding axiom (n,3Z3) into V. Since =4 3705, we
certainly have (37) € Thy, (A), and so, when ¥ runs using any enumeration
of Thy, (A), it will enumerate n. This completes the proof. n

As with categoricity, this proposition reflects various concepts and facts
already known about countable structures, such as relative intrinsic com-
putable enumerability (see e.g. [13]). The obvious distinction is that here
we consider information content (that is, arbitrary subsets of w given uni-
formly in copies of A) rather than definable subsets of the structure A itself.
One naturally asks whether this distinction is significant, but we leave that
question for future study.

By way of piquing interest in uniform intrinsic computability, we recall a
theorem of Richter from [15]. This theorem is usually quoted as saying that
for countable infinite linear orders and for countable infinite trees (as partial
orders) A, the only possible least degree in the Turing degree spectrum of A
is the degree 0. (Richter did not mention Boolean algebras, but her proof is
quickly seen to apply to them as well.) In fact, Richter proved slightly more:
that every such structure A has spectrum containing a minimal pair of Turing
degrees, and thus the spectrum cannot be contained within any nontrivial
upper cone. One might say that the structure A cannot intrinsically compute
any noncomputable set.

Since uniform intrinsic computation is a form of intrinsic computation,
Richter’s result immediately implies the following special case as a corollary.
However, our notions yield a far more direct proof.

Corollary 4.6 For any countable infinite linear order, tree (viewed as a par-
tial order), or Boolean algebra A, only the computably enumerable sets are
uniformly intrinsically computably enumerable in A.

Proof. Apply Proposition 4.5, since the existential theory of any such A is
decidable. (For the trees, this decidability requires an application of Kruskal’s
Theorem — as did Richter’s original result.) ]
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Uniform categoricity is in much the same spirit as past investigations
into intrinsic computability, as in [1] and [13], for example. If the images
f(R) of a subset R of the domain of a countable structure .4 are computably
enumerable relative to B under every isomorphism f from A onto any copy B
with domain w, then R must be defined in A by a X{ formula, possibly using
finitely many parameters a@ from A. The parameters create a nonuniformity,
but in the structure (A, @), this definition yields a Turing functional I" such
that f(R) = dom(I'®f(@) under every isomorphism f from A onto any B.
That is, relative intrinsic computable enumerability is equivalent (up to those
parameters) to the uniform version, i.e., to the existence of such a I, since
the latter clearly implies the former. Proposition 4.5 is a natural extension
of these results.

5 Noncomputable Infinitary Formulas

So far, the only infinitary formulas we have used have been computable ones,
in the classes ¥¢ (for various a < wf¥). The main point of this section is
to suggest that these formulas are not sufficient: we give examples of struc-
tures which would have lower levels of categoricity if one allowed certain
noncomputable infinitary formulas. In the general setting of [4], working on
a cone, one simply chooses the base degree of the cone to include sufficient
information to be able to compute the necessary formulas. This is improved
a bit further in [14]. However, it appears that our Definition 3.3 could be
improved by adding a parameter Y, representing a Turing degree, and allow-
ing Y-jumps (that is, jumps of structures defined by adding predicates for all
Y -computable infinitary >;-formulas). This section is mostly conjectural; we
would welcome proofs of precise results about the examples described here.

Fix an arbitrary set Y C w, and define the following (symmetric, irreflex-
ive) graph Ay. We start with a single node u, with countably many nodes
zno (for all n € w) adjacent to u. Each z, is then adjacent to z,;, which is
adjacent to z,2 and so on, so that countably many “w-chains” are attached
to u. For identification purposes, we also attach to u a single loop of length
3 (that is, we make u adjacent to one of the three nodes in this loop), and
attach a loop of length 2i + 5 to each node z,;, (that is, one unique loop for
each pair (n,1i)).

We now use loops of even length to add the desired complexity to Ay.
Write Y™ = {j : (n,j) € Y} for the n-th column of Y. To each node
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Zni, We attach one loop of length 25 + 4 for every j ¢ Y. Finally, writing
Yl = Lk, < ky < ---}, we attach to z,; a single loop of length 2k,; + 4.
Hereafter this one will be known as the special loop for z,;.

Now Ay has a Scott family of infinitary Y-computable ¥y formulas (in
fact, TI; formulas). The principal difficulty is to distinguish the nodes z,g
for different n; everything else is well labeled by loops. (To compute an
isomorphism between copies, clearly it would suffice to map the z,¢’s to
correct images.) A Y-oracle allows us to specify exactly what loops should
be attached to each z,; in the n-th w-chain. Specifically, each z = z,( satisfies
a formula saying,

(Vi)(V loops L attached to z; in 2’s chain) [2 - |L| + 4 = ky; or ¢ Y],

along with the statements specifying that each of these z; is connected to z
by a chain of length ¢ and is attached to a loop of length 2i + 5, and that z
is adjacent to some u adjacent to a loop of length 3.

One might therefore expect Ay to be Y-uniformly As-categorical. In
fact, though, this can fail for certain Y. (Thanks are due to an anonymous
referee for the following proof of this fact!) Let ¢, p1,... be a list of all
computable infinitary formulas. Set ), = 2*. For each n, if only countably
many Z € ), have the property that =g, ¢, then let V,.1 be ), with
these countably many Z deleted. Otherwise, let )V, 11 = ),. By induction,
every Y, is co-countable, so there exists some Z € N,),,, and this Z has the
property that, for every n, either [£g5, ¢, or else uncountably many U have

):BU Pn-
Now, for each n, choose some Z,, # Z for which

):an Pn < ):BZ Pn-

Now set Y = Z @ (®(jr)ew2Z;j) to be the set with Z and infinitely many
copies of each Z, as its columns. We claim that ¢, (x) cannot identify the
node zgg at the top of the chain for Z. Indeed, if ¢, (20 holds in Ay, then
©n(2(m,0)+1,0) (the node at the top of one of the Z,-chains) must also hold
there, since =5, ¢, if and only if =5, @,. Since Z # Z,,, this means that
v, cannot be part of a Scott family for Ay: it holds of two nodes not in the
same orbit under automorphisms. So in fact this Ay has no Scott family of
computable formulas at all, and thus cannot be continuously A,-categorical
for any a.
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The problem with the Scott family of infinitary Y-computable X5 for-
mulas is that those formulas are not computable infinitary; they are only
Y-computable infinitary. Consequently, the second jump (Ay)” generally
does not give information about whether a specific node satisfies such a for-
mula or not: the predicates in the second jump of a structure only describe
satisfaction of computable infinitary Ys-formulas.

For certain structures, one can convert a Scott family of Y-computable
infinitary formulas into an Y-computably enumerable family of computable
infinitary formulas, possibly of higher rank. However, the Ay here in general
is sufficiently complex to preclude this possibility, with the use of the Y-oracle
hidden within the II; part of the Y5 formulas. So we have here structures
Ay which do have absolute Scott rank 2, yet do not appear to satisfy any of
our versions of continuous Ag-categoricity.

On the bright side, there does exist a single Turing functional I' such
that, for every Y C w and every B = Ay, the function

F(AY@B)”

is an isomorphism from Ay onto B. With this oracle, I searches for some
z € B adjacent to the u in B such that, for every loop attached to every z;
below z, there is a loop of the same length attached to the same z,; below 2,
(in Ay ), and likewise with the roles of Ay and B reversed. So we conjecture
that using the jump(s) of the join of (the atomic diagrams of) Ay and B,
rather than the join of their jump(s), may allow us to extend unform notions
of categoricity to other computably non-presentable structures.

Finally, we note that Y is not in general e-reducible to the existential
theory of the structure Ay. Indeed, given any Y, every set U with the same
columns as Y (and having each column occur with the same multiplicity)
will yield an Ay with the same existential theory, indeed with Ay = Ay.
However, unless cofinitely many columns of U are all equal to each other,
there will be uncountably many distinct sets U with the same columns as
Y, and all but countably many of those U will have no e-reduction to the
existential theory of their structures Ay .

It is the case that each individual column Y™ is decidable from the jump
(Ay)": the i-th element k,; € Y™ has the property that there is a loop of
length 2k,; +4 attached to z,; but no such loop attached to z,(;1). However,
this procedure is not uniform: starting this process in the jump of a copy
B = Ay requires knowing the image of z, in B, i.e., knowing which w-chain
in B to use.
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To sum up all the loose ends in this section is a challenge, but in general
they suggest that it would be useful to define a relative notion of the jump of a
structure, using Y-computable infinitary ¥;-formulas in place of computable
ones. Definition 3.3 could likely be sharpened by using such jumps, and/or
by allowing the Turing functional to use a jump of the join (X & A)) in
place of the join (X'@® A@+Y) of their jumps. The conjectures and examples
in this section make it appear that under Definition 3.3, there exist countable
structures B which cannot be continuously A,-categorical, no matter what o
one chooses: if B has noncomputable Scott rank 3, then the jump B is not
even defined; and even for structures such as many of the Ay constructed
here, it seems likely that no jump (Ay)©® with o < w&¥ is continuously
categorical. This contradicts one’s intuition, based on the original results of
Scott, that categoricity should be continuous for every countable structure,
although at arbitrarily high countable levels 8. So it would be natural to
develop a relativized notion of the jump of a structure — presumably using
X-computable infinitary ¥; formulas to relativize to X — and to extend
our notion of uniform A,-categoricity to a uniform AX-categoricity which
includes this relativization.
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